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A technique to prove parameter-uniform convergence for a
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Abstract

A priori parameter explicit bounds on the solution of singularly perturbed elliptic problems of convection–diffusion type are
established. Regular exponential boundary layers can appear in the solution. These bounds on the solutions and its deriva-
tives are obtained using a suitable decomposition of the solution into regular and layer components. By introducing exten-
sions of the coefficients to a larger domain, artificial compatibility conditions are not imposed in the derivation of these
decompositions.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we discuss the derivation of a priori parameter explicit bounds on the derivatives of the solutions to
linear singularly perturbed partial differential equations. These bounds are derived by decomposing the solution into a
sum of components—a regular component (whose first and second partial derivatives are bounded independently of the
singular perturbation parameter) and several layer components. The layer components are characterized as being the
solution of the associated homogeneous differential equation and being small (relative to the perturbation parameter)
in the domain except in the neighbourhood of one particular edge or corner of the domain. These decompositions were
given first in [13].

After the appearance of [13], initial efforts at understanding this decomposition confined the discussion to the
original domain, which led to technical difficulties with compatibility conditions [10,2] or to modifications to the
decomposition [9] (where a remainder term is involved in the decomposition). In this paper, the above difficulties are
avoided by including the additional idea of extending the problem domain, which was a central component in the
original decomposition given in [13]. Note that here we identify sufficient compatibility for the decomposition to be
valid and we do not address the question of necessary and sufficient compatibility conditions.
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The decomposition of the solution into a regular component and several layer components is related to the ideas of
an asymptotic expansion [6,12], but it is not an asymptotic expansion [2]. There are no remainder terms. The nature of
the layer components are identified implicitly (rather than explicitly as in an asymptotic expansion). In order to derive
first order asymptotic error bounds for any proposed numerical method, all that is required in a standard stability and
consistency argument are adequate parameter-explicit upper bounds on the second and third order partial derivatives
of each of the components.

Both [11,7] (albeit [7] studies the case of no compatibility and the possibility of layers being generated due to
discontinuities in the data at the corners) deal with constant coefficients. In the decomposition discussed here, variable
coefficient problems are considered and bounds on the derivatives of the components are derived based on classical
bounds on the derivatives given in [8].

The analysis here is close in character to the analysis presented in [9]. However, there are some marked differences.
In [9] a decomposition of the solution to Lu = f of the form

u = S + �2R + (E1 + E2 + E12)

is established. The terms E1, E2, E12 corresponding to the layer components satisfy bounds of the form

|LE1(x, y)|�C�e−�1(1−x)/�.

However, LE1 �= 0 and consequently L(S + �2R) �= f . In the decomposition presented here, where

u = v + w,

the layer components w satisfy the homogeneous problem Lw=0 and the regular component v satisfies the differential
equation Lv = f . In our opinion, this is a neater splitting of the components and the discrete error analysis in Section
6 is simplified with the aid of this decomposition.

Note that throughout this paper C denotes a constant independent of � and f ∗ : �∗ → R denotes an extension of
the function f : � → R from the domain � to �∗ where � ⊂ �∗.

2. Extensions and compatibility issues

Let D be an open set containing the closed unit square � = [0, 1] × [0, 1]. Let D1, D2 be open sets so that D ⊂
D1 ⊂ D2. For any f ∈ Cn(D) there exists an extension f ∗ of f such that

f ∗(x, y) = f (x, y), (x, y) ∈ �,

f ∗(x, y) = C, (x, y) ∈ D2\D1, f ∗ ∈ Cn(D2).

In the subsequent sections, the data are extended in such a way that in the process of decomposing the solutions into
regular and layer components the imposition of artificial compatibility conditions is minimized.

For non-negative integers k, we define the following semi-norms on Ck(D), D ⊂ R2:

|v|k,D =
∑

i+j=k

sup
(x,y)∈D

∣∣∣∣ �i+j v

�xi�yj

∣∣∣∣
and the related norms

‖v‖k,D =
∑

0� j �k

|v|j,D .

