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1. Introduction

We begin with an overview of the theory of association schemes, and the connection of that theory
with groups. Details for what follows can be found in Zieschang’s Theory of Association Schemes [1].

Given a set X , an association scheme on X , or a scheme on X for short, is a set S consisting of
nonempty subsets of X × X , satisfying the following axioms:

1. S is a partition of X × X .
2. The diagonal subset 1X ⊆ X × X , defined as {(x, x): x ∈ X}, is an element in S .
3. For each element s ∈ S , the set s∗ = {(y, x) ∈ X × X: (x, y) ∈ s} is an element in S .
4. For each triple p,q, r ∈ S , and each element (x, y) ∈ r, the cardinality of the set of elements z ∈ X

such that (x, z) ∈ p and (z, y) ∈ q depends only on p, q, and r (and not on x and y). The cardinal
number for this set is denoted apqr .

We will assume throughout that X is a finite set, so that each apqr is a nonnegative integer.
For example, suppose given a finite group G . For each g ∈ G , let sg be the set of all pairs (x, y) ∈

G × G such that y = xg . Let SG = {sg : g ∈ X}. Then:

1. SG is a partition of G × G , since for each pair (x, y) ∈ G , we have (x, y) ∈ sg if and only if
g = x−1 y.
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2. 1G is equal to s1, where 1 ∈ G is the identity element.
3. For each g ∈ G , s∗

g = sg−1 , since y = xg if and only if x = yg−1.
4. For each triple g1, g2, g3 ∈ G , and each pair (x, y) ∈ sg3 , the number of elements z ∈ G such that

(x, z) ∈ sg1 and (z, y) ∈ sg2 is 1 if g1 g2 = g3 and 0 otherwise.

The scheme SG on G has the property that for each p ∈ S and x ∈ G , there is exactly one y ∈ G
such that (x, y) ∈ p. Schemes with this property are called thin schemes, and any thin scheme is
isomorphic to a scheme obtained from a group as described above. Thus, schemes may be viewed as
a generalization of groups.

Many concepts in group theory, like products, subgroups, and quotient groups, have corresponding
generalizations to scheme theory. One can define the product pq of two elements p and q in a
scheme S , but in this case, pq is not an element of S , but a subset of S; that is pq is the set of all r
such that apqr > 0. Similarly, given subsets P and Q in S , we can define P Q to be the union over all
pairs p ∈ P , q ∈ Q of the sets pq. We also write p Q for

⋃
q∈Q pq and Pq for

⋃
p∈P pq.

Corresponding to subgroups of a group are the closed subsets of a scheme. A subset T ⊆ S is said
to be a closed subset if T ∗T ⊆ T , where T ∗ = {t∗ ∈ S: t ∈ T }. If SG is the thin scheme arising from
a group G , then the closed subsets of SG are precisely the sets of the form S H = {sg ∈ SG : g ∈ H},
where H is a subgroup of G . As with groups, we say that a closed subset T is normal if pT = T p for
all p ∈ S .

Just as subgroups partition groups into cosets, a closed subset T of a scheme S on a set X par-
titions X into a set of cosets. For x ∈ X and t ∈ T , we write xt for the set of all y ∈ X such that
(x, y) ∈ t . We then write xT for

⋃
t∈T xt . Thus, x1 and x2 are in the same coset if the pair (x1, x2) be-

longs to an element in T . We denote the set of all cosets of T in X as X/T . One obtains a scheme TxT

on xT , called the subscheme of S defined by xT , whose elements are the sets t ∩ (xT × xT ), where t ∈ T .
For each s ∈ S , we define sT to be the set of all pairs (x1T , x2T ) ∈ X/T × X/T such that (x′

1, x′
2) ∈ s

for some x′
1 ∈ x1T and x′

2 ∈ x2T . The set of all such sets sT then forms a scheme S//T on X/T . In
contrast to group theory, a scheme admits a quotient for any closed subset T , not just for normal
closed subsets.

Finally, we can define a morphism between two schemes. Given schemes S on X and S ′ on X ′ ,
a morphism φ : S → S ′ is a function φX : X → X ′ such that if (x1, x2) and (x′

1, x′
2) belong to the same

scheme element in S , then (x1φX , x2φX ) and (x′
1φX , x′

2φX ) belong to the same scheme element in S ′ .
Note that φX gives rise to a function φS from the set of scheme elements S to the set of scheme
elements S ′: given s ∈ S , choose (x1, x2) ∈ s, and define sφS to be the scheme element in S ′ containing
(x1φX , x2φX ). Our definition ensures that φS is well defined. As an example, if T is a closed subset of
a scheme S defined on X , then there is a canonical morphism π : S → S//T . The function πX : X →
X//T takes a given x ∈ X to its coset xT . The function πS takes s to sT . Clearly, if (x, y) ∈ s, then
(xT , yT ) ∈ sT . If φ : S → S ′ is a morphism of schemes, we define the kernel of φ to be the set of
s ∈ S such that sφ = 1X ′ . As with groups, there is an induced morphism φ̄ : S//T → S ′ , given by
(xT )φ̄X/T = xφ and (sT )φ̄S//T = sφS . Thus, πφ̄ = φ. Given a morphism of schemes φ : S → S ′ , we will
often use φ to denote φX or φS , relying on context to make the meaning clear.

Since schemes generalize groups, it is natural to look for appropriate generalizations of various
concepts from group theory to scheme theory. One classical problem in group theory is the extension
problem. Given a pair of groups N and H , one seeks to classify those groups G with a given normal
subgroup Ñ isomorphic to N , and quotient G/Ñ isomorphic to H . Such a group is called an extension
of N by H . In the same way, one could pose the following problem: given two schemes T and U ,
classify the schemes S which are equipped with a closed subset T̃ , such that the quotient scheme
S//T̃ is isomorphic to U , and such that the subscheme of S defined by one of the cosets of T̃ is
isomorphic to the scheme T .

The simplest class of extensions of a group N by another group H is the class of semidirect
products of N and H . In considering the extension problem for schemes, it is natural to seek a gen-
eralization of the semidirect product, which should satisfy a certain collection of properties similar
to those of a semidirect product of groups. Bang, Hirasaka, and Song [2] have already proposed one
construction for semidirect products. Our goal in this paper is to propose a more general construction.
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To understand our motivation, we must examine semidirect products of groups more closely. In
group theory, given a pair of groups H and N together with a homomorphism ζ : H → Aut(N), one
defines the semidirect product G = N �ζ H as the group whose underlying set of elements is the
Cartesian product N × H , with product defined by

(n1,h1)(n2,h2) = (
n1

(
n2(h1ζ )

)
,h1h2

)
.

Then G contains a normal subgroup Ñ = {(n,1H ): n ∈ N}, which is isomorphic to N , and G/Ñ is
isomorphic to H . We have the following properties:

1. G contains a subgroup H̃ isomorphic to H , G = Ñ H̃ and H̃ ∩ Ñ = {1}.
2. The homomorphism π : G → G/Ñ splits, in the sense that there is a homomorphism i : H → G

such that iπ : H → G/Ñ is an isomorphism.

In fact, given a group G containing a normal subgroup Ñ isomorphic to N , such that G/Ñ is isomor-
phic to H , then properties (1) and (2) are equivalent, and each implies that G is isomorphic to N �ζ H
for some ζ : H → Aut(N).

Returning to schemes, there are then two approaches one might take to generalize semidirect
products. On the one hand, one could say that a scheme S on a set X is a semidirect product of T
by U if S contains a normal closed subset T̃ with a subscheme isomorphic to T , as well as a closed
subset Ũ isomorphic to U , such that Ũ ∩ T̃ = {1X } and T̃ Ũ = S . Bang, Hirasaka, and Song [2] describe
a construction that takes two schemes T and U , together with a kind of twisting map ζ , and outputs
a scheme S = T �ζ U with the above properties. Zieschang [1, 7.4] proves that any scheme satisfying
the conditions above, together with one extra condition (which holds automatically if T is thin), is
isomorphic to a scheme arising from their construction. The extra required condition is

Condition 1.1. For any u ∈ Ũ and t ∈ T̃ , we have |tu| = 1.

We now present a second approach to defining semidirect products, which we will adopt in this
paper.

Definition 1.2. A scheme S on a set X is a semidirect product of T by U if S contains a closed subset T̃ ,
there is a morphism i : U → S such that iπ : U → S//T̃ is an isomorphism, and the subscheme of S
defined by one of the cosets of T̃ is isomorphic to T .

Note that the image of a scheme morphism i : U → S need not determine a closed subset of S;
that is, the image of iU : U → S need not be closed. On the other hand, if S contains a normal closed
subset T̃ , as well as a closed subset Ũ isomorphic to U , such that Ũ ∩ T̃ = {1X }, and T̃ Ũ = S , then
the inclusion of the subscheme of S defined by any of the cosets of Ũ , composed with the projec-
tion π : S → S//T̃ , is an isomorphism of schemes, and thus determines a splitting of π . Therefore,
Definition 1.2 is more general than the semidirect product defined by Bang, Hirasaka, and Song.

Our goal in this paper is to show how one can take two schemes T and U , together with a kind of
twisting map ζ , and construct an extension S of T by U which is a semidirect product in the sense of
Definition 1.2. We will show that every semidirect product satisfying one extra condition (analogous
to Condition 1.1 above) is isomorphic to a scheme arising from our construction. Our extra condition is

Condition 1.3. For any u ∈ U and t ∈ T̃ , we have |t(ui)| = 1.

Bang and Song [3] also give a generalization of their own semidirect product. As we show in
Section 6, it is possible to describe a semidirect product using our approach that cannot be obtained
as a generalized semidirect product in their sense. On the other hand, any generalized semidirect
product in their sense would arise from our construction.

In Sections 2 and 3, we work through some preliminary definitions which we will need in order
to construct our semidirect product. In Section 4, we define an action of one scheme on another,
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and show how this can be used to construct a semidirect product, much the way one can use a
homomorphism from a group G to the automorphisms of a group N to construct a semidirect product
in group theory. We discuss properties of our semidirect product in Section 5 and provide an example
in Section 6. In the final section, Section 7, we show how, given Condition 1.3, one can obtain an
action of one scheme on another from a given semidirect product, and then reconstruct this given
semidirect product up to isomorphism using our construction.

2. A category of schemes

A based set X is a set together with a distinguished element x∗ ∈ X , called the basepoint. A based
scheme is a scheme T on a based set X . If T and U are based schemes (on based sets X and Y ), then
a morphism of schemes φ : T → U is a based morphism if it takes the basepoint of X to the basepoint
of Y . Any quotient of a based scheme is naturally a based scheme, where we take the basepoint of
the quotient to be the coset containing the basepoint of the original scheme.

Of course, one could define a category whose objects were based schemes and whose morphisms
were the above morphisms of based schemes. In particular, this is the category AS 0 discussed by
Hanaki in [4]. We now define a different category C of based schemes. An object of C is a based
scheme T on X . Given two based schemes T and U , a morphism φ ∈ HomC (T , U ) consists of

1. a normal closed subset Tφ in T ,
2. a normal closed subset Uφ in U ,
3. a based isomorphism of schemes φ̃ : T //Tφ → U//Uφ.

To define composition of morphisms in C , suppose given φ ∈ HomC (T , U ) and ψ ∈ HomC (U , V ),
where T , U , and V are schemes on X , Y , and Z respectively. We define

Tφψ = {
t ∈ T : for some u ∈ U we have tTφ φ̃ = uUφ and uUψ ψ̃ = 1

Vψ

Z

}
,

Vφψ = {
v ∈ V : for some u ∈ U we have 1

Tφ

X φ̃ = uUφ and uuψ ψ̃ = v Vψ
}
.

