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a b s t r a c t

We prove that each OBDD (ordered binary decision diagram) for the middle bit of n-bit
integermultiplication for one of the variable orderswhich so far achieve the smallest OBDD
sizes with respect to asymptotic order of growth, namely the pairwise ascending order
x0, y0, . . . , xn−1, yn−1, requires a size ofΩ(2(6/5)n). This is asymptotically optimal due to a
bound of the same order by Amano and Maruoka (2007) [1].

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

OBDDs (ordered binary decision diagrams) are a graphical representation for boolean functions with strong algorithmic
properties that are used in a wide range of applications, most prominently in hardware verification. For a thorough
introduction into practical and theoretical aspects of this model, see, e.g., Wegener’s monograph [8].

Definition 1. Let X = {x1, . . . , xn} be a set of variables and let π be a permuted list of the variables in X called a variable
order. An OBDD (ordered decision diagram) on X with respect to π is a directed graph with the following properties. The graph
has a designated start node and sinks labeled by the boolean constants 0 or 1. Each internal node is labeled by a variable
from X and has two outgoing edges labeled by 0 and 1, resp. For each path in the graph, the sequence of variables at its
nodes is required to be a subsequence of π . Each node v in the OBDD represents a boolean function fv: {0, 1}n → {0, 1} in
the following way. A given input a ∈ {0, 1}n defines a path from v to one of the sinks where each node labeled by variable xi
is left via the edge labeled by ai. The output fv(a) equals the label of the reached sink. The size of the OBDD is the number
of its nodes. The function represented by the OBDD is the function represented by its start node. Finally, the OBDD size of a
boolean function is the minimum size of an OBDD representing it.

The size of an OBDD directly corresponds to its storage requirement. Furthermore, the run time for basic operations on
boolean functions represented by OBDDs such as applying boolean operations is a polynomial in the size of the involved
OBDDs. For applications of OBDDs, size is therefore the decisive parameter. Several practically important functions have
OBDDs of a small polynomial size in the input length, at least if an appropriate variable order is chosen, while others require
an exponential size regardless of the variable order.
Integer multiplication is obviously a highly practically relevant function while at the same time it is also a notoriously

difficult benchmark problem for representations of boolean functions like OBDDs and a well-known bottleneck in the
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verification of arithmetic circuits. More precisely, we are interested in the binary encoding of integer multiplication defined
as follows.

Definition 2. For nonnegative integers with binary representations x, y ∈ {0, 1}n, let (z2n−1, . . . , z0) ∈ {0, 1}2n denote the
binary representation of their product. Then the ith output bit of n-bit multiplication, for i ∈ {0, . . . , 2n − 1}, is defined by
MULi,n(x, y) := zi.

At the time of writing, even representing all the output bits of 16-bit multiplication in a single OBDD is still a challenging
task for standard PC hardware (it requires more than 3GB of storage and a clever, non-standard implementation of the
algorithms [11]). It is known from experiments that one of the problems is that the different output bits of this function have
very different optimal variable orders. One could therefore hope that we can at least represent the output bits by separate
OBDDs of a moderate size if the variable order is chosen appropriately, which would be sufficient for many applications.
Bryant took the first step in destroying this hope by proving that OBDDs for the middle bit of multiplication, MULn−1,n,

require an exponential sizeΩ(2n/8) for any variable order. He also motivated looking at the middle bit by the fact that, by
reductions, lower bounds for it also imply lower bounds of a similar size for MULi,n with i close to n − 1. A more profane
motivation is that due to symmetry properties, one can hope that lower bounds are easier to obtain than for other bits.
Experiments indicate that themost difficult bit of integermultiplication (with respect to OBDD size) is in fact not themiddle
bit, but some yet unknown bit with a higher index.
Introducing a new technique based on universal hashing, Woelfel [10] managed to improve Bryant’s lower bound for

MULn−1,n considerably to 2bn/2c/61 − 4. Furthermore, he also showed the first nontrivial upper bound of size 7/3 · 2(4/3)n,
choosing the variable order x0, . . . , xn−1, y0, . . . , yn−1. Amano and Maruoka [1] improved the upper bound to 2.8 · 2(6/5)n
even for quasi-reduced OBDDs, i.e. OBDDs where on each path from the start node to a sink, all variables have to appear.
For this, they used the variable order x0, y0, . . . , xn−1, yn−1. Based on a comparison with the optimal sizes of quasireduced
OBDDs for input lengths up to n = 12, they conjectured that their result is in fact asymptotically optimal. Further papers
have dealt with the complexity of the middle bit of multiplication for more general models than OBDDs [5,7,9] or most
recently with the OBDD size of the most significant bit [2–4].
Despite the considerable amount of research dealing with the complexity of the middle bit function, the gap between

lower and upper bounds for its OBDD size is still large. Applying the best known lower bound due to Woelfel to the most
important input lengths today, n = 32 and n = 64, yields that 1071 nodes and 70.4 million nodes, resp., are required.
These numbers are both too small to explain why we still cannot construct the respective OBDDs using current standard PC
hardware. (E.g., the usual representation of an OBDD node consists of three pointers, a reference count, and some boolean
flags, which on a 32-bit operating system all fit into 16 bytes. Assuming 2 GB of memory leads to manageable OBDD sizes
in the order of 108.)
The contribution of this paper is to show that the upper bound of Amano and Maruoka is in fact asymptotically optimal

for the order chosen by them, which is also one of the orders which so far achieve the smallest OBDD sizes with respect to
an asymptotic order of growth. More precisely, we obtain:

Theorem 3. The size an OBDD with variable order x0, y0, . . . , xn−1, yn−1 for MULn−1,n is at least (3− 2
√
2)/4 · 23b(2/5)nc − 1.

