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The “tree-width” of a graph is defined and it is proved that for any fixed planar 
graph H, every planar graph with sutliciently large tree-width has a minor 
isomorphic to H. This result has several applications which are described in other 
papers in this series. 

1. INTRODUCTION 

All graphs in this paper are finite, and may have loops or multiple edges. 
V(G) and E(G) denote the sets of vertices and edges of the graph G, respec- 
tively. A tree-decomposition of a graph G is a pair (T, Z), where T is a tree 
and % = (X, : t E V(T)) is a family of subsets of V(G), with the following 
properties: 

(Wl) U(X, : t E V(T)) = V(G). 

(W2) For every edge e of G there exists t E V(T) such that e has both 
ends in X,. 

(W3) For t, t’, t” E V(T), if t’ is on the path of T between t and t” 
then 

The width of the tree-decomposition is 

max (IX,/ - 1). 
lEV(T) 

The graph G has tree-width w if w is minimum such that G has a tree- 
decomposition of width w. 

Thus, for example, trees and forests have tree-width 1 (or 0 in degenerate 
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cases) and series-parallel graphs have tree-width <2. For n > 1, the complete 
graph K, has tree-width n - 1, while for n > 2 the n x n grid (this has n2 
vertices-it is the adjacency graph of the chessboard with n2 squares) can be 
shown to have tree-width n. 

A graph H is a minor of a graph G if H can be obtained from a subgraph 
of G by contraction. If H # G it is a proper minor. Other papers in this 
series prove theorems concerning minors of graphs chosen from a set of 
graphs with bounded tree-width. For example, 

(1.1) [3]. rfY is an infinite set of graphs all with tree-width <w, where 
w  is some integer, then there exist G. G’ E ST such that G is isomorphic to a 
minor of G’. 

(1.2) [2]. Q-L+- is a (possibly infinite) set of graphs, all with tree-width 
<w, where w  is some integer, then there is a polynomial algorithm which, 
given an arbitrary graph G, tests if there is a graph G’ E Y such that G is 
isomorphic to a minor of G’. 

The purpose of this paper is to provide a useful source of sets of graphs 
with bounded tree-width. The set of all planar graphs is not such a set, 
because it contains all the grids. However, our main result may be expressed 
as follows. 

(1.3) Any proper subset of the set of all planar graphs which is closed 
under isomorphism and the taking of minors is a set of graphs with bounded 
tree-width. 

This may be reformulated in the following more convenient form. 

(1.4) For every planar graph H, there is a number w  such that every 
planar graph with no minor isomorphic to H has tree-width <w. 

(1.1) and (1.4) together imply that planar graphs are “well-quasi-ordered” 
by the taking of minors; more precisely, 

(1.5) rfF is an inj?nite set of planar graphs, then there exist distinct G, 
G’ E jT such that G is isomorphic to a minor of G’. 

Proof. Choose H E ST, and choose a number w as in (1.4). If there exists 
G E F - {H} such that H is isomorphic to a minor of G then (1.5) is true. 
If not, then by our choice of w, each G EST - {H} has tree-width <w, and 
the result follows from (1.1). 

We remark that in [4] we shall prove that (1.4) is true with the second 
occurrence of “planar” deleted. We are publishing the weaker version of 
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(1.4) separately here because it is much easier to prove than the result of [4], 
and our proof here yields a very much better estimate of the value of w than 
that in [4]. 

The proof of (1.4) occupies the whole paper (except for some remarks at 
the end) and we begin by sketching it. It is enough to prove (1.4) when H is 
a “cylinder” (a grid with one pair of opposite sides identified) because every 
planar graph is isomorphic to a minor of some sufficiently large cylinder. 
We introduce the “sleeve union” of two graphs G, , G,, and observe that the 
tree-width of the resulting graph G is the maximum of the tree-widths of G, , 
G,, and that G,, G, are isomorphic to minors of G. It follows that it is 
enough to prove that if a planar graph is not expressible as a sleeve union of 
two smaller planar graphs, and has no minor isomorphic to the n x n 
cylinder, then its tree-width is bounded by a function of n. We prove that in 
any plane drawing of such a graph there do not exist n + {n’ vertex-disjoint 
circuits each inside the next, and deduce that it has tree-width 
<3(n + in’) - 2. These steps are performed more or less in reverse order. 

