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Abstract—Let M be a compact connected (topological) manifold of finite- or infinite-dimension n.
Let 0 < r < 1 be arbitrary but fixed. We construct in this paper a space-filling curve f from [0, 1)
onto M, under which M is the image of a compact set A of Hausdorff dimension r. Moreover,
the restriction of f to A is one-to-one over the image of a dense subset provided that 0 < r <
log 2™ /log(2™ + 2). The proof is based on the special case where M is the Hilbert cube [0,1]“.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Following the first example given by Peano in 1890, we know that every n-dimensional cube
[0,1]™ has a space-filling curve (see, e.g., {1]). In other words, [0,1]" is a continuous image of the
unit interval [0, 1]. This fact is eventually generalized to give the following theorem.

THEOREM 1. (See, e.g., [1, p. 106].) Let X be a metrizable space. Then X is a continuous image
of [0,1] if and only if X is compact, connected, and locally connected.

As a consequence of Theorem 1, in addition to finite-dimensional cubes [0,1]?, n = 1,2,...,
the Hilbert cube H = [0, 1], i.e., the product space of countably infinitely many copies of [0, 1],
also has a space-filling curve. It is known that every separable infinite-dimensional compact
convex set in a Fréchet space is affinely homeomorphic to H (see, e.g., [2, p. 100] or [3, p. 40]).
Consequently, there are also space-filling curves of such spaces.

A metric space M is called a Hilbert cube manifold if for each z in M, there is a base of neighbor-
hoods of z in which every member is homeomorphic to an open subset of H (see, e.g., [2, p. 298]).
When M is compact, it is equivalent to saying that there exist compact subsets Uy, ..., Uy of M
such that M is covered by the interiors of Uy, ..., Uy and each of them is homeomorphic to H. In
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this paper, compact (topological) manifolds M are either modeled on [0, 1]" if dim M = n < oo,
or modeled on H = [0,1]¥ if dim M = co.

The existence of a space-filling curve of any compact connected manifold is ensured by Theo-
rem 1. In this paper, we shall construct a computable space-filling curve f of the Hilbert cube H.
Similar results have been obtained for finite-dimensional cubes {0,1)" in [4] for n = 1,2,.... In
our construction, for any preassigned r between 0 and 1, we can construct explicitly a space-filling
curve f from [0,1] onto [0,1]%, n =1,2,...,w, maps a compact set A of dimension 7 onto [0, 1]".
Moreover, the restriction of f to A is one-to-one over the image of a dense subset provided
0 < r < log2*/log(2™ + 2). Similar conclusions are carried to compact connected manifolds,
which supplement the results in [5-7).

There is a variety of applications of space-filling curves. To name a few, we mention (8] for
embedding Urysohn space into C[0, 1], [9] for classifying geometric finiteness of Kleinian groups,
and [10] for converting integral equations in n variables into one involving one variable. See
also [11] for more interesting information.

2. MAIN RESULTS

Recall that the Hilbert cube H can be embedded into the separable Hilbert space Iy as the
set {(x,) : 0 € z, < 1/n} in norm topology (see, e.g., [2, p. 100])). For computational ease, we
identify H as the norm compact convex set {(z,) : 0 < z,, < 1/2"~1} in l,, and frequently write
H = [1;2,[0,1/2""1] in I3 if no confusion arises.

LEMMA 2. We can construct a space-filling curve f of the Hilbert cube H, under which H is the
image of a compact subset A of [0, 1} of Hausdorff dimension zero. Moreover, the restriction of f
to A is one-to-one over the image of a dense subset.

PROOF. We take a sequence of integers {gx} such that ¢x > 2% + 2 for k = 1,2,... and
limg_,oo(k/logy ge) = 0. Let Ay, Az, As,... be compact subsets of the interval [0,1] defined
by

o0
A= Z—f’f——;tk=1,2,3,...,2’°, k=1,2,3,...,2Y,
£atg- g

foralll =1,2,3,.... Observe that

A=A = — it =1,2,3,...,2% k=1,2,3,...
101 {kZ::lth“'fhk

is compact. Since A, is a disjoint union of 2 x 22 x 23 x - .. x 22 = 2(2'+12'~" intervals each of
length 1/q; - - - g1, the Hausdorff p-dimensional measure of A; for any p > 0 is

