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Abstract

We compute the spin-dependent and spin-independent structure functions of the forward virtual-photon 
Compton tensor of the proton at O(p3) using heavy baryon effective theory including the Delta particle. 
We compare with previous results when existing. Using these results we obtain the leading hadronic con-
tributions, associated to the pion and Delta particles, to the Wilson coefficients of the lepton–proton four 
fermion operators in NRQED. The spin-independent coefficient yields a pure prediction for the two-photon 
exchange contribution to the muonic hydrogen Lamb shift, �ETPE(π&�) = 34(13) µeV. We also compute 
the charge, 〈rn〉, and Zemach, 〈rn〉(2), moments for n ≥ 3. Finally, we discuss the spin-dependent case, for 
which we compute the difference between the four-fermion Wilson coefficients relevant for hydrogen and 
muonic hydrogen.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The spin-dependent and spin-independent structure functions of T μν , the forward virtual-
photon Compton tensor of the proton, carry important information about the QCD dynamics. 
They test the Euclidean region of the theory since Q2 ≡ −q2 > 0. For Q2 ∼ m2

π �= 0, the behav-
ior of T μν is determined by the chiral theory, and can be obtained within a chiral expansion using 
Heavy Baryon Effective Theory (HBET) [1]. If one works within a large Nc ideology (where Nc
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is the number of colours) the Delta particle should be incorporated in the HBET Lagrangian [2], 
as the Delta and the nucleon become degenerate in the large Nc limit. We use this motivation to 
incorporate the Delta particle in the effective Lagrangian. We do so along the lines of Refs. [3–5], 
i.e. we do not impose the large Nc relations among the couplings but let them free and fit to 
the data. This effective field theory has a double expansion in ∼mπ/mρ and ∼�/mρ , where 
� = M� − MN . Note that this creates a new expansion parameter mπ/� ∼ 1/2; the associated 
corrections will be incorporated in our computation together with the pure chiral result.

Within this framework we compute the spin-dependent and spin-independent structure func-
tions of the forward virtual-photon Compton tensor of the proton at O(p3) in Heavy Baryon 
Chiral Perturbation Theory (HBχPT) including the Delta particle. T μν cannot be directly re-
lated to cross sections obtained at fixed energies, as it tests the Euclidean regime. Nevertheless, it 
is possible to obtain it (up to eventual subtractions) from experiment through dispersion relations, 
i.e., through specifically weighted averages of measured cross sections over all energies. Possible 
constructions are the so-called generalized sum rules, which, for large energies, can be related 
with the deep inelastic sum rules. These have been studied in Ref. [6] for the spin-dependent 
case. The spin-independent case has been briefly discussed in Ref. [7]. We will not enter into this 
interesting line of research in this paper.

Instead, our main motivation for obtaining the chiral structure of T μν is that T μν appears in 
the matching computation between HBET and non-relativistic QED (NRQED) that determines 
c
pli
3 and cpli

4 (li = e or μ), the Wilson coefficients of the lepton–proton four-fermion operators 
in the NRQED [8] Lagrangian. As soon as hadronic effects start to become important in atomic 
physics, these Wilson coefficients play a major role. They appear in the hyperfine splitting (spin-
dependent) and Lamb shift (spin-independent) in hydrogen and muonic hydrogen (see Refs. [9,
10,7]). Therefore, their determination allows us to relate the energy shifts obtained in hydrogen 
and muonic hydrogen. Even more important, these Wilson coefficients usually carry most of 
the theoretical uncertainty in these splittings. This is particularly so in the case of the muonic 
hydrogen Lamb shift. At present, it is the limiting factor for improving the precision of the de-
termination of the electromagnetic proton radius from the measurements taking place at PSI [11,
12] of the muonic hydrogen spectra. This necessity to improve our knowledge (of the spin-
independent) lepton–proton four-fermion Wilson coefficient has led us to compute this quantity 
in HBχPT including the Delta particle. Fortunately enough, this object is chiral enhanced. 
Therefore, the O(p3) chiral computation yields a pure prediction, without the need of new coun-
terterms, of �ETPE, the (hadronic) two-photon exchange contribution to the muonic hydrogen 
Lamb shift: �EL = E(2P3/2) − E(2S1/2). Note that, since mμ/mπ ∼ 1, we keep the complete 
mμ/mπ dependence in such predictions. These results have been used in the recent determina-
tion of the muonic hydrogen Lamb shift and the proton radius performed in Ref. [13]. One of the 
main motivations of this paper is to give the details of the hadronic-related part of that analysis.

We profit this analysis to revisit the distinction between the Born and non-Born terms of 
T μν and �ETPE. Such distinction produces the so-called Zemach (or Born) and polarizability 
corrections to the Wilson coefficients (names also used for the associated contributions to the 
energy shifts: hyperfine or Lamb shift). For the spin-independent case we have a good analytical 
control and can also compute the charge, 〈rn〉, and the Zemach, 〈rn〉(2), moments, for n ≥ 3, 
since they are dominated by the chiral theory. The polarizability correction of �ETPE is also 
usually split into the so-called inelastic and subtraction terms. We will also discuss what HBχPT
has to say in this respect.

The paper is distributed in the following way. In Section 2 we present HBET and NRQED. In 
Section 3 we compute T μν . In Section 4 we compute cpli , 〈r2k+1〉, and �ETPE. For the latter we 
3
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also discuss its separation into Born, polarizability, inelastic and subtraction terms. In Section 5
we discuss about cpli

4 and the Zemach radius, 〈rZ〉, before we conclude.

2. Effective field theories

In this section, we will present the main building blocks of the HBET and NRQED La-
grangians needed for our analysis (see also Ref. [9]).

2.1. HBET

Our starting point is the SU(2) version of HBET coupled to leptons where the Delta particle 
is kept as an explicit degree of freedom. The degrees of freedom of this theory are the proton, 
neutron and Delta, for which the NR approximation can be taken, and pions, leptons (muons 
and electrons) and photons, which will be taken relativistic. This theory has a cut-off μ 	 Mp , 
mρ , which is much larger than any other scale in the problem. The Lagrangian can be split in 
several sectors. Nevertheless, the fact that some particles will only enter through loops, since 
only some specific final states are wanted, simplifies the problem. The Lagrangian can be written 
as an expansion in e and 1/Mp and can be structured as follows

LHBET = Lγ +Ll +Lπ +Llπ +L(N,�) +L(N,�)l +L(N,�)π +L(N,�)lπ , (2.1)

representing the different sectors of the theory. In particular, the � stands for the Delta particle: 
the spin 3/2 baryon multiplet (we also use � = M� − Mp , the specific meaning in each case 
should be clear from the context).

The photonic Lagrangian reads (the first corrections to this expression scale like α2/M4
p)

Lγ = −1

4
FμνFμν +

(
d2,R

M2
p

+ d
(τ)
2

m2
τ

)
FμνD

2Fμν, (2.2)

where d2,R stands for the hadronic contribution. The second term will not be considered any 
further in this paper, since we are mainly interested in the lepton–proton four-fermion operators.

The leptonic sector can be approximated to (iDμ = i∂μ − eAμ)

Ll =
∑

i

l̄i (i/D − mli )li , (2.3)

where li = e, μ.
The Lagrangian of a heavy baryon at O(1/M2

p) coupled to electromagnetism reads

LN = N†
p

{
iD0 + D2

p

2Mp

+ D4
p

8m3
p

− e
c
(p)
F

2Mp

σ · B

− e
c
(p)
D

8M2
p

[∇ · E] − ie
c
(p)
S

8M2
p

σ · (Dp × E − E × Dp)

}
Np, (2.4)

where iD0
p = i∂0 + ZpeA0, iDp = i∇ − ZpeA. For the proton Zp = 1 (for the neutron Zp = 0

and for all indices p → n).
The Delta particle mixes with the nucleons at O(1/Mp) (O(1/M2

p) terms are not needed in 
our case). The only relevant interaction in our case is the p–�+–γ term, which is encoded in the 
second term of
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L(N,�) = T †(i∂0 − �)T + eb1,F

2Mp

(
T †σ

(3/2)

(1/2) · Bτ
3(3/2)

(1/2) N + h.c.
)
, (2.5)

where T stands for the delta 3/2 isospin multiplet, N for the nucleon 1/2 isospin multiplet and 
the transition spin/isospin matrix elements fulfill (see [14])

σ
i(1/2)

(3/2) σ
j (3/2)

(1/2) = 1

3

(
2δij − iεijkσ k

)
, τ

a(1/2)

(3/2) τ
b(3/2)

(1/2) = 1

3

(
2δab − iεabcτ c

)
. (2.6)

The baryon–lepton Lagrangian provides new terms that are not usually considered in HBET. 
The relevant term in our case is the interaction between the leptons and the nucleons (actually 
only the proton):

L(N,�)l = 1

M2
p

∑
i

c
pli
3,RN̄pγ 0Npl̄iγ0li + 1

M2
p

∑
i

c
pli
4,RN̄pγ jγ5Npl̄iγj γ5li . (2.7)

The above matching coefficients fulfill cpli
3,R = c

p

3,R and cpli
4,R = c

p

4,R up to terms suppressed by 
mli /Mp , which will be sufficient for our purposes.

Let us note that with the conventions above, Np is the field of the proton (understood as a 
particle) with positive charge if li represents the leptons (understood as particles) with negative 
charge.

The hadronic interactions are organized according to their chiral counting. Since a single 
chiral loop already produces a factor 1/(4πF0)

2 ∼ 1/M2
p , we only need the leading pionic La-

grangian coupled to electromagnetism:

Lπ = [(∂μ − ieAμ
)
π+][(∂μ + ieAμ

)
π−]− m2

ππ+π−

+ 1

2

(
∂μπ0)(∂μπ0)− 1

2
m2

ππ0π0. (2.8)

We do not need to account for pion self-interactions, and the pion–baryon interactions are only 
needed at O(mπ), the leading order, which is known [3,15–17]:

L(N,�)π = N̄(iΓ0 + gAu · S)N + gπN�

(
T̄ μ

a wa
μN + h.c.

)
(2.9)

where

U = u2 = eiτ ·π/Fπ , (2.10)

Dμ = ∂μ + Γμ, (2.11)

Γμ = 1

2

{
u†∂μu + u∂μu† − i

e

2
Aμ

(
u†τ 3u + uτ 3u†)}, (2.12)

uμ = iu†∇μUu†, (2.13)

wa
μ = 1

2
Tr
[
τauμ

]= − 1

Fπ

∂μπa − e

Fπ

Aμεa3bπb + .... (2.14)

T
μ
a is the Rarita–Schwinger spin 3/2 field and Sμ = i

2γ5σμνv
ν is the spin operator (where we 

take vμ = (1, 0)).
This finishes all the needed terms for this paper, since the other sectors of the Lagrangian 

would give subleading contributions.
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2.2. NRQED(μ)

In the muon–proton sector, by integrating out the mπ and � scales, an effective field theory 
for muons, protons and photons appears. In principle, we should also consider neutrons but they 
play no role at the precision we aim. The effective theory corresponds to a hard cut-off ν 	 mπ

and therefore pions and Deltas have been integrated out. The Lagrangian is equal to the previous 
case but with neither pions nor Deltas, and with the following modifications: Ll → Le + L(NR)

μ

and L(N,�)l → LNe + L(NR)
Nμ , where it is made explicit that the muon has become NR. Any 

further difference goes into the Wilson coefficients, in particular, into the Wilson coefficients of 
the baryon–lepton operators. In summary, the Lagrangian reads

LNRQED(μ) = Lγ +Le +L(NR)
μ +LN +LNe +L(NR)

Nμ , (2.15)

where

LN = N†
p

{
iD0 + D2

p

2Mp

+ D4
p

8m3
p

− e
c
(p)
F

2Mp

σ · B

− e
c
(p)
D

8M2
p

[∇ · E] − ie
c
(p)
S

8M2
p

σ · (Dp × E − E × Dp)

}
Np, (2.16)

L(NR)
μ = l†

μ

{
iD0

μ + D2
μ

2mμ

+ D4
μ

8m3
μ

+ eZμ

c
(μ)
F

2mμ

σ · B

+ ieZμ

c
(μ)
S

8m2
μ

σ · (Dμ × E − E × Dμ)

}
lμ (2.17)

and1

LNR
Nμ = c

plμ
3

M2
p

N†
pNp l†

μlμ − c
plμ
4

M2
p

N†
pσNp l†

μσ lμ, (2.18)

with the following definitions: iD0
μ = i∂0 − ZμeA0, iDμ = i∇ + ZμeA and Zμ = 1. Le stands 

for the relativistic leptonic Lagrangian in Eq. (2.3) and LNe for Eq. (2.7), both for the electron 
case only.

Our main interest is the determination of c
plμ
3 and c

plμ
4 by matching HBET to NRQED. At 

O(α2) we can symbolically represent this matching as in Fig. 1.