Let us clarify some terminology. A walk in a graph G is a sequence u, , e, , 
v*, e2?-? vk. eky vk+ I of vertices and edges of G (where k > 0), such that for 
1 <j< k, the ends of ej are uj and vj+ ,. The walk is closed if v, = vk+ ,. A 

path is a walk such that tli # vj, for 1 <j <j’ <k + 1. and a circuit is a 
closed walk with k > 1 such that ui # vj, for 1 <j <j’ < k. We often identify 
paths and circuits with the corresponding subgraphs of G when no confusion 
should arise. The initial and terminal vertices of the walk are v, , vk+ , . When 
U, L’ E V(G), a path between u and v is a path with initial vertex u and 
terminal vertex v, and when X, Y c V(G), a path between X and Y is a path 
with initial vertex in X and terminal vertex in Y. A path avoids Z g V(G) if 
no vertex of it is in Z. When Z c V(G), Z separates X and Y if no path of G 
between X and Y avoids Z. (Here X, Y may be vertices or sets of vertices.) If 
G,, G, are subgraphs of G we denote by G, U G, the subgraph of G 
consisting of the vertices in V(G,) U V(G,) and the edges in E(G,) U E(G,). 
We define G, n G, similarly. If X is a vertex or an edge of G, or a set of 
vertices or edges, we denote by Gw the graph obtained by deleting X 
from G. 

2. RADIUS 

If G is a planar graph, it can be drawn without crossings in the plane, and 
by a “drawing” we shall always mean such a drawing. If M is a drawing of 
G and C is a circuit of G, then every region of M and every vertex and edge 
of G not in C is either inside or outside C in M, in the obvious sense. For 
every region R of a drawing M, we define d(R) to be the minimum value of k 
such that there is a sequence R,, R, ,.... R, of regions of M, where R, is the 
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infinite region, R, = R, and for 1 <j < k there is a vertex v incident with 
both R,-, and R,. The radius p(M) of M is the minimum value of d such 
that d(R) < d for all regions R of M. The radius of a planar graph is the 
minimum of the radii of its drawings. 

The object of this section is to prove that if a planar graph has radius d 
then its tree-width is at most 3d + 1. The proof takes several steps. 

(2.1) Any planar graph of radius <d is isomorphic to a minor of a 
simple planar graph with radius <d. 

ProoJ: We replace each edge of the graph (G, say) by three edges in 
series, forming a new graph G’. It is clear that G’ is planar and has the same 
radius as G, and that G’ is simple. Moreover G is isomorphic to a minor of 
G’, as required. 

Let M be a drawing of a planar graph G. By a nested sequence of circuits 
of M we mean a sequence C,,..., C, of circuits of G such that for 1 <j < 
j’ < d, Cj and Cj, have no common vertices and Cj, is inside Cj in M. By a 
d-shell of M (where d > 0 is an integer) we mean a nested sequence C, ,..., C, 
of circuits of M such that 

(Sl) every vertex of G is either in one of V(C,),..., V(C,) or is inside 
C d, 

(S2) for 1 <j < d, every edge of G which joins two vertices in I’(Cj) 
is in E(Cj). 

(2.2) Let G be a simple planar graph of radius <d, where d 2 0 is an 
integer. Then there exist a simple planar graph G’ with a minor isomorphic 
to G and a drawing M’ of G’ such that p(M’) < d and M’ has a d-shell. 

Proof: For d’ = 0, l,..., d, we shall prove by induction on d’ that there 
exist a simple planar graph G’ with a minor isomorphic to G and a drawing 
M’ of G’ such that M’ has a d’-shell and p(M’) < d. This is clearly true 
when d’ = 0. Now assume that 0 < d’ < d and assume the inductive 
hypothesis that there is a planar graph G’ with a drawing M’ such that 

(i) G’ is simple, G is isomorphic to a minor of G’, and p(M’) ,< d 

(ii) M’ has a (d’ - 1 )-shell C, ,..., Cd, i. 

Let H be the graph obtained from G’ by deleting the vertices in V(C,),..., 
V(C,,-,) and the edges incident with them; and let N be the drawing of H 
obtained from M’ by the same deletion. 