»
H(4) = 2(¥+1)27 (—1-—) . 1=1,2,3,....
g1 qa
Thus,
2.92.. .92
*(A) = lim H}(A;) = lim ———s——-.
Hp( ) l—lglo p( l) l_‘_{&q]lzngg‘

Let e(k) = k/log, gx. Then k = log, qfc(k) or 2% = q;(k). Since e(k) — 0% and g — oo as k — o0,

we have
2k q;(k)

¢ d&

Consequently, the Hausdorff dimension of A is

- q;(k)“P =0

, ifp>0.

dim A = inf {p > 0: H;(A4) =0} =0.
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Our desired space-filling curve f : [0,1] — H is given by sending t in [0,1] to the point
(z1(t), 22(t), z3(t),...) in H = [[2>,[0,1/27~1] C l5. More precisely, we write ¢ in its g-ezpansion
t =3 g0, tk/qs - gk Where t; belongs to {0,1,2,...,qc — 1}, and write

zl(t) = 0..’1?11 Ty T13---
$2(t) = 00 132 x23--- . .
z3(t) = 0.0 0 33--- (B base 2 expansion.

Denote by (a)z the base 2 representation of a. We assign go = top = Tpk =0 for k=0,1,2,...,
n—1, wheren=1,2,..., and

(y1, 1<t <2} (1 —1)2=u,

1, if2'+1<t<q1 -2,

0, ifty=0=tgorq —t; =1=gqo—to,

L1, ifti=0#%¢torq —t;1 =1%# qo—to;

T11 = §

( (y1,92), if 1<ty <22 (t2—1)2 = vaya,
(1,1), if224+1<ty<ga—2,

(z11,0), ifto=0=tiorgy—ty=1=gq1 — 13,
\ (1 —z11,1), ifto=0#tiorga—ta=1#q —t1;

(T12,T22) = ¢

In general,
[ (Y1,%2,- -, YUn)s if1 <t, <2" and
(th—1)2=11Y2"" " Yn,
(1,1,...,1), 20 +1<tp <gn—-2,
(zln—l;z2n—17~--axn-ln—lyo), iftn=0=tn._1 or
(x1n1$2n1~~-,mnn) = ﬁ
n—ln=1=¢qn-1 —ta-1,

(1 “‘zln-—hl —T2n—1y:++,
1-Zp1n-1,1), ift, =0#tpyor
\ Gn —th =1 # gp1 —tn-1.

A routine verification will show that even for those ¢ having two distinct g-expansions, the
values of z;(t), T2(t), z3(t),... are unique. We check that f is (uniformly) continuous on [0, 1].
For € > 0, fix a positive integer n such that

2 (L) <&
2k-1 2

k=n+1

For z in H, write z = (z1,Z2,...,Zn,...) in ly. Observe that
o 3 €
olf =3 et <3 e+ &
k=1 k=1

Let m be a positive integer such that n/2™ < ¢/2. Let 6 = 1/¢1g2 - - - gm+1. Suppose ¢, ¢’ € [0,1]
such that {t — t/| < 6. We write ¢, ¢’ in their g-expansions with infinitely many nonzero digits tx
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and t;. In this way, tx =t} for k =1,2,...,m. Let = f(t) and 2’ = f(¢'). The first m digits
of z; and z} agree, and thus |z — 2| <1/2™,for k =1,2,.... Then

n
I|x—x’||§<;|xk—$2|2+§$ mtE< sHz=e
It is plain that the image of A under this curve is the entire of H.

Finally, let H be the subset of H consisting of points z such that f~1(z) contains more than one
point in A. Let Ag = f~!(Hp) N A. It is not difficult to see that a point x = (z1,72,...) € Hp
if and only if at least one coordinate z; has a finite binary expansion. Correspondingly, the
g-expansion of any point ¢ in Ag, when f(t) = z, will have a special form t = Y27, tx/q192 - - - gk
in which the i*" digits of the binary expansion of tx — 1 are eventually constant as k — oo.
Obviously, A \ Ag is dense in A, H \ Hy is dense in H, and f is one-to-one from A\ Ay onto

H \ Hp. 1

In the following, we denote by {a] the greatest integer part of a real number a.

