
Computers and Mathematics with Applications 64 (2012) 278–288

Contents lists available at SciVerse ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Modelling and simulation of processes in microfluidic devices for
biomedical applications
I. Cimrák a,∗, M. Gusenbauer b, T. Schrefl b
a Dep. Soft. Technologies, Faculty of Management Science and Informatics, University of Zilina, 01026 Zilina, Slovakia
b St. Poelten University of Applied Sciences, St. Poelten, Austria

a r t i c l e i n f o

Keywords:
Microfluidic devices
Blood flow
Blood cell modelling
Circulating tumour cells
ESPResSo

a b s t r a c t

We investigate amathematicalmodel describing the flow of a liquid in amicrochannel. The
model incorporates immersed objects in the fluid as well as fixed obstacles and boundaries
of the microchannel. Objects can have different elastic properties, including solid objects
and deformable objects. The flow description accounts for all types of mechanical
interactions: fluid–object, object–object, fluid–walls, and object–walls interactions.
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1. Introduction

Microfluidics appeared during the rapid development of inkjet printheads in the 1980s. Since then, the area of
microfluidic applications has substantially expanded [1]. Nowadays, advances in microfluidics technology are reforming
molecular biology procedures. They enable new methods in enzymatic analysis, DNA analysis, and proteomics [2]. An
emerging application area for biochips is clinical pathology, especially the immediate point-of-care diagnosis of diseases.
In addition, microfluidics-based devices, capable of continuous sampling and real-time testing of air/water samples for
biochemical toxins and other dangerous pathogens, can serve as an always-on ‘‘bio-smoke alarm’’ for early warning. Further
applications of microfluidic devices are in optofluidics, evolutionary biology [3] and cell biological research [4].

Microfluidic devices enable the precise control of the decreasing fluid volumes on the one hand and theminiaturization of
the size of a fluid handling system on the other hand. The behaviour of fluids at the microscale can differ from ‘macrofluidic’
characteristics because the system starts to be dominated by factors such as surface tension, energy dissipation, and fluidic
resistance.

The computer simulations of microfluidic devices significantly improve the design process. The simulations are essential
to minimize development time and costs and help the designers get from concept to prototype quickly and efficiently.

For example, a biologist may want to separate deformable cells of type A from the suspension containing cells of two
types A and B. He knows that A cells are a little bit larger and stiffer than B cells. Therefore he wants to use a filter with
fixed-sized holes. To determine the size of the holes, he sets up a simulation toolbox and lets the computer decide which
hole size leads to best sorting results.

Another example is the simulation procedure telling the scientist how the flow will be affected when a micropost is
placed into a microchannel and thus how the capture efficiency of the device will be changed.

We aim at developing a simulation environment that tracks the movement of cells or other immersed objects as they
move in themicrochannel. The software calculates the interactionswith each other, the channelwalls, the fluid, and external
forces that may be applied to manipulate the immersed objects. The simulation tracks the time evolution of both the fluid
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and suspended objects. The mathematical algorithms used by the software tend to be readily applied, allowing calculations
in a straightforward manner and making it easy to incorporate new forces.

We extend the existing software package ESPResSo [5] (An Extensible Simulation Package for Research on Soft Matter
Systems). This package is primarily used for particle movement simulations with a broad range of applications, such as
dynamics of copolymers [6], DNA translocation [7], and other. We implement routines that allow a flexible description of
immersed objects together with all necessary elastic and mechanical interactions. In this way, the simulation framework
will be able to cover a broad range of microfluidic applications with different flowing objects, e.g. blood cells in blood flow,
bacteria in water, microorganisms in drinks, and other.