When the domain D is obvious we drop D from this notation and if a norm is not subscripted then it is the norm with
k = 0. The space C�(D) is the set of all functions that are Hölder continuous of degree � with respect to the Euclidean
norm ‖ · ‖e. That is f ∈ C�(D) if

�f 	0,�,D = sup
u �=v, u,v∈D

|f (u) − f (v)|
‖u − v‖�

e
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is finite. The space Cn,�(D) is the set of all functions in Cn(D) whose derivatives of order n are Hölder continuous of
degree �. That is,

Cn,�(D) =
{
z : �i+j z

�xi�yj
∈ C�(D), 0� i + j �n

}
.

Also ‖ · ‖n,� are the associated norms and �·	n,� is the associated Hölder semi-norm defined by

�v	n,� =
∑

i+j=n

⌈
�nv

�xi�yj

⌉
0,�

, ‖v‖n,� =
∑

0�k �n

|v|k + �v	n,�.

Consider the first order problem

a1rx + a2ry = f, (x, y) ∈ D = (0, L) × (0, L), (1a)

r(x, 0) = gs(x), r(0, y) = gw(y), (1b)

a1, a2, f0 ∈ Cn,�(D̄), a1 > 0, a2 > 0. (1c)

Bobisud [1] gives explicit compatibility and regularity conditions so that r ∈ C2(D̄) and indicates how to derive
necessary and sufficient conditions so that r ∈ Cn(D̄). Linß and Stynes [9] extend this result to identify necessary
and sufficient conditions for r ∈ Cn,�(D̄). For example, if a1, a2 ∈ C∞(D̄), gs, gw ∈ C1,�([0, 1]), f ∈ C1,�(D̄) then
r ∈ C1,�(D̄) if and only if

gs(0) = gw(0) and a1(0, 0)g′
s(0) + a2(0, 0)g′

w(0) = f (0, 0).

Consider the elliptic problem

��z + a1zx + a2zy = f, (x, y) ∈ � = (0, 1) × (0, 1), (2a)

z = 0, (x, y) ∈ ��, (2b)

a1 ��1 > 0, a2 ��2 > 0, (x, y) ∈ �. (2c)

From Vulkov [14] and Ladyzhenskaya and Ural’tseva [8] (see also [4, Theorem 3.2]) if a1, a2 are smooth and f ∈
C1,�(�), f (0, 0) = f (1, 0) = f (0, 1) = f (1, 1) = 0 then z ∈ C3,�(�). It also should be noted that for a variable
coefficient problem local compatibility conditions to ensure that z ∈ Cn,�(�) for n > 3 are not available in general
[4]. If a1, a2 are constant in a neighbourhood of each of the four corners, then compatibility conditions exist so that
z ∈ Cn,�(�).

Using the stretching transformations � = x/�, � = y/� the differential equation (2a) transforms to

z̃�� + z̃�� + ã1z̃� + ã2z̃� = �f̃2, (�, �) ∈ �� = (0, 1/�) × (0, 1/�),

where z̃(�, �)= z(x, y). From Ladyzhenskaya and Ural’tseva [8, p. 110, (1.11)], we deduce that (see [9, Theorem 3.2])
the following global a priori bounds on the solution of (2)

|z|0 �C|f |0, (3a)

|z|1 + ���z	1,� �C�−1{�|f |0 + �1+��f 	0,� + |z|0}, (3b)

|z|2 + ���z	2,� �C�−2{�|f |0 + �1+��f 	0,� + |z|0}, (3c)

|z|3 + ���z	3,� �C�−3{�|f |0 + �2|f |1 + �2+��f 	1,� + |z|0}. (3d)

Using these bounds we derive the basic parameter-explicit derivative estimates on the solutions of (2)∥∥∥∥ �i+j z