Thus, for n = 32 already more than 2.9 billion nodes are required. For n = 64, the bound is larger than 1.62 × 1021.
These numbers surely explain why we cannot construct the corresponding OBDDs for this variable order, and we are only
left with the possibility that there are considerably better variable orders.
We remark that the lower bound in Theorem 3 does not follow in an obviousway by just ‘‘fine-tuning’’ the known results.

This is ruled out by the observation of Woelfel [10] that any lower bound that is obtained by setting all variables of one of
the factors of multiplication to constants, which is true for all previous proofs, can only be of order O(2n/2).
The rest of the paper is organized as follows. We first introduce some notation and general lemmas in the next section.

We then state twomain lemmas and apply them to prove Theorem 3 (Section 3). Finally, in Sections 4 and 5, we prove these
main lemmas. We conclude with OBDD sizes of MULn−1,n for different variable orders determined by experiments.

2. Preliminaries

For a nonnegative integer x represented by the boolean vector (xn−1, . . . , x0) in binary and ` ≤ h, let [x]h` be the number
represented by (xh, . . . x`) in binary and let [x]` = x`. For integers x, ywith y 6= 0, let x div y := bx/yc.
We use the following number theoretic facts which are easy to verify.

Proposition 4. (1) For integers x and i, n with i ∈ {0, . . . , n− 1}, (x mod 2n) div 2i = [x]n−1i = (x div 2i) mod 2n−i.
(2) Let x and m, y > 0 be integers such that y divides m. Then (xy) mod m = y · (x mod (m/y)).
(3) Let x, y and d′ ≥ d > 0 be integers such that d divides d′. Then (dx+ y) div d′ = (x+ y div d) div (d′/d).
(4) Let x, y and d > 0 be integers. Then x div d = y div d implies that |x− y| < d.
(5) Let x ≥ 0 and d > 0 be integers. Then x div d = 0 iff x < d.
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For any integer m ≥ 2, let Zm be the ring of integers modulo m and let Z∗m denote the set of their invertible elements
with respect to multiplication. It is a well-known fact that Z∗m = {x | x ∈ Zm, gcd(x,m) = 1}.
For any boolean function f : {0, 1}n → {0, 1} defined on variables from X = {x1, . . . , xn} and some partial assignment a

to a subset X ′ ⊆ X of the variables, we use f |a to denote the subfunction of f that is obtained by fixing the variables in X ′
according to a.
Finally, we apply the well-known method for proving lower bounds on the size of OBDDs in the following form (a proof

is given in [10]).

Lemma 5. Let G be a π-OBDD representing the function f : {0, 1}n → {0, 1}. Let s be the number of subfunctions of f obtained
by setting a fixed number of variables according to π to constants. Then |G| ≥ 2s− 1.

3. Main lemmas and proof of Theorem 3

We first state two main lemmas and then combine them for proving the main theorem of the paper. Before we give the
details, we present an outline of the whole proof.
Our general plan is straightforward: For an appropriately chosen i ∈ {1, . . . , n}, we count the number subfunctions of

MULn−1,n resulting from setting the variables x0, y0, . . . , xi−1, yi−1 to constants in all possibleways and then apply Lemma 5.
The counting of subfunctions is done with the aid of the two main lemmas.
We start with the observation of Amano and Maruoka [1] that, due to the structure of the multiplication problem, an

upper bound on the number of subfunctions (MULn−1,n)|a,b for assignments a, b ∈ {0, 1}i to the variables x0, . . . , xi−1 and
y0, . . . , yi−1, resp., is given by the number the triples ([a]n−i−10 , [b]n−i−10 , [ab]n−1i ). As our first main lemma, we prove that
this characterization is in fact almost one-to-one, namely the number of subfunctions is also lower bounded by half of the
number of these triples. The proof is by elementary number theoretic arguments and is given in Section 4.
It thus suffices to prove a strong enough lower bound on the number of triples of this form. This can be done by fixing

the first two components in an arbitrary way and then lower bounding the number of third components that are still
possible. Our second main lemma says that, for i ≥ (3/5)n, there is a constant fraction of all 22(n−i) assignments to the
first components such that a constant fraction of all 2n−i possible third components appear. Thus, we get at least c · 23(n−i)
triples altogether, c > 0 a constant, giving the desired lower bound of order 2Ω((6/5)n) for i = (3/5)n.
For the proof of the second main lemma, we use arguments from the theory of hashing, following the approach of

Woelfel [10]. For assignments ã := [a]n−i−10 and b̃ := [b]n−i−10 to the first two components of the considered triples, the
third component computes the hash function h̃a,̃b mapping the remaining bits of a and b, u := [a]

i−1
n−i and v := [b]

i−1
n−i, to

h̃a,̃b(u, v) := [(u2
n−i
+ ã)(v2n−i + b̃)]n−1i . By showing that an average hash function of this kind has only few collisions,

where the average is over the choices for ã and b̃, we then get that there must be a large portion of such functions with a
large range. The details of this are given in Section 5.
We now prepare the statement of the first main lemma by presenting the fact used by Amano and Maruoka [1] as the

basis for their upper bound on the size of OBDDs for the middle bit of multiplication.