We may assume that 

(iii) at least three vertices of H are on the infinite region of N. 
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For if not, we may add isolated vertices to G’ and to M’ to make (iii) true 
without falsifying (i) or (ii). 

We may also assume that 

(iv) every vertex of H is adjacent to at most one vertex of Cd,-,. 

For we may replace every edge of G’ joining V(H) and V(C,,-,) by two 
edges in series, thereby making (iv) true without falsifying any of (i), (ii), or 
(iii). 

Let ( V(H)\ = k, say. We may also assume that 

(v) subject to (i)-(iv) and to ) V(H)] = k, G’ is chosen with JE(H)J 
maximum. 

(This is possible because G’ is constrained to be simple and ) V(H)\ is fixed.) 
Let C,, be the subgraph of H consisting of the vertices and edges incident 

with the infinite region of N. 

(1) C,, is connected. 

For if not, it follows from (S2) applied to C,, _ I that there are vertices vi, 
v2 of C,, in different components of C,, and hence of H but incident with the 
same region of M’. We add an edge joining them. The resulting graph still 
satisfies (i)-(iv), contrary to (v). 

(2) Cd! is a circuit. 

For C,, has at least three vertices by (iii). If it is not a circuit, it has a 
vertex v such that C,,\v is disconnected, and hence such that H\v is discon- 
nected. Let D be the vertex set of one component of C,,\v, and let 

D’ = V(C,,) - (D u {v 1). 

Let v1y ely q7 eZ,--r uk, ek, vk+l (=vi) be the closed walk in H which is the 
perimeter of the infinite region of N. There exist distinct i, j with 1 < i, j < k, 
such that vi = vi= v, and vi-i, vi+, ED, and vi+,, vj-, ED’ (where vO 
means v k; similarly, later, ek+i will mean e,, and e, will mean ek). Now by 
(iv), there is at most one edge of G’ incident with v which is not in E(H); 
and so without loss of generality we assume that there is a region R of M’ 
for which the path vi-i, e,-r, v, ei, vi+i forms part of the perimeter, and for 
which (a) if d’ = 1, R is the infinite region of M’, and (b) if d’ > 1, R is 
incident with a vertex in C,,-, . We add a new edge e to G’ joining vi- I and 
vi+l3 and make the corresponding extension of M’. R is thus divided into 
two regions, one incident with vi-, , e, vi+, and (a) being the infinite region 
if d’ = 1, and (b) being incident with a vertex of Cd,-i if d’ > 1, and the 
other a triangle bounded by vi-, , e,-,, v, ei, vi+ 1, e. We claim that this 
enlarged graph satisfies (it(iv), contrary to (v). Verifying this is 
straightforward and is left to the reader. (The only part which is not quite 
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FIGURE 1 

trivial is checking the radius, using the condition d’ - 1 < d, and this too is 
easy.) 

We replace every edge of G’ which joins two vertices of V(C,,) but which 
is not in E(C,$) by two edges in series. The graph thus obtained is a simple 
planar graph with a minor isomorphic to G, and the drawing we obtain of it 
has a d’-shell and radius <d. This completes our inductive argument and 
hence proves (2.2). 

When r > 0, s > 0 are integers, the I x s cylinder is the graph shown in 
Fig. 1, with r radial lines and s circles. 

The “circular” circuits are called the circles of the cylinder, and the 
innermost one is called the central circle. When A > 1 is an integer, the graph 
Y, is a tree as shown in Fig. 2. 

Thus Y, has 3.2AP’ end-vertices. For d, i > 1, take the 3.2” -’ X d 
cylinder, and let C, ,..., C, be its circles, in order, where C, is the central 
circle. Identify the vertices of the central circle with the end-vertices of Y.l, in 
the cyclic order provided by the drawing of Fig. 2. The resulting graph we 
call N(d, A.). (See Fig. 3.) We also set N(0, A) = Y.,. 

FIGURE 2 
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FIGURE 3 

(2.3) Let G be a simple planar graph, with a drawing M such that 
p(M) < d and M has a d-shell C, ,..., C,. Then G is isomorphic to a minor of 
N(d, A) for some suflciently large A. 

ProojI We observe that the graph obtained from G by deleting V(C,),..., 
V(C,) is a forest, since if the corresponding drawing had a finite region R, 
we would have d(R) > d in M which is impossible. But any forest is 
isomorphic to a minor of one of Y,, Yz, YJ,.... The rest of the proof is 
obvious, although tedious to write out, and we omit it. 