In this research we focus on biomedical applications in the isolation of tumour cells. Circulating tumour cells (CTCs) are
disseminated from the site of disease in metastatic or primary cancers, including breast, prostate, lung and other types
of cancer. CTCs can be identified and counted in the peripheral blood of patients. The biological analysis of CTCs using
lab-on-chip technologies effectively diagnoses the disease, determines personalized therapies and adjusts treatments in
real time. Because of their rare occurrence (a few CTCs per 1 mL of blood) CTCs must be isolated from the blood sample.
Recent developments and research of microfluidic devices made a significant breakthrough in the detection and filtration
of CTCs from blood. One of the isolation approaches is based on a filtration by size of the cells. Generally, CTCs are larger
and stiffer than healthy red blood cells (RBCs), and white blood cells are even larger. Therefore a series of microfilters can
be used to subsequently filter first the largest white blood cells and then mid-sized RBCs. The isolation of the RBCs based on
the size is addressed in [8]. We are in the early stage of this research.

Content of the paper

The paper is organized as follows. In Section 2wedescribe the generalmodel for fluidmotion, for description of immersed
objects and for the coupling of the fluid and immersed objects. We provide a series of tests that calibrate the parameters for
fluid–structure coupling involving the study of drag coefficients for oblate and prolate ellipsoids.

The concrete model of a red blood cell is presented in Section 3. All elastic properties are properly described. The core
of the paper is presented in Section 4. Here, the coupling of the fluid and the immersed objects is calibrated and the proper
friction coefficient is determined. Next, the RBCmodel parameters are calibrated using the experimental data from literature.

In this paper we focus on building the model of an RBC, its calibration and implementation in ESPResSo. General features
of the simulation environmentwill be explained on the example of cancer cell isolation.We show an example of a simulation
of a cell passage through a narrow channel. Such kind of simulations will be used for determination of theminimal gap sizes
throughwhich a healthy RBC can pass while a CTC is blocked. These results will be used in the design process of new devices
in our upcoming works.

2. Model

To describe the mechanical processes inside a microfluidic device, we need to take into account the following
phenomena:

Fluid dynamics. The dynamics of the fluid will be governed by the lattice–Boltzmann method (LBM). The LBM is fast and
easy parallelizable, which will be necessary for simulations including high number of immersed objects.

Immersed objects. Immersed objects will be represented by the immersed boundary method (IBM), which is broadly used
to describe the boundary of an object without the necessity to change the discretization mesh. The boundary of an
object is represented by a triangular mesh containing points on the surface of the object. These points are moving
in space under the influence of fluid–object interaction forces, as well as mechanic, elastic, and magnetic forces.
For each type of immersed object, different forces are applicable. For example, a healthy RBC is highly deformable,
so the stiffness contribution will be low, whereas the cancer cells are more rigid so the stiffness contribution will
be higher.

Coupling of the fluid and the immersed objects. Interactions between fluid and objects will be simulated using the drag
force acting on an obstacle moving in the fluid. This principle is well-established and already implemented in
ESPResSo.

2.1. Fluid dynamics by the lattice–Boltzmann method

Instead of solving the Navier–Stokes equations, which solve the conservation equations of macroscopic properties,
the LBM models [9] the fluid consisting of fictive particles. Such particles perform consecutive propagation and collision
processes over a discrete latticemesh. The unknown in the LBM is the distribution function for fictive particles. Macroscopic
properties can be recovered by explicit formulas involving the unknown distribution function n.

Consider a lattice placed over the three-dimensional domain and consisting of cubic cells. This lattice creates an Eulerian
grid which is fixed over the entire simulation. The variable of interest in the LBM is ni(x, t) which is the particle density
function for the lattice point x, discrete velocity vector ei, and time t . We use the D3Q19 version of the LBM (three
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Fig. 1. Triangular mesh representing the boundary of an RBC deformed in the fluid flow.

dimensions with 19 discrete velocities, so i = 1, . . . , 19). The governing equations for the LBM, in the presence of external
forces, are

ni(x + δt , t + δt) = ni(x, t) −
1
τ

(ni(x, t) − neq
i (x, t)) + fi(x, t), (1)

where δt is the time step, τ denotes the relaxation time, neq
i is the equilibrium function depending onmacroscopic variables

velocity u and density ρ, and fi is the external force exerted on the fluid. The macroscopic quantities such as velocity u and
density ρ are evaluated from

ρ(x, t) =


i

ni(x, t) and ρ(x, t)u =


i

ni(x, t)ei.