�xi�yj

∥∥∥∥ �C�−i−j , 0� i + j �3, (4)
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when z ∈ C3,�(�). In the case of non-zero boundary conditions, where u = g �= 0, (x, y) ∈ �� then the above bounds
on the solutions of (2) have the additional terms (see [9, Theorem 3.2]) on the right-hand side of the respective bounds
in (3)

|z|0 �C(|f |0 + |g|0),

|z|1 + ���z	1,� �C�−1

(
�(|f |0 + ���f 	0,�) + |z|0 +

2∑
i=0

�i |g|i + �2+�|g|2,�

)
, (5a)

|z|2 + ���z	2,� �C�−2

(
�|f |0 + �1+��f 	0,� + |z|0 +

2∑
i=0

�i |g|i + �2+�|g|2,�

)
, (5b)

|z|3 + ���z	3,� �C�−3

(
�|f |0 + �2|f |1 + �2+��f 	1,� + |z|0 +

3∑
i=0

�i |g|i + �3+�|g|3,�

)
. (5c)

3. Problem class with no parabolic boundary layers

In this section, we discuss the decomposition ideas in relation to the singularly perturbed elliptic problem

Lu ≡ ��u + a1ux + a2uy = f, (x, y) ∈ �, (6a)

u = g, (x, y) ∈ ��, (6b)

a1 > �1 > 0, a2 > �2 > 0, a1, a2, f ∈ C5,�(D), � ⊂ D, (6c)

where no parabolic boundary layers occur in the solution. The data a1, a2, f, g are assumed to be sufficiently regular
and sufficiently compatible at the four corners, so that only exponential boundary layers appear near the outflow edges
x = 0, y = 0 and a simple corner layer appears in the vicinity of (0, 0). This corner layer is induced not by any lack
of sufficient compatibility, but by the presence of the singular perturbation parameter. In this case, there is no loss in
generality in dealing with homogeneous boundary data. That is

g ≡ 0. (6d)

Below we require the following compatibility:

f (1, 0) = f (0, 1) = f (0, 0) = f (1, 1) = 0, (6e)

�kf

�xi�yj
(1, 1) = 0, 0�k�4. (6f)

From the previous section, we note that u ∈ C3,�(�) and∥∥∥∥ �i+j u

�xi�yj

∥∥∥∥ �C�−i−j , 0� i + j �3. (7)

More informative bounds on how the parameter � effects the solution u locally can be derived by decomposing the
solution of (6) into the sum

u = v + wL + wB + wBL.

Here v is the regular component, wL is a regular boundary layer function associated with the left edge x = 0, wB is a
regular boundary layer function associated with the bottom edge y = 0 and wBL is a corner layer function associated
with the corner (0, 0). The decomposition into regular and layer components will be defined so that each of the layer
functions satisfy the homogeneous differential equation Lw = 0.

In the case of the ordinary differential equation,

�y′′ + ay′ = f (x), x ∈ (0, 1), a > 0,
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many publications (e.g., [10,3]) begin the standard decomposition by defining the regular component s(x) to be

s(x) = s0(x) + �s1(x) + �2s2(x),

where

as′
0 = f, s0(1) = y(1),

as′
1 = −s′′

0 , s1(1) = 0,

�s′′
2 + as′

2 = −s′′
1 , s2(0) = s2(1) = 0.

Hence

�s′′ + as′ = f, s(0) = s0(0) + �s1(0), s(1) = y(1)

and |s|i �C(1 + �2−i ), i�3. In this paper, we will construct the regular component in a different way. The functions
a, f are smoothly extended to be functions a∗, f ∗ defined on the interval [−d, 1], d > 0. The regular component is
first defined on the extended domain [−d, 1] as follows. Let

v∗ = v∗
0 + �v∗

1 + �2v∗
2 ,

where

a∗(v∗
0)′ = f ∗, v∗

0(1) = u(1),

a∗(v∗
1)′ = −(v∗

0)′′0, v∗
1(1) = 0,

�(v∗
2)′′ + a(v∗

2)′ = −(v∗
1)′′, v∗

2(−d) = v∗
2(1) = 0.