2.3. NRQED(e)

If we focus in the electron–proton sector, things go quite as in the previous section. After 
integrating out scales of O(mπ, �), an effective field theory for electrons coupled to protons (and 
photons) appears. This effective theory has a cut-off ν 	 mπ and pions, Deltas and muons have 
been integrated out, but the electron is still relativistic. After integrating out scales of O(me) in 
the electron–proton sector, we still have an effective field theory for electrons coupled to protons 

1 c
plμ → c

plμ in Ref. [9]. We eliminate some subindices to lighten the notation.
3/4 3/4,NR
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Fig. 1. Symbolic representation of the matching between HBET and NRQED for cpli
3 and cpli

4 . The bubble represents 
the hadronic corrections.

and photons. Nevertheless, now the electrons are NR. The Lagrangian is quite similar to the one 
in Section 2.2 but without a light fermion and with the replacement μ → e. It reads

LNRQED(e) = Lγ +L(NR)
e +LN +L(NR)

Ne . (2.19)

We will perform the matching to this theory directly from HBET. At O(α2) this matching can be 
symbolically represented by the same figure as in the case of the muon, namely Fig. 1.

3. Forward virtual Compton tensor T μν

The electromagnetic current reads Jμ =∑i Qi q̄iγ
μqi , where i = u, d (we will not consider 

the strange quark in this paper) and Qi is the quark charge. The form factors (which we will 
understand as pure hadronic quantities, i.e. without electromagnetic corrections) are then defined 
by the following equation:

〈
p′, s

∣∣Jμ|p, s〉 = ū
(
p′)[F1

(
q2)γ μ + iF2

(
q2)σμνqν

2Mp

]
u(p), (3.1)

where q = p′ − p and F1, F2 are the Dirac and Pauli form factors, respectively. The states are 
normalized in the following (standard relativistic) way:〈

p′, λ′∣∣p,λ
〉= (2π)32p0δ3(p′ − p

)
δλ′λ, (3.2)

and

u(p, s)ū(p, s) = (/p + Mp)
1 + γ5/s

2
, (3.3)

where s is an arbitrary spin four-vector obeying s2 = −1 and p · s = 0.
More suitable for a NR analysis are the Sachs form factors:

GE

(
q2)= F1

(
q2)+ q2

4M2
p

F2
(
q2), GM

(
q2)= F1

(
q2)+ F2

(
q2). (3.4)

Nevertheless, the main object of interest of this paper is the forward virtual-photon Compton 
tensor,

T μν = i

∫
d4x eiq·x〈p, s|T {Jμ(x)J ν(0)

}|p, s〉, (3.5)

which has the following structure (ρ = q · p/Mp ≡ v · q , although we will usually work in the 
rest frame where ρ = q0):
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Fig. 2. Two-loop diagrams with an internal pion loop contributing to cplμ
3 and cplμ

4 . Crossed diagrams and those obtained 
through permutations are implicit.

T μν =
(

−gμν + qμqν

q2

)
S1
(
ρ,q2)+ 1

M2
p

(
pμ − Mpρ

q2
qμ

)(
pν − Mpρ

q2
qν

)
S2
(
ρ,q2)

− i

Mp

εμνρσ qρsσ A1
(
ρ,q2)− i

M3
p

εμνρσ qρ

(
(Mpρ)sσ − (q · s)pσ

)
A2
(
ρ,q2)

≡ T
μν
S + T

μν
A . (3.6)

It depends on four scalar functions, which we call structure functions. We split the tensor into the 
symmetric (spin-independent), T μν

S = T
νμ
S (the first two terms of Eq. (3.6)), and antisymmetric 

(spin-dependent) pieces, T μν
A = −T

νμ
A (the last two terms of Eq. (3.6)). We have computed this 

tensor at O(p3) in HBχPT. The diagrams that contribute are listed in Figs. 2, 3 and 4 (without 
closing the loop with the muon, i.e. without the muon line). The first figure refers to diagrams 
without Delta contributions (pure chiral), the second to the tree-level Delta contribution, and the 
last to one-loop chiral diagrams involving the Delta particle. Expressions in D = 4 − ε and four 
dimensions for each diagram can be found in Appendix C. Summing them up we can reconstruct 
the tensor structure of T μν (in other words, check gauge invariance). In principle, more diagrams, 
besides those drawn should be considered but they do not contribute to the structure functions at 
the order we aim in this work.

It is also common to split T μν into two components, which we label “Born” and “pol”:

T μν = T
μν
Born + T

μν
pol . (3.7)

The Born term is defined as the contribution coming from the intermediate state being the proton 
(somewhat the elastic contribution). The associated structure functions can be written in terms of 
the form factors. They read (or, rather, they are defined as)
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Fig. 3. One-loop diagram with an internal Delta particle contributing to c
plμ
3 and c

plμ
4 . Crossed diagram is implicit.

Fig. 4. Two-loop diagrams with an internal pion and Delta loop contributing to cplμ
3 and cplμ

4 . Crossed diagrams and 
those obtained through permutations are implicit.

SBorn
1

(
ρ,q2)≡ −2F 2

1

(
q2)− 2(q2)2 G2

M(q2)

(2Mpρ)2 − (q2)2
, (3.8)

SBorn
2

(
ρ,q2)≡ 2

4M2
pq2 F 2

1 (q2) − (q2)2 F 2
2 (q2)

(2Mpρ)2 − (q2)2
, (3.9)

ABorn
1

(
ρ,q2)≡ −F 2

2

(
q2)+ 4M2

pq2 F1(q
2)GM(q2)

(2Mpρ)2 − (q2)2
, (3.10)

ABorn
2

(
ρ,q2)≡ 4M3

pρ F2(q
2)GM(q2)

(2Mpρ)2 − (q2)2
. (3.11)

From these expressions one could easily single out the point-like contributions. The remaining 
contributions, with the O(p3) accuracy of our chiral computation, are encoded in the following 
expression (we split GE,M into pieces according to its chiral counting: G(n) ∼ 1/Mn ∼ 1/Λn ):
E,M p χ
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T
μν

Born = iπδ(v · q)Tr

[
uū

(
−4p+G

(0)
E G

(2)
E vμvν

+ 2

Mp

G
(0)
E G

(1)
M

(
vμp+

[
sν, sρ′]

qρ′p+ − vνp+
[
sμ, sρ′]

qρ′p+
))]

, (3.12)

where p+ = 1+v·γ
2 . Note that T μν

Born is proportional to δ(v · q) and G(0)
E = 1. The expressions for 

G
(2)
E , G(1)

M can be found in Refs. [15,18,19]. We write them here for ease of reference:

G
(2)
E

(
q2)= q2 〈r2〉

6
+ 1

(4πFπ)2

(
q2
(

1

12
+ g2

A

4
− 2g2

πN�

9

)

− 4

3
g2

πN��

(
5

9

q2√
�2 − m2

π

+ 4
√

�2 − m2
π

)
lnR

(
m2

π

))

+ 1

(4πFπ)2

1∫
0

dx

{[
m2

π

(
1

2
+ 3

2
g2

A − 4

3
g2

πN�

)
+ �2 8

3
g2

πN�

+
(

1

2
+ 5

2
g2

A − 20

9
g2

πN�

)
q2(−1 + x)x

]
ln

(
m̃2

m2
π

)

+ 16

3
g2

πN�

�√
�2 − m̃2

(
4

3
q2x(1 − x) + �2 − m2

π

)
lnR

(
m̃2)}, (3.13)

where (the coefficients B̃1 and B10 are counterterms of the HBET Lagrangian from [19])

〈
r2〉= −6

dGE(−q2)

d(q2)

∣∣∣∣
q2=0

= 3(κs + κv)

4M2
p

− 1

(4πFπ)2

(
1

2
+ 12B̃1 + 6B10 + 7

2
g2

A − 104

27
g2

πN�

− 40

9
g2

πN�

�√
�2 − m2

π

ln
(
R
(
m2

π

))+(1 + 5g2
A − 40

9
g2

πN�

)
ln

(
mπ

λ

))
, (3.14)

and

G
(1)
M

(
q2)= −g2

A

4πMp

(4πFπ)2

1∫
0

dx
{√

m̃2 − mπ

}

+ 32

9
g2

πN�

Mp�

(4πFπ)2

1∫
0

dx

{
1

2
ln

(
m̃2

4�2

)
− ln

(
mπ

2�

)

+
√

�2 − m̃2

�
lnR

(
m̃2)−

√
�2 − m2

π

�
lnR

(
m2

π

)}
, (3.15)

with

R
(
m2)= � +

√
�2

2
− 1, m̃2 = m2

π − q2x(1 − x). (3.16)

m m
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For the spin-dependent case, the only contribution is the term proportional to G(1)
M , which 

comes from the ABorn
1 term (this is the only term that contributes to the Born (Zemach) piece of 

the hyperfine splitting). For the spin-independent case we only need G(2)
E .

Eq. (3.12) comes from diagrams (5) and (6) in Figs. 2 and 4 after properly subtracting the 
subdivergences.

Following common practice we define the electromagnetic charge density as

ρe(r) ≡
∫

d3k

(2π)3
eik·rGE

(−k2). (3.17)

The inverse of its Fourier transform allows us to obtain the even powers of the moments of the 
charge distribution of the proton,

GE

(−k2)= ∞∑
n=0

(−1)n

(2n + 1)!k2n

∞∫
0

dr(4π)r2nρe(r) =
∞∑

n=0

(−1)n

(2n + 1)!k2n
〈
r2n
〉
. (3.18)

By Taylor expanding Eq. (3.13) we obtain (for k > 1)

〈
r2k
〉= m2−2k

π

32F 2
ππ2

(
1 + g2

A(3 + 2k)
)
k(k − 1)�(k − 1)2

+ m2−2k
π

36F 2
ππ2y2

g2
πN�

{
k

(
(3 + 2k)

1 − k
y2 − 6

)
�(k)2

+ ln(2)
(−1)k+141−k(3 + 2k)(2k)!

(2k − 1)
y2k

√
1 − y2

(1 − y2)k

}

+ m2−2k
π

18F 2
ππ2

g2
πN�y−4+2k

(
1 − y2) 1

2 −k
(k!)2

×
{
−3
(
y2 − 1

)(−1/2

k − 1

)
3F2

(
1,1,1 − k;2,

3

2
− k;1 − 1

y2

)

− 4
(
y2 − 1

)(−1/2

k − 2

)
3F2

(
1,1,2 − k;2,

5

2
− k;1 − 1

y2

)

− y2 ln
(
y2)(4

(−1/2

k − 1

)
+ 3

(−1/2

k

))}

− m2−2k
π

9F 2
ππ2

g2
πN�

(y2 − 1)k

y2(1 − y2)
1
2 +k

(k!)2

×
∞∑

r=1

(2r)!
22r+1r(r!)2

y2r

[(
3 + y2)(r

k

)
2F1

(
−k,

1

2
,1 − k + r,

y2

y2 − 1

)

− 4y2
(

1 + r

k

)
2F1

(
−k,

1

2
,2 − k + r,

y2

y2 − 1

)]
, (3.19)

where y ≡ mπ

�
, and �(n) is the Euler � function.

The odd powers of the moments of the charge distribution of the proton are obtained (defined) 
through the relation:
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〈
r2k+1〉= π3/2�(2 + k)

�(−1/2 − k)
24+2k

×
∫

d3q

(2π)3

1

q2(2+k)

[
GE

(−q2)− k∑
n=0

q2n

n!
(

d

dq2

)n

GE

(−q2)∣∣∣∣
q2=0

]
. (3.20)

An analytic expression of this quantity is relegated to Eq. (4.12). Note that, by using dimensional 
regularization, we can eliminate all the terms proportional to integer even powers of q2 in this 
expression. For k > 1, this integral is dominated by the chiral result and can be approximated by

〈
r2k+1〉� π3/2�(2 + k)

�(−1/2 − k)
24+2k

∫
dD−1q

(2π)D−1

1

q2(2+k)
G

(2)
E

(−q2). (3.21)

Finally, let us note that, by construction, both T μν
Born and T μν

pol comply with current conserva-
tion. The separation (definition) of the Born and polarizability terms is in general ambiguous, see, 
for instance, the discussion in Refs. [20,21]. In our case, as far as we give an explicit definition 
for T μν

Born, this ambiguity disappears. In what follows we consider the computation of T μν
pol .

