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Abstract 

The automobile traffic congestion annually generates an estimated cost of several million euros for such a urban 
area as a European capital. At the origin of this congestion, the capacity drop is a well-known phenomenon which 
still remains complex to model [1,2,3,4]. The capacity drop is related to the hysteresis of traffic: for a state of 
disturbed traffic, the return to the normal of the traffic is delayed when demand decreases [5]. This paper intends 
to present a macroscopic convergent model to get a better modeling for capacity drop. Considering previous 
investigations [8], one considers bounded acceleration for the flow. 
As the most common case of convergent is the merge of two road lanes, or two motorways, the convergent is 
modeled as a box with two entry flows and one output flow. A static storage capacity is provided to the box. 
Vehicles are mainly characterized by their bounded acceleration. The point is to describe the evolution of the 
convergent considering the number of vehicles stored inside the box. 
The process is to consider the convergent box as a cell of network regarding the Godunov scheme [6]. The supply 
function has a classical fundamental diagram shape, but the demand function is modified regarding the bounded 
acceleration of vehicles [7]. The partial supply functions for the node cell are calculated accordingly to the 
importance of the converging roads. Then the model is solved using the Godunov scheme, with an update of the 
number of stored vehicles for every time step. 
The model is to be tested on Paris ring with 40 seconds data. 

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer] 

Keywords: Node model, Convergent, Bounded acceleration; Capacity drop; Godunov scheme 

* Corresponding author. Tel.: +33145925613 
E-mail address: thomas.monamy@ifsttar.fr 

Available online at www.sciencedirect.com

© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Program Committee 
Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82078059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


1389 Thomas Monamy et al.  /  Procedia - Social and Behavioral Sciences   54  ( 2012 )  1388 – 1396 

1. Context 

The underlying model to our study is the Lighthill-William-Richards (LWR) model[9][10], which is a first 
order macroscopic traffic flow model. The basic variables flow Q, density K and speed V, are assumed to be 
functions of the position x and the time t. The model can be expressed by the following conservation equation: 

The flow Q and the speed V are given by :  

The representation of the equilibrium flow-density relationship  is the so-called fundamental 
diagram, assumed to be concave, depicted in figure x. This fundamental diagram is resoluble into two distinct 
equilibrium relationships, the local equilibrium supply , and demand, functions . These 
functions, which result from the fundamental diagram, express the greatest possible inflow and outflow at any 
point x of the studied road.  

And then  

The latter equation is the main principle underlying the numerical resolution of the model.  

Figure 1: Fundamental diagram(left), demand function (top), supply function (bottom)
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The choice was made to consider a bi-parabolic diagram. A fundamental diagram is defined by 5 parameters: The 
free speed , the critical density  which defines the segregation between free and congested traffic, the 
maximal density  which is the maximal number of vehicles a stretch of freeway can store, the maximal flux 
also called the capacity of the road, and the maximal shockwave speed , which is the tangent of the diagram 
for K= .  
The fluid part of the diagram is assumed to be given by the following equations: 

The congested part of the diagram is mainly defined by  , such that : 

Which finally gives:  

2. The Node Model 

A node model’s goal is to connect upstream and downstream boundary conditions of a merging/diverging 
section.  

Figure 2: Node illustation

Figure x depicts the classical node case. If one considers quasi stationary traffic conditions, as in a generalized 
Riemann problem defined by upstream demands 

i
  and downstream supplies  

j
, it can be shown that the flux 

through the node is constrained by:  
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Of course the above system has to be complemented with rules expressing priority rules or conflict resolution in 
the intersection. In the sequel of the paper one would consider the classic convergent situation, with two 
incoming fluxes and one out coming flux. The point is to divide linearly the downstream supply between 
upstream demands. The proportion coefficients  represent the fraction of destination traffic lanes available from 
the origins.[6][11] On the following example one has   because 2 of 3 destination lanes are available for 
a vehicle whatever its origin is.  

Figure 3: Illustration of a classical convergent

          
In order to introduce capacity drop in the node model, one would consider that the node can store a limited 
number of vehicles , and that the supply and demand functions are function of the number N of vehicles 
stored in the node, which is quite equivalent to a density. One would also consider that in congested traffic the 
demand cannot be maximized because of larger reaction and relaxation times for drivers and vehicles once a 
queue is formed. This requires building a modified demand function for congested traffic, introducing the 
recovery flow of the node.  