The regular component is taken to be the restriction of v∗ to the original domain [0, 1]. Hence

�v′′ + av′ = f, v(0) = v∗(0), v(1) = u(1).

Note that v∗(0)= s0(0)+ �s1(0)+O(�2) and so in the case of the ordinary differential equation the difference between
v and s is marginal. However, in the construction of the regular component v there is freedom in the choice of the
parameter d and in the choice of the extensions. In the following sections, we see that this additional freedom is useful
when dealing with singularly perturbed partial differential equations.

4. Regular component

Define the extended domain �∗ = (−d1, 1) × (−d2, 1), d1, d2 > 0. Since u = 0 on the boundary ��, the reduced
solution v∗

0 is the solution of the first order problem

a∗
1

�v∗
0

�x
+ a∗

2
�v∗

0

�y
= f ∗, (x, y) ∈ [−d1, 1) × [−d2, 1),

v∗
0(1, y) = 0, v∗

0(x, 1) = 0.

A first order correction to this reduced solution is the solution of the first order problem

a∗
1

�v∗
1

�x
+ a∗

2
�v∗

1

�y
= −�v∗

0 , (x, y) ∈ [−d1, 1) × [−d2, 1),

v∗
1(1, y) = v∗

1(x, 1) = 0

and a second order correction is the solution of the elliptic problem

��v∗
2 + a∗

1(v∗
2)x + a∗

2(v∗
2)y = −�v∗

1 , (x, y) ∈ �∗,

v∗
2 = 0, (x, y) ∈ ��∗.
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The regular component v∗ on the extended domain �∗ is taken to be

v∗ = v∗
0 + �v∗

1 + �2v∗
2 .

The extensions are constructed so that f ∗ = 0 and a∗
1 = a∗

2 = � > 0 in �∗\{(−0.5d1, 1] × (−0.5d2, 1]}. The extension
can then be organized (e.g., let d1 and d2 be such that d2 + 0.5d1 > 1) so that

�v∗
1(1, −d2) = �v∗

1(−d1, 1) = �v∗
1(−d1, −d2) = 0.

We impose compatibility conditions on f at the inflow corner (1, 1) so that �v∗
1 ∈ C1,�(�̄

∗
). Given that v∗

0 , v∗
1 satisfy

first order problems, if we impose

f ∈ C5,�(�̄
∗
) and

�kf

�xi�yj
(1, 1) = 0, 0�k�4,

then v∗
0 ∈ C5,�(�̄

∗
), v∗

1 ∈ C3,�(�̄
∗
) (see e.g., [9]), �v∗

1(1, 1) = 0 and �v∗
1 is zero at the other three corners of the

domain �̄
∗
. Hence v∗

2 ∈ C3,�(�̄
∗
). The freedom introduced by the extension has allowed us deal with compatibility

at the artificial corners (−d1, 1), (−d2, 1), (−d1, −d2). Define the regular component v to be the restriction of v∗ to
the closed domain �̄. Hence the regular component v ∈ C3,�(�̄) is the solution of

��v + a1vx + a2vy = f, (x, y) ∈ �, (8a)

v = v∗, (x, y) ∈ ��. (8b)

Moreover v0, v1 do not depend on � and from (3) we have

|v2|i + ���v2	i,� �C�−i , 1� i�3.

Hence, we have the following bounds on the regular component:

|v|�C, |v|i + ���v	i,� �C(1 + �2−i ), 1� i�3. (9)

5. Layer components

Let us now define the layer component wL associated with the left edge x = 0. Define the extended domain �∗∗ =
(0, 1) × (−d, 1), d > 0. The extended regular layer component w∗

L is defined to be the solution of the problem

L∗∗w∗
L = 0, (x, y) ∈ �∗∗, (10a)

w∗
L(0, y) = (u − v)∗(0, y), w∗

L(1, y) = w∗
L(x, −d) = w∗

L(x, 1) = 0. (10b)