(2.4) If G is a planar graph with radius <d then G is isomorphic to a 
minor of N(d, A) for some suflciently large A. 

This follows from (2.1), (2.2), and (2.3). 

(2.5) For all d > 0. A > 1, the graph N(d, A) has tree-width ,<3d + 1. 

Proof: If d = 0 the result is clear, and we assume d > 0. We construct a 
tree-decomposition of N(d, 1) as follows. Let T be the tree obtained from 
N(d, n) by deleting the 3.2’-’ X d cylinder, and let C be the central circle of 
the cylinder. For each vertex u of C, let P,, be the set of all vertices of the 
cylinder on the same radial line as v. Thus 1 P,j = d. Let t be a vertex of T. 
Now t is on precisely three regions R 1, R z, R 3 say (taking a drawing M of 
N(d. A) as in Fig. 3). For j = 1, 2, 3, there are two vertices of C on Rj and 
they are adjacent. Let them be uj, uj, where uj follows ul in the anticlockwise 
orientation of C. Define 

xi = P,,I U Pts2 u PL\~ U {t, t’ }9 

where t’ = t if t is the “center” of T, and t’ is the neighbour oft closer to the 
center if t’ is not the center of T. It is easy to verify that (T, S’) is a tree- 
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decomposition of N(d, A) of width ,<3d + 1, where .F = (X, : t E V(7)). This 
completes the proof. 

Finally, we need 

(2.6) If G’ is isomorphic to a minor of G then the tree-width of G’ is not 
greater than the tree-width of G. 

The proof is clear. From (2.4), (2.5), and (2.6) we deduce 

(2.7) rf G is planar and has radius <d then its tree-width is at most 
3d+ 1. 

This completes the proof of the main result of this section. We shall also 
need the following lemma, which is easy and is left to the reader. 

(2.8) Let G be a planar graph with radius ad, and let M be a drawing of 
G. Then there is a nested sequence C, , C, ,.,., C, of circuits of M. 

3. SLEEVE UNIONS 

We shall require some results about tree-decompositions which are proved 
in [2], but which we prove again here for the reader’s convenience. 

Let (T, 55) be a tree-decomposition of G, where S = (X, : t E V(o). For 
each t E V(T), the connected components of r\t are called the branches of T 
at t. 

(3.1) For t E V(T) and v E V(G), either u E X,, or there is a branch of T 
at t which contains all t’ E V(T) with v E X,, . 

This follows immediately from (Wl), (W3). If u @ X,, let T,(v) denote this 
branch. (It is unique.) 

(3.2) If v, v’ @X, and v, v’ are adjacent in G then T,(v) = Tt(v’). 

ProoJ By (W2), there exists t’ E V(7) such that v, v’ E X,,. Then t’ # t, 
and so t’ is in some branch B of T at t. But then B = Tt(v), because v E X,,, 
and similarly B = T,(v’). 

(3.3) Zf v, u’ @X, and v, v’ are not separated in G by X,, then T,(v) = 

Tt(O 

Proof: Let v, , vz ,..., vk be a sequence of vertices of G not in X,, each 
adjacent to the next, with v, = zi and vk = v’. Then by (3.2), 

T,(v,) = Tt(v,) = .a. = T,(v,) 

and so T,(v) = T,(v’). 
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(3.4) Let e be an edge of T with ends t, t’ say, and let N, N’ be the 
vertex sets of the two components of fie. Then X, n X,, separates 
lJ(X,:nEN)andU(X,:nEN’). 

ProoJ Suppose not. Then from (W l), there exist 

v, v’ E V(G) - (X, n X,,) 

with v E X, and v’ E X,, say, where n E N and n’ EN’, such that either 
v = v’ or v, v’ are adjacent in G. From (Wl), (W2) there exists t” E V(7) 
such that U, U’ E X,,,. We assume without loss of generality that t” E N’. 
Then t, t’ are both on the path of T between n and t”, and so X, n X,,, c X,, 
X,, by (W3). Hence v E X, n X,,, a contradiction, as required. 