Proposition 6 ([1]). Let n/2 ≤ i ≤ n− 1. Let a, b ∈ {0, . . . , 2i − 1}, which we regard as assignments to the i least significant
bits of each of the two factors of n-bit multiplication. Then, for any x, y ∈ {0, . . . , 2n−i − 1}, regarded as assignments to the
remaining bits of the factors,

(MULn−1,n)|a,b(x, y) = [(x2i + a) · (y2i + b)]n−1 =
[
[a]n−i−10 y+ [b]n−i−10 x+ [ab]n−1i

]
n−i−1.

For the sake of completeness, we include the simple proof.

Proof. First, using that i ≥ n/2 and Proposition 4, we get:

[(x2i + a) · (y2i + b)]n−1i =
((
xy22i + (ay+ bx)2i + ab

)
mod 2n

)
div 2i

i≥n/2
=

((
(ay+ bx)2i + ab

)
mod 2n

)
div 2i

Proposition 4,(1)+(3)
=

(
ay+ bx+ (ab) div 2i

)
mod 2n−i

Proposition 4, (1)
=

(
[a]n−i−10 y+ [b]n−i−10 x+ [ab]n−1i

)
mod 2n−i.

Hence, again by Proposition 4, part (1),

[(x2i + a) · (y2i + b)]n−1 =
((
[a]n−i−10 y+ [b]n−i−10 x+ [ab]n−1i

)
mod 2n−i

)
div 2n−i−1

=
[
[a]n−i−10 y+ [b]n−i−10 x+ [ab]n−1i

]
n−i−1. �
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Due to this proposition, the number of subfunctions of MULn−1,n obtained by fixing the variables x0, y0, . . . , xi−1, yi−1 in
an arbitrary way is upper bounded by the number of triples ([a]n−i−10 , [b]n−i−10 , [ab]n−1i ) for assignments a, b ∈ {0, 1}i. This
clearly gives an upper bound on the size of the respective level of nodes in an OBDD and even quasireduced OBDD. Following
the outline at the beginning, here wewant a lower bound on the number subfunctions in terms of the number of triples. This
is exactly what our first main lemma provides.
For what follows, let n/2 ≤ i ≤ n − 1. For a, b, c ∈ {0, . . . , 2n−i − 1} and x, y ∈ {0, . . . , 2n−i − 1} define fa,b,c(x, y)

:= [ay+ bx+ c]n−i−1.

Main Lemma 1. Let n/2 ≤ i ≤ n − 1. Let a, b, c, a′, b′, c ′ ∈ {0, . . . , 2n−i − 1} be given with a, b, a′, b′ odd and (a, b, c) 6=
(a′, b′, c ′). Then fa,b,c = fa′,b′,c′ implies a′ ≡ −a mod 2n−i, b′ ≡ −b mod 2n−i and c + c ′ ≡ 2n−i−1 − 1 mod 2n−i.

For a, b ∈ {0, 1}i define g(a, b) :=
(
[a]n−i−10 , [b]n−i−10 , [ab]n−1i

)
∈ {0, 1}3(n−i).

Corollary 1. Let S ⊆ {(a, b) | a, b ∈ {0, . . . , 2i − 1}, a, b odd}. Then the number of different subfunctions (MULn−1,n)|a,b with
(a, b) ∈ S, where a, b are regarded as assignments to the i least significant bits of the two factors of n-bit multiplication, is at
least |g(S)|/2.

Proof. Let (a, b) ∈ S and x, y ∈ {0, . . . , 2n−i − 1}. By Proposition 6 and the definitions,

(MULn−1,n)|a,b(x, y) =
[
[a]n−i−10 y+ [b]n−i−10 x+ [ab]n−1i

]
n−i−1 = f̃a,̃b,̃c(x, y),

with ã := [a]n−i−10 , b̃ := [b]n−i−10 , and c̃ := [ab]n−1i . By Main Lemma 1, there are at most two different triples (̃a, b̃, c̃)
that yield the same function f̃a,̃b,̃c . Hence, the number of considered subfunctions of MULn−1,n is at least half the number of
different triples (̃a, b̃, c̃) belonging to (a, b) ∈ S, and the latter is exactly |g(S)|. �

Given this lemma and its corollary, we know that in order to lower bound the number of subfunctions obtained by fixing
x0, y0, . . . , xi−1, yi−1, it suffices to count the number of triples

(
[a]n−i−10 , [b]n−i−10 , [ab]n−1i

)
∈ {0, 1}3(n−i). For this, we look

at the multiplications in the third components as hash functions, as indicated in the outline at the beginning. Let

U := {(x, y) | x, y ∈ {0, . . . , 22i−n − 1}}.

For a, b ∈ {0, . . . , 2n−i − 1} and (x, y) ∈ U , define ha,b:U → {0, . . . , 2n−i − 1} by

ha,b(x, y) := [(x2n−i + a) · (y2n−i + b)]n−1i .

We then show that there is a constant fraction of all possible (a, b) (the settings to [a]n−i−10 , [b]n−i−10 in our original problem)
for which the size of the range of the hash function ha,b is a constant fraction of all possible values (the number of different
[ab]n−1i in our original problem).