2.2. Immersed objects

The immersed objects are characterized by their boundaries. The boundaries are represented with a set of immersed
boundary (IB) points, which may be advected by the fluid interaction. This method is especially suitable for the simulation
of the deformation of immersed boundaries by fluid–structure interaction, and it has been widely used in biological fluid
dynamics [10].

To take themechano-elastic properties of the immersed objects into account, a triangularmesh is created on top of the IB
points, see Fig. 1. Geometrical entities in this mesh (edges, faces, angles between two faces, . . . ) are used tomodel stretching,
bending, stiffness, and other properties of the boundary.

For the motion of the IB points we use the Newton equation of motion

mib
d2Xj

dt2
= Fj, (2)

where mib is the mass of the IB point, Xj is the position and Fj is the force exerted on the particular IB point. The source of
Fj is twofold: fluid–structure interaction, which is described in Section 2.3, and elastomechanical properties of immersed
objects. The latter are described in Section 3 for the case of red blood cells.

The mass of the IB point is a parameter that does not have any particular physical meaning. It is a free parameter that
must be calibrated to fit experimental data. This parameter is the same for all IB points of one immersed object, however it
will differ for different immersed objects.

2.3. Coupling of the fluid and the immersed objects

Eqs. (1) and (2) describe the motion of the fluid and of the immersed objects, respectively. Both motions influence each
other so we need to couple the two equations. To do so we use an approach from [9] with a drag force that is exerted on an
object moving in the fluid. Analogous to the Stokes formula for a sphere in a viscous fluid we assume the force exerted by
the fluid on one IB point to be proportional to the difference of the velocity v of the IB point and the fluid velocity u at the
same position, the vectorial equation for this relation reads as

Fj = ξ(v − u). (3)

Here ξ is a proportionality coefficient which we will refer to as the friction coefficient. It is given in N s m−1 units. In the
previous expression, the velocities v and u are computed at the same spatial location, whereaswe possess u in fixed Eulerian
grid points and v in moving Lagrangian IB points. Therefore for computation of u in the IB point, we use linear interpolation
of the u values from nearby fixed grid points, see Fig. 2.

There is also an opposite effect: not only does fluid act on the IB point, but also an IB point acts on the fluid. Therefore
we need to transfer the opposite force −Fj back to the fluid. We distribute Fj from the location of the IB point to the nearby
grid points. Distribution is inversely proportional to the cuboidal volumes with opposite corners being the IB point and the
grid point. In other words, if the IB point is closer to the grid point, then a larger contribution will be assigned to that grid
point [9].
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Fig. 2. Two dimensional case: Immersed boundary (dashed line) consists of IB points (denoted by numbers 1, 2, 3,. . . ) creating a non-structured flexible
mesh. This mesh is placed over the fixed rectangular fluid grid (with grid nodes denoted by letters A, B, C,D, . . .). Once the IB point 2 is located in the
rectangle ABCD, the fluid–structure interaction takes place between four grid points ABCD and the IB boundary point 2.

The overall behaviour of an immersed object will also be influenced by the number (or the density) of the IB points on its
boundary. The influence of the liquid on themovement of the object is through the drag force exerted on the boundary. This
drag force should be distributed uniformly across the surface and therefore the density of IB points over the surface should
be approximately fixed. So if we double the surface of the immersed object we should also double the number of IB points.
Therefore we must keep the surface-to-nodes ratio constant when generating meshes for immersed objects with different
size.

Another issue influencing the behaviour is themass of the IB points. When the fluid pushes the object and tries to change
its trajectory, the effect must be dependent on the weight of the object. So if we double the volume of the object, we should
double also the mass of individual IB points.