(3.5) Let 1 V(T)1 > 2, and for each t E V(T) let G, be a connected 
subgraph of G with V(G,) n X, = 0. Then there exist t, t’ E V(T), adjacent 
in T, such that X, n X,, separates V(G,) and V(G,,) in G. 

ProoJ For each t E V(T), let B, be a branch of T at t such that 
T,(v) = B, for all v E V(G,). This is possible by (3.3). (We use the fact that 
1 V(T) > 2 to ensure that T has a branch at t.) Let e, be the edge of T joining 
t to a vertex of B,. Now T has fewer edges than vertices, and so there exist 
distinct t, t’ E V(T) with e, = e,,. Then t, t’ are adjacent in T. Let N, N’ be 
the vertex sets of the two components of T\el, with t E N, t’ E N’. Then 
N = V(B1,), N’ = V(B,), and 

V(G,) c IJ (X, : n E N’), 

and the result follows from (3.4). 

V(G,,) E U (X, : n E N) 

Our object in this section is to introduce the “sleeve union” of two graphs, 
and to prove that the tree-width of the union is the maximum of the tree- 
widths of the two pieces. We need some further lemmas. 

Let S be the r x s cylinder, where r < 2.7, and let C, ,..., C, be its circles in 
order, where C, is the central circle. 

(3.6) Suppose X s V(S) and IX n V(C,)l > 2 (1 <j < s). Then there are 
r vertex-disjoint paths of S, each between X and V(C,). 

Proof. By Menger’s theorem, it is enough to show that if Y z V(S) and 
I YI < r, there is a path of S between X and V(C,) which avoids Y. Thus, let 
Y c V(S), with 1 Y( < r. Now since r < 2s, there exists j with 1 <j ,< s such 
that I V(Cj)n Y( < 1. Choose v E V(Cj) such that V(C,)n Y & (v}. Then 
V(Cj) - {v} contains no vertex of Y. However, it does contain a vertex of X, 
since I V(Cj) f? XI > 2. Let L be the set of vertices in a radial line of S such 
that L n Y = 0. (This is possible since S has r radial lines and ( Yl < r.) 
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Then L U (V(Cj) - {v}) is a subset of V(S) - Y, and induces a subgraph of 
S which contains a path of S between X and C, avoiding Y, as required. 

(3.7) Let (T,%) be a tree-decomposition of S, where .% = 
(X, : t E V(T)). Then there exist t, E V(T) and r vertex-disjoint paths of S, 
each between XfO and C,. 

Proof. Let the vertex sets of the radial lines of S be L, ,..., L,. If some 
t E V(T) has X, I? Li # 0 for all i (1 < i < r), the theorem is obviously true. 
We assume then that for each t E V(T) there exists i with 1 < i < r such that 
X,nLi = 0. From (3.5) there exist t, t’ E V(T), adjacent in T, such that 
X, f-l X,, separates Li and L,, for some i, i’ with 1 < i, i’ < r, and X, n X,, 
intersects neither of Li, Li,. Clearly i # i’, and for 1 <j < k the two paths in 
Cj from Li to Li, both meet X,nX,,, and so IX,n V(C,)l > 2 (1 <j<s). 
The result follows from (3.6). 

(3.8) With S, C, ,..., C, as before, let V(C,) = {u, ,..., u,}. Let H be 
another graph, vertex-disjoint from S, and let v, ,..., v, be distinct vertices of 
H. Construct G by making the identl>cations u, = v,,..,, u, = v,. If G has 
tree-width <w, then H has a tree-decomposition (T, .%‘) where 
fl= (X, : t E V(T)) say, of width <w, such that {v, ,..., v,.} & Xl0 for some 
t, E V(T). 

ProoJ: Let (T,.F,) be a tree-decomposition of G of width <w, where 
.P, = (Y, : t E V(T)) say. Define 

,sc; = (Ytn V(S) : t E V(T)). 