In Lemma 2.1 below, we will show that Tφψ and Vφψ are closed subsets. Now, we define a
function φ̃ψ X/Tφψ

: X/Tφψ → Z/Vφψ as follows. Given xTφψ ∈ X/Tφψ , choose a coset representa-

tive y so that (xTφ)φ̃ = yUφ . Then, choose a coset representative z so that (yUψ)ψ̃ = zVψ . Let
(xTφψ)(φ̃ψ X/Tφψ

) = zVφψ . We will let φψ ∈ HomC (T , V ) be the morphism determined by Tφψ , Vφψ

and φ̃ψ . The following lemma assures us that φψ is actually in HomC (T , V ).

Lemma 2.1. The sets Tφψ and Vφψ defined above are normal closed subsets of T and V . The function φ̃ψ X/Tφψ

defined above is well defined and determines a based isomorphism of schemes φ̃ψ : T //Tφψ → V //Vφψ . Fi-
nally, we have tTφψ φ̃ψ = v Vφψ if and only if there exists a u ∈ U such that tTφ φ̃ = uUφ and uUψ ψ̃ = v Vψ .

Proof. We first recall two facts about quotients of schemes (see Lemmas 4.1.7 and 4.2.4 in Zieschang’s
work [1]). First, whenever R is a nonempty subset of a scheme S with a closed subset T , the quotient
R//T is closed if and only if R is closed. Also, if T and U are closed subsets of S with T ⊆ U , then
U//T is normal in S//T if and only if U is normal in S .

Since Uφ and Uψ are normal and closed, then UφUψ is normal and closed, whence by the above
comments, (UφUψ)//Uφ is normal and closed in U//Uφ . Now, observe that Tφψ contains Tφ , and
Tφψ//Tφ coincides precisely with the preimage of (UφUψ//Uφ) under φ̃. Since φ̃ is an isomorphism,
it follows that Tφψ//Tφ is normal and closed in T //Tφ , so Tφψ is normal and closed in T . A similar
argument shows that Vφψ is normal and closed.

Now, Tφψ is the kernel of the composition

T → T //Tφ
φ̃−→ U//Uφ → U//UφUψ
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where the first and third morphisms are the natural quotient morphisms. There is then an induced
isomorphism of schemes

φ̄ : T //Tφψ → U//UφUψ.

The function φ̄X/Tφψ takes an element xTφψ ∈ X/Tφψ to the element y(UφUψ) ∈ Y /(UφUψ), where

y ∈ Y is any coset representative of (xTφ)φ̃ ∈ Y /Uφ . Likewise, the function φ̄T //Tφψ takes tTφψ ∈ T //Tφψ

to the element uUφ Uψ where uUφ = tTφ φ̃. Since φ̃ is a based morphism, φ̄ preserves the base-
point.

Similarly, Vφψ is the kernel of the composition

V → V //Vψ
ψ̃−1−−→ U//Uψ → U//UφUψ.

There is again an induced isomorphism

ψ−1 : V //Vφψ → U//UφUψ.

If we then let ψ̄ denote the inverse of ψ−1, then ψ̄Y /Uφ Uψ takes an element y(UφUψ) to zVφψ , where

z is any coset representative of (yUψ)ψ̃ . Likewise, ψ̄ takes uUφ Uψ to v Vφψ where uUψ ψ̃ = v Vψ . As
above, ψ̄ preserves the basepoint.

Now notice that (φ̄ψ̄)X/Tφψ coincides with φ̃ψ X/Tφψ
. The second statement of the lemma therefore

follows since φ̄ψ̄ is a based isomorphism of schemes. For the final statement, we have tTφψ φ̃ψ = v Vφψ

if and only if tTφψ φ̄ψ̄ = v Vφψ . If there is a u ∈ U such that tTφ φ̃ = uUφ and uUψ ψ̃ = v Vψ , then by
our above descriptions of φ̄T //Tφψ and ψ̄U//Uφ Uψ , we have tTφψ φ̄ = uUφ Uψ and uUφ Uψ ψ̄ = v Vφψ , so
indeed tTφψ φ̄ψ̄ = v Vφψ . On the other hand, if tTφψ φ̄ψ̄ = v Vφψ , then for some u0 ∈ U and v0 ∈ V ,

we have tTφ φ̃ = u
Uφ

0 and u
Uψ

0 ψ̃ = v
Vψ

0 , where v
Vφψ

0 = v Vφψ . Since Vφψ is normal, then v ∈ v0 v1 for

some v1 ∈ Vφψ . By definition of Vφψ , there is a u1 ∈ Uφ such that u
Uψ

1 ψ̃ = v
Vψ

1 . Thus, (u
Uψ

0 u
Uψ

1 )ψ̃

contains v Vψ , so we can find u ∈ u0u1 such that uUψ ψ̃ = v Vψ . Since u1 ∈ Uφ , we have uUφ = u
Uφ

0 , so
tTφ φ̃ = uUφ and uUψ ψ̃ = v Vψ , as needed. �

The following lemma now implies that C as defined above is a category.

Lemma 2.2. The composition defined above is associative. Also, if T is a scheme on X, and we let T idT be {1X }
and ˜idT denote the identity morphism on T //{1X }, then idT is the identity morphism for T in C .

Proof. The second statement is easy, so we only prove the first. We suppose that S , T , U and V are
schemes on based sets W , X , Y , and Z respectively, and φ, χ and ψ are morphisms in HomC (S, T ),
HomC (T , U ), and HomC (U , V ) respectively. We must show that (φχ)ψ = φ(χψ). Using the third
statement of Lemma 2.1, it is straightforward to show that both S(φχ)ψ and Sφ(χψ) coincide with the
set {

s ∈ S: for some t ∈ T and u ∈ U we have sSφ φ̃ = tTφ , tTχ χ̃ = uUχ and uUψ ψ̃ = 1
Vψ

Z

}
.

Thus, S(φχ)ψ = Sφ(χψ) . By a similar argument, V (φχ)ψ = Vφ(χψ) . Finally, we must show (̃φχ)ψ =
φ̃(χψ), and for this, it suffices to show that (̃φχ)ψW /S(φχ)ψ

= φ̃(χψ)W /Sφ(χψ)
. But given w ∈ W , we

may choose x ∈ X , y ∈ Y , and z ∈ Z such that (w Sφ)φ̃ = xTφ , (xTχ )χ̃ = yUχ , and (yUψ)ψ̃ = zVψ .

Then by the definition we gave immediately before the statement of Lemma 2.1, both (̃φχ)ψW /S(φχ)ψ

and φ̃(χψ)W /S take w to zV (φχ)ψ = zVφ(χψ) . �

φ(χψ)
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Given two based schemes T and U on based sets X and Y , the set HomC (T , U ) can be given the
structure of a partially ordered set. Given two morphisms φ,ψ ∈ HomC (T , U ), we will say that φ � ψ

if Tφ ⊆ Tψ , Uφ ⊆ Uψ , and for each x ∈ X , (xTφ)φ̃ ⊆ (xTψ)ψ̃ .

Notation 2.3. If φ ∈ HomC (T , U ), then we have a morphism φ∗ ∈ HomC (U , T ) defined as follows:
Tφ∗ = Tφ , Uφ∗ = Uφ , and φ̃∗ = φ̃−1.

Note that if φ ∈ HomC (T , U ), then the composition φφ∗ ∈ HomC (T , T ) will not typically be the
identity. Instead, both normal closed subsets of φφ∗ coincide with Tφ , and φ̃φ∗ is the identity mor-
phism on the scheme T //Tφ . Thus, idT � φφ∗ .

3. Labeling sets

Definition 3.1. A weak labeling set is a set τ equipped with an involution ∗ :τ → τ , a distinguished
element 1 ∈ τ fixed by ∗, and for each triple p,q, r ∈ τ , a nonnegative integer aτ

pqr . We write p∗ for
the image of p under ∗.

Definition 3.2. Given a weak labeling set τ , a τ -scheme is a pair (T ,α), where T is a scheme on
a based set X , and α :τ → T is a bijection satisfying the following:

1. 1α = 1X ,
2. for each p ∈ τ , (p∗)α = (pα)∗ ,
3. for each triple p,q, r ∈ τ , aτ

pqr = a(pα)(qα)(rα) .

Definition 3.3. A labeling set is a weak labeling set τ for which there exists a τ -scheme.

For example, a scheme T on a set X determines a labeling set τT by forgetting about the under-
lying set X . That is, the set τT is equal to the set T , the involution in τT is equal to the involution
on T , and the distinguished element 1 ∈ τT is equal to 1X . Finally, if p,q, r ∈ τT = T , then aτ

pqr is
the corresponding structure constant for T . As another example, if S is a scheme on a set X , and
T is a closed subset of S , and τ = τT , then for each x ∈ X , the subscheme of S defined by xT is a
τ -scheme: the bijection α takes t ∈ τT = T to t ∩ (xT × xT ).

Remark 3.4. If (T ,α) and (U , β) are both τ -schemes, and r, p,q ∈ τ , then rα ∈ (pα)(qα) if and only
if rβ ∈ (pβ)(qβ). Indeed, rα ∈ (pα)(qα) if and only if a(pα)(qα)(rα) > 0, which holds if and only if
aτ

pqr > 0. Similarly, rβ ∈ (pβ)(qβ) if and only if aτ
pqr > 0.

Definition 3.5. Given a labeling set τ , and given P ⊆ τ and Q ⊆ τ , we let

P Q = {
r ∈ τ : aτ

pqr > 0 for some p ∈ P , q ∈ Q
}
.

If τ ′ is a subset of τ and p,q ∈ τ , we define pτ ′ = {p}τ ′ , τ ′q = τ ′{q} and pq = {p}{q}.

To see that the product on subsets of τ is associative, choose some τ -scheme (T ,α). Then by Con-
dition (3) of Definition 3.2, we have (P Q )α = (Pα)(Q α). Since the complex product for association
schemes is associative, we have for any P , Q , R ⊆ τ(

(P Q )R
)
α = (

(Pα)(Q α)
)

Rα = Pα
(
(Q α)(Rα)

) = (
P (Q R)

)
α,

so (P Q )R = P (Q R) since α is a bijection.

Definition 3.6. A subset τ ′ ⊆ τ is closed if pq∗ ⊆ τ ′ whenever p,q ∈ τ ′ . A subset τ ′ ⊆ τ is normal if
pτ ′ = τ ′ p whenever p ∈ τ .



190 C. French / Journal of Algebra 347 (2011) 184–205
Remark 3.7. If (T ,α) is any τ -scheme, then α induces a one-to-one correspondence between the
closed subsets of τ and the closed subsets of T . Indeed, if τ ′ is closed, and pα, qα are arbitrary
elements in τ ′α, then as in Remark 3.4, for any rα ∈ (pα)(qα)∗ = (pα)(q∗α), we must have aτ

pq∗r > 0,
so r ∈ p∗q. This implies r ∈ τ ′ , so rα ∈ τ ′α, and thus τ ′α is closed. Conversely, if τ ′α is closed, and
p,q ∈ τ ′ , then for any r ∈ pq∗ , we have rα ∈ (pα)(q∗α) = (pα)(qα)∗ ⊆ τ ′α, so r ∈ τ ′ , whence τ ′ is
closed.