Figure 4: Exemple for a J-line(k)

The slope for the J-line, is expressed by  
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The constant can be interpretated as the idea that in a platoon, vehicles that are about to reaccelerate (a 
congested->free transition) do it one after the other after a reaction/relaxation time  (one can also see  as the 
time to get out of a wide moving jam) and so the reacceleration of the platoon propagates, with an intervehicular 
distance close to K, at a relative speed given by: 

Whose absolute expression is then: 

One refers to fig.X, the J-line’s equation is written 

On deduces 

Let’s define 3 variables:  

And one can rewrite: 

Or: 

One solves the equation with:  
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Because one keeps the smallest solution of K for equation X. Eventually, the recovery flow is given by: 

Which gives the following curve for recovery demand: 

Figure 5: Recovery flux function, flux in veh/h vs density in veh/km

Under the following set of parameters: 

Table 1: Parameters set for the recovery demand function 

Parameter Vx Kx Kc Wx Qx 

Value 90 km/h 180 veh/km 45 veh/km 25 km/h 2200 veh/h 1.9s 

3. Application to the field test 

The developed model is applied to one part of the Boulevard Périphérique site in Paris, between the on-ramp 
“Porte de Brancion” and “Porte de Sèvres”. The considered total stretch length is around 2km including 5 
measurement stations on the carriage way and one measurement at the on-ramp Brancion (see figure 6).  

Figure 6: Considered stretch 



1394   Thomas Monamy et al.  /  Procedia - Social and Behavioral Sciences   54  ( 2012 )  1388 – 1396 

Several data sets are considered for the calibration and validation process (18 to 22 March 1991). The available 
data set time aggregation is 40 seconds. After data screening, 2 days are selected for the parameter calibration 
and validation results. The BOX algorithm [12] was used for the calibration 

Parameter Vx Kmax Kc lamda Qx

Link 1 

Link 2 

82.36 km/h 

82.49 km/h 

139 veh/km 

158 veh/km 

30.3 veh/km 

26.6 veh/km 

0.703 

0.840 

2359 veh/h/l 

2370 veh/h/l 

Link 3 96.82 km/h 164 veh/km 37.5 veh/km 0.867 2245 veh/h/l 

Table 1: Optimal parameters found by BOX algorithm 

Table 2 includes the optimal model parameters found using box algorithm for the first day (19 March 1991). In 
particular, the free speed (Vx), the critical density (Kc), the maximum density (Kmax), the lamda parameter for the 
capacity drop, and the capacity of the link (Qx). 

The second day (03/22/1991) is used for validation.

Figure 7: Time evolution of measured and simulated flows (left) and occupation rates (right) (ST1) 

Figure 8: Time evolution of measured and simulated flows (left) and occupation rates (right) (ST2) 
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Figure 9: Time evolution of measured and simulated flows (left) and occupation rates (right) (ST3) 

Parameter Av. Q MSD Q Av. To MSD To 

ST1 4827    446  14.42   5.55 

ST2 5814    562  14.22   3.75 

ST3 6005    659  19.28   6.39 

Table 2: Average and the Mean Square Deviation (MSD) for traffic volumes and occupancy rates. 

As reported in figures 7, 8 and 9, we can observe that the accuracy of developed model is satisfactory. As a 
matter of fact, time evolution of flow follows the real measurements.  With respect to the occupancy rates, 
congestions are reproduced at same location and the time as the measurements on Link-2 and Link-3 
(downstream of the node). This means that capacity drop is well modelled. However, for the link-1 (upstream of 
the node), the congestion apparition is very limited compared to the measurements.  This is probably due to the 
measurement station location. The total length of the link-1 is equal to 200 m and the associated number of 
segment is equal to only 1 segment. Consequently, the density and the occupancy rate are much smoothed. Table 
3 includes the Mean and the Mean Square Deviation (MSD) of both variables: traffic volumes and occupancy 
rates. 

4. Conclusions 

The developed model has been successfully applied to a limited part of the ringway of Paris test site. Model 
parameters have been identified on one set of the real data (18/03/91). The validation has been made on the 
22/03/91 real data set with the same identified parameters found for the 18/03/91 day.  The output results 
concerning the output trajectories of both traffic variables (volume, occupancy rates) indicate that the Limit 
Acceleration model follows with sufficient accuracy the time evolution of the traffic conditions in the considered 
stretch and in particular at the node location. This means that the developed model is able to cope with different 
traffic conditions (fluid, dense and congested) at an acceptable level of accuracy. In more quantitative terms, 
calculation of the mean square deviation between the measured and the simulated variables was used as an 
indicator of accuracy.  

As a final conclusion, the suggested node model is able to cope with the capacity drop phenomena. In particular, 
the parameter “Lamda” of the 3 considered links are different. The capacity drop parameter of the in link-1 at the 
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node indicates that the capacity drop in this link is higher compared to the other links. This is due to the on-ramp 
Brancion which generates conflict at the node. Investigations on node model are underway aiming at improving 
congestion spillback at the upstream links of the node.   
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