3. Blood cell model

We demonstrate the IB method on a red blood cell model. The RBC consists of a cell membrane and a liquid cytoplasm.
The RBC membrane consists of two layers, the plasma phospholipidic bilayer and the cytoskeletal spectrin network. The
plasma bilayer is believed to be responsible for the constraints of constant area. It can rearrange itself very easily, and is
often referred to as a fluid membrane. The network of proteins attached underneath the plasma layer is responsible for the
shear resistance (stretching) and bending. The whole membrane also contains ionic pumps maintaining the inner volume
of the RBC constant.

The RBCmembrane is only fewmolecules thick, and hence it is frequentlymodelled as a twodimensional sheetwith some
thickness. Aswehavementioned,wemodel themembranewith triangularmesh. The elastic properties of themembrane can
be described in terms of fourmoduli: stretchingmodulus, bendingmodulus, area expansionmodulus and volume expansion
modulus.

The relaxed shape of an RBC has a biconcave shape that can be explicitly expressed by

y = 0.5(1 − x2)1/2(c0 + c1x2 + c2x4), −1 ≤ x ≤ 1,

where c0 = 0.207, c1 = 2.002, c2 = 1.122, equation acquired from [11]. We denote L0AB the distance between two IB points
A and B in the relaxed state. The following expressions for elastic forces are from [12].

Stretching modulus

The membrane of an RBC has a hyperelastic neo-Hookean behaviour. This behaviour is reproduced by the nonlinear
spring model. For each edge between two IB points A and Bwe define LAB the distance between A and B, by 1LAB we denote
deviation from the relaxed state, that is 1LAB = LAB − L0AB. The stretching force in the IB points is computed from

Fs(A, B) = ksκ(λAB)
1LAB
L0AB

nAB.

Here, nAB is the unit vector pointing from A to B, ks is the stretching constant, λAB = LAB/L0AB, and κ is a nonlinear function
that resembles neo-Hookean behaviour

κ(λAB) =
λ0.5
AB + λ−2.5

AB

λAB + λ−3
AB

.
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Bending modulus

The tendency of an RBC to maintain the resting shape is governed by prescribing the preferred angles between the
neighbouring triangles of the mesh. One can argue, that a scaled cell will have all angles between the triangles preserved.
However, the scaling of the cell will be prevented by e.g. the volume constraint or, by imposing preferred edge lengths by
the stretching modulus.

Denoting by θ0 the angle between two triangles in the resting shape, we compute the deviation of this angle1θ = θ −θ0

and define the bending force for a triangle ABC

Fb(ABC) = kb
1θ

θ0
nABC .

Here, nABC is the unit normal vector to the triangle ABC . This force is assigned to the vertex not belonging to the common
edge. The opposite force divided by two is assigned to the two vertexes lying on the common edge.

Area constraint modulus

We compute the deviation of the triangle surface SABC from the triangle surface in the resting shape 1SABC = SABC − S0ABC .
We impose the area constraint by assigning a shrinking/expanding force for every vertex

Fa(A) = −ka
1SABC
SABC

wA,

where ka is the area constraint coefficient, and wA is the unit vector pointing from the centroid of triangle ABC to the vertex
A. Similarly we assign the analogical forces to vertexes B and C .

The conservation of local area is too restrictive and we add the global area constraint by introducing a global term

Fa(A) = −


kal

1SABC
SABC

+ kag
1S
S


wA.

Here, the area constraint coefficient ka is split into two coefficients, the global area coefficient kag and the local area
constraint kal.

Volume constraint modulus

We compute the deviation of the global volume of the cell V from the volume in the resting shape 1V = V − V 0. For
each triangle we compute the following force

Fv(ABC) = −kv

1V
V 0

SABC nABC ,

where SABC is the area of triangle ABC, nABC is the normal unit vector of plane ABC , and kv is the volume constraint coefficient.
The volume of one cell is computed from

V =


ABC

SABC nABC · hABC ,

where the sum is computed over all triangles of the mesh and hABC is the normal vector from the centre of triangle ABC to
any plane which does not cross the cell. The force Fv(ABC) is equally distributed to all three vertexes A, B, C .