LEMMA 3. For each real number G > 1, there exists a sequence of positive integers {gx}, chosen
from {[G], [G] + 1}, such that

lim (q1q2 -~ qx)/* = G.
k—o0
PROOF. Set ¢; = [G]. We shall choose subsequent g to satisfy the inequalities
[G1G* ! < q1g2- - gk < ([G] + G* L.
Suppose g1,q2, . -.,qx_1 are chosen accordingly. In case qiqs---qx—1 > G*~1, we set gx = [G];

otherwise, we set gx = [G] + 1. It is easy to see that gx does not violate the above inequalities.
Finally, we observe that

(%)W < (QIQZ"C;qk)l/k < ([G]G+ 1>1/’c

for all k =1,2,.... Hence, limg_,o0 (q192 - - q&)/* = G. ]

LEMMA 4. For 0 < r < 1, we can construct a space-filling curve f of the Hilbert cube H, under
which H is the image of a compact subset A of [0,1] of Hausdorff dimension r. Moreover, the
restriction of f to A is one-to-one over the image of a dense subset.
PROOF. Let G = 2V/7 > 2. Utilizing Lemma 3, we get a sequence {px} of positive integers chosen
from {[G], |G] + 1} such that

kILII;O(Plpz p)E =G

Set
q=pip2>22=2"+2,
g2 = papaps > 2° > 22 + 2,
g3 = PePrPsps > 2* > 23 + 2,
In general, for n =1,2,3,..., we set

In = Pp(n—1)+1"""DPp(n) 2 2n+1 P 2"+ 2,
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where »(0) = 0, and

n(n+3
Pn) =243+ +(n+1) = _(_5_) n=12, ..
With the sequence {g,} in hand, we can proceed as in the proof of Lemma 2 and obtain a compact

subset A of [0, 1] whose Hausdorff p-dimensional measure is

2.92...9% 927 (2'+1)
H,(4) = lim = lim i
I—oo (q1g2-- - gat)P =00 (p1p2 -+ Pyat))
2‘
92'+1/2'+3 #(2)
I=o0 (Plpz"'m(zl))p/‘p( )

It is plain that H,(A) = oo whenever GP < 2, and H,(A) = 0 whenever G? > 2. Hence,
dim A = r. The rest of the proof goes exactly as in that of Lemma 2. ]

The finite-dimensional version of Lemmas 2 and 4 has been obtained earlier. It is, however, still
open to us if the upper bound log 2™ /log(2"™ + 2) can be removed from the following statement.

LEMMA 5. (See [4, Theorem 2J; see also [12].) Let n > 2 be any positive integer and 0 < r < 1.
There exists a continuous curve f from [0,1] onto [0,1]* under which [0,1]" is the image of a
compact set A of Hausdorff dimension r. Moreover, the restriction of f to A is one-to-one over
the image of a dense subset provided 0 < r < log 2™ /log(2" + 2).

Here comes the main result of this paper.

THEOREM 6. Let 0 < r <1 and M be a compact connected manifold of dimension n, where
n=1,2,...,w. We can construct a space-filling curve f of M under which the entire manifold M
is the image of a compact subset A of [0,1] of Hausdorff dimension r. Moreover, the restriction
of f to A is one-to-one over the image of a dense subset provided 0 < r < log 2" /log(2" +2) (=1
ifdim M = w).

PROOF. Suppose M is a compact, connected manifold of dimension n (1 < n < w). Then
there exists a family of compact subsets {U;,Us,...,Un} of M in which each U; is homeo-
morphic to [0,1]%, and M C J-,intU;. Without loss of generality, we can assume by con-
nectedness of M that (U1 U---UU)NUkyy # @ for k=1,2,...,m —~ 1. There are homeomor-
phisms ki, kg, ..., by from Uy, Uy, . .., Up, onto [0, 1], and space-filling curves g1, g2, - - . , gm from
[0,1/(2m —1)},(2/(2m —1),3/(2m - 1)],...,[(2m — 2)/(2m — 1),1] onto [0, 1]*, respectively.