Main Lemma 2. Let (3/5)n ≤ i ≤ (2/3)n. Let α ∈ (0, 1]. Then there is a set A ⊆ {(a, b) | a, b ∈ {0, . . . , 2n−i − 1}, a, b odd}
with |A| ≥ (1− α) · 22(n−i−1) such that for all (a, b) ∈ A, |ha,b(U)| ≥ (α/(1+ α)) · 2n−i.

Corollary 1 and Main Lemma 2 together yield our main result.

Proof of Theorem 3. We choose i := d(3/5)ne and consider the subfunctions of MULn−1,n obtained by fixing x0, y0, . . . ,
xi−1, yi−1. By Lemma 5 and Corollary 1, the number of these subfunctions is at least half the number of different triples(
[a]n−i−10 , [b]n−i−10 , [ab]n−1i

)
with a, b ∈ {0, . . . , 2i − 1} odd. Using Main Lemma 2, the number of subfunctions can thus be

lower bounded by

1
2
(1− α)22(n−i−1) ·

α

1+ α
2n−i = (1− α)

α

1+ α
1
8
23(n−i)

for any α ∈ (0, 1]. We maximize the function f (α) := (1− α) · α/(1+ α) for α ∈ (0, 1] by choosing α :=
√
2− 1, which

gives f (α) = 3− 2
√
2 and thus a lower bound on the number of subfunctions of

3− 2
√
2

8
23(n−i).

Applying Lemma 5 and substituting i = d(3/5)ne, we get that the size of the OBDD is at least

3− 2
√
2

4
23b(2/5)nc − 1. �

The constant in front of the term of the largest order in the lower bound can be improved by summing the sizes
of individual levels in the OBDD consisting of nodes labeled by the same variable. Given that this only yields small
improvements of the bound, we refrain from carrying out the details.
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4. Proof ofMain Lemma 1

In this and the next section, we prove the two main lemmas that we have stated and already applied in the previous
section.

Proof of Main Lemma 1. Throughout the proof, we simply write ‘‘≡’’ for equivalence modulo 2n−i. Let a, b, c, a′, b′, c ′ ∈
{0, . . . , 2n−i − 1}with a, b, a′, b′ odd be given such that fa,b,c = fa′,b′,c′ . We show that then either a ≡ a′, b ≡ b′, and c ≡ c ′
(implying that even a = a′, b = b′ and c = c ′) or a′ ≡ −a, b′ ≡ −b, and c + c ′ ≡ 2n−i−1 − 1.
For any u, v, w ∈ {0, . . . , 2n−i − 1}, let f̃u,v,w(x, y) = (uy+ vx+w) mod 2n−i. Let N := 2n−i−1 and L := {0, . . . ,N − 1}.

We observe that

fu,v,w(x, y) = [(uy+ vx+ w) mod 2n−i]n−i−1 = 0⇔ f̃u,v,w(x, y) ∈ L.

Due to the assumption that fa,b,c = fa′,b′,c′ , for any x, y ∈ {0, . . . , 2n−i − 1},

f̃a,b,c(x, y) ∈ L⇔ f̃a′,b′,c′(x, y) ∈ L. (1)

In what follows, we apply this fact for y = 0 and show that either b ≡ b′ and c ≡ c ′ or b ≡ −b′ and c + c ′ ≡ 2n−i−1 − 1.
We get an analogous conclusion for a, a′ instead of b, b′ by working with x = 0 instead of y = 0. Since c + c ′ ≡ 2n−i−1 − 1
implies that c 6≡ c ′, this altogether proves the lemma.
Since b is odd and thus gcd(b, 2n−i) = 1, its multiplicative inverse b−1 in Z2n−i exists. For j = 0, . . . ,N − 1, we can

therefore define xj := (b−1(j− c)) mod 2n−i. Then

f̃a,b,c(xj, 0) = (bxj + c) mod 2n−i ≡ j ∈ L, for j = 0, . . . ,N − 1. (2)

Furthermore, we have b′ ≡ b̃b for b̃ := (b−1b′) mod 2n−i, which is again an odd number. Hence, setting c̃ := c ′− c̃b, we get

b′xj + c ′ ≡ b̃bxj + c̃ + c̃b = (bxj + c )̃b+ c̃ = j · b̃+ c̃

and thus

f̃a′,b′,c′(xj, 0) = (b′xj + c ′) mod 2n−i ≡ j · b̃+ c̃, for j = 0, . . . ,N − 1.

Furthermore, due to (1) and (2),

(j · b̃+ c̃) mod 2n−i ∈ L, for j = 0, . . . ,N − 1. (3)

In particular, (0 · b̃ + c̃) mod 2n−i = c̃ mod 2n−i ∈ L. Hence, there is a unique k ∈ Z such that c̃ − k2n−i ∈ L. We now
distinguish the following two cases.
Case 1, b̃ ≤ 2n−i−1: We first prove by induction on j that

(j · b̃+ c̃) mod 2n−i = j · b̃+ c̃ − k2n−i, for j = 0, . . . ,N − 1. (4)