The theoretical expressions for all elastic moduli are from [12]. Practically, we needed to include them in the simulation
environment. We implemented five different interactions (the area constraint has been split into two separate constraints,
the local and the global area constraint) in the ESPResSo software. Our implementation however had to conform the parallel
structures of ESPResSo. The stretching force was already included. The implementation of the bending and the local area
constraints are novel, nevertheless the techniquewas straightforward. The global area constraint and the volume constraint,
however require a different approach. The significant difference is in that those two constraints use global information
about the whole blood cell, whereas all the computations are performed locally on different computer nodes, when run in
parallel. It can thus occur, that themesh nodes of one blood cell aremaintained by two ormore computer nodes. Therefore, a
two-step approach had to be used, first, each computer node computes the partial volume. After all computer nodes added
their contribution, the complete volume of the cell can be distributed to each computer node and the local forces can be
calculated. This solution has been designed with the help of ESPResSo developers [13].

The implemented elastic moduli are specific for the red blood cells. Some of them can be used for characterization
of other types of immersed objects. For example, vesicles have only three constraints (volume, area and bending) and
capsules only two constraints (volume and stretching). There are also other types of objects for which another specific
interactions have to be implemented, for example rigid objects, or solid but deformable objects, all these objects need special
treatment.
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Finally we emphasize that the presented model of an RBC contains five parameters that influence the actual behaviour
of the cell:

ks—stretching coefficient
kb—bending coefficient
kal—local area constraint
kag—global area constraint, and
kv—volume constraint.

Each of these parameters influences the elastic behaviour of the cell. The stretching and bending coefficients are biologically
justified and there exists an approximate value for each parameter: ks is of the order 5× 105pN µm−1 and kb is of the order
10−1pNµm(parameters from [12,14]). These approximate values in lattice–Boltzmannunits are ks = 0.005 and kb = 0.001.
However the approximate value gives us only the order of magnitude and the actual value needs to be identified from real
experiments. Further, the other three parameters have the following approximate values: kv = 0.33 µ Ns cm−1, kag =

5 × 105pN µm−1, kal = 5 × 103pN µm−1. They are more phenomenological and also need to be calibrated.
To calibrate ourmodelweneed to perform calibration testswith experimental data. These tests are described in Section 4.

4. Calibration

The first experiment described in Section 4.1 involves the calibration of general fluid–object interactions. As described in
Section 2.3, the influence of the fluid on the immersed objects and vice versa is maintained through the drag force given by
(3). The parameter describing the strength of this interaction is the friction coefficient ξ . However the friction coefficient is
directly linked to another parameter, the mass of the IB pointsmib appearing in (2). For calibration of these two parameters
we use an experiment involving the motion of a moving ellipsoid in a static liquid.

Next we calibrate our cell model in Section 4.2. The experiment involves the stretching of a red blood cell on its opposite
sides with a known force. The cell elongates and the cell’s horizontal and vertical diameters are measured.

4.1. Friction coefficient and mass calibration

We simulate the following experiment: We put a ball with some initial velocity v0 to a static fluid. Fluid exerts a drag
force on the ball. Under the influence of this force, the ball slows down. We compute the velocity as a function of time. We
assume that the density of the ball is the same as that of the surrounding fluid.