Clearly (T,.&) is a tree-decomposition of S, and so by (3.7) there exists 
to E V(T) and vertex-disjoint paths P, ,..., P, of S, each between Yton V(S) 
and {u, ,..., u,}. Order these so that for 1 < i < r, ui is the terminal vertex of 
Pi. For t E V(T), define 

Put J‘ = (X, : t E V(T)). We claim that (T, .z&?;‘) is a tree-decomposition of H. 
For suppose that t, t’, t” E V(T), and t’ lies on the path of T between t and 
t “, and suppose that v E X,, X,,,. We must show that v E X,,. Now if 
u # v, ,..., v, then v E Y, n Y,,, E Y,,, and so v E X,,. If v = vi say, then 
Y( n V(P,) # 0 and Yf,, n V(P,) # 0. But Y(, separates Y, and Y,,, in G by 
(3.3), and so Yl, n V(P,) # 0 and again v E X,,. Thus (T, %‘) is a tree- 
decomposition of H. Clearly it has width <w, and 

as required. 
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If H is a minor of G then each vertex u of H is formed by taking a 
nonempty subset Z, c V(G) and identifying the vertices in Z, by 
contraction. If u E Z, we write u + u. 

A separation of a graph G is a pair (H,, H,), where H, , H, are subgraphs 
of G such that 

H,UH,=G, Wf,) n Wf,) = 0. 

Let (H,, H,) be a separation of G. Let 

V(H,) n V(H,) = (0, q..., or}, 

say. Let s be the least integer such that 2s > r. Let S, , S, be graphs, both 
isomorphic to the r x s cylinder, and let the vertex set of the central circles 
of S,, S, be {u!,..., ~:1 and {ui ,..., uf]. respectively, in order. Suppose that 
S, is a proper minor of H,, where u, -+ u: ,.... u, + u:, and S, is a proper 
minor of H, where u, 4 u:,.... U,‘z+ 

Let G, be the graph obtained from H,, S, by making the identifications 
ui = u: (1 < i < r) (k = 1,2). We say that G is the sleeve union of G,, G,. 

(3.9) IfG is the sleeve union of G,, G, then G,, G, are both isomorphic 
to proper minors of G. 

This is clear from the construction, 

(3.10) Zf G is the sleeve union of G, , G, then the tree-width of G is the 
maximum of the tree-widths of G, , G,. 

Proox Let w be the maximum of the tree-widths of G,, G,. By (3.9) and 
(2.6), the tree-width of G is at least MJ. We must prove the reverse inequality. 
G, has tree-width <w, and so by (3.8), H, has a tree-decomposition (T,, &;) 
of width <w, where &; = (X, : t E V(T,)) say, such that {u,,..., u,.) c X,, for 
some t, E V( T,). Define T, , X7, t, similarly for H,, arranged so that T, , T, 
are disjoint. Let T be the tree constructed from T,, T, by adding an edge 
joining t,, t,. Put .K = (X, : t E Y(T)). It is easy to see that (T, ,K) is a tree- 
decomposition for G of width <w, as required. 

4. THE PRODUCTION OF CYLINDERS 

Let r > 0, s > 1 be integers, and let M be a drawing of a planar graph G. 
We say that A4 majors the r x s cylinder if there is a nested sequence 
c I ,..., C, of circuits of M and vertex-disjoint paths P, ,..., P,. of G, each 
between V(C,) and V(C,), such that for 1 < i < r and 1 <j < s, Pi f~ Cj is a 
path. 
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(4.1) Let r > 0, s > 1 be integers, and let M be a drawing of the planar 
graph G. Suppose that there is a nested sequence C,,..., C, of circuits of M 
such that there are r vertex-disjoint paths of G, each between V(C,) and 
V(C,). Then M majors the r x s cylinder. 

Proof: Let C, ,..., C, be a nested sequence of circuits of M, and let 
P ,,..., P, be vertex-disjoint paths of G, each between V(C,) and V(C,). 
Choose C, ,..., C,, P, ,..., P, with 

IE(C, u -*a UC,UP,U **f U Pr)l minimum. (1) 

We shall show that for 1 < i < r and 1 <j < s, Pi f-7 Cj is a path. 
Suppose that C, n Pi is not a path for some i, say i = 1. Let e be the first 

edge of P, not in C,. Then there is a subpath of P, (Pi say) between C, and 
C, not using e; and then e lies in none of C, ,..., C,, PI, P, ,..., P,, contrary to 
(1). Thus C, n Pi is a path, and similarly C, n Pi is a path, for each i 
(1 <i<r). 

Suppose for a contradiction that there is some value of j with 1 <j < s 
such that Pi n Cj is not a path for some i (1 < i < r). Choose such a value of 
j, as small as possible. Then by the foregoing, 2 <j < s - 1. 