By the preceding remarks, we have (0 · b̃ + c̃) mod 2n−i = c̃ − k2n−i. Now suppose that, for some j ∈ {0, . . . ,N − 1},
(j · b̃+ c̃) mod 2n−i = j · b̃+ c̃ − k2n−i. We additionally know from (3) that j · b̃+ c̃ − k2n−i ∈ L. Using the assumption of
Case 1, it follows that (j + 1)̃b + c̃ − k2n−i ∈ {0, . . . , 2n−i − 1} and thus ((j + 1)̃b + c̃) mod 2n−i = (j + 1)̃b + c̃ − k2n−i,
completing the proof of (4).
Observe that b̃ is an integerwith b̃ ≥ 1. Using (4), it follows that themapping j 7→ (j ·̃b+ c̃) mod 2n−i is strictly increasing

for j = 0, . . . ,N− 1. Additionally, its image on the domain L = {0, . . . ,N− 1} is contained in the set L. This is only possible
for b̃ = 1 and 0 = c̃ = c ′ − c̃b = c ′ − c.
Case 2, b̃ > 2n−i−1: We have b̃ ≡ −b mod 2n−i for b = 2n−i − b̃. We observe that 0 ≤ b < 2n−i−1 is an odd integer.

Analogously to the first case, we prove by induction that

(j · (−b)+ c̃) mod 2n−i ≡ j · (−b)+ c̃ − k2n−i, for j = 0, . . . ,N − 1. (5)

As in the first case, this is satisfied for j = 0, since (0 · (−b)+ c̃) mod 2n−i = c̃ − k2n−i. Now suppose that the above holds
for some j ∈ {0, . . . ,N − 1}. Since j · (−b)+ c̃ − k2n−i ∈ L, it follows that

(j+ 1)(−b)+ c̃ − k2n−i = j · (−b)+ c̃ − k2n−i − b ∈ {−2n−i−1 + 1, . . . , 2n−i−1 − 1}.

Hence, either ((j+ 1)(−b)+ c̃) mod 2n−i 6∈ L or

((j+ 1)(−b)+ c̃) mod 2n−i = (j+ 1)(−b)+ c̃ − k2n−i.

Since (j(−b) + c̃) mod 2n−i ∈ L for all j = 0, . . . ,N − 1, the former case can only occur for j = N − 1. Hence, we have
proved (5).
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Since b ≥ 1, it follows from (5) that the mapping j 7→ (j(−b)+ c̃) mod 2n−i is strictly decreasing for j ∈ L, with its image
on the domain L contained in L. Hence, b̃ ≡ −b = −1 and c̃ ≡ 2n−i−1 − 1 ≡ c ′ − c̃b ≡ c ′ + c . �

5. Proof ofMain Lemma 2

We complete the proof of the main result by proving the second main lemma. Recall the following definitions from
Section 3. We let

U := {(x, y) | x, y ∈ {0, . . . , 2m − 1}}

and for a, b ∈ {0, . . . , 2n−i − 1}, ha,b:U → {0, . . . , 2n−i − 1} is defined for (x, y) ∈ U by

ha,b(x, y) := [(x2n−i + a) · (y2n−i + b)]n−1i .

We restate the second main lemma for the convenience of the reader.

Main Lemma 2 (Restatement). Let (3/5)n ≤ i ≤ (2/3)n. Let α ∈ (0, 1]. Then there is a set A ⊆ {(a, b) | a, b ∈
{0, . . . , 2n−i − 1}, a, b odd} with |A| ≥ (1− α) · 22(n−i−1) such that for all (a, b) ∈ A, |ha,b(U)| ≥ (α/(1+ α)) · 2n−i.

For what follows, it first suffices to consider values of iwith n/2 ≤ i ≤ n− 1. Furthermore, we definem := 2i− n. As the
first step of the proof of the lemma, we rewrite the product occurring in the definition of ha,b(x, y) in a more suitable way.

Proposition 7. For a, b ∈ {0, . . . , 2n−i − 1} and x, y ∈ {0, . . . , 2m − 1},

[(x2n−i + a) · (y2n−i + b)]n−1i =
((
xy2n−i + ay+ bx+ (ab) div 2n−i

)
mod 2i

)
div 2m.

Proof. The proof is similar to that of Proposition 6. To get a high-level idea why the proposition is correct, we first expand
the product:

[(x2n−i + a) · (y2n−i + b)]n−1i =
[
xy22(n−i) + (ay+ bx)2n−i + ab

]n−1
i .

Now observe that the least significant n − i bits in the first two summands within the brackets are zero and thus no carry
can be generated together with the corresponding bits of the last summand. Furthermore, the brackets remove the least
significant i bits of the result and i ≥ n− i (since by assumption i ≥ n/2). Hence, the least significant n− i bits of all three
summands are irrelevant for the overall result and each of these summands can be ‘‘shifted right’’ by n − i places using a
‘‘div’’. It remains to adjust the range of bits selected by the brackets to reflect this shift and finally to replace the brackets by
appropriate ‘‘div’’ and ‘‘mod’’ operations.
More formally,

[(x2n−i + a) · (y2n−i + b)]n−1i =

((
xy22(n−i) + (ay+ bx)2n−i + ab

)
mod 2n

)
div 2i

Proposition 4, (2)
=

((
2n−i

(
(xy2n−i + ay+ bx) mod 2i

)
+ ab

)
mod 2n

)
div 2i

Proposition 4, (1)
=

((
2n−i

(
(xy2n−i + ay+ bx) mod 2i

)
+ ab

)
div 2i

)
mod 2n−i

Proposition 4, (3)
=

((
(xy2n−i + ay+ bx) mod 2i + (ab) div 2n−i

)
div 2m

)
mod 2n−i.