Exact solution for velocity
According to the classical theory for the motion of a spherical object in the Stokes creeping flow, the drag force exerted

on a ball can be expressed as

Fd = −6πνrvK , (4)

where r is the radius of the ball, ν is the dynamic viscosity of the fluid, v is the relative velocity of the ball with respect to
the fluid and K is the shape factor. For the case of a sphere K = 1, while K is different from one when a prolate or oblate
ellipsoid is considered instead of a ball. This shape factor can be calculated from [15,16]. Taking the basic equation of motion
of an object with massm under the influence of force F we have

mx′′
= F ,

where x is the position of the ball. Setting F = Fd we can compute the velocity of the ball v = x′ from

mv′
+ 6πνrvK = 0,

with the initial condition v(0) = v0. The solution of the previous differential equation is a simple exponential function and
thus the exactly computed velocity denoted by vex can be expressed as

vex = v0 exp


−
6πνrK

m
t


. (5)

Simulated velocity
We set the experiment using the real parameters for blood plasma taken from online resources [17,18]. The actual values

are provided in lattice–Boltzmann units. The simulation is done over the finite time interval. The initial velocity v0 is set such
that the Reynolds number satisfies the condition for Stokes creeping flow. The remaining parameters for the experiment are

• channel dimensions 40 × 25 × 25
• viscosity of the fluid ν = 1.5
• density of fluid ρ = 1.025
• initial velocity of the ball v0 = 0.1.
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Fig. 3. Oblate (left) and prolate (right) ellipsoid and the corresponding radii. The movement of ellipsoids in the fluid is from left to right.

Table 1
Parameters of simulated ellipsoids. We show the axial radius a, the transversal radius b, the shape factor K , the surface and the volume of the ellipsoid, the
number of nodes in the mesh, the surface-to-nodes ratio, the friction coefficient ξ , and the recovered value of the mass of the IB pointsmib .

a b K Surface Volume Nodes Surf./nodes ξ mib

2 4 0.90 138.75 134.04 431 0.322 0.01 0.0133
3 4 0.95 168.53 201.06 524 0.322 0.01 0.0190
4 4 1.00 201.06 268.08 624 0.322 0.01 0.0240
5 4 1.05 235.31 335.10 730 0.322 0.01 0.0285
6 4 1.10 270.69 402.12 840 0.322 0.01 0.0325
7 4 1.15 306.88 469.15 952 0.322 0.01 0.0365
8 4 1.20 343.65 536.17 1068 0.322 0.01 0.0400

We will simulate the movements of oblate and prolate ellipsoids. The transversal cross-section will always be a circle
with radius 4 and the axial radius will be equal to 2 and to 3 for oblate ellipsoids, to 4 for a ball, and to 5, 6, 7 and 8 for prolate
ellipsoids, see Fig. 3. Different values of a give different values of the shape coefficient K appearing in (4). The values of K
are listed in the third column of Table 1.

In view of the remarks from the end of Section 2.3, we set the surface-to-nodes ratio to a fixed number. This number is
chosen arbitrarily, however we have in mind that the triangular mesh should not be too sparse. Then we have generated
seven different triangular meshes for ellipsoids with axial radius a = 2, 3, 4, 5, 6, 7, 8 and transversal radius b = 4. The
corresponding surface-to-nodes ratios are listed in Table 1.

With this experiment we need to calibrate two parameters: the friction coefficient ξ and the mass of the IB points mib.
These two parameters are however linked together by Eqs. (2) and (3). Within one simulation with a single object if we
double bothmib and ξ , simulation gives the same results. Therefore the friction coefficient and the mass of the IB points can
be in the case of a single object rescaled by an arbitrary number. Software implementation is more favourable for flexible
mass of the IB points, therefore we fix the friction coefficient to value 0.01 and we determine the correct value ofmib.

We start with recoveringmib for a sphere. The recovered value ismib = 0.018. This value was determined using the least
square method by minimization of the distance function defined by

|vex − vsim| =


i

(vex(ti) − vsim(ti))2
 1

2

,

where the summation is done over a finite number of time instances discretizing the time interval. We have discretized the
time interval with 300 time steps, however in Fig. 4 we have displayed only a fraction of these values for better visibility.
The dependence of the distance function on mib is a convex function with unique minimizer equal to 0.018. The minimizer
was determined with the accuracy of two valid decimal places. We should emphasize that the correct mass of IB points is
dependent on the viscosity of the liquid as well as on its density.