Suppose that for some i (1 < i < r) there are two distinct vertices v, Y’ say 
of Pin Cj, such that all edges and all interior vertices of the subpath of Pi 
between v and v’ are outside Cj. Let this subpath be P, say. Now no interior 
vertex of P is in V(C,,) for any j’ with 1 <j’ < s; for all are outside Cj, and 
none are on Cj- i, by the minimality of j, as is easily seen. Let the subpaths 
of Cj between v and v’ be Q,, Q2. Then PU Q,, PU Q2 are circuits, vertex- 
disjoint from every Cj, (1 <j’ < s, j’ #j). Now Cj+ 1 is inside one of them, 
say P U Q, . But then 

c 13***3 cj- [ 9 Pu Q,, Cj+ ,,..., C, 

is a nested sequence of circuits, contrary to (I), for some edge of Q, is not in 
any of P, ,..., P,. Thus there is no such value of i. 

It follows that 

for every vertex v of Cj, if v is on Pi where 1 < i < r then there is 
a subpath of Pi between v and C, which uses no edges outside Cj. (2) 

By the choice of j there exists some i (1 < i < r) such that Pi n Cj is not a 
path; and then there are distinct vertices v, v’ of Pin Cj such that all edges 
and all interior vertices of the subpath of Pi between v and u’ are inside Cj. 
Let this subpath be P, and let Q,, Q, be the paths of Cj between v and v’. 
Now Pi n C, is a path, and so P does not neet C,. Clearly there is no path 
of G between V(Q,) and V(QJ which avoids V(P) and which has no edges 
outside Cf. From these two facts it follows that for one of Q,, Q,, say Qk, 
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there is no path of G from I’(&) to C, which avoids V(P) and has no edges 
outside Cj. But then by (2), no vertex of Qk is on any Pi, with 1 < i’ < r, 
i’ # i. Let P’ be the subgraph of G obtained from Pi U Qk by deleting the 
edges and interior vertices of P. Then P’ contains a path between C, and C,, 
P,! say, and 

P I>***? pi- 17 p[Y pi+ 1 Y***T p, 

are vertex-disjoint. But this contradicts (l), since the first edge of P is not in 
any of C, ,..., C,. 

Thus the choice ofj is impossible, and the theorem is proved. 

(4.2) Let r > 0, s > 1 be integers, and let M be a drawing of the planar 
graph G. Let C, ,..., C, be a nested sequence of circuits of M. Then one of the 
following holds: 

(i) M majors the r x s cylinder, 

(ii) there exists Xg V(G) with 1x1 < r, such that X separates V(C,) 
and V(C,). 

Proof: If (ii) is false, then by Menger’s theorem there are r vertex-disjoint 
paths of G between V(C,) and V(C,), and so (i) holds, from (4.1). 

(4.3) Let r > 0 be an integer, and let r’ = r + 1 ifr is odd, and r’ = r ifr 
is even. Let s > r’ be an integer. Let M be a drawing of the planar graph G, 
and suppose that M majors the r x s cylinder. Then either M majors the 
(r$ 1) x (s - r’) cylinder, or G is expressible as the sleeve union of two 
planar graphs. 

Proof: Let C, ,..., C, be a nested sequence of circuits of M, and let 
P ,,..., P, be vertex-disjoint paths of G, each between V(C,) and V(C,), such 
that for I < i < r and 1 <j < s, Pi (7 Cj is a path. Put r’ = 2d. Now Cd+, , 
C d+ 2 ,..*, C s-d is a nested sequence of s - r’ circuits of M. By (4.2) either M 
majors the (r + 1) x (s - r’) cylinder or there exists XC V(G) with 1x1 < r 
which separates V(Cd+l) and V(C,_,). We assume the latter. For 1 < i< r, 
let Pi be the subpath of Pi between V(Cd+,) and V(C,_,), with no internal 
vertex in V(C,+ ,) or V(C,-,). Then Xn V(Pf) # 0; choose vi E X fY V(P() 
(1 <i< r). We have {vl ,..., v,} CX and 1x1 <r, and so X= (v, ,..., v,}. Let 
(H,, Hz) be a separation of G with V(H,) n P’(‘(H,) = X, where C, ,,.., Cd+, 
are circuits of H, and Cspd,..., C, are circuits of H,. Now H, has a proper 
minor isomorphic to the r X d cylinder in the required way for sleeve unions, 
and so has H,; thus G is expressible as a sleeve union of two planar graphs. 
This completes the proof. 