For the last line, we have used that i ≥ n− i. Due to the fact that (ab) div 2n−i < 2n−i ≤ 2i, we can rewrite the last line as[((
xy2n−i + ay+ bx+ (ab) div 2n−i

)
mod 2i

)
div 2m

]
mod 2n−i.

Since the term in the brackets is smaller than 2i−m = 2n−i, the outermost ‘‘mod’’ operation can be removed, giving the
desired result. �

By Proposition 7, we thus have

ha,b(x, y) =
(
(xy · 2n−i + ay+ bx+ (ab) div 2n−i) mod 2i

)
div 2m.

LetH := {ha,b | a, b ∈ {0, . . . , 2n−i − 1}, a, b odd}.
Our aim is to show that a constant fraction of the functions in H have a range whose size is a constant fraction of the

number of all possible values.We do this indirectly by using a variant ofWoelfel’s technique [10] based on universal hashing.
The key observation is that a function h ∈ H has a large range if it has a small number of collisions, i.e., pairs of different
arguments from U mapped to the same value.
In the construction of [10], output bits of multiplication with index equal to or below the middle bit are used. The

respective class of hash functions considered there is universal, meaning that for each pair of different arguments from
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the universe, a random function of this class induces a collision on the chosen pair only with probability 1/r , r the size of
the range of the hash functions.
Our hash functions inH compute the output bits of the i-bit multiplication of (a, x) and (b, y), a, b ∈ {0, . . . , 2n−i − 1}

and x, y ∈ {0, . . . , 2m − 1}, with indices i, . . . , n − 1, i.e., above the middle bit. Different from the hash class of [10], this
class is not universal. The probability of a random hash function inducing a collision cannot even be bounded by c/r , c ≥ 1
a constant and r = 2n−i the size of the range of the hash functions (consider, e.g., the input pairs (x, y) := (0, 0) and
(x′, y′) := (0, 1), for which ha,b with any a < 2m−1 and an arbitrary b induces a collision). It is not obvious however whether
choosing a smaller universe could not repair this.
We do not try to enforce universality of the considered class of hash functions. Instead, we observe that it is in fact

sufficient for our purposes that the average number of collisions over all functions fromH is small.

Definition 8. LetH be a class of functions U → R, U and R finite. For h ∈ H , define its collision number c(h) as the number
of pairs of different values from U that are mapped to the same value by h. Let c(H), the average number of collisions of H ,
be defined by c(H) := (1/|H |)

∑
h∈H c(h).

Obviously, we always have the trivial bound c(H) ≤
(
|U|
2

)
= Θ(|U|2). It turns out that in order to prove our second

main lemma, we need a much better upper bound, namely of order |U|. The key ingredients for proving such a bound are
summarized in the following lemma, in which we investigate the conditions under which different elements from U can
collide under a given function fromH . The second part of this is a weaker form of the universality property of hash classes,
while the additional first part is required here to get a sufficiently good bound.

Lemma 9. Let n/2 ≤ i ≤ (2/3)n. For k ∈ {0, . . . ,m − 1} let c, d be such that |c|, |d| ∈ {0, . . . , 2m−k − 1} and such that c
is odd.

(1) Let a, b ∈ {0, . . . , 2n−i − 1}, a, b odd. Let x, x′ ∈ {0, . . . , 2m − 1} with x′ − x = c2k. Then there are at most 2k values
y ∈ {0, . . . , 2m − 1} such that for y′ := y+ d2k with y′ ∈ {0, . . . , 2m − 1}, ha,b(x, y) = ha,b(x′, y′).

(2) Let (x, y), (x′, y′) ∈ U with x′− x = c2k and y′− y = d2k. Then at most a fraction of 2−(2n−3i+k) of the functions in H map
(x, y) and (x′, y′) to the same value.

The same holds if the roles of x, x′ and y, y′ are exchanged.

Proof. The statement at the end of the lemma obviously follows from the symmetry of the definition of the functions inH .
Part (1): Let a y ∈ {0, . . . , 2m−1} be given and let y′ := y+d2k ∈ {0, . . . , 2m−1}. By the definition of ha,b, Propositions 4

and 7, part (4), ha,b(x, y) = ha,b(x′, y′) implies that there is an integer ewith |e| < 2m such that

(x′y′ − xy) · 2n−i + a(y′ − y)+ b(x′ − x) ≡ e mod 2i. (∗)

W.l.o.g. (by swapping x, ywith x′, y′), we may even assume that e ≥ 0. Using that x′ = x+ c2k and y′ = y+ d2k, we get

(x′y′ − xy) · 2n−i + a(y′ − y)+ b(x′ − x) = (dx2k + cy2k + cd22k) 2n−i + ad2k + bc2k

= cy2n−i+k + dx2n−i+k + r,

with r := ad2k + bc2k + cd2n−i+2k.
Hence, (∗) is equivalent to

cy2n−i+k + dx2n−i+k ≡ e− r mod 2i.

We observe that the left hand side of this congruence is divisible by 2n−i+k and that, since k < m = 2i − n, we have
n− i+ k < n− i+m = i. Therefore, the congruence can only hold if also e− r is divisible by 2n−i+k. Since 0 ≤ e < 2m and
m ≤ n− i by the assumption that i ≤ (2/3)n, e− r ≡ 0 mod 2n−i+k implies that the value of e is fixed given a, b, c, d and k
and thus r .
Assuming that e− r ≡ 0 mod 2n−i+k, the above congruence is equivalent to

cy+ dx ≡ (e− r)2−(n−i+k) mod 2m−k.