3.1. Computation of T μν
pol

We split each Spol
i /A

pol
i in the following way:

S
pol
i = S

pol
i,π + S

pol
i,� + S

pol
i,π�, A

pol
i = A

pol
i,π + A

pol
i,� + A

pol
i,π�. (3.22)

S
pol
i,π and Apol

i,π encode the contributions only due to pions. They are produced by the diagrams 
listed in Fig. 2. Summing them up we can reconstruct the tensor structure of T μν . In D dimen-
sions the structure functions read

S
pol
1,π

(
q2, q0

)= − g2
A

F 2
π

Mp

(
m2

πJ ′
0

(
0,m2

π

)+ J0
(
0,m2

π

)− J0
(
q0,m

2
π

)

+ 4

1∫
0

dx
{
(2x − 1)J ′

2

(
q0x, m̃2)

− (1 − x)
(
m̃2 + (q2 − 2q2

0

)
x2)J ′′

2

(
q0x, m̃2)})+ (q0 → −q0), (3.23)

S
pol
2,π

(
q2, q0

)= g2
A

F 2
π

Mpmπ

q2

q2
0

(
J0
(
0,m2

π

)+ m2
πJ ′

0

(
0,m2

π

)− J0
(
q0,m

2
π

)

+
1∫

0

dx
{
q2q2(1 − 2x)2(1 − x)x2J ′′

0

(
q0x, m̃2)

+ 2q2(2x − 1)xJ ′
0

(
q0x, m̃2)− (1 − x)

(
4
(
m̃2 − 2q2

0x2)
+ q2(4x2 + (2x − 1)

(
1 + 6x + d(2x − 1)

)))
J ′′

2

(
q0x, m̃2)

+ 4(2x − 1)J ′
2

(
q0x, m̃2)})+ (q0 → −q0), (3.24)
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A
pol
1,π

(
q2, q0

)= −2
g2

A

F 2
π

M2
p

1∫
0

dx

{
1

q0
J ′

2

(
q0x, m̃2)+ q0x

2J ′
0

(
q0x, m̃2)+ xDπ

(
m̃2)}

+ (q0 → −q0), (3.25)

A
pol
2,π

(
q2, q0

)= g2
A

F 2
π

M3
p

1∫
0

dxx(2x − 1)J ′
0

(
q0x, m̃2)− (q0 → −q0), (3.26)

where the loop functions Ji have been defined in D-dimensions in Eq. (B.1).
These structure functions reduce to the following expressions in D = 4:

S
pol
1,π

(
q2, q0

)= 1

π

(
gA

2Fπ

)2

Mpmπ

{
3

2
+ m2

π

q2
−
(

1 + m2
π

q2

)√
1 − z

− 1

2

√
m2

π

q2

(
2 + q2

q2

)
I1
(
m2

π , q0, q2)}, (3.27)

S
pol
2,π

(
q2, q0

)= 1

π

(
gA

2Fπ

)2

Mpmπ

q2

q2

{
−
(

3

2
+
(

1

2
+ m2

π

q2
+ m2

π

(q0)2

)
q2

q2

)

− (q0)2q2

4m2
π q2 + (q2)2

(
m2

π

q2
− q2

2q2

)

+ m2
π

q2

(
2 − q2

(q0)2
(1 − z) + q2(q0)2

4m2
π q2 + (q2)2

)√
1 − z

+ 1

2

√
m2

π

q2

(
2 + 3

q2

q2
+ q2

m2
π

)
I1
(
m2

π , q0, q2)}, (3.28)

A
pol
1,π

(
q2, q0

)= − 1

2π2

g2
A

F 2
π

M2
p

1∫
0

dx

√
m̃2

q0

(
q0x√
m̃2

−
(

1 − q2
0x2

m̃2

)−1/2

sin−1
(

q0x√
m̃2

))
,

(3.29)

A
pol
2,π

(
q2, q0

)= − 1

4π2

g2
A

F 2
π

M3
p

1∫
0

dx
x(2x − 1)√

m̃2

(
1 − q2

0x2

m̃2

)−1/2

sin−1
(

q0x√
m̃2

)
, (3.30)

where

z = (q0)2

m2
π

, (3.31)

and

I1
(
m2

π , q0, q2)=
1∫

0

dx
1√

m2
π

q2 − q2

q2x − x2

= − arctan

(
q2

2mπ |q|
)

+ arctan

(
2q2 + q2

2|q|
√

m2 − q2

)

π 0
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= i ln

(
2imπ

√
q2 − q2

2i
√

q2
√

m2
π − q2

0 + q2 − 2q2
0

)
. (3.32)

For D = 4 we can compare with previous results in the literature. Spol
1,π and Spol

2,π were originally 
computed in [7]. We agree with those results, which were obtained with different methods, either 
by dispersion relations or through a diagrammatic computation assuming gauge invariance. In 
the case of real photons (for q2 = 0 in the Coulomb gauge) we recover the results of [15]. Spol

1,π

has also been checked in the limit q0 → 0 in Ref. [22], and Spol
1/2,π for all q0 and q2 in Ref. [23].

The spin-dependent structure functions, Apol
1,π and Apol

2,π , agree with the ones given in Eqs. (30) 
and (34) of [6], up to a normalization factor. They follow from summing up all the contributions 
of the diagrams in Fig. 2 that have an antisymmetric contribution, i.e. diagrams (2), (4) and (5) 
of Fig. 2.

We now move to contributions involving Delta particles. We first consider tree-level Delta 
mediated contributions. The corresponding diagram is pictured in Fig. 3, and the associated con-
tributions read:

S
pol
1,�

(
q2, q0

)= −4

9

b2
1F

M2
p

Mp

�q2

q2
0 − �2 + iη

, (3.33)

S
pol
2,�

(
q2, q0

)= 4

9

b2
1F

M2
p

Mp

�q2

q2
0 − �2 + iη

, (3.34)

A
pol
1,�

(
q2, q0

)= 4b2
1F

9M2
p

M2
p

q2
0

q2
0 − �2 + iη

, (3.35)

A
pol
2,�

(
q2, q0

)= −4b2
1F

9M2
p

M3
p

q0

q2
0 − �2 + iη

. (3.36)

Eq. (3.33) agrees with [7] and, in the limit q0 → 0, with the leading order expression of [22]
up to normalization. Eq. (3.33) differs from the expression obtained in Ref. [7] using dispersion 
relations by a local term. For the spin-dependent terms we are in agreement with [6].

The last set of diagrams that we consider are those with one internal chiral loop and virtual 
Delta particles. They are drawn in Fig. 4 producing the following D-dimensional expressions for 
the structure functions:

S
pol
1,π�

(
q2, q0

)= −32

3

D − 2

D − 1
Mp

(
gπN�

Fπ

)2
(

1

4
(D − 1)J ′

2

(−�,m2
π

)− 1

4
J0
(
q0 − �,m2

π

)

−
1∫

0

dx

{
(1 − x)

(−�2 + m̃2 + q2x2 + 2q0x(� − q0x)
)

× J ′′
2

(
q0x − �,m̃2)+ �

D
(1 − x)

(
m̃2D′′

π

(
m̃2)+ 2D′

π

(
m̃2))

+ (2x − 1)J ′
2

(
q0x − �,m̃2)})+ (q0 → −q0), (3.37)

S
pol
2,π�

(
q2, q0

)= −8

3

D − 2

D − 1
Mp

q2

q2

(
gπN�

Fπ

)2
(

J0
(
q0 − �,m2

π

)− (D − 1)J ′
2

(−�,m2
π

)

0
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+
1∫

0

dx

{
(1 − x)J ′′

2

(
q0x − �,m̃2)(q2(D(1 − 2x)2 − 4x(1 − 4x) − 1

)

+ 4m̃2 − 4
(
�2 + 2q0x(q0x − �)

))+ 2q2x(1 − 2x)J ′
0

(
q0x − �,m̃2)

+ q2q2(1 − x)x2(2x − 1)(1 − 2x)J ′′
0

(
q0x − �,m̃2)

− 4(2x − 1)J ′
2

(
q0x − �,m̃2)

+ 4�

D
(1 − x)

(
m̃2D′′

π

(
m̃2)+ 2D′

π

(
m̃2))})

+ (q0 → −q0), (3.38)

A
pol
1,π�

(
q2, q0

)= −
(

gπN�

Fπ

)2

M2
p

16

3(D − 1)

1∫
0

dx

{
x(� + q0x)J ′

0

(−q0x − �,m̃2)

− xD′
π

(
m̃2) 1

q0
J ′

2

(−q0x − �,m̃2)}+ (q0 → −q0), (3.39)

A
pol
2,π�

(
q2, q0

)= −
(

gπN�

Fπ

)2

M3
p

8

3(D − 1)

1∫
0

dxx(1 − 2x)J ′
0

(−q0x − �,m̃2)
− (q0 → −q0). (3.40)

The results for D = 4 dimensions are:

S
pol
1,π�

(
q2, q0

)= − 4

9π2

g2
πN�

F 2
π

Mpmπ

[
3Z
(

�

mπ

)
−Z

(
� − q0

mπ

)
−Z

(
� + q0

mπ

)

+
1∫

0

dx

{
�

mπ

(5x − 3) ln

(
m̃2

m2
π

)

+
√

m̃2

m2
π

((
5x − 3 + q2(1 − x)x2

m̃2 − (� + q0x)2

)
Z
(

� + q0x√
m̃2

)

+
(

5x − 3 + q2(1 − x)x2

m̃2 − (� − q0x)2

)
Z
(

� − q0x√
m̃2

))}]
, (3.41)

S
pol
2,π�

(
q2, q0

)= − 4

9π2

g2
πN�

F 2
π

Mpmπ

q2

q2
0

[
−3Z

(
�

mπ

)
+Z

(
� − q0

mπ

)
+Z

(
� + q0

mπ

)

+
1∫

0

dx

{
�

mπ

(3x − 5) ln

(
m̃2

m2
π

)
+ 1

4

√
m̃2

m2
π

Z
(

� + q0x√
m̃2

)(
4(3 − 5x)

+ (3 − 7x)(1 − 2x)2q2 − 4q2x2

2 2
+ q2q2(1 − x)x2(1 − 2x)2

2 2 2

)

m̃ − (� + q0x) (m̃ − (� + q0x) )
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+ 1

4

√
m̃2

m2
π

Z
(

� − q0x√
m̃2

)(
4(3 − 5x) + (3 − 7x)(1 − 2x)2q2 − 4q2x2

m̃2 − (� − q0x)2

+ q2q2(1 − x)x2(1 − 2x)2

(m̃2 − (� − q0x)2)2

)
+ q2q2

4m̃2
(1 − 2x)2(1 − x)x2

×
(

� + q0x

mπ(m̃2 − (� + q0x)2)
+ � − q0x

mπ(m̃2 − (� − q0x)2)

)}]
, (3.42)

A
pol
1,π�

(
q2, q0

)= 2

9π2

g2
πN�

F 2
π

M2
p

(
1 −

1∫
0

dx
√

m̃2

{(
− 1

q0
+ x(� − q0x)

m̃2 − (� − q0x)2

)

×Z
(

� − q0x√
m̃2

)
+
(

1

q0
+ x(� + q0x)

m̃2 − (� + q0x)2

)
Z
(

� + q0x√
m̃2

)})
,

(3.43)

A
pol
2,π�

(
q2, q0

)= 1

9π2

g2
πN�

F 2
π

M3
p

×
1∫

0

dx x(1 − 2x)
√

m̃2

{ Z(
�−q0x√

m̃2
)

m̃2 − (� − q0x)2
−

Z(
�+q0x√

m̃2
)

m̃2 − (� + q0x)2

}
,

where we have defined Z as

Z(x) ≡
√

x2 − 1 ln
(√

x2 − 1 + x
)
. (3.44)

The D = 4 expressions for Spol
1,π� and Spol

2,π� agree with Eqs. (51) in [17] for the case of real 
photons, i.e. q2 = 0 and in the Coulomb gauge.

Summing up all the contributions of the diagrams in Fig. 4 which have an antisymmetric con-
tribution, i.e. diagrams (2), (4) and (5), we get the spin-dependent part that agrees with Eqs. (33) 
and (36) in [6], up to a normalization factor.

In all expressions we use principal value prescriptions, the Dirac delta contributions associated 
to the propagators have gone into the Born term. Nevertheless, from the point of view of the 
effective theory this splitting between the polarizability and Born term is quite arbitrary.

4. Matching HBET to NRQED: cpli
3 (spin-independent)

The matching between HBET and NRQED can be performed in a generic expansion in 1/Mp, 
1/mμ and α. We have two sort of loops: chiral and electromagnetic. The former are always 
associated to 1/(4πF0)

2 factors, whereas the latter are always suppressed by α factors. Any 
scale left to get the dimensions right scales with mπ or �. In our case we are only concerned 
with obtaining the matching coefficients of the lepton–baryon operators of NRQCD with O(α2 ×
(
mli

mπ
, 

mli

�
)) accuracy.

In what follows, we will assume that we are doing the matching to NRQED(μ). Therefore, we 
keep the whole dependence on mli /mπ . The NRQED(e) case can then be derived by expanding 
me versus mπ .
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Fig. 5. Symbolic representation (plus permutations) of the Zemach correction in Eq. (4.5).

At O(α2), the contribution to cpli
3 (see Fig. 1) from matching HBET to NRQED can be written 

in a compact way in terms of the structure functions of the forward virtual-photon Compton 
tensor. It reads [24]

c
pli
3 = −e4Mpmli

∫
d4kE

(2π)4

1

k4
E

1

k4
E + 4m2

li
k2

0,E

× {(3k2
0,E + k2)S1

(
ik0,E,−k2

E

)− k2S2
(
ik0,E,−k2

E

)}+O
(
α3). (4.1)

This result keeps the complete dependence on mli and is valid both for NRQED(μ) and 
NRQED(e). This contribution is usually organized in the following way

c
pli
3 = c

pli
3,R + c

pli
3,point-like + c

pli
3,Born + c

pli
3,pol +O

(
α3). (4.2)

c
pli
3,R is suppressed by an extra factor mli /Mp , i.e. cpli

3,R ∼ α2mli /Mp . This goes beyond the aimed 

accuracy of our calculation and so we neglect cpli
3,R.

The second term in Eq. (4.2) corresponds to Eq. (4.1) assuming the proton to be point-like. 
With the precision needed it reads in the MS scheme (see [25])2

c
pli
3,point-like(ν) ≡ Mp

mli

α2

M2
p − m2

li

{
M2

p

(
ln

m2
li

ν2
+ 1

3

)
− m2

li

(
ln

M2
p

ν2
+ 1

3

)}
. (4.4)

4.1. c3,Born and Zemach moments

The third term in Eq. (4.2) is generated by the spin-independent Born contribution to T μν in 
Eq. (3.12). We symbolically picture it in Fig. 5. At leading order in the NR expansion it reads3

2 In this expression we have computed the loop with the proton being relativistic to follow common practice. Never-
theless, this assumes that one can consider the proton to be point-like at the scales of the proton mass. To stick to an 
standard EFT approach one should consider the proton to be NR. Then one would obtain

c
pli
3,point-like = α2 Mp

mli

(
ln

m2
li

ν2
+ 1

3

)
. (4.3)

The difference between both results is of the order of c3,R, and gets absorbed into this coefficient (which we do not know 
anyhow). Therefore, the value of cpli

3 , will be the same no matter the prescription used. In practice there could be some 
difference due to truncation, but always of the order of the error of our computation.