By a similar argument, if (T ,α) is a τ -scheme, then α induces a one-to-one correspondence be-
tween the normal subsets of τ and the normal subsets of T . Thus, if τ1 and τ2 are two normal closed
subsets of a labeling set τ , then τ1τ2 must be a normal closed subset of τ . To see this, just choose
a τ -scheme (T ,α); then the image of τ1τ2 under α corresponds to (τ1α)(τ2α), which is a normal
closed subset of T .

Finally, if τ ′ is closed and normal in τ , and (T ,α) is a τ -scheme, then the partition of T induced
by τ ′α corresponds under α to a partition of τ . Thus, the cosets pτ ′ , with p ∈ τ , form a partition
of τ .

Notation 3.8. Let C(τ ) denote the category whose objects are τ -schemes, and whose morphisms
are morphisms in the underlying category C . That is, if (T ,α) and (U , β) are τ -schemes, then
HomC(τ )((T ,α), (U , β)) = HomC (T , U ).

In the following definition, we let P (τ ) denote the power set of τ .

Definition 3.9. Given φ ∈ HomC(τ )((T ,α), (U , β)), let φ(τ ) : P (τ ) → P (τ ) be the function taking
P ⊆ τ to {

u ∈ τ : for some t ∈ P , (tα)Tφ φ̃ = (uβ)Uφ
}
.

Remark 3.10. In general, given a function α : P (τ ) → P (τ ), we define

ker(α) = {
t ∈ τ : {t}α = {1}α}

.

Then if φ ∈ HomC(τ )((T ,α), (U , β)), it is easy to check that Uφ = ({1}φ(τ ))β and Tφ = ker(φ(τ ))α.

That is, we can recover Tφ and Uφ from φ(τ ), α, and β .

4. Semidirect products from actions

Definition 4.1. Suppose T is a scheme on a based set X , U a scheme on a based set Y , and τ = τT is
the labeling set corresponding to T . Then an action ζ of U on T consists of a τ -scheme ζy = (T y,α

y)

on X for each y ∈ Y , and a morphism ζ
y2
y1 ∈ HomC (T y1 , T y2 ) for each pair y1, y2 ∈ Y . We require the

following properties to hold:

1. If y∗ ∈ Y is the basepoint in Y , then T y∗ = T and α y∗ :τT → T y∗ = T is the identity. (Recall that
the underlying set of τT is defined to be T .)

2. For each y ∈ Y , ζ
y
y is the identity morphism on T y .

3. For each pair y1, y2 ∈ Y , ζ
y1
y2 = (ζ

y2
y1 )∗ (see Notation 2.3).

4. The function ζ
y2
y1 (τ ) : P (τ ) → P (τ ) depends only on the scheme element u ∈ U containing

(y1, y2).
5. For each triple y1, y2, y3 ∈ Y , we have ζ

y3
y1 � ζ

y2
y1 ζ

y3
y2 .

Notation 4.2. We will often denote (T y1 )ζ
y2
y1

as T ′
y1 y2

and (T y2 )ζ
y2
y1

as T ′′
y1 y2

. Thus, ζ̃
y2
y1 is an isomor-

phism of schemes from T y1//T ′
y1 y2

to T y2//T ′′
y1 y2

. We will let ζu = ζ
y2
y1 (τ ), for some (y1, y2) ∈ u. By

Condition (4), ζu is well defined. Let τ ′
u = ker ζu and τ ′′

u = {1}ζu . Note that by Remark 3.10, the normal
closed subsets T ′

y y and T ′′
y y coincide with (τ ′

u)α y1 and (τ ′′
u )α y2 .
1 2 1 2
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Given an action ζ of U on T , where U is a based scheme on Y and T is a based scheme on X ,
we will define a corresponding scheme U �ζ T on the set Y × X . Given u ∈ U and t ∈ τ = τT , we let
[u, t] denote the set of all pairs ((y1, x1), (y2, x2)) ∈ (Y × X)×2 such that (y1, y2) ∈ u and

((
x1T ′

y1 y2

)
ζ̃

y2
y1 , x2T ′′

y1 y2

) ∈ (
tα y2

)T ′′
y1 y2 .

Lemma 4.3. As u ranges over U and t over τ , the sets [u, t] form a partition of (Y × X)×2 .

Proof. Given an arbitrary pair ((y1, x1), (y2, x2)), we have (y1, y2) ∈ u for some u ∈ U , and

((
x1T ′

y1 y2

)
ζ̃

y2
y1 , x2T ′′

y1 y2

) ∈ (
tα y2

)T ′′
y1 y2

for some t ∈ τ , since α y2 :τ → T y2 is a bijection. Thus every element in (X × Y )×2 belongs to [u, t]
for some u ∈ U , t ∈ τ .

If ((y1, x1), (y2, x2)) ∈ [u, t] ∩ [û, t̂], then (y1, y2) ∈ u ∩ û, so u = û since U is a partition of Y × Y .

Similarly (tα y2 )
T ′′

y2 = (t̂α y2 )
T ′′

y2 ; equivalently (since T ′′
y2

is normal and α y2 is a bijection), we can find

s ∈ T ′′
y1 y2

(α y2 )−1 such that tα y2 ∈ (t̂α y2)(sα y2 ). We claim [u, t] = [u, t̂]. If ((y3, x3), (y4, x4)) ∈ [u, t],
then (y3, y4) ∈ u. Also, since

s ∈ T ′′
y1 y2

(
α y2

)−1 = τ ′′
u = T ′′

y3 y4

(
α y4

)−1
,

we have sα y4 ∈ T ′′
y3 y4

. By Remark 3.4, tα y2 ∈ (t̂α y2)(sα y2 ) implies that tα y4 ∈ (t̂α y4)(sα y4 ), so

(tα y4 )
T ′′

y3 y4 = (t̂α y4)
T ′′

y3 y4 , which in turn implies that ((y3, x3), (y4, x4)) ∈ [u, t̂]. Thus, [u, t] ⊆ [u, t̂],
and by a symmetric argument, [u, t̂] ⊆ [u, t]. �
Notation 4.4. If ζ is an action of U on T , where U and T are schemes on based sets Y and X , we let
U �ζ T denote the set of all [u, t] ⊆ (Y × X)×2 as u ranges over U and t over τ = τT .

Lemma 4.5. The set U �ζ T contains

1Y ×X = {(
(y, x), (y, x)

)
: y ∈ Y and x ∈ X

}
.

Proof. We claim [1Y ,1] = 1Y ×X , where 1 denotes the distinguished element in τ . Given any
((y1, x1), (y2, x2)) ∈ (Y × X)×2, we have (y1, y2) ∈ 1Y if and only if y1 = y2. By Condition (1) in
Definition 4.1, ζ

y1
y1 is the identity morphism in HomC (T y1 , T y1 ). Thus, T ′

y1 y1
= T ′′

y1 y1
= 1{X} , and

ζ̃
y1
y1 is the identity morphism of schemes. Since 1α y2 = 1X by Condition (1) of Definition 3.2,

((y1, x1), (y2, x2)) ∈ [1Y ,1] if and only if y1 = y2 and x1 = x2. �
Lemma 4.6. Suppose [u, t] ∈ U �ζ T . Let t̂∗ be any element in {t∗}ζu∗ ⊆ τ . Then [u, t]∗ = [u∗, t̂∗]. In partic-
ular, [u, t]∗ ∈ U �ζ T .

Proof. First, ((y1, x1), (y2, x2)) ∈ [u, t] if and only if (y1, y2) ∈ u and

((
x1T ′

y1 y2

)
ζ̃

y2
y1 , x2T ′′

y1 y2

) ∈ (
tα y2

)T ′′
y1 y2 .

Equivalently, (y2, y1) ∈ u∗ and (by Condition (2) of Definition 3.2),

(
x2T ′′

y y ,
(
x1T ′

y y

)
ζ̃

y2
y1

) ∈ (
t∗α y2

)T ′′
y1 y2 .
1 2 1 2
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Since ζ̃
y2
y1 is an isomorphism of schemes, this is equivalent to saying (y2, y1) ∈ u∗ and

((
x2T ′′

y1 y2

)(
ζ̃

y2
y1

)−1
, x1T ′

y1 y2

) ∈ ((
t∗α y2

)T ′′
y1 y2

)(
ζ̃

y2
y1

)−1
.

By Condition (3) of Definition 4.1, ζ
y1
y2 = (ζ

y2
y1 )∗ , so the above is equivalent to saying (y2, y1) ∈ u∗ and

((
x2T ′

y2 y1

)
ζ̃

y1
y2 , x1T ′′

y2 y1

) ∈ ((
t∗α y2

)T ′
y2 y1

)(
ζ̃

y1
y2

)
.

From the definition of t̂∗ and ζu∗ , we have((
t∗α y2

)T ′
y2 y1

)(
ζ̃

y1
y2

) = (
t̂∗α y1

)T ′′
y2 y1 .

Thus, ((y1, x1), (y2, x2)) ∈ [u, t] if and only if ((y2, x2), (y1, x1)) ∈ [u∗, t̂∗]. �
In order to prove the third scheme condition for U �ζ T , we need the following preliminary lemma.

Lemma 4.7. Suppose that τ is a labeling set, τ1 and τ2 are normal closed subsets of τ (see Definition 3.6),
and p, q, r are elements in τ . If (T ,α) is any τ -scheme and (y, z) ∈ rα, then |y(pα)(τ1α) ∩ z(qα)∗(τ2α)|
depends only on τ1 , τ2 , p, q and r. That is, this number does not depend on (T ,α) or (y, z).

Proof. First, let T1 = τ1α and T2 = τ2α. As observed in Remark 3.7, T1 and T2 are normal closed
subsets of T . We have x ∈ y(pα)T1 ∩ z(qα)∗T2 if and only if x ∈ yp′α ∩ z(q′α)∗ for some p′α ∈ (pα)T1
and some q′α ∈ ((qα)∗T2)

∗ . Since T2 is closed and normal, ((qα)∗T2)
∗ = T2(qα) = (qα)T2. Therefore,∣∣y(pα)T1 ∩ z(qα)∗T2

∣∣ =
∑

p′α∈(pα)T1

∑
q′α∈(qα)T2

a(p′α)(q′α)(rα) =
∑

p′∈pτ1

∑
q′∈qτ2

aτ
p′q′r .

This number depends only on τ1, τ2, p, q and r. �
Lemma 4.8. Suppose pi = [ui, ti] ∈ U �ζ T for i = 1,2,3. Then there is a nonnegative integer ap1 p2 p3 such
that for any ((y1, x1), (y2, x2)) ∈ p3 , |(y1, x1)p1 ∩ (y2, x2)p∗

2| = ap1 p2 p3 .

Proof. First, suppose u3 /∈ u1u2. Then given ((y1, x1), (y2, x2)) ∈ p3, (y1, x1)p1 ∩ (y2, x2)p∗
2 must be

empty: if it contained (y, x), then we would have (y1, y2) ∈ u3, (y1, y) ∈ u1 and (y, y2) ∈ u2 so u3 ∈
u1u2. Thus, if u3 /∈ u1u2, then ap1 p2 p3 = 0. We may therefore just consider the case when u3 ∈ u1u2.

Suppose given ((y1, x1), (y2, x2)) ∈ p3. Fix an element y ∈ y1u1 ∩ y2u∗
2. We will show that the

cardinality ∣∣{x ∈ X: (y, x) ∈ (y1, x1)p1 ∩ (y2, x2)p∗
2

}∣∣ (1)

depends only on p1, p2, and p3. Since this cardinality is independent of y, multiplying it by au1u2u3 =
|y1u1 ∩ y2u∗

2| then yields the needed value for ap1 p2 p3 .
Since ((y1, x1), (y2, x2)) ∈ [u3, t3], we have((

x1T ′
y1 y2

)
ζ̃

y2
y1 , x2T ′′

y1 y2

) ∈ (
t3α

y2
)T ′′

y1 y2 .