Since c is odd and thus gcd(c, 2m−k) = 1, the multiplicative inverse c−1 of c in Z2m−k exists and we can solve the above for y,
getting

y ≡ c−1((e− r)2−(n−i+k) − dx) mod 2m−k.

Since y ∈ {0, . . . , 2m − 1} and e are already fixed by choosing a, b, c, d and k, this means that there are at most 2k suitable
values for y. Hence, for a fixed a, b and given the distances x′ − x = c2k and y′ − y = d2k, there are at most 2k choices for y
such that (x, y) and (x′, y′) collide under ha,b.
Part (2): By the assumptions for this part, x′− x = c2k and y′− y = d2k for k ∈ {0, . . . ,m−1}, c ∈ Z∗

2m−k
, and d ∈ Z2m−k .

In the proof of the first part, is has been shown that ha,b(x, y) = ha,b(x′, y′) only if

r = ad2k + bc2k + cd2n−i+2k ≡ e mod 2n−i+k
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for some ewith 0 ≤ e < 2m. Since(
ad2k + bc2k + cd2n−i+2k

)
mod 2n−i+k =

(
(ad+ bc) mod 2n−i

)
· 2k,

applying part (5) of Proposition 4 yields that this is equivalent to((
(ad+ bc) mod 2n−i

)
· 2k
)
div 2m =

(
(ad+ bc) div 2m−k

)
mod 2n−i−(m−k) = 0.

By the assumption i ≤ (2/3)n, we have n− i− (m− k) ≥ 0. Since the statement of part (2) is trivially true if i = (2/3)n and
k = 0, wemay also assume that n− i−(m−k) > 0. Let a = s2m−k+t and b = u2m−k+vwith s, u ∈ {0, . . . , 2n−i−(m−k)−1},
t, v ∈ {0, . . . , 2m−k − 1}, t, v odd. Then the above is equivalent to

ds+ cu+ r ′ ≡ 0 mod 2n−i−(m−k),

with r ′ := (dt + cv) div 2m−k. Since gcd(c, 2n−i−(m−k)) = 1, c−1 ∈ Z∗
2n−i−(m−k)

exists and we can solve the congruence for u,
giving

u ≡ c−1(−ds− r ′) mod 2n−i−(m−k).

Thus, given c, d, s, t, v and k, u is completely fixed. The fraction of functions inH inducing a collision for two different keys
can thus be upper bounded by 2−(n−i−(m−k)) = 2−(2n−3i+k). �

We now apply the previous lemma to bound the average number of collisions of the classH .

Lemma 10. Let n/2 ≤ i ≤ (2/3)n. Then c(H) ≤ 29i−5n − 25i−3n.

Proof. We obtain the average number of collisions ofH by summing over all pairs of different arguments (x, y), (x′, y′) ∈ U
the fraction of functions that map these keys to the same value. We first take a closer look at the pairs of arguments over
which this sum extends. If (x, y) 6= (x′, y′), then x′ − x 6= 0 or y′ − y 6= 0. It follows that there is a k ∈ {0, . . . ,m− 1} such
that 2k = gcd(x′ − x, y′ − y, 2m). Furthermore, there are c, d ∈ Z2m−k , where at least one of the numbers c, d is odd, such
that x′ − x = c2k and y′ − y = d2k. Now let

α :=

m−1∑
k=0

∑
c∈Z∗

2m−k

∑
x,x′∈Z2m ,

|x−x′ |=c2k

∑
d∈Z2m−k

∑
y,y′∈Z2m ,

|y−y′ |=d2k

1
|H |

∑
a,b∈Z∗

2n−i

[ha,b(x, y) = ha,b(x′, y′)],

β :=

m−1∑
k=0

∑
c∈Z2m−k
even

∑
x,x′∈Z2m ,

|x−x′ |=c2k

∑
d∈Z∗

2m−k

∑
y,y′∈Z2m ,

|y−y′ |=d2k

1
|H |

∑
a,b∈Z∗

2n−i

[ha,b(x, y) = ha,b(x′, y′)].

Then c(H) = α + β .
First, we know from Lemma 9, part (2), that the innermost sum of α including the factor 1/|H | can be upper bounded by

2−(2n−3i+k). Thus, it remains to count the number of different pairs of keys (x, y) and (x′, y′) for which this innermost sum
is nonzero. By part (1) of Lemma 9, the number of summands over which the second to last sum needs to be extended is at
most 2k. The number of summands of the third to last sum is obviously 2m−k. Finally, we count the number of suitable c , x,
and x′: ∑

c∈Z∗
2m−k

∑
x,x′∈Z2m ,

|x−x′ |=c2k

1 =
∑

c∈Z∗
2m−k

2 ·
∑

0≤x≤2m−c2k−1

1 =
∑

c∈Z∗
2m−k

2 · (2m − c2k)

= 22m−k − 2k+1 ·
2m−k−1−1∑
j=0

(2j+ 1) = 22m−k − 2k+1 · 22(m−k−1) = 22m−k−1.