3 In Ref. [10] we named this object cpli .
3,Zemach
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c
pli
3,Born = 4(4πα)2M2

pmli

∫
dD−1q

(2π)D−1

1

q6
G

(0)
E G

(2)
E

(−q2). (4.5)

Note again that this result holds for both NRQED(e) and NRQED(μ). In other words, the exact 
dependence on mli is kept (at leading order in the NR expansion). The linear dependence in the 
lepton mass makes this contribution much smaller for the case of hydrogen. G(0)

E = 1. We take 

the expression for G(2)
E from Eq. (3.13). The use of effective field theories and dimensional reg-

ularization is a strong simplification, which we have already used when writing Eq. (4.5). This 
guarantees that only low energy modes contribute to the integral, and that we only need the non-
analytic behavior of G(2)

E in q2 around mπ and �. In other words, even though some point-like 

contributions are still encoded in G(2)
E , they do not contribute to the integral. The analytical be-

havior in q2 produces scaleless integrals, which are zero in dimensional regularization. This is a 
reflection of the factorization of the different scales. Therefore, we do not need to introduce the 
point-like interactions to regulate the infrared divergences of the integrals at zero momentum, as 
it is done if trying to compute this object directly from the experimental data. We will come back 
to this issue when we discuss the Zemach moments.

The computation of cpli
3,Born was made in Ref. [10]. Here we give a simplified expression:

c
pli
3,Born = 2(πα)2

(
Mp

4πF0

)2
mli

mπ

{
3

4
g2

A + 1

8
+ 32

9
πg2

πN�

m2
π

�2 − m2
π

+ 2

π
g2

πN�

mπ

�

∞∑
r=0

(−1)r�(−3/2)

�(r + 1)�(−3/2 − r)

×
{
B6+2r − 2(r + 2)

3 + 2r
B4+2r

}(
mπ

�

)2r
}

, (4.6)

where the first line is due to scales of O(mπ) and the terms proportional to Bn are due to scales 
of O(�), where (this corrects Eq. (61) of Ref. [10])

Bn ≡
∞∫

0

dt
t2−n

1 − t2
×
⎧⎨
⎩

√
1 − t2 ln

[ 1
t
+
√

1
t2 − 1

]
if t < 1

−√
t2 − 1 arccos[ 1

t
] if t > 1

= −
√

π(H 1
2 − n

2
− H1− n

2
)�( 3

2 − n
2 )

4�(2 − n
2 )

+ 21−n π
�(n − 2)

�2( n
2 )

3F2

(
1

2
,
n − 2

2
,
n − 1

2
; n

2
,
n

2
;1

)

+ 2
5
2 − n

2 3F2(
3
2 − n

2 , 3
2 − n

2 , n
2 + 1

2 ; 5
2 − n

2 , 5
2 − n

2 ; 1
2 )

(n − 3)2

− 2
3
2 − n

2 3F2(
5
2 − n

2 , 5
2 − n

2 , n
2 + 1

2 ; 7
2 − n

2 , 7
2 − n

2 ; 1
2 )

(n − 5)2

+
π3/2 sec(πn

2 )((n − 2)H1−n + (2 − n)H 1
2 − n

2
+ n(− ln(2)) − 1 + ln(4))

(n − 2)�(2 − n
2 )�(n−1

2 )
, (4.7)

and Hn is the n harmonic number.
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Eq. (4.6) encapsulates all the non-analytic dependence in the light quark masses and in the 
splitting between the nucleon and the Delta mass (proportional to powers of 1/Nc in the large 
Nc limit) of cpli

3,Born. This expression is the leading contribution to the Zemach term in the chiral 
counting (supplemented with a large Nc counting). This is a model independent result. Other 
contributions to the Zemach term are suppressed in the chiral counting.

c
pli
3,Born can be related with (one of) the Zemach moments:

〈
rm
〉
(2)

≡
∫

d3rrm

∫
d3zρe

(|z − r|)ρe(z). (4.8)

The Zemach moments can be determined in a similar way as the moments of the charge distri-
bution of the proton. For even powers we have the relation4

G2
E

(−k2)= ∞∑
n=0

(−1)n

(2n + 1)!k2n
〈
r2n
〉
(2)

. (4.9)

The odd powers are obtained (defined) through the relation:

〈
r2k+1〉

(2)
= π3/2�[2 + k]

�[−1/2 − k] 24+2k

×
∫

d3q

(2π)3

1

q2(2+k)

[
G2

E

(−q2)− k∑
n=0

q2n

n!
(

d

dq2

)n

G2
E

(−q2)∣∣∣∣
q2=0

]
. (4.10)

Again, using dimensional regularization, we can eliminate all the terms proportional to integer 
even powers of q2 in this expression. For k ≥ 1 this integral is dominated by the chiral result and 
can be approximated by

〈
r2k+1〉

(2)
� 2 × π3/2�[2 + k]

�[−1/2 − k] 24+2k

∫
dD−1q

(2π)D−1

1

q2(2+k)
G

(2)
E

(−q2)� 2
〈
r2k+1〉. (4.11)

It is possible to get an analytic result for these integrals. We obtain (y ≡ mπ

�
)

〈
r2k+1〉

(2)
� 2
〈
r2k+1〉� 2�[3/2 + k] m1−2k

π

(4πF0)2

{
�[3/2 + k]2 + 4g2

A(2 + k)

3 + 4(k2 − 1)

+ 4

9
g2

πN�

π(k + 2)(−1)k+1

�[5/2 − k] y2
2F1

(
3

2
,1; 5

2
− k;y2

)

+ 32

3
g2

πN�y2k−1
∞∑

r=0

y2r

r!
(−1)r

�[−1/2 − k − r]

×
[
B2k+2r+4 − r + 4

3k + 2
3

1
2 + k + r

B2k+2r+2

]}
. (4.12)

In Table 1 we give our predictions for some selected charge and Zemach moments,5 both in 
the effective theory with only pions and in the effective theory with pions and Deltas. The even 

4 Note that comparison with Eq. (3.18) gives algebraic relations between the even charge, 〈r2n〉, and Zemach, 〈r2n〉(2), 
moments.

5 Note that 〈r2k+1〉(2) � 2〈r2k+1〉 with the precision of our computation.
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Table 1
Values of 〈rn〉 in fermi units. The first two rows give the prediction from the effective theory: the first row for the effective 
theory with only pions and the second for the theory with pions and Deltas. The third row corresponds to the standard 
dipole fit of Ref. [26] with 〈r2〉 = 0.6581 fm3. The fourth and fifth rows correspond to different parameterizations of 
experimental data [27,28], with the latest fit being the more recent analysis based on Mainz data. For completeness, we 
also quote 〈r3〉(2) = 2.71 fm3 from Ref. [29].

〈r3〉 〈r4〉 〈r5〉 〈r6〉 〈r7〉 〈r3〉(2)

π 0.4980 0.6877 1.619 5.203 20.92 0.9960
π&� 0.4071 0.6228 1.522 4.978 20.22 0.8142

[26] 0.7706 1.083 1.775 3.325 7.006 2.023
[27] 0.9838 1.621 3.209 7.440 19.69 2.526
[28] 1.16(4) 2.59(19)(04) 8.0(1.2)(1.0) 29.8(7.6)(12.6) – 2.85(8)

powers are obtained by direct numerical Taylor expansion of Eq. (3.13), or using the analytic 
formulas in Eq. (3.19). The odd powers are obtained from Eq. (4.12). We have also numer-
ically checked the values of 〈r2k+1〉 directly using Eq. (3.20). In order to estimate the error 
of the charge/Zemach moments and the other quantities we compute in this paper we proceed 
as follows. We count mπ ∼ √ΛQCDmq and � ∼ ΛQCD

Nc
. We then have the double expansion 

mπ

ΛQCD
∼
√

mq

ΛQCD
and �

ΛQCD
∼ 1

Nc
. We still have to determine the relative size between mπ and �. 

We observe that mπ/� ∼ Nc

√
mq

ΛQCD
∼ 1/2. Therefore, we associate a 50% uncertainty to the 

pure chiral computation. For all Zemach moments we observe good convergence, with the con-
tribution due to the Delta being much smaller than the pure chiral result, and well inside the 
50% uncertainty. Leaving aside the Delta, the splitting with the next resonances suggest a mass 
gap of order ΛQCD ∼ 500–770 MeV depending on whether one considers the Roper resonance 
or the ρ. For practical purposes, we also count mK ∼√ΛQCDms ∼ 500 MeV of order ΛQCD. 
Therefore, we assign mπ

ΛQCD
∼ 1/3 and �

ΛQCD
∼ 1/2, as the uncertainties of the pure chiral and the 

Delta-related contribution respectively. We add these errors linearly for the final error. This gives 
the expected size of the uncomputed corrections but numerical factors may change the real size 
of the correction. In particular, huge discrepancies with these estimates may signal the failure of 
HBχPT for obtaining some of the observables considered in this paper.

The chiral prediction is expected to give the dominant contribution of 〈rn〉 for n ≥ 3. For 
n = 2 it could also give the leading chiral log. For smaller n the chiral corrections are sublead-
ing. Note that for all n ≥ 3, these expressions give the leading (non-analytic) dependence in the 
light quark mass as well as in 1/Nc. This is a valuable information for eventual lattice simula-
tions of these quantities where one can tune these parameters. In Table 1 we also compare with 
the standard dipole ansatz [26], and with different determinations using experimental data of the 
electric Sachs form factor fitted to more sophisticated functions [27,28].6 The latest fit claims 
to be the more accurate. Nevertheless, we observe large differences, bigger than the errors. This 
is specially worrisome for large n, since the chiral prediction is expected to give the dominant 
contribution of 〈rn〉 for n ≥ 3. In this respect, we believe that the chiral result may help to shape 
the appropriated fit function and, thus, to discriminate between different options, as well as to 
assess uncertainties. The impact of choosing different fit functions can be fully appreciated, for 

6 The agreement with [27] for n = 7 is accidental. We have checked that the growth with n is different with respect the 
chiral prediction.
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Table 2
Predictions for the Born contribution to the n = 2 Lamb shift. The first two entries correspond to dispersion relations. 
The last two entries are the predictions of HBET: The 3rd entry is the prediction of HBET at leading order (only pions) 
and the last entry is the prediction of HBET at leading and next-to-leading order (pions and Deltas).

µeV DR [34] [36] HBET [10] (π) (π&�)

�EBorn 23.2(1.0) 24.7(1.6) 10.1(5.1) 8.3(4.3)

instance, in the different values of the electromagnetic proton radius obtained in Ref. [30] versus 
Refs. [31,32] from direct fits to the ep scattering data. Such values differ by around 3 standard 
deviations. On the other hand, even if on general grounds one may expect the charge/Zemach 
moments will be more and more sensitive to the chiral region for n → ∞, large fractions of the 
experimental numbers are determined by the subtraction terms included to render these objects 
finite (for odd powers of n). We stop the discussion here but the reason for such large discrepan-
cies should be further investigated.

As we have already mentioned, cpli
3,Born can be related with (one of) the Zemach moments:

c
pli
3,Born = π

3
α2M2

pmli

〈
r3〉

(2)
,

〈
r3〉

(2)
= 48

π

∞∫
0

dQ

Q4

(
G2

E

(−Q2)− 1 + Q2

3

〈
r2〉). (4.13)

Note again that the terms proportional to “1” and r2 vanish in dimensional regularization. We 
can now obtain (mr = mμMp/(mμ + Mp))

�EBorn = c
plμ
3,Born

M2
p

1

π

(
mrα

2

)3

, (4.14)

the Born contribution to �ETPE, from the effective field theory. We quote our results in Table 2. 
The pure chiral result was already obtained in Ref. [10]. The π&� result corrects the evaluation 
made in that reference due to the error in its Eq. (61). Note that the new result is much more 
convergent, since the correction associated to the Delta is much smaller. On the other hand, our 
result is now much more different with respect to standard values obtained from dispersion re-
lations. We quote two of them in Table 2. One may wonder whether such difference is due to 
relativistic corrections. An estimate of the relativistic effects can be obtained from the analysis 
made in Ref. [33], which, however, is based on dipole form factors parameterizations. The dif-
ference between the relativistic and NR expression was found to be small (∼3 µeV). It should be 
checked whether this feature holds with different parameterizations. If so, the difference seems 
to be mainly due to the computation of the Zemach correction (see Table 1 and the discussion 
above). Therefore, as stated above, the reason for such large discrepancies should be investigated. 
In the mean time we will stick to our model independent prediction from the effective theory.

