
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 123, 297-305 (1987) 

Characterisation and Properties of r-Toeplitz Matrices 

M. J. C. GOVER AND S. BARNETT 

School of Marhematical Sciences, University of Bradford, 

West Yorkshire BD7 IDP, England 

Submitted by Ky Fan 

Received July 29, 1985 

An r-Toeplitz (rT) matrix can be regarded as a block Toeplitz matrix with order 
some multiple of r from which a bottom border and a right-hand border have been 
removed. It is shown that some known properties of Toeplitz matrices extend to 
this new class. In particular, a necessary and sufftcient condition is given, in terms 
of a linear matrix equation, for a nonsingular matrix to have rT form, from which it 
follows that the elements of the inverse are completely determined by those in its 
first and last r rows and columns. In addition, some results are presented for cases 
when the inverse of an rT matrix has certain banded forms. ( 1987 Academic Press, 

Inc. 

1. INTRODUCTION 

In two previous papers [ 1, 61 we introduced a generalisation of Toeplitz 
matrices, called conjugate-Toeplitz (CT) matrices, and showed that certain 
properties of Toeplitz matrices could be extended to these new matrices. 
Algorithms for inverting CT matrices and solving CT systems ‘of equations, 
using O(n’) flops for matrices of order n, were given in [S]. A further 
generalisation, called r-Toeplitz (rT) matrices, was defined in [7], complete 
with an inversion procedure. This was used to obtain an algorithm (based 
on the well-known LevinsonTrench algorithm [ 12, 141) for inverting 
Toeplitz matrices which are not strongly nonsingular, in O(n*) flops. This 
case is not covered by most existing algorithms, although recently another 
scheme which permits weakening of the strong nonsingularity restriction 
has been presented in [ 111. A system of linear equations whose coefficient 
matrix is rT has arisen in an engineering problem involving sound 
propagation [S], and an algorithm for solving such a system can also be 
found in [7], 

To introduce the rT class of matrices, we begin by defining a block 
Toeplitz matrix. 
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DEFINITION 1.1. A matrix B of order n = mr whose elements are 
matrices B, of order r, i, j = 1, 2,..., m, is a block Toeplitz matrix if 

Bi+t.,+, =B,,, i, j= 1, 2 ,..., m- 1. (1.1 1 

If we examine the individual elements of B, denoted by bji, i, j= 1, 2,..., mr, 
it is easy to see that they satisfy 

b I + r.,+r = b,,, i, j= 1, 2 ,..., (m- 1) r. (1.2) 

Thus it is natural to consider the following class of matrix. 

DEFINITION 1.2. A matrix A of order n is an r-Toeplitz (rT) matrix if 

a ,+r.j+r= a 1, ’ i,.j = 1, 2 ,..., n - r. (1.3) 

Remark 1.1. An rT matrix is completely defined by its first r rows and 
columns. 

Remark 1.2. A Toeplitz matrix is an rT matrix with r = 1 and a CT 
matrix is an example of a 2T matrix. 

Although the elements of A and B satisfy the same relationship, the 
crucial difference is that the order of A is arbitrary, whereas the order of B 
in Definition 1.1 must be a multiple of r. 

The purpose of this paper is to show that some known properties of 
Toeplitz and CT matrices can now be extended to rT matrices. In the next 
section we characterise a nonsingular rT matrix A by showing 
(Theorem 2.1) that it is necessary and sufficient for A to satisfy a simple 
linear matrix equation; the latter involves a generalisation of the com- 
panion matrix. This leads to the important result (Theorem 2.2) that the 
elements of the inverse of an rT matrix are completely determined by the 
elements in the first and last r rows and columns of the inverse. 

Several authors [2, lo] have considered the particular case when a 
banded matrix has a Toeplitz inverse, and these matrices occur in the 
study of stationary time series [ 131 and in moving weighted average 
smoothing [9]. In Section 3 two types of banding are considered for the 
more general rT matrix, and in each instance (Theorems 3.1 and 3.2) it is 
shown that, apart from certain submatrices in the top left and bottom 
right-hand corners, the inverse also has an rT pattern of elements. 

It is interesting that useful structural properties can still be derived for 
matrices whose pattern of elements is much more general than the simple 
Toeplitz or block Toeplitz forms. In a subsequent paper [S] further 
properties of rT matrices will be developed. 
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2. CHARACTERISATION OF AN r’I MATRIX AND A PROPERTY OF ITS INVERSE 

In [l] we showed that a Toeplitz matrix could be characterised by a 
matrix equation involving the companion matrix. In order to produce a 
similar equation for an rT matrix we need to define the following matrix. 

DEFINITION 2.1. A matrix C of order n is an r-companion matrix if 

r n-r 

C= 
c 

0 I 1 n-r 

c, r (2.1) 

where C1 is an arbitrary r x n matrix, and I denotes a unit matrix. 

Remark 2.1. If X is an ordinary companion matrix, then x’ (r < n) is 
an r-companion matrix. However not every r-companion matrix can be 
expressed in the form x’. 