Since T ′′
y1 y2

is normal, we may choose a coset representative x̄1 of (x1T ′
y1 y2

)ζ̃
y2
y1 such that (x̄1, x2) ∈

t3α
y2 , so (

x̄1T ′
y y, x2T ′

y y

) ∈ (
t3α

y2
)T ′

y2 y . (2)

2 2
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Since ζ
y2
y1 � ζ

y
y1ζ

y2
y , the scheme isomorphism ζ̃

y
y1ζ

y2
y takes the coset of x1 to the coset of x̄1, so by the

definition of ζ̃
y
y1ζ

y2
y given in the paragraph preceding Lemma 2.1, we can choose x̂1 such that(

x1T ′
y1 y

)(
ζ̃

y
y1

) = x̂1T ′′
y1 y (3)

and (
x̂1T ′

yy2

)(
ζ̃

y2
y

) = x̄1T ′′
yy2

. (4)

Since ζ
y2
y = (ζ

y
y2 )

∗ , we have T ′′
yy2

= T ′
y2 y , and

x̂1T ′
yy2

= (
x̄1T ′

y2 y

)(
ζ̃

y
y2

)
. (5)

Since (y2, y) ∈ u∗
2, it follows from the definition of ζ ∗

u2
that for any r ∈ {t3}ζu∗

2
, we have

(
rα y)T ′′

y2 y = (
t3α

y2
)T ′

y2 y ζ̃
y
y2 ,

which, together with Eq. (2) yields((
x̄1T ′

y2 y

)(
ζ̃

y
y2

)
,
(
x2T ′

y2 y

)(
ζ̃

y
y2

)) ∈ (
rα y)T ′′

y2 y = (
rα y)T ′

yy2 .

Thus from Eq. (5), (
x̂1T ′

yy2
,
(
x2T ′

y2 y

)(
ζ̃

y
y2

)) ∈ (
rα y)T ′

yy2 .

Since T ′
yy2

is normal, we may choose a coset representative x̂2 ∈ (x2T ′
y2 y)(ζ̃

y
y2 ) such that (x̂1, x̂2) ∈ rα y .

Now, recalling that y is fixed, we have (y, x) ∈ (y1, x1)p1 if and only if((
x1T ′

y1 y

)
ζ̃

y
y1 , xT ′′

y1 y2

) ∈ (
t1α

y)T ′′
y1 y .

From Eq. (3), this holds if and only if(
x̂1T ′′

y1 y, xT ′′
y1 y

) ∈ (
t1α

y)T ′′
y1 y .

Since T ′′
y1 y is normal in T y , this holds if and only if x ∈ x̂1(t1α

y)T ′′
y1 y . By a similar argument, together

with Lemma 4.6 and Condition (2) of Definition 3.2, we have (y, x) ∈ (y2, x2)p∗
2 if and only if x ∈

x̂2(t̂2α
y)∗T ′′

y2 y , where t̂∗
2 ∈ τ belongs to {t∗

2}ζu∗
2
. Now, recall from Notation 4.2 that T ′′

y1 y = τ ′′
u1

α y and
T ′′

y2 y = T ′
yy2

= τ ′
u2

α y . By Lemma 4.7,∣∣x̂1
(
t1α

y)(τ ′′
u1

α y) ∩ x̂2
(
t̂2α

y)∗(
τ ′

u2
α y)∣∣ (6)

depends only on t1, t̂2, τ ′′
u1

, τ ′
u2

and r, hence only on t1, t̂2, u1, u2 and r. But since t̂2 is any element in

({t∗
2}ζu∗

2
)∗ and r is any element in {t3}ζu∗

2
, t̂2 and r depend only on t2, t3 and u2. Thus, the cardinality

of the set (6), and hence of set (1), depends only on p1, p2 and p3. �
Now, if Y and X are based sets, then Y × X has a natural basepoint (y∗, x∗). The following corollary

now follows from Lemmas 4.5, 4.6, and 4.8.

Corollary 4.9. The set U �ζ T is a based scheme on Y × X.
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5. Properties of the semidirect product

Suppose U and T are based schemes on X and Y , τ = τT , and ζ is an action of U on T . In this
section, we show that the scheme U �ζ T contains a normal closed subset T̃ := {[1Y , t]: t ∈ τ }, such
that the subscheme of U �ζ T defined by (y∗, x∗)T̃ is isomorphic to T . We also produce a morphism
of schemes i : U → U �ζ T which splits the natural quotient morphism π : U �ζ T → (U �ζ T )//T̃ . This
justifies calling U �ζ T a semidirect product. We also show that Condition 1.3 holds.

Proposition 5.1. The subset T̃ is a normal closed subset of U �ζ T . Moreover, the subscheme of U �ζ T defined
by (y∗, x∗)T̃ is isomorphic to T .

Proof. First, given [1, t] ∈ T̃ , we have ((y1, x1), (y2, x2)) ∈ [1, t] if and only if y2 = y1 and (x1, x2) ∈
tα y1 , since ζ

y1
y1 is the identity. It follows from Definitions 3.2 and 3.5 that [1, t1][1, t2] = ⋃

t∈t1t2
[1, t]

and [1, t1]∗ = [1, t∗
1], so T̃ is closed. Now, to show that T̃ is normal, it suffices to show T̃ [u, t] ⊆ [u, t]T̃

for any [u, t] ∈ U �ζ T . Suppose given (y1, x1), (y2, x2), (y3, x3), where ((y1, x1), (y2, x2)) ∈ [1, t′]
for some t′ ∈ τ , and ((y2, x2), (y3, x3)) ∈ [u, t]. Then y1 = y2 and (y2, y3) ∈ u, so (y1, y3) ∈ u. Also
(x1, x2) ∈ t′α y2 and

((
x2T ′

y2 y3

)
ζ̃

y3
y2 , x3T ′′

y2 y3

) ∈ (
tα y3

)T ′′
y2 y3 .

Now let y4 = y3, and choose x4 so that

((
x1T ′

y1 y4

)
ζ̃

y4
y1 , x4T ′′

y1 y4

) ∈ (
tα y4

)T ′′
y1 y4 .

Then ((y1, x1), (y4, x4)) ∈ [u, t]. Choose t̃ ∈ τ so that (x4, x3) ∈ t̃α y4 . Then(
(y4, x4), (y3, x3)

) ∈ [1, t̃] ∈ T̃ .

Thus, T̃ [u, t] ⊆ [u, t]T̃ .
For the final statement, note that (y∗, x∗)T̃ = {y∗} × X ⊆ Y × X . Define f X : X → {y∗} × X by

xf X = (y∗, x). If (x1, x2) ∈ t ∈ T , then it follows from Conditions (1) and (2) of Definition 4.1 that

(x1 f X , x2 f X ) = (
(y∗, x1), (y∗, x2)

) ∈ [
1, tα y∗] = [1, t].

Thus, f X determines a morphism of schemes f : T → T̃(y∗,x∗)T̃ ; in particular, t f T = [1, t] for any
t ∈ T = τT . Clearly, f X is a bijection, and f T is surjective. If t f T = t′ f T , then [1, t] = [1, t′], so for
some x1, x2 ∈ X , we have ((y∗, x1), (y∗, x2)) ∈ [1, t] ∩ [1, t′]. Thus, (x1, x2) ∈ t ∩ t′ , so t = t′ , so f T is
injective. �

Now define iY : Y → Y × X by yiY = (y, x∗), and let π : U �ζ T → (U �ζ T )//T̃ denote the natural
quotient morphism.

Proposition 5.2. The function iY defines a based morphism of schemes i : U → U �ζ T , and iπ is an isomor-
phism of schemes.

Proof. Suppose (y1, y2) ∈ u. Since ζ̃
y2
y1 is based, we have (x∗T ′

y1 y2
)ζ̃

y2
y1 = x∗T ′′

y1 y2
. Since 1α y2 = 1X ,

we then have ((
x∗T ′

y y

)
ζ̃

y2
y1 , x∗T ′′

y y

) ∈ (
1α y2

)T ′′
y1 y2 .
1 2 1 2
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Therefore, ((y1, x∗), (y2, x∗)) ∈ [u,1]. Since [u,1] does not depend on (y1, y2), and since y∗iY =
(y∗, x∗), iY determines a based morphism i : U → U �ζ T of schemes. Note that if u ∈ U , then
uiU = [u,1].

Now, to show that iπ is an isomorphism, it suffices to show that (iπ)Y is a bijection and (iπ)U
is an injection, since if (iπ)Y is surjective, then (iπ)U is immediately surjective. If y1iπ = y2iπ , then
(y1, x∗)T̃ = (y2, x∗)T̃ , so (y1, x∗) ∈ (y2, x∗)[1, t] for some t ∈ τ , implying y1 = y2. On the other hand,
given a coset (y, x)T̃ , we have (y, x) ∈ (y, x∗)[1, t] for some t ∈ τ , so (y, x)T̃ = (y, x∗)T̃ = yiπ . Thus,
(iπ)Y is a bijection.

Finally, suppose u(iπ)U = v(iπ)U , where u, v ∈ U . Choose (y1, y2) ∈ u. Then(
(y1, x∗)T̃ , (y2, x∗)T̃

) ∈ [u,1]T̃ = [v,1]T̃ .

Thus, since T̃ is normal, there is some t ∈ τ so that(
(y1, x∗), (y2, x∗)

) ∈ [v,1][1Y , t].
That is, we can find some (y, x) so that(

(y1, x∗), (y, x)
) ∈ [v,1] and

(
(y, x), (y2, x∗)

) ∈ [1Y , t].
Therefore (y1, y2) = (y1, y) ∈ v . But since (y1, y2) ∈ u, we must have u = v , so (iπ)U is injective. �

The following proposition shows that U �ζ T satisfies Condition 1.3.

Proposition 5.3. For each u ∈ U and each t̃ ∈ T̃ , |(ui)t̃| = |t̃(ui)| = 1.

Proof. We must show |[u,1][1Y , t]| = |[1Y , t][u,1]| = 1 whenever u ∈ U and t ∈ τ . We first show
that [u,1][1Y , t] = [u, t]. Suppose ((y1, x1), (y2, x2)) ∈ [u,1] and ((y2, x2), (y3, x3)) ∈ [1Y , t]. Then, we
must have y3 = y2 ∈ y1u and (since ζ

y3
y2 = ζ

y2
y2 is the identity morphism), x3 ∈ x2(tα y3 ). Also,

x2T ′′
y1 y2

= (
x1T ′

y1 y2

)
ζ̃

y2
y1 = (

x1T ′
y1 y3

)
ζ̃

y3
y1 .

Thus,

x3T ′′
y1 y3

= x3T ′′
y1 y2

∈ (
x2T ′′

y1 y2

)(
tα y3

)T ′′
y1 y2 = (

x1T ′
y1 y3

)
ζ̃

y3
y1

(
tα y3

)T ′′
y1 y3 .