4.2. Matching HBET to NRQED: cpli
3,pol

Finally, we consider the polarizability correction. It is obtained from Eq. (4.1) but subtracting 
the Born term to the structure functions of the virtual-photon Compton tensor. The expressions 
at O(p3) in HBχPT can be found in Section 3.1. The final expression reads

c
pli
3,pol = −e4M2

p

mμ

(
gA

)2

Iπ
2 − e4b2

1F

mμ 4I�
2 − e4M2

p

mμ 8
(

gπN�

)2

I�π
2 , (4.15)
mπ Fπ � 9 � 3 Fπ
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where

I i
2 =

∫
d3k

(2π)3

1

(1 + k2)4

∞∫
0

dω

π

1

ω

1

ω2 + 4m̂i
1

(1+k2)2

{(
2 + (1 + k2)2)Ai

E

(
ω,k2)

+ (1 + k2)2k2ω2Bi
E

(
ω,k2)}. (4.16)

For the case of only pions we have m̂π = mμ/mπ and

Aπ
E

(
ω,k2)= − 1

4π

[
−3

2
+
√

1 + ω2 +
1∫

0

dx
1 − x√

1 + x2ω2 + x(1 − x)ω2k2

]
, (4.17)

Bπ
E

(
ω,k2)= 1

8π

1∫
0

dx

[
1 − 2x√

1 + x2ω2 + x(1 − x)ω2k2

− 1

2

(1 − x)(1 − 2x)2

(1 + x2ω2 + x(1 − x)ω2k2)
3
2

]
. (4.18)

For the case of Delta at tree level we have m̂� = mμ/� and

A�
E

(
ω,k2)= 1

π2

ω2k2

ω2 + 1
, (4.19)

B�
E

(
ω,k2)= − 1

π2

1

ω2 + 1
. (4.20)

For the case of loops including the Delta we have m̂�π = mμ/� and

A�π
E

(
ω,k2)

= − 1

12π2

1∫
0

dx

{
3
√

1 − t2 ln

(
1 + √

1 − t2

t

)

+ 2
√

−t2 − (i + ω)2
(
ln(t) − ln

(
1 − iω +

√
−t2 − (i + ω)2

))
− (3 − 5x) ln

(
1 + (1 + k2)(1 − x)xω2

t2

)

+ 2
(t2 − 1)(3 − 5x) + 2ix(3 − 5x)ω + x(3 − 5x + 3k2(1 − x)(1 − 2x))ω2√

1 − t2 + xω(−2i + (−1 + k2(−1 + x))ω)

× ln

(
1 − ixω +√1 − t2 + xω(−2i + (−1 + k2(−1 + x))ω)√

t2 − (1 + k2)(−1 + x)xω2

)}
+ (ω → −ω),

(4.21)

B�π
E

(
ω,k2)

= 1

24π2

1∫
dx(1 − 2x)2
0
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×
{

k2(1 − x)x2ω2(1 + iωx)

(t2 − (1 + k2)(−1 + x)xω2)(1 − t2 + xω(2i + (−1 + k2(−1 + x))ω))

− −3 + t2(3 − 7x) + x(7 + 2i(−3 + 7x)ω + (3 − 7x + 3k2(1 − x)(1 − 2x))ω2)

(1 − t2 + xω(2i + (−1 + k2(−1 + x))ω))3/2

× ln

(
1 + ixω +√1 − t2 + xω(2i + (−1 − k2(1 − x))ω)√

t2 − (1 + k2)(−1 + x)xω2

)}
+ (ω → −ω), (4.22)

where t = mπ/�. Note that the imaginary part of these expressions comes only from the Wick 
rotation of k0 and will vanish upon integration.

The pure pion contribution was already found in Ref. [7]. Our full prediction for the polariz-
ability term including the Delta effects reads

�Epol = c
plμ
3,pol

M2
p

1

π

(
mrα

2

)3

= 18.51(π-loop) − 1.58(�-tree) + 9.25(π�-loop)

= 26.2(10.0) µeV. (4.23)

In Table 3 we compare our determination with previous results. Most of them are obtained by 
a combination of dispersion relations plus some modeling of the subtraction term that we dis-
cuss below. The analysis of Ref. [23] has a different status. In this reference the polarizability 
correction was computed using BχPT with only pions. Such computation treats the baryon rel-
ativistically. The result incorporates some subleading effects, which are sometimes used to give 
an estimate of higher order effects in HBχPT. Nevertheless, the computation also assumes that 
a theory with only baryons and pions is appropriate at the proton mass scale. This should be 
taken with due caution. Still, it would be desirable to have a deeper theoretical understanding of 
this difference, which may signal that relativistic corrections are important for the polarizability 
correction. In any case, the BχPT computation differs of our chiral result by around 50% (this 
means around 1.5 times the error we use for the chiral contribution, once the Delta is incorporated 
in the calculation), which we consider reasonable.

It is also worth discussing the LEX approximation used in Ref. [23]. This approximation con-
sists in setting q0 = 0 everywhere except in the denominator in Eq. (4.1). For the pure chiral 
result, this approximation works remarkable well (18.51 (exact) vs. 17.85 (LEX)). Neverthe-
less, such success does not survive the incorporation of the � particle. For the Delta tree-level 
contribution we find (−1.58 (exact) vs. 0 (LEX)). The real problem appears from the O(p3)

pion–Delta result. For such contribution there are 1/q0 singularities in the tensor that only cancel 
if the complete expression is used. Doing the LEX approximation leads to divergent expressions. 
Even more worrisome is the fact that, at present, there are no theoretical justification for using 
the LEX approximation for the integral in Eq. (4.1). It is not correct to assume that the photon 
energy that appears in the integral, q0, corresponds to the energy in the atomic system. It rather 
reflects virtual fluctuations of order of the pion and muon mass (as well as of the � scale). Since 
those particles are relativistic at those scales it is theoretically incorrect, a priori, to neglect q0. 
In any case, on the light of the good agreement for the pure chiral case, it would be interesting to 
see whether one could find a theoretical justification for such behavior.

It is also interesting to consider the limit mli 	 mπ , which is relevant for the hydrogen atom. 
In this limit Eq. (4.15) approximates, with logarithmic accuracy, to

c
pli = −αM2ml

[
5α

(p) − β
(p)] ln(ml ), (4.24)
3,pol p i E M i
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Table 3
Predictions for the polarizability contribution to the n = 2 Lamb shift. The first four entries use dispersion relations for 
the inelastic term and different modeling functions for the subtraction term. The number of the fourth entry has been 
taken from [23]. The 5th entry is the prediction obtained using BχPT. The last two entries are the predictions of HBET 
discussed in this paper. The 6th entry is the prediction at leading order (only pions) and the last entry is the prediction at 
leading and next-to-leading order (pions and Deltas).

(µeV) DR + Model [34] [35] [36] [37] BχPT [23] (π) HBET [7] (π) [13] (π&�)

�Epol 12(2) 11.5 7.4(2.4) 15.3(5.6) 8.2(+1.2
−2.5) 18.5(9.3) 26.2(10.0)

Fig. 6. Diagram contributing to the polarizability correction with ln me accuracy. The matching coefficients of the proton 
can be cA1 or cA2 , or, in other words, the proton polarizabilities.

c
pli
3,pol = −2

9
α2 mli

�
b2

1,F ln
�

mli

+ 49

12
πα2g2

A

mli

mπ

M2
p

(4πF0)2
ln

(
mπ

mli

)
+ 8

27
α2g2

πN�

× mli√
�2 − m2

π

M2
p

(4πF0)2

(
45�√

�2 − m2
π

+ 4�2 − 49m2
π

�2 − m2
π

ln
[
R
(
m2

π

)])
ln

(
mπ

mli

)
.

(4.25)

These logs can be obtained by computing the ultraviolet behavior of the diagram in Fig. 6. This 
contribution is proportional to cA1 and cA2 or, in other words, the polarizabilities of the proton 
(see [38,39]). For the pure pion cloud, the polarizabilities were computed in Ref. [15]. The con-
tribution due to the � can be found in Ref. [40]. The scale in the logarithm is compensated by 
the next scale of the problem, which can be mπ or �. For contributions which are only due to the 
� or pions, the scale is unambiguous. In the case where pions and � are both present in the loop 
we will choose the pion mass (the difference being beyond the logarithmic accuracy). It is known 
that the pure chiral prediction of α(p)

E and β(p)
M nicely agrees with the experimental values. This 

agreement deteriorates after the inclusion of the Delta effects, specially for β(p)
M . Nevertheless, 

this object is comparatively small, and even more so for 5α
(p)
E − β

(p)
M , the combination that ap-

pears in the logarithmic approximation. Whereas the experimental number reads 5α
(p)
E − β

(p)
M �

54 ×10−4 fm3 [41], the pure chiral result gives (5α
(p)
E −β

(p)
M )(π) � 60 ×10−4 fm3, and after the 

inclusion of the Delta we obtain (5α
(p)
E − β

(p)
M )(π&�) � 73 × 10−4 fm3. Again the inclusion of 

the Delta deteriorates the agreement but the difference is of the order of one sigma according to 
our error analysis. We take this as an indication that effective field theory result will not be very 
far off from the real number for the case of muonic hydrogen and that, maybe, the pure chiral 
result compares better with experiment than after the inclusion of the Delta. Nevertheless, we 
will not make any assumption in this respect and stick to the complete prediction of the effective 
theory.
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It is also customary to split the polarizability term (note that the Born term has already been 
subtracted from it) in what is called the inelastic and subtraction term:

c
pli
3,sub = −e4Mpmli

∫
d4kE

(2π)4

1

k4
E

1

k4
E + 4m2

li
k2

0,E

(
3k2

0,E + k2)S1
(
0,−k2

E

)

= −α2Mp

2mli

∞∫
0

dQ2

Q2

{
1 +

(
1 − Q2

2m2
li

)(√4m2
li

Q2
+ 1 − 1

)}
S1
(
0,−Q2), (4.26)

c
pli
3,inel = −e4Mpmli

∫
d4kE

(2π)4

1

k4
E

1

k4
E + 4m2

li
k2

0,E

× {(3k2
0,E + k2)(S1

(
ik0,E,−k2

E

)− S1
(
0,−k2

E

))− k2S2
(
ik0,E,−k2

E

)}
. (4.27)

It is argued that the inelastic term does not require further subtractions and can be obtained 
through dispersion relations. On the other hand, the subtraction term cannot be directly obtained 
from experiment. This fact has been used in Ref. [42] to emphasize that the polarizability term 
is affected by huge theoretical uncertainties. In this paper, we can avoid making any assumption 
about the dispersion relation properties of these quantities. This is possible within the framework 
of effective field theories. In this setup the splitting between the inelastic and subtraction terms 
is unmotivated, and to some extent artificial (as it was the splitting between the Born and polar-
izability term). Let us elaborate on this point and see what effective field theories have to say 
in this respect. The main problem comes, as it has already been pointed out in Ref. [23], from 
the diagram in Fig. 3. This diagram yields a finite (an small) contribution to cpli

3,pol (and therefore 

to the energy shift, see Eq. (4.23)). Nevertheless, when splitted into cpli
3,inel and cpli

3,sub, each term 
diverges in the following way

δc
pli
3,sub ∼ −δc

pli
3,inel � −4

3
α2 mli

�
b2

1,F ln(ν/mli ). (4.28)

If we set the ultraviolet cutoff to the ρ mass, ν = mρ , the energy shift of each term is one order of 
magnitude bigger ∼−11.37 µeV than the exact result for the sum. Obviously such contribution 
is fictitious and may alter the value of the individual terms. On the other hand, it is possible to 
perform this splitting for the case of the pion and pion–Delta loop. We obtain the following:

�E(sub)(π-loop) = −1.62 µeV; �E(sub)(π�-loop) = −1.23 µeV. (4.29)

They are of the same magnitude. Their size is barely one order of magnitude smaller than the 
total polarizability term. For the case of the pion loop it is possible to obtain analytic expressions 
in the limit mμ = mπ , which is a rather good approximation:

�E(sub)(π-loop)
∣∣
mπ=mμ

= −g2
Aα5m3

r

64π2F 2
π

mμ

mπ

(−1 + 3G − 2 ln 2) = −1.40 µeV, (4.30)

where G � 0.9160 is the Catalan’s constant. For these quantities the LEX approximation works 
quite well, both for the pion and the pion–Delta loop case. We find7

7 For mμ = mπ an analytic expression can be found for the pion-loop case [23]:

�E
(sub)
LEX (π -loop)

∣∣
mπ =mμ

= −g2
A

α5m3
r

64π2F 2
π

mμ

mπ

(
1

2
− G + ln 2

)
= −1.08 µeV. (4.31)
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Table 4
Values for the subtraction and inelastic terms that one can find in the literature.

(µeV) [34] [35] [36] [22] [37] [23]

�E(sub) −1.8 −2.3 −5.3(1.9) −4.2(1.0) 2.3(4.6)(1) 3.0

�E(inel) 13.9 13.8 12.7(5) – 13.0(6) 5.2

(1) This number is the adjusted value of Ref. [37], given in [23].