We further continue to check if the recovered value ofmib is correct. We performed the determination ofmib for six other
objects varying from oblate ellipsoid to prolate ellipsoid. The results are summarized in Table 1. The recovered values ofmib
are in the last column.

In Fig. 4 we see the graph of simulated velocities vsim for different ellipsoids from Table 1. For every ellipsoid we used a
similar surface-to-node ratio.

In view of the remarks from the end of Section 2.3, we know that the increase of the volume should result in linear
increase ofmib. The dependence of recovered values formib on the volume of the ellipsoids is depicted in Fig. 5. We can see
that the dependence is approximately linear with the following formula

mib(vol) = 6.58 × 10−5vol + 5.61 × 10−3,

which verifies our simulations.

4.2. Cell calibration

Wewould like to calibrate the parameters for a blood cell. In the previous sectionwe concluded that the surface-to-nodes
ratio will be a fixed number equal to 0.322. A blood cell with a typical dimension, depicted in Fig. 6, has the axial diameter
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Fig. 4. The time evolution of simulated velocities vsim (displayed with symbols) compared with exact velocities vex computed from (5) (displayed with
lines). Velocities were simulated for different shapes corresponding to axial radii a = 2, 3, 4, 5, 6, 7, 8. Other parameters including the number of IB points
and mib are listed in Table 1.

Fig. 5. The linear dependence of mass of IB points on volume of ellipsoids.

equal to 2.5µmand transversal diameter to 7.92µm. The surface is approximately 131µm2 and volume 90µm3. Therefore
we generate a triangular mesh with 400 mesh nodes to discretize the surface of the blood cell keeping the surface-to-nodes
ratio equal to 0.322. The volume is 90 µm3 and thus to conform to a linear dependence of volume and mass of the IB points
from Fig. 5 we must setmib = 0.00005 × 90 + 0.004 = 0.0085 and the friction coefficient needs to be set to ξ = 0.01.

We have mentioned before that ξ and mib are linked by Eqs. (2) and (3) and that for the simulation with a single object
they can be rescaled. We thus rescale these two coefficients such that mib = 1 and ξ = 1.17. These values are used in our
further simulations.

To calibrate the elastic properties of the blood cell we simulate the stretching experiment from [14] involving optical
tweezers. This laser beam technique is based on the manipulation resulting in the object being trapped by the laser beam.
For example, a dielectric bead of silica when trapped by a laser beam can be physically moved as the laser beam is displaced.
If such a bead is attached strongly to the surface of a cell, it serves as a handle or grip and displaces the cell membrane.
The optical tweezers method can be used to stretch the cell directly in one or more directions by trapping beads that are
strategically attached to the cell surface through specific or non-specific binding [14].

As depicted in Fig. 7, a force is being induced on the opposite sides of a cell through two silica beads. For different forces
ranging from 67 pN up to 193 pNwe compute the axial and transverse diameter of the deformed cell. In Table 2, we present
values from [14] denoted by dfax and dftr with f = 67, 130 or 193 pN.

It is too optimistic to hope that we can recover the exact values from Table 2. Therefore we use a least square method for
determination of ks, kb, kal, kag and kv . For simplicity k denotes the five-dimensional vector

k = (ks, kv, kal, kag , kv).
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Fig. 6. Dimensions of a red blood cell: axial diameter h = 2.5 µm and transversal diameter d = 7.8 µm.

axial diameter

silica microbeads adhered to cell

human red blood cell
axial diameter

transverse diameter

Fig. 7. Scheme of the stretching test.

Table 2
Measured dimensions of an RBC under the stretching test.