Thus, ((x1, y1), (x3, y3)) ∈ [u, t], so [u,1][1Y , t] = [u, t]. That is, |(ui)t̃| = 1 for all u ∈ U and t̃ ∈ T̃ .
Therefore, given u ∈ U and t̃ ∈ T̃ , we have (t̃(ui))∗ = (ui)∗t̃∗ = (u∗i)t̃∗ . By Proposition 5.1, T̃ is

closed, so t̃∗ ∈ T̃ . As we have just seen, |(u∗i)t̃∗| = 1, so |t̃(ui)| = |(t̃(ui))∗| = 1. �
6. Example

We now provide an example to illustrate the definition above. We let X = {1,2,3}, with base-
point 1, and let T = {1, t} be the unique scheme on X with 2 elements. That is, the adjacency matrix
for 1 is the identity, and the adjacency matrix for t is

σt =
( 0 1 1

1 0 1
1 1 0

)
.

Then τ = τT = {1, t}. Let Y be the set {a,b, c,d}, with basepoint a, and let U be the thin scheme on Y
corresponding to the group Z/4. Thus, the adjacency matrices for the elements of Y are
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σ0 =
⎛⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠ , σ1 =
⎛⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎠ ,

σ2 =
⎛⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎠ , σ3 =
⎛⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞⎟⎠ .

For each y ∈ Y , we let T y = T and α y be the identity; then ζ y = (T y,α
y).

Now, we define ζ b
a ∈ HomC (Ta, Tb) as follows. The normal closed subsets (Ta)ζ b

a
and (Tb)ζ b

a
are

both T , and ζ̃ b
a is the identity on T //T . We define the seven morphisms ζ c

b , ζ d
c , ζ a

d , ζ a
b , ζ b

c , ζ c
d , ζ d

a in
the same way. Next, we define ζ c

a ∈ HomC (Ta, Tb) as follows. The normal closed subsets (Ta)ζ c
a

and

(Tc)ζ c
a

are both {1}, and ζ̃ c
a is the identity on T //{1} ∼= T . We define the three morphisms ζ d

b , ζ a
c , ζ b

d in
the same way. Finally, we define ζ

y
y to be the identity for each y ∈ {a,b, c,d}. The first four conditions

of Definition 4.1 are immediate. The fifth condition is also easy. Indeed, if either (y1, y2) or (y2, y3)

belong to scheme elements 1 or 3, then the composition ζ
y2
y1 ζ

y3
y2 is the greatest element in the partial

ordering of HomC (T y1 , T y3 ). If (y1, y2) and (y2, y3) both belong to 2, then y1 = y3, and ζ
y2
y1 ζ

y3
y2 is the

identity in HomC (T y1 , T y3 ), and so is equal to ζ
y3
y1 . Finally, if y1 = y2 or y2 = y3, then ζ

y2
y1 ζ

y3
y2 = ζ

y3
y1 .

Let S = U �ζ T . Then X × Y has 12 elements, and S has 6 elements:

[0,1], [0, t], [1,1], [2,1], [2, t], [3,1].
Indeed, [1, t] = [1,1] and [3, t] = [3,1]. The elements [0,1] and [2,1] are both thin. The valencies of
[0, t] and [2, t] are both 2, and the valencies of [1,1] and [3,1] are both 3. The elements of valency 1
and 2 are symmetric, while [1,1] = [3,1]∗ . Using Hanaki and Miyamoto’s classification [5], we see
that there is only one scheme of order 12 satisfying these conditions, scheme No. 34. Indeed, we
can give an explicit isomorphism between scheme No. 34 and our semidirect product. On underlying
sets, this isomorphism would take the elements in the first row of the matrix below to the elements
directly below them in X × Y :(

1 2 3 4 5 6 7 8 9 10 11 12
(a,1) (c,1) (a,2) (a,3) (c,2) (c,3) (b,1) (b,2) (b,3) (d,1) (d,2) (d,3)

)
.

On scheme elements, the isomorphism can be described by the matrix below:(
0 1 2 3 4 5

[0,1] [2,1] [0, t] [2, t] [1,1] [3,1]
)

.

We next show that S cannot be obtained as a generalized semidirect product in the sense of Bang
and Song [3], and for the remainder of this section, we will assume the reader is familiar with that
paper. First, we observe that the scheme S has exactly three proper nontrivial closed subsets:

• K1 = {[0,1], [2,1]},
• K2 = {[0,1], [0, t]},
• K3 = {[0,1], [0, t], [2,1], [2, t]}.

To see this, note first that [1,1] and [3,1] both generate S , so any proper closed subset can only
contain the other four elements. Moreover, of the three elements [0, t], [2,1], and [2, t], each is in the
complex product of the other two.

If i = 1 or i = 2, then Ki has only two elements, so that Aut(Ki) is trivial, and Ki has no
nontrivial proper closed subsets. It follows that the only generalized semidirect products of Ki
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by another scheme are the ordinary product and the wreath product. Suppose H were a scheme
whose elements had valencies h1 = 1,h2, . . . ,hm . Then the valencies of the wreath product of H
and K1 would be 1,1,2h2,2h3, . . . ,2hm , while those of the wreath product of H and K2 would be
1,2,3h2,3h3, . . . ,3hm . In either case, it is impossible to obtain valencies 1,1,2,2,3,3. On the other
hand, the valencies of the direct product H × K2 would be h1,h2, . . . ,hm,2h1,2h2, . . . ,2hm . Again, we
cannot obtain 1,1,2,2,3,3. We could obtain this sequence of valencies from H × K1 if the valencies
of H were 1,2,3. However, such a scheme must clearly be symmetric, so H × K1 would be symmetric.
But S is not symmetric, since the two elements of valency 3 are conjugates.

Now, we claim Aut(K3) is also trivial. Indeed, any automorphism must send [0,1] to itself, since
this represents the identity. Since [2,1] is the only other thin element, any automorphism must send
[2,1] to itself. Thus, the only possible nontrivial automorphism would transpose [0, t] and [2, t]. How-
ever, if we let p = [0, t] and q = [2, t], then appp = 1, while aqqq = 0. Thus, transposing [0, t] and [2, t]
does not determine an automorphism of K3.

Thus, any semidirect product in the sense of Bang, Hirasaka, and Song [2] of K3 by another scheme
must be a direct product. In order that such a semidirect product have order 12, the other scheme
would have to be the unique scheme of order 2, since the valency of K3 is 6. Since K3 and the scheme
of order 2 are both symmetric, such a direct product would be symmetric. Since the generalized
semidirect product of Bang and Song [3] is a fusion of the semidirect product in the sense of Bang,
Hirasaka and Song [2] by Theorem 2.1 in the former paper, and any fusion of a symmetric scheme
is symmetric, we cannot obtain S by taking a generalized semidirect product of K3 by a scheme of
order 2.

7. Actions obtained from semidirect products

In this section, we suppose given two based schemes T on X and U on Y . We suppose S is a
based scheme on a set Z (with basepoint z∗), equipped with a closed subset T̃ ⊆ S such that there
is a based isomorphism from the subscheme of S defined by z∗ T̃ to the scheme T . We also assume
that there is a based morphism i : U → S such that the composition iπ : U → S//T̃ is an isomorphism,
where π : S → S//T̃ denotes the natural morphism. Finally, we assume Condition 1.3: for any u ∈ U
and t ∈ T̃ , we have |t(ui)| = 1. Our goal in this final section is to show that one can construct an
action ζ of U on T such that U �ζ T is isomorphic to S .

Lemma 7.1. Given the conditions above, T̃ is normal.

Proof. Let z = yi for some y ∈ Y . To prove the claim, it suffices to show that for any s ∈ S , we have
T̃ s ⊆ sT̃ . We first assume that s = ui for some u ∈ U . If z′ ∈ zT̃ (ui), then z′π ∈ zπ(uiπ) = yiπ(uiπ).
Since iπ is an isomorphism, yiπ(uiπ) = (yu)iπ ⊆ ((yi)(ui))π . Thus, z′π ∈ ((yi)(ui))π = z(ui)π . This
implies z′ ∈ z(ui)T̃ . Since z′ was arbitrarily chosen from zT̃ (ui), we have zT̃ (ui) ⊆ z(ui)T̃ , whence
T̃ (ui) ⊆ (ui)T̃ .

Now, given any s ∈ S , we have sπ = u(iπ) for some u ∈ U , since iπ is an isomorphism. That is,
sT̃ = (ui)T̃ , so s ∈ T̃ (ui)T̃ . Since T̃ (ui) ⊆ (ui)T̃ , we find s ∈ (ui)T̃ . Thus, for some t ∈ T̃ , s ∈ (ui)t . By
Condition 1.3, |(ui)t| = 1, so (ui)t = {s}. This implies (ui)T̃ = sT̃ . Now, since T̃ (ui) ⊆ (ui)T̃ , we obtain
T̃ s ⊆ T̃ (ui)T̃ ⊆ (ui)T̃ = sT̃ . �

Next, we wish to define an action ζ of U on T . For this, we will need a τ -scheme ζy = (T y,α
y)

on X for each y ∈ Y , where τ = τT . For each y ∈ Y , we first let T̃ y denote the subscheme of S defined
by (yi)T̃ , with basepoint yi. That is, T̃ y consists of elements t ∩ (yiT̃ × yiT̃ ), for t ∈ T̃ . Let δ y : T̃ y → T̃
be the bijection taking t ∩ (yiT̃ × yiT̃ ) to t .

We had assumed at the beginning of this section that the subscheme of S defined by z∗ T̃ is
isomorphic to T . Thus, since z∗ = y∗i, we may choose a based isomorphism γ : T → T̃ y∗ . (Thus, γT is
a bijection from T to T̃ y∗ , and γX is a bijection from X to (y∗i)T̃ taking x∗ to y∗i.) For each y ∈ Y ,
we have |(yi)T̃ | = |z∗ T̃ | = |X |, so we may choose a set of based bijections γ

y
X : X → (yi)T̃ , one for

each y ∈ Y ; we choose γ
y∗

X to be γX .
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Definition 7.2. Let T y be the unique scheme on X defined by the requirement that γ
y

X : X → (yi)T̃

determines a based isomorphism of schemes γ y : T y → T̃ y . Let α y :τT → T y be the bijection defined
by (tα y)γ

y
T y

δ y = tγT δ y∗ for each t ∈ τT = T . Let ζy = (T y,α
y).

Thus, the elements of T y are the preimages of elements in T̃ y under the product bijection

γ
y

X × γ
y

X : X × X → (yi)T̃ × (yi)T̃ .

Since γ : T → T̃ y∗ is already an isomorphism of schemes and γ
y∗

X = γX , it then follows that T y∗ = T .
Also, since γT = γ

y∗
T y∗ , it follows that α y∗ is the identity. The following commutative diagram, in which

y is an arbitrary element in Y and y∗ is the basepoint, may be helpful in keeping these definitions
straight:

T y

γ
y

T y

T̃ y

δ y

τ

α y

α y∗
T y∗

γT =γ
y∗

T y∗
T̃ y∗

δ y∗
T̃ .

(7)

We next require morphisms ζ
y2
y1 ∈ HomC (T y1 , T y2 ) for each pair y1, y2 ∈ Y . Recall that such a mor-

phism consists of normal closed subsets T ′
y1 y2

in T y1 and T ′′
y1 y2

in T y2 , together with a based

isomorphism of schemes ζ̃
y2
y1 from T y1//T ′

y1 y2
to T y2//T ′′

y1 y2
. The following subsets of T̃ will be useful

in defining T ′
y1 y2

and T ′′
y1 y2

.

Definition 7.3. For a given u ∈ U , we define

T̃ ′
u = {

t ∈ T̃ : t(ui) = {ui}} and T̃ ′′
u = {

t ∈ T̃ : (ui)t = {ui}}.
Let τ ′

u = {t ∈ τ : tγT δ y∗ ∈ T̃ ′
u}, and let τ ′′

u = {t ∈ τ : tγT δ y∗ ∈ T̃ ′′
u }.