�E
(sub)
LEX (π-loop) = −1.23 µeV; �E

(sub)
LEX (π�-loop) = −0.91 µeV, (4.32)

which is again asking for a theoretical explanation of this relatively good agreement.
For comparison we show different values obtained for the subtraction and inelastic term ob-

tained in the literature in Table 4.
We now combine the contribution from the Born and polarizability term and summarize our 

final results for �ETPE:

�ETPE = �EBorn + �Epol = 28.59(π) + 5.86(π&�) = 34.4(12.5) µeV. (4.33)

We would like to emphasize that this result is a pure prediction of the effective theory. It is also the 

most precise expression that can be obtained in a model independent way, since O(mμα5 m3
μ

Λ3
QCD

)

effects are not controlled by the chiral theory and would require new counterterms. Our num-
ber is only marginally bigger than �ETPE = 33(2) µeV [22]. This number is the one used in 
Ref. [12] for its determination of the proton radius. It is obtained as the sum of the elastic and 
inelastic terms from Ref. [36] and the subtraction term from Ref. [22]. Note that this evalua-
tion is model dependent. Even though the low energy behavior of the forward virtual Compton 
tensor was computed to O(p4), this does not reflect in an improved determination of the polar-
izability correction, since an effective dipole form factor is used, not only at the ρ mass scale, 
but also at the chiral scale. This problem also introduces a model dependence in its error es-
timate. Other existing determinations [34–36] yield quite similar numbers but suffer from the 
same systematic uncertainties. In this respect our calculation is model independent and have 
completely different systematics. The fact that we obtain similar numbers is comforting for the 
reliability of the proton radius determinations obtained in Refs. [12,13]. On the other hand, one 
should not forget that the individual contributions are quite different, and the reasons for that 
should be further investigated. Yet it is quite remarkable that the total sum gives such similar 
numbers.

5. Matching HBET to NRQED: cpli
4 (spin-dependent)

We proceed in the same way as in the spin-independent case. We will assume that we are 
doing the matching to NRQED(μ). Therefore, we keep the whole dependence on mli/mπ . The 
NRQED(e) case can then be derived by expanding me versus mπ . We match HBET and NRQED 
order by order in a generic expansion in 1/Mp , 1/mμ and α. We have two sort of loops: chiral 
and electromagnetic. The former are always associated to 1/(4πF0)

2 factors, whereas the latter 
are always suppressed by α factors. Any scale left to get the dimensions right scales with mπ

or �.
At O(α2), the contribution to cpli

4 (see Fig. 1) from matching HBET to NRQED can be written 
in a compact way in terms of the structure functions of the forward virtual-photon Compton 
tensor. In Euclidean space it reads
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c
pli
4 = e4

3

∫
dDk

(2π)D

1

k2
E

1

k4
E + 4m2

li
k2

0,E

×
{
A1
(
ik0,E,−k2

E

)(
k2

0,E + 2k2
E

)+ i3k2
E

k0,E

Mp

A2
(
ik0,E,−k2

E

)}+O
(
α3), (5.1)

consistent with the expressions obtained long ago in Ref. [43]. This result keeps the complete de-
pendence on mli and is valid both for NRQED(μ) and NRQED(e), i.e. for hydrogen and muonic 
hydrogen. Similarly to the spin-independent case, this contribution can be organized in the fol-
lowing way

c
pli
4 = c

pli
4,R + c

pli
4,point-like + c

pli
4,Born + c

pli
4,pol +O

(
α3). (5.2)

Within the effective field theory framework the contribution from energies of O(mρ) or higher in 
Eq. (5.1) are encoded in cpli

4,R � c
p

4,R (analogously to c3). The other terms (associated to energies 
of O(mπ)) were computed with O(α2 × (lnmq, ln�, lnmli )) accuracy in Ref. [9]. We quote 

them here for ease of reference8 (c(p)
F = 1 + κp):

c
pli
4,point-like =

(
1 − κ2

p

4

)
α2 ln

m2
li

ν2
, (5.3)

c
pli
4,Born � (4πα)2Mp

2

3

∫
dD−1k

(2π)D−1

1

k4
G

(0)
E G

(1)
M (5.4)

� M2
p

(4πF0)2
α2 2

3
π2
[
g2

A ln
m2

π

ν2
+ 4

9
g2

πN� ln
�2

ν2

]
, (5.5)

c
pli
4,pol = M2

p

(4πF0)2

α2

π

8

3

(
7π

8
− π3

12

)[
g2

A ln
m2

π

ν2
− 8

9
g2

πN� ln
�2

ν2

]
+ b2

1,F

18
α2 ln

�2

ν2
. (5.6)

Summing up the three terms one has

c
pli
4 �

(
1 − μ2

p

4

)
α2 ln

m2
li

ν2
+ b2

1,F

18
α2 ln

�2

ν2

+ m2
p

(4πF0)2
α2 2

3

(
2

3
+ 7

2π2

)
π2g2

A ln
m2

π

ν2

+ m2
p

(4πF0)2
α2 8

27

(
5

3
− 7

π2

)
π2g2

πN� ln
�2

ν2
(5.7)

(Nc→∞)� α2 ln
m2

l

ν2
+ m2

p

(4πF0)2
α2π2g2

A ln
m2

π

ν2
. (5.8)

Parametrically, the three contributions, Eqs. (5.3), (5.4) and (5.6), are of the same order. Nev-
ertheless, the polarizability and the point-like term are much smaller. This is consistent with the 

8 In Ref. [9] c
pli
4,Born was named δcpli

4,Zemach, as Eq. (5.4) corresponds to the Zemach expression [44], the leading order 
in the NR expansion of the Born term. The point-like contribution diverges irrespectively of doing the computation in 
a relativistic or NR way (see the discussion in Ref. [9]). Here we only quote the NR expression, which is more natural 
from the effective field theory point of view, as it avoids any assumption about the behavior of the theory at the proton 
mass scale.
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fact that the polarizability correction seems to be small [45–47], if determined through dispersion 
relations. As already discussed in Ref. [9], the effective field theory computation gives a double 
explanation to this fact. On the one hand, this is due to the smallness of the numerical coeffi-
cient of the polarizability term, but there also seems to be some large Nc rationale behind. Since 
gπN� = 3/(2

√
2 )gA in the large Nc limit, the polarizability term vanishes (see [6]) except for 

the tree-level-like Delta contribution (the last term in Eq. (5.6)). Nevertheless, the latter also van-
ishes against the κp-dependent point-like contribution (which effectively becomes the result of a 
point-like particle) in the large Nc limit, since bF

1 = 3/(2
√

2 )κV and κp = κV /2 [48]. Note also 
that the point-like term and the tree-level-like Delta contribution are suppressed by 1/π factors 
with respect the Born contribution.

This discussion also illustrates that splitting the total contribution into different terms may 
introduce spurious effects that vanish in the total sum. We have also seen a similar thing but in a 
different context for the case of the spin-independent computation.

Our computation allows us to relate c
plμ
4 and cple

4 in a model independent way. Since cpli
4,R �

c
p

4,R up to terms of O(α2mli /ΛQCD), we can obtain the following relation

c
plμ
4 = c

ple
4 + [cplμ

4,point-like − c
ple
4,point-like

]+ [cplμ
4,pol − c

ple
4,pol

]+O
(
α3, α2mμ/ΛQCD

)
. (5.9)

Note that we have already used the fact that cpli
4,Born cancels in the difference, as it is independent 

of the lepton mass. The experimental and theoretical results discussed before suggest that cpli
4,Born

is the leading contribution to the Wilson coefficient. Therefore, such contribution can be obtained 
from cple

4 , which can be determined from the hyperfine splitting of hydrogen. In Ref. [9] it was 

estimated to be cple
4 � −48α2. By considering differences in Eq. (5.9) the ultraviolet behavior 

gets regulated and the logarithmic divergences vanish. This makes these contributions to be very 
small an negligible compared with the uncertainties. For the point-like contribution we obtain

c
plμ
4,point-like − c

ple
4,point-like =

(
1 − κ2

p

4

)
α2 ln

m2
μ

m2
e

� 2.09α2, (5.10)

and for the polarizability we obtain (note that this term vanishes in the large Nc limit, except for 
the tree-level-like contribution)

c
plμ
4,pol − c

ple
4,pol = 0.17α2(π) + 0.07α2(�) + 0.008α2(π&�) = 0.24α2. (5.11)

Overall we obtain c
plμ
4 � −46α2. The bulk of this contribution is expected to come from the 

Born term, which in turn is related to the Zemach magnetic radius,

〈rZ〉 = − 4

π

∞∫
0

dQ

Q2

[
GE

(
Q2)GM

(
Q2)− 1

]
(5.12)

by the following relation

〈rZ〉 = − 3

4π

1

α2Mp

c
pli
4,Born � −π

2

Mp

(4πF0)2

[
g2

A ln
m2

π

ν2
+ 4

9
g2

πN� ln
�2

ν2

]
(ν=mρ)= 1.35 fm.

(5.13)
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The chiral log result compares well (∼30%) with existing predictions (∼1.04–1.08 fm) from 
hydrogen hyperfine [49,50], from dispersion relations [29,28], or from the muonic hydrogen 
hyperfine [12]. Note that in the case of the determinations of 〈rZ〉 from the hyperfine splitting 
(either from hydrogen or muonic hydrogen) one needs to control the relativistic hadronic affects 
associated to the Born term as well as the polarizability correction. On the other hand, if we are 
only interested in the hyperfine splitting it may make more sense to consider cpli

4 as a whole. We 
relegate a more detailed discussion to future work.

6. Conclusions

We have computed the spin-dependent and spin-independent structure functions of the for-
ward virtual-photon Compton tensor of the proton at O(p3) in HBχPT including the Delta 
particle. We have given D-dimensional expressions too. Those are relevant for future higher 
order loop computations. We have compared our results with previous computations. The D = 4
expressions for the spin-dependent structure functions were computed in [6]. We agree with their 
results. The D = 4 expressions for the pure chiral (without Delta contributions) spin-independent 
structure functions were computed in [7]. We agree with their results too. The Delta-associated 
contributions to the spin-independent structure functions are new. We also profit to present all 
these results obtained throughout the years in a unified form.

We have used these results to determine the leading chiral and large Nc structure of cpli
3 and 

c
pli
4 , or, in other words, to determine their non-analytic dependence on mq and Nc. The fact that 

we have full control over the quark mass dependence makes our result very useful for eventual 
lattice determinations of these quantities. By fine tunning the mass in simulations we can identify 
the results obtained in this paper and up to which mass the chiral is good approximation. One 
could also vary Nc to check the theory.

These Wilson coefficients appear in the hyperfine splitting (spin-dependent) and Lamb shift 
(spin-independent) in hydrogen and muonic hydrogen. cpli

3 , the relevant Wilson coefficient for 
the Lamb shift, is chiral enhanced. Therefore, the O(p3) chiral result is a pure prediction of the 
effective theory, which we use to determine

�ETPE = 28.6(π) + 6.1(π&�) = 34.4(12.5) µeV, (6.1)

the energy shift associated to the (hadronic) two-photon exchange of the Lamb shift. These re-
sults have been used in the recent determination of the muonic hydrogen Lamb shift and the 
proton radius performed in Ref. [13]. We would like to emphasize that Eq. (6.1) is the most pre-

cise expression that can be obtained in a model independent way, since O(mμα5 m3
μ

Λ3
QCD

) effects 

are not controlled by the chiral theory and would require new counterterms. Our final number 
is quite similar to previous estimates existing in the literature. Nevertheless, those computations 
require the splitting of the two-photon contribution into different terms. Some of them are then 
computed using different dispersion relations, whereas one last term requires modeling its Q2

dependence. In contrast, we have used the same method for all computations contributing to our 
result, yielding a parameter-free prediction. On the other hand, one should not forget that the 
individual contributions are quite different, and the reasons for that should be further investi-
gated. In this respect we have discussed what the effective theory has to say about the separation 
into Born, polarizability, inelastic and subtraction term. The Born contribution is related with 
the Zemach moments. In this paper we have also given the prediction of the effective theory for 
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some charge, 〈rn〉, and Zemach, 〈rn〉(2) moments. Finally, we have also discussed the chiral de-

pendence of the spin-dependent four-fermion Wilson coefficient, cpli
4 , and obtained the relation 

between cpe

4 and cpμ

4 given by the effective theory.
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Appendix A. Constants and parameters

In our computations we have used the following values:

mμ = 105.6583715 MeV (A.1)

mπ = 139.57018 MeV (A.2)

Mp = 938.272046 MeV (A.3)

� = 293.728 MeV (A.4)

α = 1/137.035999679 (A.5)

gA = 1.25 (A.6)

gπN� = 1.05 (A.7)

Fπ = 92.5 MeV (A.8)

b1F = 3.86 (A.9)

The values of the masses and the fine structure constant come from the PDG database [41]. 
The values of the effective theory parameters correspond to the NR limit.

Appendix B. Master integrals

We follow the notation of [16,17] and assume a negative infinitesimal imaginary part for all 
the propagators.