We now have the following characterisation theorem. 

THEOREM 2.1. A nonsingular matrix A is rT if and only if there exist 
r-companion matrices C and D such that 

CA = AJD’J, (2.2) 

where J is the reverse unit matrix, i.e., [J],, = 6,. n ~, + , and 6,, is the 
Kronecker delta. 

Proof If (2.2) is satislied, then comparing elements on each side shows 
that (1.3) holds. We therefore have to show that if A is nonsingular and rT, 
then there exist r-companion matrices C and D such that (2.2) is satisfied. 

Using (2.1) for both C and D, (2.2) can be written as 

i 

0 
c, “-r] A = A [JD:J I’;~‘]. (2.3) 

When A is rT, the ijth element on each side of (2.3) is the same for 
i= 1,2 ,...> n-r,j=r+l,r+2 ,..., n.Ifwetakei=l,..., n-r,j=l,..., rthen 

[O I,-,] A, = A,JDfJ, (2.4) 

where A, consists of the first r columns of A and A, consists of the 
first (n-r) rows of A. Since A is nonsingular, A, and hence 
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[A,, [0 I,-,] A,] both have rank n-r and so (2.4) can be solved for 
D,, although not uniquely. Finally for i= n - r + l,..., n, .j= l,..., n, we 
obtain 

C,A=A,D, 

where A, consists of the last r rows of A. Since A is nonsingular and D has 
already been obtained, there is a solution for C, as required. 1 

Remark 2.2. When r = 1 we have a Toeplitz matrix which is persym- 
metric, i.e., JATJ= A. In this case, as shown in [l], C and D in (2.2) are 
ordinary companion matrices and C= D. 

A consequence of Theorem 2.1 is that we can now determine a 
relationship between the elements of the inverse of an rT matrix. 

THEOREM 2.2. lf Y= [ylj] is the inverse of an rT matrix A such that the 
first and last principal minors of Y qf order r, 1 Y,,I and 1 Y,,rl, respectively, 
are nonzero then for i, j = 1, 2 ,..., n - r, 

Ir+r.,+r =l',,+(I.,+,.,r...,l'r+r,r) Y,,'(L',.,+r,...,)~I.,+I)T 

- (Yi, n r+ I >..‘> Y,,,) y,,;‘(l)‘?-r+ I./,..., ?(rJT. (2.5) 

Proof. Since A satisfies (2.2) and Y = A ’ then 

YC= JDTJY 

and, with suitable partitioning, this can be written as 

r n-2r r 

(2.6) 

(2.7) 

Since Y,, and Y,,, are nonsingular, the bottom right r x (n-r) submatrix 
and the top left (n - r) x r submatrix in (2.7) give 

C,-,= K’{JDfJCY, Y,l- CY, Y,lf (2.8) 

and 

(2.9) 
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If we now put (2.8) and (2.9) in the top right (n - r) x (n-r) submatrix of 
(2, 7) we obtain 

Last, from the bottom left r XY submatrix in (2.7) we see that 
JDTJ= Y,,,C,Y;’ and so (2.10) becomes 

(2.11) 

Taking the ijth term of (2.11) gives (2.5). 1 

Remark 2.3. Equation (2.5) shows that the elements of Y, the inverse of 
an rT matrix, are completely determined by the elements in the first and 
last r rows and columns of Y. 

Remark 2.4. When r = 1, Y is the inverse of a Toeplitz matrix which is 
persymmetric. Thus y, = y,, tip ;+, , Y,~= y, -,+ I, , , and y,, = y,, and 
so (2.5) reduces to 

This equation is well known and is given, for example, in [ 1, lo]. 

3. rT MATRICES WITH BANDED INVERSES 

In this section two types of banding are considered. The first is 
elementwise banding, i.e., there are triangles of zeros in the top right and/or 
the bottom-left-hand corners of the inverse. The second form is called 
incomplete block banding, which is explained in Definition 3.2. This 
reduces to block banding (to be defined below) when the order of the 
matrix is a multiple of the order of each block. 

In fact, if certain elements in the first r rows and columns of the inverse 
of an rT matrix are zero then we show, using Theorem 2.2, that one or 
other of the above types of banding occurs in the inverse. We also show 
that the inverse has what can be called quasi-rT form, i.e., the elements 
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satisfy (1.3) except for submatrices in its top left and bottom right hand 
corners. 

DEFINITION 3.1. A matrix A = [aV] of order n is (element-wise) banded 
if for some positive integers r and s, less than n + 1, 

a;, = 0, j-i&r, i-j3s. (3.1) 

We now have the following result. 

THEOREM 3.1. if Y= [Iv,-] is the inverse of an rT matrix I$ order n 
satisfying the conditions of Theorem 2.2 and, in addition, for positive integers 
MandN, M,N<n 

y,) = 0, 
i 

j-i3M and i<r 
i-,jb N (3.2) and ,j 6 r. 

Then Y is banded and is rT, except for the (N - 1) x (M - 1) submatrix in 
the top-left-hand corner and the (A4 - 1) x (N - 1) submatrix in the bottom- 
right-hand corner. 