Lemma 7.4. The sets T̃ ′
u and T̃ ′′

u are closed in T̃ .

Proof. Suppose p,q ∈ T̃ ′
u . Then p(ui) = {ui} and q(ui) = {ui}. Since ui ∈ p∗ p(ui) = p∗(ui), and p∗(ui)

consists of precisely one element (by Condition 1.3), it follows that p∗(ui) = {ui}. Therefore, p∗q(ui) =
{ui}, so p∗q ⊆ T̃ ′

u . Thus, T̃ ′
u is closed, and by a similar argument, T̃ ′′

u is closed as well. �
Definition 7.5. Suppose (y1, y2) ∈ u. Let T ′

y1 y2
= τ ′

uα
y1 and T ′′

y1 y2
= τ ′′

u α y2 . Also let T̃ ′
y1 y2

= T ′
y1 y2

γ
y1

T y1
,

and let T̃ ′′
y1 y2

= T ′′
y1 y2

γ
y2

T y2
.

Remark 7.6. By the commutativity of diagram (7), and the fact that α y and γ
y

T y
are bijections for

each y ∈ Y , it follows that if (y1, y2) ∈ u, then δ y1 defines a bijection from T̃ ′
y1 y2

to T̃ ′
u and δ y2

defines a bijection from T̃ ′′
y1 y2

to T̃ ′′
u . Also, from the way they are defined, it is clear that δ y1 and δ y2

preserve the involution and the complex product on subsets of T̃ ′
y1 y2

and T̃ ′′
y1 y2

. Since γ y1 and γ y2

are isomorphisms of schemes, it follows now from Lemma 7.4 that the sets T ′
y1 y2

and T ′′
y1 y2

are closed
subsets of T y1 and T y2 respectively.
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In order to show that T ′
y1 y2

and T ′′
y1 y2

are normal in T y1 and T y2 , we will need to show that T̃ ′
u

and T̃ ′′
u are normal in T̃ , which is more difficult than proving that they are closed. We will require

a few preliminary lemmas. First, we recall that if u is an element of a scheme U on a set Y , then
the valency of u, denoted nu , is equal to auu∗1. For any y ∈ Y , nu is the number of elements in yu.
Similarly, if R ⊆ U is any subset, then nR = ∑

u∈R nu is the number of elements in yR .

Lemma 7.7. Suppose u ∈ U . Then nui = nu · nT̃ ′′
u
.

Proof. We will show that

(y1i)(ui) =
⊔

y∈y1u

(yi)T̃ ′′
u .

That is, the set (y1i)(ui) decomposes as a disjoint union of nu sets, each having nT̃ ′′
u

elements. (Note

that the union is disjoint since iπ is an injective and T̃ ′′
u ⊆ T̃ .) If y ∈ y1u, then yi ∈ (y1i)(ui). But

(ui)t = {ui} for any t ∈ T̃ ′′
u , so (yi)T̃ ′′

u ⊆ (y1i)(ui). Thus,⊔
y∈y1u

(yi)T̃ ′′
u ⊆ (y1i)(ui).

Now, suppose z ∈ (y1i)(ui). Since iπ is an isomorphism, we have zπ = yiπ for some y ∈ Y , and
also zπ ∈ (y1iπ)(uiπ) = (y1u)iπ . Thus, y ∈ y1u, so yi ∈ (y1i)(ui). Now, since zπ = yiπ , z ∈ (yi)t ⊆
(y1i)(ui)t for some t ∈ T̃ . But we supposed to begin with that z ∈ (y1i)(ui). Thus, we must have
ui ∈ (ui)t , whence (ui)t = {ui} by Condition 1.3. Therefore, t ∈ T̃ ′′

u . Thus, z ∈ (yi)T̃ ′′
u for some y ∈ y1u.

Since z was an arbitrary element in (y1i)(ui), we have

(y1i)(ui) ⊆
⊔

y∈y1u

(yi)T̃ ′′
u . �

Lemma 7.8. Suppose (y1, y2) ∈ u. If z1 ∈ (y1i)T̃ , then z1(ui) ∩ (y2i)T̃ = z2 T̃ ′′
u for some z2 ∈ (y2i)T̃ . More-

over, if z′
1 ∈ z1 T̃ ′

u , then z′
1(ui) ∩ (y2i)T̃ = z1(ui) ∩ (y2i)T̃ .

Proof. First, since z1 T̃ = y1i T̃ , the cosets of T̃ which contain elements in z1(ui) are the same as the
cosets of T̃ containing elements in (y1u)i, and there are nu such cosets. By Lemma 7.7, z1(ui) con-
tains nu · nT̃ ′′

u
elements. Moreover, z1(ui) decomposes into cosets of T̃ ′′

u , each of which contains nT̃ ′′
u

elements. Thus, there must be exactly nu cosets of T̃ ′′
u in z1(ui), and each of these cosets is contained

in a different coset of T̃ since T̃ ′′
u ⊆ T̃ . Thus for any y2 ∈ y1u, z1(ui) ∩ (y2i)T̃ must coincide with one

of the cosets of T̃ ′′
u . If we choose an element z2 in this coset, then z1(ui)∩ (y2i)T̃ = z2 T̃ ′′

u . For the last
statement, if z′

1 ∈ z1t̃ for some t̃ ∈ T̃ ′
u , then since t̃(ui) = {ui}, we have z1(ui) = z′

1(ui). �
Lemma 7.9. Suppose given u ∈ U , t ∈ T̃ and s ∈ (ui)t. If t̃ ∈ T̃ ′′

u , then st̃ = {s}.

Proof. Choose (y1, y2) ∈ u, and let z1 = y1i and z2 = y2i, so (z1, z2) ∈ ui. Since s ∈ (ui)t , we have
ui ∈ st∗ , so we can find z3 ∈ z1s ∩ z2t . Now, if r ∈ st̃ , then s ∈ rt̃∗ , so we can find z4 ∈ z1r ∩ z3t̃ . By
Lemma 7.8 (applied to u∗), z3(ui)∗ ∩ z1 T̃ is nonempty, so we may choose z5 ∈ z3(ui)∗ ∩ z1t′ for some
t′ ∈ T̃ . Since z3 ∈ z1s and z5 ∈ z3(ui)∗ ∩ z1t′ , we have s ∈ t′(ui), so by Condition 1.3, t′(ui) = {s}. Since
t̃ ∈ T̃ ′′

u , we have (ui)t̃ = {ui}, so we must have z4 ∈ z5(ui). But then z4 ∈ z1t′(ui) = z1s and z4 ∈ z1r, so
r = s. Since st̃ is nonempty and can only contain s, it must be equal to {s}. �
Proposition 7.10. For each u ∈ U , T̃ ′′

u is normal in T̃ .
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Proof. It will suffice to show that T̃ ′′
u t̃ ⊆ t̃ T̃ ′′

u for any t̃ ∈ T̃ . Note that if t̃ ∈ T̃ , then t̃∗ ∈ T̃ since
T̃ is closed. If r ∈ T̃ ′′

u t̃ , then r ∈ t̃′′t̃ for some t̃′′ ∈ T̃ ′′
u . Then we can choose z1, z2, z3 ∈ Z such that

z3 ∈ z1r ∩ z2t̃ and z2 ∈ z1t̃′′ , and we may assume z3 = y3i for some y3 ∈ Y . Now, choose y ∈ y3u∗ ,
so y3 ∈ yu. Let s ∈ S be the element containing (yi, z2). Then s ∈ (ui)t̃∗ . By Lemma 7.9, s(t̃′′)∗ = {s},
so z1 ∈ (yi)s. Since s ∈ (ui)t̃∗ , we may find z4 ∈ (yi)(ui) ∩ z1t̃ . Note that z1, z2, z3 and z4 are all
in the same coset of T̃ , so (z3, z4) ∈ t̃′ for some t̃′ ∈ T̃ . But then ui ∈ (ui)(t̃′)∗ , so (ui)(t̃′)∗ = {ui},
and (t̃′)∗ ∈ T̃ ′′

u . Finally, r ∈ t̃(t̃′)∗ ⊆ t̃ T̃ ′′
u , as we see by considering z1, z3 and z4. So, T̃ ′′

u t̃ ⊆ t̃ T ′′
u , as

needed. �
Corollary 7.11. T̃ ′

u is normal in T̃ .

Proof. It is easy to check that (T̃ ′
u)∗ = T̃ ′′

u∗ , and by Lemma 7.4, (T̃ ′
u)∗ = T̃ ′

u , so the normality of T̃ ′
u

follows from Proposition 7.10 applied to u∗ . �
The following corollary now follows by Remark 7.6, and since γ y1 and γ y2 are isomorphisms of

schemes.

Corollary 7.12. For any y1, y2 ∈ Y , the sets T ′
y1 y2

and T ′′
y1 y2

are normal in T y1 and T y2 .

Next, we need to define for each pair y1, y2 ∈ Y a based isomorphism of schemes ζ̃
y2
y1 from

T y1//T ′
y1 y2

to T y2//T ′′
y1 y2

. Using the isomorphisms γ y1 and γ y2 , it will suffice to define a based iso-

morphism ξ̃
y2
y1 from T̃ y1//T̃ ′

y1 y2
to T̃ y2//T̃ ′′

y1 y2
. We suppose u ∈ U is the element containing (y1, y2).

Definition 7.13. Let

ξ̃
y2
y1 : (y1i)T̃ /T̃ ′

y1 y2
→ (y2i)T̃ /T̃ ′′

y1 y2

be the function which takes the coset z1 T̃ ′
y1 y2

to the coset z2 T̃ ′′
y1 y2

, where z2 is any element in

z1(ui) ∩ (y2i)T̃ .

Lemma 7.14. The function ξ̃
y2
y1 is well defined.

Proof. If z1 ∈ (y1i)T̃ , then by Lemma 7.8, there is a z2 ∈ (y2i)T̃ such that z1(ui) ∩ (y2i)T̃ = z2 T̃ ′′
u ,

and the coset z2 T̃ ′′
u only depends on the coset of T̃ ′

u containing z1. The lemma will follow if we can
show that the coset of T̃ ′

u containing z1 is the same as the coset of T̃ ′
y1 y2

containing z1, and that the

coset of T̃ ′′
u containing z2 is the same as the coset of T̃ ′′

y1 y2
containing z2. Indeed, restricting elements

of T̃ ′
u and T̃ ′′

u to (y1i)T̃ and (y2i)T̃ corresponds to taking the preimage under δ y1 and δ y2 . Thus,
the restrictions of elements of T̃ ′

u and T̃ ′′
u to (y1i)T̃ and (y2i)T̃ coincide with T̃ ′

y1 y2
and T̃ ′′

y1 y2
by

Definitions 7.3 and 7.5. �
Lemma 7.15. The function ξ̃

y2
y1 determines a based morphism of schemes from T̃ y1//T̃ ′

y1 y2
to T̃ y2//T̃ ′′

y1 y2
.

Moreover, for v ∈ T̃ ′
y1

, we have v T̃ ′
y1 y2 ξ̃

y2
y1 = (v ′)T̃ ′′

y1 y2 if and only if (vδ y1 )(ui) = (ui)(v ′δ y2 ).