Force exerted on cell 67 pN 130 pN 193 pN

Axial diameter d0ax 12.34 14.17 15.3
Transverse diameter d0tr 5.05 4.53 4.29

Using our simulation tool we are able to compute the values of dax and dtr for arbitrary k and arbitrary force f . Therefore the
axial and transverse diameters become functions of k and f

dax = dax(k, f ), dtr = dtr(k, f ).

We can build up a cost function F computed as the square distance of simulated dax(k, f ), dtr(k, f ) and the data given in
Table 2

F (k) =


f=67,130,193

(dax(k, f ) − d0ax(f ))
2.

In such awaywe can assign a single numerical value for every set of parameters k that tells us how closely those parameters
correspond to reality. If F is zero then we have found the correct parameters, which is however rarely true.

We started the determination of optimal k by noticing that the sensitivity ofF to area coefficients and volume coefficient
was low. Thereforewe first subsequently determined the values of kal, kag , kv that kept constant the local and global surface,
and the volume. For this we needed about 20 runs for each parameter. In this way we determined the optimal values of
kal, kag , kv which were used in further determination of ks and kb.

Since the sensitivity to the stretching and the bending coefficients was high, the determination of these two parameters
had to be performed more carefully. We first set 49 estimates of couple (ks, kb) where both parameters took seven
values covering a large range of several orders of magnitude. In this manner we detected a few couples (ks, kv) that gave
significantly lower values of F . These couples are however only very coarse approximations of optimal values.

Then for each coarse approximation we set seven values around it. We have run again 49 simulations to tune the coarse
approximation andwe have thus obtained amedium-coarse approximation by identifying those couples giving significantly
lower values of F than the others.

Finally we have run the final round. For each medium-coarse approximation we have again set seven values around it
and we have run 49 simulations to tune the optimal values. In this way we have determined quite precise approximation of
the optimal values. In the final round of simulations, the sensitivity of F was very low since the range of values was quite
restricted.

In Table 3 we present optimal values of k. The optimal values slightly differ from the approximate values ks = 0.005,
kb = 0.001 obtained from [12,14].

Using the parameters obtained in the previous sections we simulated the passage of a cell through a narrow channel.
In Fig. 8, a red blood cell is depicted on its way through the channel. In this example we used only one processor for the
computations of the cell movement. The detailed analysis of parallel structures needed for cell description will be published
in our future publications, as well as detailed results concerning minimal gap size through which the healthy red blood cell
can pass.
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Table 3
Optimal values of elasticity parameters for a healthy RBC.

Stretching ks 0.008
Bending kb 0.0016
Local area kal 0.01
Global area kag 1.0
Volume kv 10.0

Fig. 8. Simulation of an RBC passage through a narrow channel.

For modelling of more cells one needs to address the collisions between the cells. In our forthcoming research we will
use the potential approach that defines a potential between the cells dependent on their position. In case of a collision the
potential generates forces repelling two colliding cells.

5. Conclusions

We have investigated a mathematical model describing the flow of a liquid with immersed objects in a microchannel.
Themodel is composed of two components—the flowmodel, governed by the lattice–Boltzmannmethod, and the immersed
object model, governed by immersed boundary method. These two components interact via the drag force. The model for
immersed objects is general, the objects can have different elastic properties.

Furtherwe focus on blood flowmodelling andwe introduce amodel of a triangulated red blood cell.We describe in detail
the implementation of elastic properties of an RBC and we list five parameters of the model that can be tuned. Afterwards
we calibrate these parameters to fit the experimental data.

The presented model is easy adaptable for other cells appearing in the blood flow. Different cells have different elastic
properties and thus the proper parameters need to be calibrated. Further direction for the research will cover the adhesion
properties of the cells. The adhesion, or affinity, is used when antibody-covered surfaces appear in the flow with the aim
of capturing the CTCs. To model the adhesion process, one needs to ‘‘translate’’ the chemical process into representation by
forces so that it can be implemented in the model. This is a challenging interdisciplinary task that will be addressed in the
forthcoming research.
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