Proof To prove that Y is banded we only consider the top-right-hand 
corner since the proof for the bottom-left-hand corner is similar. First, if 
M > n - r, we already have a triangle of zeros in the top-right-hand corner 
and so there is nothing to prove. Suppose therefore that M < n - r. From 
(2.5) the elements in the (r + 1 )th row of Y satisfy 

Y r+l,,+r=Yl,+~Y,+l,I~...~ ?)r+I.r) wYI.,+rr~-~ Yr.,+JT 

-(Y,.n- r+l3...7 Yl,) y,;;‘(Y,*~~,+I./,..‘, Y,JT. (3.3) 

Condition (3.2) then shows that Y,,,+~ = 0, i= 1, 2 ,..., r, when j> M, 
y,,,=O, k=n-r+ l,..., n, since n-r+ 1 >M+ 1 and y,,=O when 
j> M+ 1. Thus (3.3) gives 

Yr+l.,+r=O, j = h4 + I,..., n. 

If this analysis is continued similarly for the (r + 2)th row and subsequent 
rows, it follows that the trapezium of zeros given in (3.2) implies a triangle 
of zeros in the top-right-hand corner of Y, which satisfies (3.1). 

To prove the second part of the theorem we note that (3.2) is now 
satisfied without the restrictions i,< r and j< r so that from (2.5) 

Yi+r.j+r=Yij (3.4) 

and 

eitheryi+,,,=~,-,+,.,=O O~Y~.,+~=Y,.~-~+~=~ (3.5 
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which hold when 
either idN,j<n-N-r+ 1 or j>M, i<n-M-r+l. (3.6) 

Thus the rT part of Y consists of the elements y, which satisfy 

either i>N,j<n-N+ 1 or j>M, i<n-M+ I 

and the result then follows. 1 

COROLLARY. If A is a nonsingular upper (lower) triangular rT matrix 
then so is its inverse. 

Proof: If A is upper triangular, so is its inverse and so N= 1 in (3.2). 
The excluded submatrices in Theorem 3.1 therefore disappear. When A is 
lower triangular, M= 1 and the result follows similarly. 1 

If A is a block Toeplitz matrix then it is natural to investigate the case 
when its inverse Y is block banded. 

DEFINITION 3.2. If A = [A;,] is a block matrix of order nr where A,, 
i,j= 1, 2 )..., n, is a matrix of order r, then A is block banded if for some 
positive integers r and S, less than n + 1, 

A,,=% j-i>r, i-j3s. 

A similar form of banding is now considered for rT matrices. 

DEFINITION 3.3. A matrix L of order n = mr +p, 0 <p < r is an incom- 
plete block matrix if it is partitioned from the top-left-hand corner using 
r x r submatrices as far as possible. Thus 

VII ... VI, Vl,m+l 

v= : 

I. 

V ml ... V mm V 
(3.7) 

fH,l7Z+1 
V m+l.I .” V lM+1,Wl V I I> m+l,m+l 

where V,, i, j= 1, 2 ,..., m, is an r x r matrix, Vi, m +, and Vm+ ,, j, 
i,j= 1, 2 ,..., m, are r x p matrices and V,,, + r, m + , is a p x p matrix. 

The following definition is now a natural extension of Definition 3.2. 

DEFINITION 3.4. V has incomplete r-block banding if for some positive 
integers A4 and N (M, N<m+ 1, p>O or M, N<m, p=O), 

v,=o (3.8) 
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In particular V is a lower incomplete block triangular matrix if M= 1. If 
N = 1, then V is an upper incomplete block triangular matrix. 

If Y is now partitioned in the manner of (3.7), then the following result 
can be proved in a similar manner to Theorem 3.2. 

Details of this proof can be found in [4]. 

THEOREM 3.2. If Y = [Y,,] is the inverse of an rT matrix of order 
n = mr + p, satisfying the conditions of Theorem 2.2 and, in addition, jbr 
positive integers M and N (M, N<m+ 1, p>O or M, N<m, p=O) 

Y,,=O,j>M+ 1 and Y,, =O, ib N+ 1 

then Y has incomplete r-block banding, and is rT except for an 
(N - 1) r x (M - 1) r submatrix of elements y,, in the top-left-hand corner 
and an [(M-l)r+p]x[(N-l)r+p] submatrix of elements y, in the 
bottom-right-hand corner. 

Remark 3.1. If n = mr then Y is the inverse of a block Toeplitz matrix. 
If it also satisfies the conditions of Theorem 3.2 then Y is also a block 
Toeplitz matrix except for an (N - 1) x (M - 1) submatrix of matrix 
elements Y,, in the top-left-hand corner and an (M- 1) x (N - 1) sub- 
matrix of matrix elements Y, in the bottom-right-hand corner. 

Remark 3.2. When r = 1, both Theorems 3.1 and 3.2 reduce to the 
Toeplitz case. The second part of the Toeplitz theorem was proved in a 
different way in [lo]. 
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