Putting everything together, we get

α ≤

m−1∑
k=0

22m−k−1 · 2m−k · 2k · 2−(2n−3i+k) = 23m+3i−2n−1
m−1∑
k=0

2−2k

= 23m+3i−2n−1 ·
4
3

(
1− 2−2m

)
=
2
3

(
29i−5n − 25i−3n

)
.

By symmetry, it follows that β = α/2 and thus c(H) = (3/2)α, which altogether gives the desired upper bound on
c(H). �

Finally, we use the following fact implicit in the proof of Lemma 8 in [10].
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Lemma 11 ([10]). Let H be a class of functions U → R, U and R finite, and let h ∈ H be given with collision number c = c(h).
Then |h(U)| ≥ |U|2/(c + |U|).

For the sake of completeness, we include the easy proof.

Proof. We count the number of collisions by summing over all values in the range of h. Let r := |h(U)| and u := |U|.

c := c(h) =
∑
y∈h(U)

∑
x,x′∈U,
x6=x′

[h(x) = h(x′) = y] =
∑
y∈h(U)

|h−1(y)|(|h−1(y)| − 1)

=

∑
y∈h(U)

(
|h−1(y)|2 − |h−1(y)|

)
= −u +

∑
y∈h(U)

|h−1(y)|2.

We lower bound the sum by minimizing the function f :Rr → R with f (x1, . . . , xr) :=
∑r
j=1 x

2
i under the constraint

x1 + · · · + xr = u. Due to symmetry of the summands and the fact that each is monotonously increasing, it follows that the
minimum is attained for x1 = · · · = xr = u/r . Thus, we have

c ≥ −u+ r(u/r)2 = u2/r − u,

which after rearranging gives the claimed lower bound on r ,

r ≥
u2

c + u
. �

Proof of Main Lemma 2. By Lemma 10, we have

c(H) = Eh(c(h)) ≤ 29i−5n =: c,

where the expectation is with respect to uniformly random h ∈ H . For α ∈ (0, 1] let

A := {(a, b) | a, b ∈ {0, . . . , 2n−i − 1}, a, b odd, c(ha,b) ≤ α−1c}.

By Markov’s inequality, |A| ≥ (1− α)|U|. Let (a, b) ∈ A. By Lemma 11,

|ha,b(U)| ≥
24m

α−129i−5n + 22m
.

Since i ≥ (3/5)n by assumption, it follows that 9i − 5n ≥ 2m = 4i − 2n. Hence, we can lower bound the right hand side
above by

24m

(α−1 + 1)29i−5n
=

α

1+ α
2n−i.

This proves the lemma. �

6. Conclusion

Weconcludewith a comparison of theOBDD sizes ofMULn−1,n for the optimal orderwith the so far best known structured
variable orders (i.e., variables orders with a simple closed description for all n). For each sufficiently small nwe consider the
following orders (see Table 1):

• Optimal variable order, πopt: By this, we mean one specific optimal variable order that has been the first found by our
implementation of the dynamic programming approach of Friedman and Supowit ([6], see also [8], Section 5.5).
• Pairwise ascending order, πpwa: x0, y0, . . . , xn−1, yn−1.
• Hybrid order, πhyb: It has already been observed by Amano and Maruoka [1] that all the optimal orders found by
dynamic programming for small input lengths end with the group of variables x0, yn−1, xn−1, y0 (this is true for both
quasireduced and fully reduced OBDDs). Taking this a step further and trying to mimic other structures observed in
these orders, we arrive at the following hybrid order: For m := min(n − 2, d(n+ 1)/2e), this is the order xm, . . . , x1,
ym, . . . , y1, xm+1, ym+1, . . . , xn−2, yn−2, x0, yn−1, xn−1, y0.

Optimal variable orders for MULn−1,n and n ≤ 12 can be found under http://ls2-www.cs.uni-dortmund.de/∼sauerhof/
midbit_orders.
Not surprisingly, the fine-tuned hybrid order even beats the pairwise ascending variable order for most n. Nevertheless,

this order resembles the pairwise ascending order fromaround index n/2 upward, apart froma constant number of variables
at the end,which by the arguments in themain part of the paper implies that also this order leads toOBDDs of sizeΩ(2(6/5)n).

http://ls2-www.cs.uni-dortmund.de/~sauerhof/midbit_orders
http://ls2-www.cs.uni-dortmund.de/~sauerhof/midbit_orders
http://ls2-www.cs.uni-dortmund.de/~sauerhof/midbit_orders
http://ls2-www.cs.uni-dortmund.de/~sauerhof/midbit_orders
http://ls2-www.cs.uni-dortmund.de/~sauerhof/midbit_orders
http://ls2-www.cs.uni-dortmund.de/~sauerhof/midbit_orders
http://ls2-www.cs.uni-dortmund.de/~sauerhof/midbit_orders
http://ls2-www.cs.uni-dortmund.de/~sauerhof/midbit_orders
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Table 1
OBDD sizes of MULn−1,n for different variable orders.

n: πopt: πpwa: πhyb:
2 8 9 8
3 14 16 14
4 31 36 31
5 63 73 64
6 136 169 175
7 315 381 322
8 756 928 779
9 1717 2188 1748
10 4026 5248 4043
11 9654 12373 9682
12 21931 29400 21935
13 68777 52510
14 162768 119801
15 377359 277799
16 879709 646863
17 2046724 1473281
18 4710612 3436311
19 10996431 7879855
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