1

i

∫
dDl

(2π)D

{1, lμ, lμlν, lμlν lα, lμlν lαlβ}
(v · l − q0 − iη)(m2 − l2 − iη)

= {J0(q0,m), vμJ1(q0,m), gμνJ2(q0,m) + vμvνJ3(q0,m),

(gμνvα + gμαvν + gνα)vμJ4(q0,m) + vμvνvαJ5(q0,m),

(gμνgαβ + gμαgνβ + gναgμβ)J6(q0,m) + (gμνvαvβ

+ gμαvνvβ) + gμβvνvα) + gναvμvβ) + gαβvμvν)J7(q0,m)

+ ...
}
, (B.1)

where in D-dimensions:
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Dπ (m) = mD−2(4π)−D/2�

(
1 − D

2

)
, (B.2)

J0(q0,mπ) = 2

(4π)D/2
�

(
2 − D

2

) ∞∫
−q0

dy
1

(m2 − q2
0 + y2)2−D/2

(B.3)

and in D = 4 − ε:

Dπ (m) = m2

16π2
L̃ +O(ε), (B.4)

L̃ = μ2ε

(
1

ε
+ (γE − 1 − ln 4π)

)
+ ln

(
m2

μ2

)
. (B.5)

For the function J0 we get when |ω| < m

J0(q0,mπ) = q0

8π2
(1 − L̃) − 1

4π2

√
m2

π − q2
0 cos−1 −q0

mπ

+O(ε), (B.6)

and for the case where ω < −m we get the analytically continued function

J0(q0,m) = q0

8π2
(1 − L̃) +

√
q2

0 − m2

4π2
ln

(√q2
0 − m2 − q0

m

)
+O(ε). (B.7)

All the other functions are related to Eq. (B.7)/Eq. (B.6) and Eq. (B.4) by:

J1(q0,m) = q0J0(q0,m) +Dπ (m), (B.8)

J2(q0,m) = 1

D − 1

((
m2 − q2

0

)
J0(q0,m) − q0Dπ (m)

)
, (B.9)

J3(q0,m) = q0J1(q0,m) − J2(q0,m), (B.10)

J4(q0,m) = q0J2(q0,m) + m2

D
Dπ (m), (B.11)

J5(q0,m) = q0J3(q0,m) − 2J4(q0,m), (B.12)

J6(q0,m) = 1

D + 1

((
m2 − q2

0

)
J2(q0,m) − m2q0

d
Dπ (m)

)
, (B.13)

J7(q0,m) = m2J2(q0,m) + (D + 2)J6(q0,m). (B.14)

We also define the derivative function

J
(n)
i (q0,m) = ∂n

∂(m2)n
Ji(q0,m). (B.15)

Appendix C. Amplitudes for the diagrams

Throughout this work we use the normalization ū(p)u(p) = 2Mp and we define � =
M� − MN , m̃2 = m2

π − q2x(1 − x) and the function Z has been defined in Eq. (3.44). We 
work in the rest frame where v = (1, 0).
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C.1. Pion loops

Here we collect the amplitudes of all the diagrams contributing to the proton polarizability 
through a loop of pions, represented in Fig. 2, plus the ones with a crossed photon lines or 
permutations, which are assumed to be implicit in the representation. For all the diagrams here 

we consider the overall factor A = 2Mp
g2
A

F 2
π

. We assume a positive infinitesimal imaginary part 
for the propagators of h14 − h19. Diagrams with only 1 pion are zero due to the fact that we are 
working in the static limit.

Mμν
1 =Agμνh0

(
q2, q0

)
, (C.1)

Mμν
2 =A

{
h1
(
q2, q0

)(
gμν − vμvν

)+ h2
(
q2, q0

)
iεμναβvαSβ

}
, (C.2)

Mμν
3 =A

{
h3
(
q2, q0

)
gμν + h4

(
q2, q0

)
qμqν + h5

(
q2, q0

)(
qμvν + vμqν

)
+ h6

(
q2, q0

)
vμvν

}
, (C.3)

Mμν
4 =A

{
h7
(
q2, q0

)
gμν + h8

(
q2, q0

)
qμqν + h9

(
q2, q0

)
vνvμ

+ h10
(
q2, q0

)(
qμvν + qνvμ

)+ h13
(
q2, q0

)
i
(
εμλαβvν − ενλαβvμ

)
qλSβvα

+ h11
(
q2, q0

)
iεμναβSβvα + h12

(
q2, q0

)
i
(
εμλαβqν − ενλαβqμ

)
qλSβvα

}
, (C.4)

Mμν
5 =A

{
h14
(
q2, q0

)
vμvν + h15

(
q2, q0

)(
qμvν + qνvμ

)
+ h16

(
q2, q0

)
i
(
εμλαβvν − ενλαβvμ

)
qλSβvα

}
,

Mμν
6 =Ah17

(
q2, q0

)
vμvν, (C.5)

Mμν
7 =Ah18

(
q2, q0

)
vμvν, (C.6)

Mμν
8 =Ah19

(
q2, q0

)
vμvν, (C.7)

where the h functions read:

h0
(
q2, q0

)= −J0(0,mπ) − m2
πJ ′

0(0,mπ), (C.8)

h1
(
q2, q0

)= 1

2

(
J0
(
q0,m

2
π

)+ J0
(−q0,m

2
π

))
, (C.9)

h2
(
q2, q0

)= −J0
(
q0,m

2
π

)+ J0
(−q0,m

2
π

)
, (C.10)

h3
(
q2, q0

)= 2

1∫
0

dx(1 − x)
{
(D + 1)

(
J ′′

6

(
q0x, m̃2)+ J ′′

6

(−q0x, m̃2))

− x2q2(J ′′
2

(
q0x, m̃2)+ J ′′

2

(−q0x, m̃2))}, (C.11)

h4
(
q2, q0

)= 1

2

1∫
0

dx(1 − x)(2x − 1)
{(

D(2x − 1) + 6x + 1
)(

J ′′
2

(
q0x, m̃2)

+ J ′′
2

(−q0x, m̃2))
− (2x − 1)x2q2(J ′′(q0x, m̃2)+ J ′′(−q0x, m̃2))}, (C.12)
0 0
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h5
(
q2, q0

)=
1∫

0

dx(1 − x)
{
(−2Dx + D − 2x − 1)

(
J ′′

4

(
q0x, m̃2)− J ′′

4

(−q0x, m̃2))

+ x(2x − 1)
(
xq2(J ′′

1

(
q0x, m̃2)− J ′′

1

(−q0x, m̃2))
− 2q0

(
J ′′

2

(
q0x, m̃2)+ J ′′

2

(−q0x, m̃2)))}, (C.13)

h6
(
q2, q0

)= 2

1∫
0

dx(1 − x)
{
(D − 1)

(
J ′′

7

(
q0x, m̃2)+ J ′′

7

(−q0x, m̃2))

+ x
(−xq2(J ′′

3

(
q0x, m̃2)+ J ′′

3

(−q0x, m̃2))+ 4q0
(
J ′′

4

(
q0x, m̃2)

− J ′′
4

(−q0x, m̃2)))− 2
(
J ′′

6

(
q0x, m̃2)+ J ′′

6

(−q0x, m̃2))}, (C.14)

h7
(
q2, q0

)= −2

1∫
0

dx
{
J ′

2

(
q0x, m̃2)+ J ′

2

(−q0x, m̃2)}, (C.15)

h8
(
q2, q0

)=
1∫

0

dxx(1 − 2x)
{
J ′

0

(
q0x, m̃2)+ J ′

0

(−q0x, m̃2)}, (C.16)

h9
(
q2, q0

)= 2

1∫
0

dx
{−q0x

(
J ′

1

(
q0x, m̃2)− J ′

1

(−q0x, m̃2))+ J ′
2

(
q0x, m̃2)

+ J ′
2

(−q0x, m̃2)}, (C.17)

h10
(
q2, q0

)=
1∫

0

dxx

{
q0

2
(2x − 1)

(
J ′

0

(
q0x, m̃2)+ J ′

0

(−q0x, m̃2))+ J ′
1

(
q0x, m̃2)

− J ′
1

(−q0x, m̃2)}, (C.18)

h11
(
q2, q0

)= 4

1∫
0

dx
{
J ′

2

(
q0x, m̃2)− J ′

2

(−q0x, m̃2)}, (C.19)

h12
(
q2, q0

)= −
1∫

0

dxx(1 − 2x)
{
J ′

0

(
q0x, m̃2)− J ′

0

(−q0x, m̃2)}, (C.20)

h13
(
q2, q0

)= −2

1∫
0

dxx
{
J ′

1

(
q0x, m̃2)+ J ′

1

(−q0x, m̃2)}, (C.21)

h14
(
q2, q0

)= 2

q0

1∫
0

dx
{
(D − 1)

(
J ′

4

(
q0x, m̃2)

− J ′(−q0x, m̃2))+ q2(1 − x)x
(
J ′(q0x, m̃2)
4 1
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− J ′
1

(−q0x, m̃2))− q0(1 − 2x)
(
J ′

2

(
q0x, m̃2)+ J ′

2

(−q0x, m̃2))}, (C.22)

h15
(
q2, q0

)= 1

2q0

1∫
0

dx(1 − 2x)
{
(D + 1)

(
J ′

2

(
q0x, m̃2)+ J ′

2

(−q0x, m̃2))

+ q2x(1 − x)
(
J ′

0

(
q0x, m̃2)+ J ′

0

(−q0x, m̃2))}, (C.23)

h16
(
q2, q0

)= − 2

q0

1∫
0

dx
{
J ′

2

(
q0x, m̃2)− J ′

2

(−q0x, m̃2)}, (C.24)

h17
(
q2, q0

)= −2
D − 1

4

1

q2
0

(−2J2
(
0,m2

π

)+ J2
(−q0,m

2
π

)+ J2
(
q0,m

2
π

))
, (C.25)

h18
(
q2, q0

)= 3
D − 1

4

1

q2
0

(
J2
(
q0,m

2
π

)+ J2
(−q0,m

2
π

)− (J2
(
0,m2)+ J2

(
0,m2

π

)))
,

(C.26)

h19
(
q2, q0

)= D − 1

4

1

q0

(
1

q0

(
J2
(
q0,m

2
π

)+ J2
(−q0,m

2
π

)− 2J2
(
0,m2

π

)))
(C.27)

and, for D = 4 − ε dimensions we obtain:

h0
(
q2, q0

)= 3mπ

16π
+O(ε), (C.28)

h1
(
q2, q0

)= −
√

m2
π − q2

0

8π
+O(ε), (C.29)

h2
(
q2, q0

)= 1

4π2
q0L̃ + 1

4π2

(
2
√

m2
π − q2

0 sin−1
(

q0

mπ

)
− q0

)
+O(ε), (C.30)

h3
(
q2, q0

)= 1

16π

(
(6m2

πq2 − 8m2
πq2

0 − q4)

2q2
√

q2
I1

− mπ

q2

√
1 − q2

0

m2
π

(
2m2

π − q2 + 2q2
0

)+ mπ(2m2
π + q2)

q2

)
+O(ε), (C.31)

h4
(
q2, q0

)
= −1

16π

(
(−6m2

π (q2 − 2q2
0 ) + q4 + 2q4

0 )(4m2
π (q2

0 − q2) + q4)

2q4
√

q2(4m2
π q2 + q4)

I1

+ mπ(16m4
π (q2 − q2

0 ) − 2m2(6q4 − 16q2q2
0 + 13q4

0 ) + q2(2q4 − 6q2q2
0 + q4

0 ))

q4(4m2
π q2 + q4)

+ (mπ(16m4
π (q2

0 − q2) + m2
π (10q4

0 − 4q2q2
0 ) + q6 + 2q4q2

0 ))

q4(4m2
π q2 + q4)

√
1 − q2

0

m2
π

)
+O(ε),

(C.32)
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h5
(
q2, q0

)= 1

16π

(
−mπq0(16m4

π q2 − 6m2
πq2

0 (q2 − 2q2
0 ) + q6 + 2q4q2

0 )

q4(4m2
π q2 + q4)

+ q0(m
2
π (10q2

0 − 4q2) + q4 + 2q2q2
0 )

2q4
√

q2
I1

+ (mπq0(16m4
π q2 + m2

π (14q2q2
0 − 8q4) + 3q6))

q4(4m2q2 + q4)

√
1 − q2

0

m2
π

)
+O(ε),

(C.33)

h6
(
q2, q0

)
= 1

16π

(
−q2(−6m2

π (q2 − 2q2
0 ) + q4 + 2q2q2

0 )

2q4
√

q2
I1

+ mπ(8m4
π (q4

0 − q4) − 2m2
π (q6 + 2q4q2

0 − 6q2q4
0 ) + q8 + 2q6q2

0 )

q4(4m2
π q2 + q4)

+ (mπ(8m4
π (q4 − q4

0 ) + m2
π (−6q6 + 32q4q2

0 − 48q2q4
0 + 16q6

0 ) + q8 − 8q6q2
0 + 4q4q4

0 ))

q4(4m2
π q2 + q4)

×
√

1 − q2
0

m2
π

)
+O(ε), (C.34)

h7
(
q2, q0

)= 1

16π

(
(4m2

π q2 + q4)

2q2
√

q2
I1 −

√
1 − q2

0
m2

π
(mπ(q2 − 2q2

0 ))

q2
− mπq2

q2

)
+O(ε),

(C.35)

h8
(
q2, q0

)= 1

16π

(
(4m2

π q2 + q4 + 2q2q2
0 )

2q4
√

q2
I1 +

3mπq2

√
1 − q2

0
m2

π

q4
− mπ(q2 + 2q2

0 )

q4

)
+O(ε),

(C.36)

h9
(
q2, q0

)= 1

16π

(
(4m2

πq2q2 + q6 + 2q4q2
0 )

2q4
√

q2
I1 − mπ(q4 − 8q2q2

0 + 4q4
0 )

q4

√
1 − q2

0

m2

− mπq2(q2 + 2q2
0 )

q4

)
+O(ε), (C.37)

h10
(
q2, q0

)= 1

16π

(
−q0(4m2

π q2 + q2(2q2 + q2
0 ))

2q4
√

q2
I1

+

√
1 − q2

0
m2

π
(mπq0(q

2
0 − 4q2))

q4
+ mπq0(2q2 + q2

0 )

q4

)
+O(ε), (C.38)
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h11
(
q2, q0