Proof. Since y2i ∈ (y1i)(ui) it follows that ξ̃
y2
y1 takes the coset of T̃ ′

y1 y2
containing y1i to the coset

of T̃ ′′
y1 y2

containing y2i, so ξ̃
y2
y1 is based. Suppose that z1, z′

1 ∈ (y1i)T̃ , and let v ∈ T̃ y1 be the scheme

element containing (z1, z′
1). Choose z2, z′

2 as above such that z1(ui) ∩ (y2i)T̃ = z2 T̃ ′′
u and z′

1(ui) ∩
(y2i)T̃ = z′

2 T̃ ′′
u , and let v ′ ∈ T̃ y2 be the scheme element containing (z2, z′

2). Then since z2 ∈ z1(ui) and
z′

2 ∈ z′
1(ui), we have (vδ y1 )(ui) ∩ (ui)(v ′δ y2 ) 	= ∅. By Condition 1.3, (vδ y1 )(ui) = (ui)(v ′δ y2 ). Note that

if (ui)r = (ui)r′ for two elements r, r′ ∈ T̃ , then ui ∈ (ui)r′r∗ , so for some p ∈ r′r∗ ⊆ T̃ , ui ∈ (ui)p,
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whence (ui)p = {ui}, so p ∈ T̃ ′′
u . Since r′ ∈ pr, we have (r)T̃ ′′

u = (r′)T̃ ′′
u . Thus, the equation (vδ y1 )(ui) =

(ui)(v ′δ y2 ) implies that (v ′δ y2 )T̃ ′′
u is uniquely determined by vδ y1 . By Remark 7.6, this in turn implies

that (v ′)T̃ ′′
y1 y2 is uniquely determined by v . Similarly, if r T̃ ′

u = r′T̃ ′
u , then r ∈ r′t for some t ∈ T̃ ′

u (since

T̃ ′
u is normal), so r(ui) = r′(ui). Thus, (v ′)T̃ ′′

y1 y2 is uniquely determined by v T̃ ′
y1 y2 , so ξ̃

y2
y1 determines

a morphism of schemes.

For the second statement, if v T̃ ′
y1 y2 ξ̃

y2
y1 = (v ′)T̃ ′′

y1 y2 , then we can find (z1, z′
1) ∈ v and choose (z2, z′

2)

as above so that (z2, z′
2) ∈ v ′ . But then, as shown above, we have (vδ y1 )(ui) = (ui)(v ′δ y2 ). Conversely,

if (vδ y1 )(ui) = (ui)(v ′δ y2 ), then again, we may choose (z1, z′
1) ∈ v . We choose z′

2 in z′
1(ui) ∩ (y2i)T̃ .

Then, z′
2 ∈ z1(vδ y1 )(ui) = z1(ui)(v ′δ y2 ), so there must exist a z2 ∈ z1(ui) with (z2, z′

2) ∈ (v ′δ y2 ). Then

z2 ∈ z1(ui) ∩ (y2i)T̃ since (v ′δ y2 ) ∈ T̃ and z′
2 ∈ (y2i)T̃ . But then, we see as above that (v)

T̃ ′
y1 y2 ξ̃

y2
y1 =

(v ′)T̃ ′′
y1 y2 . �

Lemma 7.16. The morphism ξ̃
y2
y1 is an isomorphism, with inverse ξ̃

y1
y2 .

Proof. First, we need to see that T̃ ′
y2 y1

= T̃ ′′
y1 y2

and T̃ ′′
y2 y1

= T̃ ′
y1 y2

. Following Definition 7.3, we have

T̃ ′
u∗ = {

t ∈ T̃ : t
(
u∗i

) = {
u∗i

}} = {
t ∈ T̃ : (ui)t∗ = {ui}} = (

T̃ ′′
u

)∗
.

Similarly, T̃ ′′
u∗ = (T̃ ′

u)∗ . Since γT and δ y∗
preserve the involution, it follows that τ ′

u∗ = (τ ′′
u )∗ and

τ ′′
u∗ = (τ ′

u)∗ , and then since α y1 and γ
y1

T y1
preserve the involution and T̃ ′

y1 y2
is closed, we have

T̃ ′′
y2 y1

= τ ′′
u∗α y1γ

y1
T y1

= (
τ ′

uα
y1γ

y1
T y1

)∗ = (
T̃ ′

y1 y2

)∗ = T̃ ′
y1 y2

.

Similarly T̃ ′
y2 y1

= T̃ ′′
y1 y2

.

Now, given z1 ∈ (y1i)T̃ , we have (z1 T̃ ′
y1 y2

)ξ̃
y2
y1 = z2 T̃ ′′

y1 y2
if and only if z2 ∈ z1(ui) ∩ (y2i)T̃ . But

if z2 ∈ z1(ui), then z1 ∈ z2(u∗i), so z1 ∈ z2(u∗i) ∩ (y1i)T̃ . Thus, if (z1 T̃ ′
y1 y2

)ξ̃
y2
y1 = z2 T̃ ′′

y1 y2
, then

(z2 T̃ ′
y2 y1

)ξ̃
y1
y2 = z1 T̃ ′′

y2 y1
. The converse follows by reversing the rolls of y1 and y2. Therefore, ξ̃

y1
y2 is

the inverse of ξ̃
y2
y1 . �

As mentioned in the paragraph before Definition 7.13, the isomorphisms ξ̃
y2
y1 will induce the

needed isomorphisms ζ̃
y2
y1 , using the isomorphisms γ y1 and γ y2 . This is made precise in the fol-

lowing definition.

Definition 7.17. Given y1, y2 ∈ Y , let ζ̃
y2
y1 be the based isomorphism of schemes making the following

diagram commute:

T y1//T ′
y1 y2

γ y1

ζ̃
y2
y1

T̃ y1//T̃ ′
y1 y2

ξ̃
y2
y1

T y2//T ′′
y1 y2

γy2
T̃ y2//T̃ ′′

y1 y2
.

The horizontal arrows in the above diagram are the isomorphisms of quotient schemes induced by
the isomorphisms γ y1 and γ y2 . (Recall that T̃ ′

y1 y2
is defined simply as the image of T ′

y1 y2
under γ y1

and T̃ ′′
y y is defined as the image of T ′′

y y under γ y2 .)

1 2 1 2
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Having defined τ -schemes ζy for each y ∈ Y and morphisms ζ
y2
y1 ∈ HomC (T y1 , T y2 ) for each pair

of elements y1, y2 ∈ Y , we must now prove that ζ determines an action of U on T . That is, we need
to verify the conditions of Definition 4.1. The following lemma will be needed.

Lemma 7.18. Suppose p,q, r ∈ U , with r ∈ pq, and suppose z1, z3 ∈ Z , with z3 ∈ z1(ri). Let y1 and y3 be
the elements in Y such that z1 T̃ = (y1i)T̃ and z3 T̃ = (y3i)T̃ . If y2 ∈ y1 p ∩ y3q∗ , there exists an element
z2 ∈ z1(pi) ∩ z3(qi)∗ such that z2 T̃ = (y2i)T̃ .

Proof. First, we show that for each y2 ∈ y1 p ∩ y3q∗ , the number of elements z2 ∈ z1(pi) ∩ z3(qi)∗
such that z2 T̃ = (y2i)T̃ is either 0 or nT̃ ′′

p∩T̃ ′
q
. To see this, it suffices to show that if z1(pi) ∩ z3(qi)∗ ∩

(y2i)T̃ contains an element z2, then it coincides with the coset of T̃ ′′
p ∩ T̃ ′

q containing z2. Suppose

t ∈ T̃ ′′
p ∩ T̃ ′

q . Then t∗ ∈ T̃ ′
q , so we have z2t ⊆ z1(pi)t = z1(pi) and z2t ⊆ z3(qi)∗t = z3(t∗(qi))∗ = z3(qi)∗ .

Since T̃ ′′
p ∩ T̃ ′

q ⊆ T̃ and z2 ∈ (y2i)T̃ , we have z2t ⊆ z2 T̃ = (y2i)T̃ . Thus, every element in the coset of

T̃ ′′
p ∩ T̃ ′

q containing z2 is in z1(pi)∩ z3(qi)∗ ∩ (y2i)T̃ . Conversely, if z ∈ z1(pi)∩ z3(qi)∗ ∩ (y2i)T̃ , then let

t ∈ T̃ be the element containing (z2, z). Considering the elements z1, z2 and z, we see that pi ∈ (pi)t ,
so (pi)t = {pi}, whence t ∈ T̃ ′′

p ; considering z2, z, and z3, we see that qi ∈ t(qi), so t(qi) = {qi}, whence

t ∈ T̃ ′
q . Thus, z is in the coset of T̃ ′′

p ∩ T̃ ′
q containing z2.

The argument in the previous paragraph applies when we choose z1 = y1i and z3 = y3i, but in
this case, z1(pi) ∩ z3(qi)∗ ∩ (y2i)T̃ always contains y2i. Thus, for each y2 ∈ y1 p ∩ y3q∗ , there are
nT̃ ′′

p∩T̃ ′
q

elements z2 ∈ (y1i)(pi) ∩ (y3i)(qi)∗ with z2 T̃ = (y2i)T̃ . Of course, if y2 /∈ y1 p ∩ y3q∗ , then

(y1i)(pi)∩(y3i)(qi)∗ ∩(y2i)T̃ is empty since iπ is an isomorphism. Since the cardinality of y1 p ∩ y3q∗
is apqr , and the cardinality of z1(pi) ∩ z3(qi)∗ is a(pi)(qi)(ri) , we have shown that

a(pi)(qi)(ri) = apqrnT̃ ′′
p∩T̃ ′

q
. (8)

Returning to the general case, where z1 ∈ (y1i)T̃ , z3 ∈ (y3i)T̃ , and z3 ∈ z1(ri), the cardinality
a(pi)(qi)(ri) of z1(pi) ∩ z3(qi)∗ is equal to the product of nT̃ ′′

p∩T̃ ′
q

with the number of elements y2 in

y1 p ∩ y3q∗ for which z1(pi) ∩ z3(qi)∗ ∩ (y2i)T̃ is nonempty. By Eq. (8), there must be apqr such el-
ements y2. Since |y1 p ∩ y3q∗| = apqr , it must be the case that for every y2 ∈ y1 p ∩ y3q∗ , we have
z1(pi) ∩ z3(qi)∗ ∩ (y2i)T̃ is nonempty. �
Theorem 7.19. Definitions 7.2, 7.5, and 7.17 determine an action ζ of U on T .

Proof. We must verify the five conditions of Definition 4.1.

Condition (1). We have seen in the paragraph following Definition 7.2 that Condition (1) is satis-
fied.

Condition (2). Suppose y ∈ Y , and let 1Y ∈ U denote the scheme element containing (y, y). Then
since 1Y i = 1Z ∈ S , it follows immediately from Definition 7.3 that T̃ ′

1Y
= T̃ ′′

1Y
= {1Z }, and, since γT

is an isomorphism, and δ y is a bijection taking 1
(yi)T̃ to 1Z , τ ′

1Y
= τ ′′

1Y
= {1}. Now it follows from

Definition 7.5 that T ′
yy = T ′′

yy = {1X }. Now, if z1 ∈ (yi)T̃ , then clearly, z1(1Z ) ∩ (yi)T̃ = z1(1Z ), so ξ̃
y
y

is the identity. By Definition 7.17, ζ̃
y
y is then also the identity. Thus, ζ

y
y is the identity morphism in

HomC (T y, T y), as needed for Condition (2).

Condition (3). If y1, y2 ∈ Y , then by Lemma 7.16, ξ̃
y1
y2 = (ξ̃

y2
y1 )−1, so by Definition 7.17, ζ̃

y1
y2 = (ζ̃

y2
y1 )−1.