Suppose p; is a point in U; NUs. Let

hl—l(alaQZ:' ) == hz_l(ﬁlyﬁ27" '))

where (a1,as,...) and (61,52, ...) are in [0,1]". Note that the surjective maps

=hp;! : e
h 1 o9 [0’2m——1

- 2 3
]—)Ul and f2=h21°g2:[_277-1,——1’—2—7;7,_—-—1]_)U2

are continuous. Let (a7, a5, ...) = hy(f1(1/(2m - 1))) = g1(1/(2m — 1)) in [0, 1]™. Extend f; to
[0,3/2(2m — 1)] by setting

1 1 B
h (2m— 1 +’\2(2m_ 1)) =hi a1+ (1 - A)af, Aaz + (1 = N)ag, .. )

for 0 < A <1. In particular,

f1 (mﬁ-——l)-> = hl'l(al,az,. ) =p1.
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Similarly, let (8],05,...) = ho(f2(2/(2m —1))) = g2(2/(2m — 1)) in [0,1}*. Extend f; to
[3/2(2m —1),3/(2m — 1)] by setting

f2 <2m2—— 1 )\2(2”3— 1)) =hy' (AB1+ (1= A6, ABz + (1 — \)B,..)

for 0 < A < 1. In particular,

f2 (ﬁﬁ‘:ﬁ) =h; ' (B1,B2,...) = 1.

Therefore, f1 and f2 agree at the point of the intersection of their domains. As a result, fiU f>
is continuous from [0, 3/(2m — 1)] onto U; U Us.

In a similar manner, we can construct a continuous function f = (J.; fx from [0,1] onto M.
Moreover, there are compact subsets By of [(2k — 2)/(2m — 1), (2k — 1)/(2m — 1)] as in Lem-
mas 2, 4, or 5 such that each By is of any preassigned Hausdorff dimension r, for 0 < r < 1,
and g (By) fills up the whole of [0,1]". In case 0 < r < log2™/log(2" + 2), we can also assume
that gi is one-to-one over the image of a dense subset of By for each k =1,2,...,m.

We set

Al = Bl,
Az = g3 M (h2(U2 \ U1)) N By,

An = g'l;l(hn(Un \(U1U---UUp-1))) N B

Since hy is a homeomorphism, we see that each Cy = g,:l(hk(U;c \(U1Y---UUg-1))) N By is
an open subset of By for k = 1,2,...,n. Set A =J;_; Ax C [0,1]. Then A4 is a compact set of
Hausdorff dimension r such that f{A) = M. Moreover, the restriction of f to A is one-to-one over
the image of a dense subset of A contained in |J;-; Ck provided 0 < r < log2"/log(2" +2). §

3. TWO EXAMPLES

EXAMPLE 7. A space-filling curve of the three-dimensional cube [0, 1]3.
A space-filling curve t — (z(t), y(t), z(t)) of [0,1]? is given by writing

t = 0.t3t2 - -- in base 10 expansion

and
z(t) = 0.z1zg - -

y(t) = 0.y1y2- - } in base 2 expansion
z(t) = 0.2129 -+~

(in particular, {5 = o = Yo = 0) such that for k > 1,
(o, B,7), fO<ty—1=40+268+7<T;
(TksYks 26) = § (Th—1, V-1, Zk~1), ifty =0=tg_jorty=9=tpy;

(1—2p_1,1 = Yk—1,1 — 2k-1), ftxg =0#tg_1 08t =9%ti1.

In general, the first k digits (in base 2) of z(t), y(¢), and z(t) can be calculated in terms of the
first k digits (in base 10) of ¢t. The image of

[e<] tk
A={§W;tk=1,2,...,s, k=1,2,...}
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Figure 1. Approximating polygons of order 1(a), 2(b), and 3(c) of a space-filling curve

of [0,1] x [0,1/2] x {0, 1/4]. These figures are generated by Mathematica version 3.0
in SUN SPARC20-712.

fills up the entire cube [0,1]3. In this case, dim A = log8/log10 and f is one-to-one over the
image of a dense subset of the compact set A.

To have an idea how the Hilbert cube H = [[o>,[0,1/27~!} is filled up, we rescale our curve to
the one f(t) = (z(t), y(t)/2, 2(t)/4). In Figure 1, we draw three polygons, each of which approx-
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imates this space-filling curve within 1/2 (order 1), 1/4 (order 2), and 1/8 (order 3) uniformly
in all z-, y-, and z-directions, respectively. They are obtained by making linear interpolation for
the sets of data consisting of first one, two, and three digits of ¢, z(t), y(t), and z(t), respectively,
according to the methods described in [13] (in which we represent 1 = 0.99--- in base 10 for
convenience). '
EXAMPLE 8. A space-filling curve of the ellipsoid E = {(z,y,2) € R® : 22/a?+ 42 /b?+2%/c* = 1}
(a,b,c > 0).