(4.4) Let r > 0, s > 1 be integers, and let M be a drawing of the planar 
graph G. Suppose that G is not expressible as a sleeve union of two planar 
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graphs, and M does not major the r x s cylinder. Then G has radius <k, 
where 

k=s+fr’ (r even) 

=s++(r’- 1) (r odd). 

ProoJ We proceed by induction on r. If r = 0 the result is true by (2.8). 
We assume then that r > 0. If r is even, then by (4.3) M does not major the 
(r - 1) X (s + r) cylinder, and hence by induction the radius of G is 

<s+r+f((r- 1)2- l)=s+$r’ 

as required. If r is odd we argue similarly. 

(4.5) Let r > 0, s > 1 be integers. If G is a planar graph which is not 
expressible as the sleeve union of two planar graphs, then either G has a 
minor isomorphic to the r x s cylinder, or it has tree-width at most 

3(s + fr2) - 2 (r even) 

3(s+$(r2-l))-2 (r odd). 

Proof Take a drawing M of G. If M majors the r x s cylinder then G 
has a minor isomorphic to the r x s cylinder. If not, then G has radius <k, 
where 

k=s+ir2 (r even) 

=s+4(r2- 1) (r odd) 

by (4.4), and the result follows from (2.7). 

5. THE MAIN RESULT 

Now we prove (1.4). We need two more lemmas. 

(5.1) For every planar graph H there is a number r > 1 such that the 
r x r cylinder has a minor isomorphic to H. 

The reader will probably have no trouble convincing himself of this. A 
proof of (5.1) and of a stronger result will appear in [5]. 

(5.2) Let r > 1 be an integer. If G is planar and has no minor 
isomorphic to the r x r cylinder then G has tree-width < 3 (r2 + 2r) - 2. 

Proof We proceed by induction on the size of G (that is, 1 V(G)1 + 
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IE(G)I). Suppose that G is expressible as the sleeve union of two planar 
graphs G, , G,. Then G, , G, are isomorphic to proper minors of G, by (3.9), 
and so each has no minor isomorphic to the r x r cylinder. Moreover, the 
sizes of G,, G, are less than the size of G, and so by induction G, , G, both 
have tree-width <+(r’ + 2r) - 2. Hence by (3.10), G has tree-width 
<j (r* + 2r) - 2. We may therefore assume that G is not expressible as a 
sleeve union of two planar graphs; but then the result follows from (4.5). 
This completes the proof. 

We deduce (1.4), which we restate. 

(5.3) For every planar graph H there is a number w such that every 
planar graph with no minor isomorphic to H has tree-width <w. 

Proof: From (5.1) there is a number r > 1 such that the r x r cylinder 
has a minor isomorphic to H. Let G be any planar graph with no minor 
isomorphic to H. Then G certainly has no minor isomorphic to the r X r 
cylinder, and so by (5.2) G has tree-width <:(r* + 2r) - 2. Thus (5.3) is 
true with any number w > $(r’ + 2r) - 2. 

6. REMARKS 

One natural question concerning the tree-width of planar graphs is, what is 
the tree-width of the geometric dual? It seems that the tree-width of a planar 
graph and the tree-width of its geometric dual are approximately 
equal-indeed, we have convinced ourselves that they differ by at most one. 
However, they need not be equal. The two graphs of Fig. 4 are duals; but the 
first has tree-width 4 while the second has tree-width 5. 

Concerning our main theorem (1.4), one method of generalization is the 

FIGURE 4 

582b/36/1 5 
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result of [4] which was described after the proof of (1.5). There is another, 
however, concerning surfaces of higher genus, which rather surprisingly is 
simpler than (1.4) itself. A proof of the following will appear in 161. 

(6.1) Let S be a surface of genus g > 0, and let H be a graph which may 
be embedded in S. Then there is a number k with the following property. For 
every graph G which has no minor isomorphic to H but which can be 
embedded in S, there exists X E V(G) with IX\< k such that G\X can be 
embedded on a surface of genus <g. 
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