Therefore ζ
y1
y2 = (ζ

y2
y1 )∗ , as needed for Condition (3).
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Condition (4). Suppose (y1, y2) ∈ u, and P ⊆ τ . Recall from Definition 3.9 that

P
(
ζ

y2
y1 (τ )

) = {
v ′ ∈ τ : for some v ∈ P ,

(
vα y1

)T ′
y1 y2 ζ̃

y2
y1 = (

v ′α y2
)T ′′

y1 y2
}
.

By Definition 7.17, Lemma 7.15, and Definition 7.2, we have(
vα y1

)T ′
y1 y2 ζ̃

y2
y1 = (

v ′α y2
)T ′′

y1 y2

if and only if (
vγT δ y∗)(ui) = (ui)

(
v ′γT δ y∗).

Thus, ζ
y2
y1 (τ ) depends only on u, as needed for Condition (4).

Condition (5). Suppose y1, y2, y3 ∈ Y , with (y1, y2) ∈ p, (y2, y3) ∈ q, and (y1, y3) ∈ r. We let

T ′
y1 y2 y3

= {
t ∈ T : for some v ∈ T we have tT ′

y1 y2 ζ̃
y2
y1 = vT ′′

y1 y2 and vT ′
y2 y3 ζ̃

y3
y2 = 1

T ′′
y2 y3

X

}
,

T ′′
y1 y2 y3

= {
t ∈ T : for some v ∈ T we have 1

T ′
y1 y2

X ζ̃
y2
y1 = vT ′′

y2 y3 and vT ′
y2 y3 ζ̃

y3
y2 = tT ′′

y2 y3
}
.

Then T ′
y1 y2 y3

and T ′′
y1 y2 y3

are the normal closed subsets of the composite ζ
y2
y1 ζ

y3
y2 , as defined in Sec-

tion 2.
To show that ζ

y3
y1 � ζ

y2
y1 ζ

y3
y2 , we must show that T ′

y1 y3
⊆ T ′

y1 y2 y3
, that T ′′

y1 y3
⊆ T ′′

y1 y2 y3
, and that for

each x1 ∈ X ,

(
x1T ′

y1 y3

)
ζ̃

y3
y1 ⊆ (

x1T ′
y1 y2 y3

) ˜(
ζ

y2
y1 ζ

y3
y2

)
.

First, suppose v ∈ T ′
y1 y3

, and let ṽ = vγ
y1

T y1
. Then ṽδ y1 ∈ T̃ ′

r by Definitions 7.2, 7.3, and 7.5. That is,

(ṽδ y1 )(ri) = {ri}. Now, choose z1 ∈ (y1i)(ṽ∗), so (z1, y1i) ∈ ṽ ⊆ ṽδ y1 . Thus, letting z3 = y3i we have

z3 ∈ (y1i)(ri) ⊆ z1
(

ṽδ y1
)
(ri) = z1(ri).

By Lemma 7.18, there is a z2 ∈ z1(pi) ∩ z3(qi)∗ with z2 T̃ = (y2i)T̃ . Now, let ṽ ′ ∈ T̃ y2 be the scheme
element containing (z2, y2i). Then y2i ∈ z1(pi)(ṽ ′δ y2 ) and y2i ∈ z1(ṽδ y1 )(pi). Since |(pi)(ṽ ′δ y2 )| =
|(ṽδ y1 )(pi)| = 1, this implies that (pi)(ṽ ′δ y2 ) = (ṽδ y1 )(pi). By Lemma 7.15, we have ṽ T̃ ′

y1 y2 ξ̃
y2
y1 =

(ṽ ′)T̃ ′′
y1 y2 . Moreover, since y3i ∈ z2(qi) ∩ (y2i)(qi), we must have ṽ ′(qi) = {qi}, so ṽ ′δ y2 ∈ T̃ ′

q . Thus,

ṽ ′T̃ ′
y2 y3 ξ̃

y3
y2 = 1T̃ ′′

y2 y3 . Define v ′ by v ′γ y2
T y2

= ṽ ′ . Then by Definition 7.17, we have

vT ′
y1 y2 ζ̃

y2
y1 = (

v ′)T ′′
y1 y2 and

(
v ′)T ′

y2 y3 ζ̃
y3
y2 = 1

T ′′
y2 y3

X .

That is, v ∈ T ′
y1 y2 y3

. Since v ∈ T ′
y1 y3

was arbitrary, we have T ′
y1 y3

⊆ T ′
y1 y2 y3

. A similar argument shows
that T ′′

y1 y3
⊆ T ′′

y1 y2 y3
.

Finally, given x1 ∈ X , let z1 = x1γ
y1

X ∈ (y1i)T̃ , and suppose x3 ∈ (x1T ′
y1 y3

)ζ̃
y3
y1 . Let z3 = x3γ

y3
X ∈

(y3i)T̃ . Then by Definition 7.17, z3 ∈ z1 T̃ ′
y1 y3

ξ̃
y3
y1 , so by Definition 7.13, we have z3 ∈ z1(ri) ∩ (y3i)T̃ .

By Lemma 7.18, we may choose z2 ∈ z1(pi) ∩ z3(qi)∗ with z2 T̃ = (y2i)T̃ . But then by Definition 7.13
again, z2 T̃ ′′

y1 y2
= (z1 T̃ ′

y1 y2
)ξ̃

y2
y1 and z3 T̃ ′′

y2 y3
= (z2 T̃ ′

y2 y3
)ξ̃

y3
y2 . Letting x2 = z2(γ

y2
X )−1, we see from Def-

inition 7.17 that x2T ′′
y y = (x1T ′

y y )ζ̃
y2
y1 and x3T ′′

y y = (x2T ′
y y )ζ̃

y3
y2 . By the definition of ζ̃

y2
y1 ζ

y3
y2
1 2 1 2 2 3 2 3
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given in Section 2, it follows that x3 ∈ (x1T ′
y1 y2 y3

) ˜(ζ
y2
y1 ζ

y3
y2 ). Since x3 was an arbitrary element in

(x1T ′
y1 y3

)ζ̃
y3
y1 , we then have

(
x1T ′

y1 y3

)
ζ̃

y3
y1 ⊆ (

x1T ′
y1 y2 y3

) ˜(
ζ

y2
y1 ζ

y3
y2

)
.

This concludes the proof of Condition (5). �
Theorem 7.20. The scheme S on Z is isomorphic to the scheme U �ζ T on Y × X.

Proof. We will construct an isomorphism η : S → U �ζ T . We must first define ηZ : Z → Y × X . Since
iπ and γ y are isomorphisms, it follows that for each z ∈ Z , there is a unique (y, x) ∈ Y × X such that
yiT̃ = zT̃ and xγ y

X = z; we let zηZ = (y, x). Since i and γ y∗ are based morphisms, y∗i T̃ = z∗ T̃ and
x∗γ y∗ = z∗ , so z∗ηZ = (y∗, x∗). That is, ηZ is a based function.

Now, suppose given s ∈ S . Since iπ is an isomorphism, sT̃ = (ui)T̃ for a unique u ∈ U , and so, since
T̃ is normal by Lemma 7.1, we must have s ∈ (ui)t̃ for some t̃ ∈ T̃ . Let t ∈ τ be defined by tγT δ y∗ = t̃ .
We will now show that if (z1, z2) ∈ s, then (z1ηZ , z2ηZ ) ∈ [u, t], which implies that ηZ is a morphism
of schemes. Let (y1, x1) = z1ηZ and (y2, x2) = z2ηZ . Then

(y2i)T̃ = z2 T̃ ∈ (z1 T̃ )sT̃ = (y1i T̃ )(ui)T̃ .

That is, y2iπ ∈ (y1iπ)(uiπ), so y2 ∈ y1u, since iπ is an isomorphism. Since s ∈ (ui)t̃ , we may
choose z′

2 ∈ z1(ui) ∩ z2t̃∗ , so in particular z′
2 ∈ z1(ui) ∩ z2 T̃ . Now, by Definition 7.13, we have

(z1 T̃ ′
y1 y2

)ξ̃
y2
y1 = z′

2 T̃ ′′
y1 y2

. If we let x′
2 = z′

2(γ
y2

X )−1 ∈ X , then by Definition 7.17, (x1T ′
y1 y2

)ζ̃
y2
y1 = x′

2T ′′
y1 y2

.

Since (z′
2, z2) ∈ t̃ , we get (z′

2 T̃ ′′
u , z2 T̃ ′′

u ) ∈ t̃ T̃ ′′
u . Now T̃ ′′

y1 y2
is the preimage of T̃ ′′

u under δ y2 , so the

elements of T̃ ′′
y1 y2

are simply the restrictions of the elements in T̃ ′′
u to (y2i)T̃ × (y2i)T̃ . Thus,

(z′
2 T̃ ′′

y1 y2
, z2 T̃ ′′

y1 y2
) ∈ t̃ T̃ ′′

y1 y2 . We now have

((
x1T ′

y1 y2

)
ζ̃

y2
y1 γ y2 , x2T ′′

y1 y2
γ y2

) = (
x′

2T ′′
y1 y2

γ y2 , x2T ′′
y1 y2

γ y2
) = (

z′
2 T̃ ′′

y1 y2
, z2 T̃ ′′

y1 y2

) ∈ t̃ T̃ ′′
y1 y2 .

Here, as in Definition 7.17, γ y2 is the isomorphism from T //T ′′
y1 y2

to T̃ //T̃ ′′
y1 y2

induced by γ y2 . Since

t̃ = tγT δ y∗ , we have t̃ = tα y2γ
y2

T y2
δ y2 by Definition 7.2. That is, the restriction of t̃ to (y2i)T̃ × (y2i)T̃

is equal to tα y2γT y2
. We thus have

((
x1T ′

y1 y2

)
ζ̃

y2
y1 γ y2 , x2T ′′

y1 y2
γ y2

) ∈ (
tα y2γT y2

)T̃ ′′
y1 y2 = ((

tα y2
)T ′′

y1 y2
)
γ y2 .

Since γ y2 is an isomorphism of schemes, we get

((
x1T ′

y1 y2

)
ζ̃

y2
y1 , x2T ′′

y1 y2

) ∈ (
tα y2

)T ′′
y1 y2 .

Since we have already shown that (y1, y2) ∈ u, then by the definition of [u, t] given in Section 4, we
have

(z1ηZ , z2ηZ ) = (
(y1, x1), (y2, x2)

) ∈ [u, t],

so ηZ is a morphism of schemes.
Finally, we show that η is an isomorphism; for this it suffices to show that ηZ and ηS are bi-

jections. We have zηZ = (y, x) if and only if z = xγ y
X , so ηZ is a bijection. It follows at once that
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ηS is surjective. Finally, suppose sηS = [u, t] and s′ηS = [u′, t′], where [u, t] = [u′, t′]. It follows im-
mediately from the definitions that u = u′ . If we let t̃ = tγT δ y∗ and t̃′ = t′γT δ y∗ , then we must also

have t̃ T̃ ′′
u = t̃′T̃ ′′

u , so t̃ ∈ T̃ ′′
u t̃′ , since T̃ ′′

u is normal. Now, s′ ∈ (ui)t̃′ = (ui)T̃ ′′
u t̃′ ⊇ (ui)t̃ and s ∈ (ui)t̃ . By

Condition 1.3, |(ui)t̃| = |(ui)t̃′| = 1, so we must have s = s′ . That is, ηS is injective, and the proof is
complete. �
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