We first construct a space-filling curve of the sphere § = {(z,y,2) € R® : 2% + 3% + 2* = 1}.
Let 0 <e<1and

Up={(z,9,2) € §?: ~1< z< e},
U= {(z,y,2) € 8 : —e <z < 1}.

Then {Uy, Uz} is a compact covering of S. We are going to define the homeomorphisms h; from U;
onto [0,1])2 for i = 1,2.

Consider the stereographic projections P; : U; — D via the north pole (when i = 1) and the
south pole (when i = 2), respectively, where

D={(a,b)€]R2:a2+b2si+Z}.

It is easy to see that

z Yy T y
Pl(z'/y!z):(l_-z,'l—:_z) and Pg(:z,y,z)z (m’m)'

The next step is to consider the circle-to-square map

[T
b = 1 T@nle @t T #0.0),

(0,0), if (a,) = (0,0),

where

(@, b)llz = Va2 +b>  and  ||(a,b)llec = max{lal, bl}-

It is plain that the map
1 /1—¢ 11
h = - ! - =
(a,b) 3 1+Eh(a,b)+(2,2)

is a homeomorphism from D onto [0, 1]2. Consequently, i; = ho P; is a homeomorphism from U;
onto [0,1]% for i = 1,2.

Let g : [0,1] — [0,1]2 be a space-filling curve. For instance, we can take g to be the one given
by Lemma 5 as in [4, Example 3]. More precisely, the space-filling curve g(t) = (z(t), y(t)) is
given by writing

t = 0.tito--- in base 6 expansion

and
z(t) = 0zyza - -

y(t) = 0.y1y2- -
(in particular, tg = z¢ = yo = 0) such that for k > 1,

} in base 2 expansion

(o, B), fO<ty~1=2a+B<3;
(@ ¥k) = § (Tk—1,Yk—1), iftk =0=tg_y ortpg =5=1tk_1;
(1 —2p-1,1 —yk—1), itk =0%#tg_yortpx =5 F 1.
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Then g(A) = [0,1]? for the compact set A = {3 oo, te/6* : tx = 1,2,3,4, k = 1,2,...} of
Hausdorff dimension log 4/log 6. Moreover, g is one-to-one over the image of a dense subset of A.
Let
fi: [0,1/3] - U, and fa: [2/3,1} — Us
be defined by
filt) =hi'(g(3t)) and  fa(t) = h3'(g(3 - 3t)).

Following the proof of Theorem 6, we observe that

hify (%) = hafo (g) = g(1) = (1,1) € 0,17, (\/g \/%,o) €U,
() ) ()

We can extend f; from [0,1/3] to [0,1/2] and f2 from [2/3,1] to [1/2,1] by setting
1 1 1 /1-¢ 1 1 /1-¢ 1
Z Y=rtl(- 1 = —). = Z
f1<3+A6> 1 (( A) - +/\( T 2),(1 Ay -1+ A (2 1+e+2))
1—¢
ST = ]
and similarly,

/1 )\ 1-¢
f2<_~)\) hz (1—_+ 1+e —2- 1+e)

for 0 < A < 1. In this way, f1(1/2) = f2(1/2) = (1/1/2,4/1/2,0) and we have a continuous map
f = f1U f2 from [0,1] onto S. Suppose

f@t) = (=(t),y(t), 2(¢)),  for t € [0,1].

and

Then, the map

9(t) = (az(t), by(t), cz(t))
is a space-filling curve of the ellipsoid E. Moreover, g maps the (log4)/(log 6)-dimensional com-
pact set A onto E such that g is one-to-one over the image of a dense subset of A.

(a) 1-0.5

Figure 2. Approximating polygons of order 2(a), 3(b), 4(c), and 5(d) of the lower
half of a space-filling curve of the ellipsoid %2 + 4y? + 162% = 1. These figures are
generated by Mathematica version 3.0 in SUN SPARC20-712.
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Figure 2. (cont.)

In Figure 2, we draw approximating polygons of g when a = 2b = 4c = 1 and ¢ = 0 for
demonstration. To make the picture more easily to be visualized, only the lower hemiellipsoid
is shown. Note that setting ¢ = 0 (for simplicity) in this case is still good enough for our task
(either by direct observation or arguing by uniformity).
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