The extension of the boundary value (u − v)∗(0, y) is defined in such a way that (u − v)∗(0, y) = 0, y < − d/2. Note
also that u ∈ C3,�(�̄) and v ∈ C3,�(�̄). Hence u− v and 0 are compatible at the corner (0, 1). Therefore, the extension
can be arranged so that w∗

L ∈ C3,�(�̄
∗∗

). Using a maximum principle we deduce that

|w∗
L(x, y)|�Ce−�1x/�, (x, y) ∈ �∗∗ (11a)

and from (5) and (9) it follows that at all points in the domain �̄
∗∗

|w∗
L|i + ���w∗

L	i,� �C�−i , i = 1, 2, 3. (11b)

Sharper bounds on the derivatives of w∗
L in the direction parallel to the side x = 0 will be required in the discrete error

analysis. To obtain these bounds, we introduce the following expansion of w∗
L:

w∗
L(x, y) = (u − v)∗(0, y)�(x, y) + �zL(x, y), (12)

where for all y ∈ [−d, 1] the function � is taken to be

�(x, y) = e−a∗
1 (0,y)x/� − e−a∗

1 (0,y)/�

1 − e−a∗
1 (0,y)/�

,
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which is the solution of the boundary value problem

��xx + a∗
1(0, y)�x = 0, x ∈ (0, 1), �(0, y) = 1, �(1, y) = 0.

Note that, by using tne−t �Ce−t/2, n�1, t �0, we have for all (x, y) ∈ �∗∗∣∣∣∣��

�y
(x, y)

∣∣∣∣ �C

(
1

�
e−a∗

1 (0,y)/� + x

�
e−a∗

1 (0,y)x/�
)

�Ce−a∗
1 (0,y)x/2�,

|�(x, y)|�e−a∗
1 (0,y)x/�,∣∣∣∣�2�

�y2 (x, y)

∣∣∣∣ �Ce−a∗
1 (0,y)x/2�,

∣∣∣∣��

�x
(x, y)

∣∣∣∣ � C

�
e−a∗

1 (0,y)x/�.

Note that zL = 0 on ��∗∗ and

−�L∗∗zL = w∗
L(0, y)(a∗

1(x, y) − a∗
1(0, y))

��

�x
+
(

�
�2w∗

L(0, y)

�y2 + a∗
2(x, y)

�w∗
L(0, y)

�y

)
�

+ w∗
L(0, y)

(
�
�2�

�y2 + a∗
2(x, y)

��

�y

)
+ 2�

�w∗
L(0, y)

�y

��

�y
.

Thus, using (9) and (11a)

|L∗∗zL(x, y)|� C

�

(
1 + x

�

)
e−�1x/2� � C

�
e−�1x/4�.

From (3a)

|zL(x, y)|�Ce−�1x/4�, (x, y) ∈ �∗∗.

Then using the bounds (5) and the facts that

���e−�x/�	0,� �C and |L∗∗zL(x, y)|1,� �C�−2e−�x/4�

(see also [9, Theorem 5.1]) we have from (5) and (9) that

|zL|k + ���zL	k,� �C�−k, k = 1, 2, 3.

The regular layer component wL is the restriction of w∗
L to � and is the solution of the homogeneous problem

LwL = 0, (x, y) ∈ �, (13a)

wL(0, y) = (u − v)(0, y), wL(1, y) = wL(x, 1) = 0, (13b)

wL(x, 0) = w∗
L(x, 0). (13c)

Hence, it follows that∥∥∥∥�jwL

�xi

∥∥∥∥ �C(1 + �−i ), i�3,

∥∥∥∥�jwL

�yj

∥∥∥∥ �C(1 + �1−j ), j �3. (14)

Corresponding bounds hold for wB, which is the boundary layer function associated with the edge y = 0.
Finally, we consider the corner layer function, which is defined on the original domain as follows:

LwBL = 0, (x, y) ∈ �, (15a)

wBL(x, 0) = −wL(x, 0), wBL(0, y) = −wB(0, y), (15b)

wBL(1, y) = 0, wBL(x, 1) = 0. (15c)
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Recall that u − v, wL, wB ∈ C3,�(�̄) and L(u − v) = LwL = LwB = 0. Also note that wB is compatible with u − v

at the corner (0, 0) and, in turn, u − v is compatible with wL at the corner (0, 0). Hence the corner layer function
wBL ∈ C3,�(�̄). From the comparison principle and the bounds on wL and wB established above, we have that

|wBL(x, y)|�Ce−�1x/�e−�2y/�, (x, y) ∈ �. (16a)

Using the bounds given in (5) and (11b) we deduce that

|wBL|i �C�−i , i = 1, 2, 3. (16b)

Hence for all three layer functions wL, wB, wBL the bounds on the derivatives given in (4) are applicable.

6. Numerical method

The bounds (9), (11), (14), (16) and (7) suffice to establish first order convergence (up to logarithmic factors) for
standard upwinding on the standard piecewise-uniform mesh when applied to the elliptic problem (6).

We present error bounds for the approximations generated by using a standard upwind difference operator

LNU = �(	2
x + 	2

y)U + a1D
+
x U + a2D

+
y U = f, (xi, yj ) ∈ �N (17a)

on a mesh

�N = 
x × 
y , (17b)

which is a tensor product of two piecewise-uniform one-dimensional meshes 
x, 
y . The finite difference operators
D+

x and 	2
x are the standard first order forward difference and the second order centered difference on a non-uniform

mesh [3]. Here the mesh 
x places N/2 mesh intervals into both [0, �x] and [�x, 1]. The mesh points in the y direction
are distributed in the same fashion. The transition parameters are taken to be

�x = min

{
0.5,

�

�1
ln N

}
and �y = min

{
0.5,

�

�2
ln N

}
. (17c)

The discrete solution is decomposed in an analogous fashion to the continuous solution. That is

U = V + WL + WB + WBL,

where

LNV = f, LNW = 0, (xi, yj ) ∈ �N and V = v, W = w, (xi, yj ) ∈ ��N .

On an arbitrary mesh using the bounds (9) one has the truncation error estimate

|LN(v − V )|�CN−1
(

�

∥∥∥∥�3v

�x3

∥∥∥∥+ �

∥∥∥∥�3v

�y3

∥∥∥∥+
∥∥∥∥�2v

�x2

∥∥∥∥+
∥∥∥∥�2v

�y2

∥∥∥∥
)

�CN−1

and hence ‖v − V ‖�N �CN−1. If �x = 0.5 or �y = 0.5 then the same argument coupled with the bounds (7) yields

‖u − U‖�N �CN−1(ln N)2 if �x = 0.5 or �y = 0.5.

In the remainder of this section we assume that

�x = �

�1
ln N and �y = �

�2
ln N .

Note that from (11a) and by the choice of the transition point �x

|wL(x, y)|�CN−1, x��x .

Consider the discrete one-dimensional barrier function �(xi) which is the solution of the constant coefficient difference
equation

�	2
x�(xi) + �D+

x �(xi) = 0, xi ∈ 
x, �(0) = 1, �(1) = 0.
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Note that by (11a)

|WL(xi, 0)| = |wL(xi, 0)|�Ce−�1xi/� �C�(xi) + CN−1.

Hence by using a discrete comparison principle and the fact that LN� = (a1 − �1)D
+��0 we conclude that

|WL(xi, yj )|�C�(xi) + CN−1, (xi, yj ) ∈ �̄
N

.

Thus, as in [10, Chapter 7]

|WL(xi, yj )|�CN−1, xi ��x .

Thus, we have the following bound on the error

|(WL − wL)(xi, yj )�CN−1, xi ��x .

In the fine mesh region (0, �x) × (0, 1), using the bounds (14) we have the truncation error bound

|LN(wL − WL)|�Ch

(
�

∥∥∥∥�3wL

�x3

∥∥∥∥+
∥∥∥∥�2wL

�x2

∥∥∥∥
)

+ CN−1
(

�

∥∥∥∥�3wL

�y3

∥∥∥∥+
∥∥∥∥�2wL

�y2

∥∥∥∥
)

�C
N−1 ln N

�
,

where Nh = 2�x . Use the barrier function

C
N−1 ln N

�
(�x − xi) + CN−1

in the region (0, �x) × (0, 1) to derive the error bound

‖WL − wL‖�N �CN−1(ln N)2.

Note that

|WBL(xi, yj )|�C�(xi) + CN−1, (xi, yj ) ∈ �̄
N

,

which implies that

|WBL(xi, yj )|�CN−1, xi ��x .

In analogous fashion we have that

|WBL(xi, yj )|�CN−1, yj ��y ,

which implies that

|WBL(xi, yj ) − wBL(xi, yj )|�CN−1, (xi, yj ) /∈ (0, �x) × (0, �y).

In the fine mesh corner region (0, �x) × (0, �y), use the bounds given in (16b) to obtain

|LN(wBL − WBL)|�C
N−1 ln N

�
.

Use the barrier function

C
N−1 ln N

�
(�x − xi) + CN−1

in the corner region to derive the error bound

‖wBL − WBL‖�N �CN−1(ln N)2.

Collecting all the error bounds on the components and we have the final error bound:
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Theorem 1. If U is the solution of (17) and u is the solution of the elliptic problem (6) then

‖U − u‖�N �CN−1(ln N)2.

Numerical results illustrating the performance of this numerical method are given in [3,5].

References

[1] L. Bobisud, Second-order linear parabolic equations with a small parameter, Arch. Rational Mech. Anal. 27 (1967) 385–397.
[2] M. Dobrowolski, H.-G. Roos, A priori estimates for the solution of convection-diffusion problems and interpolation on Shishkin meshes,

Z. Anal. Anwendungen 16 (1997) 1001–1012.
[3] P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Robust Computational Techniques for Boundary Layers, Chapman &

Hall/CRC Press, Boca Raton, USA, 2000.
[4] H. Han, R.B. Kellogg, Differentiability properties of solutions of the equation −�2�u + ru = f (x, y) in a square, SIAM J. Math. Anal.

21 (1990) 394–408.
[5] A.F. Hegarty, J.J.H. Miller, E. O’Riordan, G.I. Shishkin, On a novel mesh for the regular boundary layers arising in advection-dominated

transport in two dimensions, Comm. Numer. Methods Eng. 11 (1995) 435–441.
[6] A.M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, American Mathematical Society, Providence, RI,

1992.
[7] R.B. Kellogg, M. Stynes, Corner singularities and boundary layers in a simple convection diffusion problem, J. Differential Equations 213

(2005) 81–120.
[8] O.A. Ladyzhenskaya, N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, London, 1968.
[9] T. Linß, M. Stynes, Asymptotic analysis and Shishkin-type decomposition for an elliptic convection-diffusion problem, J. Math. Anal. Appl.

261 (2001) 604–632.
[10] J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996.
[11] H.-G. Roos, Optimal convergence of basic schemes for elliptic boundary value problems with strong parabolic layers, J. Math. Anal. Appl.

267 (2002) 194–208.
[12] S. Shih, R.B. Kellogg, Asymptotic analysis of a singular perturbation problem, SIAM J. Math. Anal. 18 (1987) 1467–1511.
[13] G.I. Shishkin, Discrete Approximation of Singularly Perturbed Elliptic and Parabolic Equations, Russian Academy of Sciences, Ural section,

Ekaterinburg, 1992 (in Russian).
[14] E.A. Volkov, Differentiability properties of solutions of boundary value problems for the Laplace and Poisson equations, Proc. Steklov Inst.

Math. 77 (1965) 101–126.


	A technique to prove parameter-uniform convergence for a singularly perturbed convection--diffusion equation
	Introduction
	Extensions and compatibility issues
	Problem class with no parabolic boundary layers
	Regular component
	Layer components
	Numerical method
	References