)= − 1

4π2
q0L̃ + q0

4π2
+ −1

2π2

(
2
√

m̃2 − q2
0x2 sin−1

(
q0x√
m̃2

)
+ q0x ln

(
m̃2

m2
π

))
+O(ε), (C.39)

h12
(
q2, q0

)= 1

4π2

1∫
0

dxx(1 − 2x)
sin−1(

q0x√
m̃2

)√
m̃2 − q2

0x2
+O(ε), (C.40)

h13
(
q2, q0

)= −1

8π2
L̃ − 1

8π2
− 1

4π2

1∫
0

dxx

{
ln

(
m̃2

m2
π

)
−

2q0x sin−1(
q0x√
m̃2

)√
m̃2 − q2

0x2

}

+O(ε), (C.41)

h14
(
q2, q0

)= 1

16π

q2

(q2)3/2

(
2m2

π − q2)I1 − 1

8π

mπ

q2

(
2m2

π − q2)

+ 1

8π

mπ

q2

(
2m2

π + q2 − 2q2
0

)√
1 − q2

0

m2
π

+O(ε), (C.42)

h15
(
q2, q0

)= − 1

32π

2m2
π − q2

q2
√

q2
q0I1 − 1

16π

mπ

q0q2

(
2m2

π − q2
0

)(√
1 − q2

0

m2
π

− 1

)
+O(ε), (C.43)

h16
(
q2, q0

)= 1

8π2
L̃ − 1

8π2
+ 1

4π2

1∫
0

dx

{
x ln

(
m̃2

m2
π

)
+ 2

q0

√
m̃2 − q2

0x2 sin−1
(

q0x√
m̃2

)}

+O(ε), (C.44)

h17
(
q2, q0

)= − 1

8π

m3
π

q2
0

(
1 −

(
1 − q2

0

m2
π

)3/2)
+O(ε), (C.45)

h18
(
q2, q0

)= 3

16π

m3
π

q2
0

(
1 −

(
1 − q2

0

m2
π

)3/2)
+O(ε), (C.46)

h19
(
q2, q0

)= 1

16π

m3
π

q2
0

(
1 −

(
1 − q2

0

m2
π

)3/2)
+O(ε). (C.47)

These expressions agree with Eqs. (81)–(84) of [17] when q0 = 0 and ε · v = 0.
We have explicitly checked that our result is gauge invariant through the following relations 

between the h’s:

h2
(
q2, q0

)+ h11
(
q2, q0

)+ q2h12
(
q2, q0

)+ q0
(
h13
(
q2, q0

)+ h16
(
q2, q0

))= 0, (C.48)

h0
(
q2, q0

)+ h1
(
q2, q0

)+ h3
(
q2, q0

)+ h7
(
q2, q0

)+ q0
(
h10
(
q2, q0

)+ h15
(
q2, q0

))
+ q2(h4

(
q2, q0

)+ h8
(
q2, q0

))= 0, (C.49)

−q2
0

q2

(−h1
(
q2, q0

)+ h6
(
q2, q0

)+ h9
(
q2, q0

)+ h14
(
q2, q0

)
+ h17

(
q2, q0

)+ h18
(
q2, q0

)+ h19
(
q2, q0

))
+ h0

(
q2, q0

)+ h1
(
q2, q0

)+ h3
(
q2, q0

)+ h7
(
q2, q0

)
+ q2(h4

(
q2, q0

)+ h8
(
q2, q0

))= 0. (C.50)
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C.2. Pion loops which include a � excitation

Here we collect the amplitudes of all the diagrams contributing to the proton polarizability 
with a � particle and through a loop of pions, represented in Fig. 4, plus the ones with a crossed 
photon lines or permutations, which are assumed to be implicit in the representation. For all the 

diagrams here we consider the overall factor A = − 8
3Mp

g2
πN�

F 2
π

. We take a positive infinitesimal 

imaginary part for the propagators of h�
14 − h�

19.

Mμν
�π1 =Agμνh�

0

(
q2, q0

)
, (C.51)

Mμν
�π2 =A

{(
gμν − vμvν

)
h�

1

(
q2, q0

)+ iεμναβvαSβh�
2

(
q2, q0

)}
, (C.52)

Mμν
�π3 =A

{
gμνh�

3

(
q2, q0

)+ qμqνh�
4

(
q2, q0

)+ (qμvν + vμqν
)
h�

5

(
q2, q0

)
+ vμvνh�

6

(
q2, q0

)}
, (C.53)

Mμν
�π4 =A

{
gμνh�

7

(
q2, q0

)+ qμqνh�
8

(
q2, q0

)+ (qμvν + vμqν
)
h�

10

(
q2, q0

)
+ vμvνh�

9

(
q2, q0

)+ iεμναβvαSβh�
11

(
q2, q0

)
+ ivαSβqλ

(
εμλαβqν − ενλαβqμ

)
h�

12

(
q2, q0

)
+ ivαSβqλ

(
εμλαβvν − ενλαβvμ

)
h�

13

(
q2, q0

)}
, (C.54)

Mμν
�π5 =A

{
vμvνh�

14

(
q2, q0

)+ (qμvν + vμqν
)
h�

15

(
q2, q0

)
+ ivαSβqλ

(
εμλαβvν − ενλαβvμ

)
h�

16

(
q2, q0

)}
, (C.55)

Mμν
�π6 =A

{
vμvνh�

17

(
q2, q0

)}
, (C.56)

Mμν
�π7 =A

{
vμvνh�

18

(
q2, q0

)}
, (C.57)

Mμν
�π8 =A

{
vμvνh�

19

(
q2, q0

)}
, (C.58)

where in terms of the master integrals:

h�
0

(
q2, q0

)= −2(D − 2)J ′
2

(−�,m2
π

)
, (C.59)

h�
1

(
q2, q0

)= D − 2

D − 1

(
J0
(
q0 − �,m2

π

)+ J0
(−q0 − �,m2

π

))
, (C.60)

h�
2

(
q2, q0

)= −2

D − 1

(
J0
(
q0 − �,m2

π

)− J0
(−q0 − �,m2

π

))
, (C.61)

h�
3

(
q2, q0

)= 4
D − 2

D − 1

1∫
0

dx(1 − x)
{−q2x2(J ′′

2

(
q0x − �,m̃2)+ J ′′

2

(−q0x − �,m̃2))

+ (D + 1)
(
J ′′

6

(
q0x − �,m̃2)+ J ′′

6

(−q0x − �,m̃2))}, (C.62)

h�
4

(
q2, q0

)= D − 2

D − 1

1∫
0

dx(1 − x)(2x − 1)
{−q2x2(2x − 1)

(
J ′′

0

(
q0x − �,m̃2)

+ J ′′
0

(−q0x − �,m̃2))+ (4x(D + 1) − (1 + 2x)(D − 1)
)

× (J ′′(q0x − �,m̃2)+ J ′′(−q0x − �,m̃2))}, (C.63)
2 2
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h�
5

(
q2, q0

)= 2
D − 2

D − 1

1∫
0

dx
{−q2x2(1 − 2x)

(
J ′′

1

(
q0x − �,m̃2)− J ′′

1

(−q0x − �,m̃2))

+ 2q0x(1 − 2x)
(
J ′′

2 (q0x − �,m̃) + J ′′
2

(−q0x − �,m̃2))
+ (D − 1 − 2(D + 1)x

)(
J ′′

4

(
q0x − �,m̃2)− J ′′

4

(−q0x − �,m̃2))},
(C.64)

h�
6

(
q2, q0

)= 4
D − 2

D − 1

1∫
0

dx(1 − x)
{
x
(−q2x

(
J ′′

3

(
q0x − �,m̃2)+ J ′′

3

(−q0x − �,m̃2))

+ 4q0
(
J ′′

4

(
q0x − �,m̃2)− J ′′

4

(−q0x − �,m̃2)))
− 2
(
J ′′

6

(
q0x − �,m̃2)+ J ′′

6

(−q0x − �,m̃2))}, (C.65)

h�
7

(
q2, q0

)= −4
D − 2

D − 1

1∫
0

dx
{
J ′

2

(
q0x − �,m̃2)+ J ′

2

(−q0x − �,m̃2)}, (C.66)

h�
8

(
q2, q0

)= 2
D − 2

D − 1

1∫
0

dx(1 − 2x)x
{
J ′

0

(
q0x − �,m̃2)+ J ′

0

(−q0x − �,m̃2)}, (C.67)

h�
9

(
q2, q0

)= 4
D − 2

D − 1

1∫
0

dx
{
J ′

2

(
q0x − �,m̃2)+ J ′

2

(−q0x − �,m̃2)

− q0x
(
J ′

1

(
q0x − �,m̃2)− J ′

1

(−q0x − �,m̃2))}, (C.68)

h�
10

(
q2, q0

)= D − 2

D − 1

1∫
0

dxx
{
2
(
J ′

1

(
q0x − �,m̃2)− J ′

1

(−q0x − �,m̃2))

− (1 − 2x)q0
(
J ′

0

(
q0x − �,m̃2)+ J ′

0

(−q0x − �,m̃2))}, (C.69)

h�
11

(
q2, q0

)= 8

D − 1

1∫
0

dx
{
J ′

2

(
q0x − �,m̃2)− J ′

2

(−q0x − �,m̃2)}, (C.70)

h�
12

(
q2, q0

)= − 2

D − 1

1∫
0

dxx(1 − 2x)
{
J ′

0

(
q0x − �,m̃2)− J ′

0

(−q0x − �,m̃2)}, (C.71)

h�
13

(
q2, q0

)= − 4

D − 1

1∫
0

dxx
{
J ′

1

(
q0x − �,m̃2)+ J ′

1

(−q0x − �,m̃2)}, (C.72)

h�
14

(
q2, q0

)= 4
D − 2

D − 1

1

q0

1∫
0

dx
{
(D − 1)

(
J ′

4

(
q0x − �,m̃2)− J ′

4

(−q0x − �,m̃2))

− (1 − 2x)q0
(
J ′(q0x − �,m̃2)+ J ′(−q0x − �,m̃2))
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+ (1 − x)xq2(J ′
1

(
q0x − �,m̃2)− J ′

1

(−q0x − �,m̃2))}, (C.73)

h�
15

(
q2, q0

)= D − 2

D − 1

1

q0

1∫
0

dx(1 − 2x)
{
(D + 1)

(
J ′

2

(
q0x − �,m̃2)+ J ′

2

(−q0x − �,m̃2))
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J ′

0

(
q0x − �,m̃2)+ J ′

0

(−q0x − �,m̃2))}, (C.74)

h�
16

(
q2, q0

)= − 2

D − 1

2

q0

1∫
0

dx
{
J ′

2

(
q0x − �,m̃2)− J ′

2

(−q0x − �,m̃2)}, (C.75)

h17
(
q2, q0

)= −2
D − 1

4

1

q2
0

(−2J2
(
0,m2

π

)+ J2
(−q0,m

2
π

)+ J2
(
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2
π
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, (C.76)

h�
17

(
q2, q0
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D − 2

D − 1

(
1 − D

2

1

q2
0

(−2J2
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π

)+ J2
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π

)

+ J2
(
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π
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, (C.77)
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D − 1
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4

3
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(
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π
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, (C.78)

h�
19

(
q2, q0
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D − 2

D − 1

D − 1
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1

q2
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J2
(
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π
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π

)
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(−�,m2
π

))
. (C.79)

These results, in the limit q2 = 0 and in the gauge where ε · v = 0, agree with Eqs. (89)–(92) of 
[17].

Now, expanding in D = 4 − ε we get

h�
0

(
q2, q0

)= − 1

4π2
�L̃ − 1

2π2
mπZ

(
�

mπ

)
, (C.80)

h�
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q2, q0

)= 1
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�L̃ + 1

18π2
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3mπ

(
Z
(
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mπ

)
+Z
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+O(ε),

(C.81)
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(
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(
� − q0

mπ

))
− 5q0

3

)
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(C.82)
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√
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2

))}
+O(ε), (C.83)
m̃ − (� − q0x) m̃
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h�
4

(
q2, q0

)= 1

24π2

1∫
0

dx(1 − x)(2x − 1)

×
{
x2(2x − 1)

q2

m̃2

(
� + q0x

m̃2 − (� + q0x)2
+ � − q0x

m̃2 − (� − q0x)2

)

−
√

m̃2

m̃2 − (� + q0x)2

(
3

(
1 − 14x

3

)
− q2x2(2x − 1)

m̃2 − (� + q0x)2

)
Z
(

� + q0x√
m̃2

)

−
√

m̃2

m̃2 − (� − q0x)2

(
3

(
1 − 14x

3

)
− q2x2(2x − 1)

m̃2 − (� − q0x)2

)
Z
(

� − q0x√
m̃2

)}
+O(ε), (C.84)

h�
5

(
q2, q0

)= 1

12π2

1∫
0

dx

{
(2x − 1)x2

(
q2

m̃2 − (� − q0x)2
− q2

m̃2 − (� + q0x)2

)

−
√

m̃2

m̃2 − (� + q0x)2

(
x2(2x − 1)q2(� + q0x)

m̃2 − (� + q0x)2
− q0x

(
5(1 − 2x) − 4x

)

+ �
(
4x + 3(2x − 1)

))
Z
(

� + q0x√
m̃2

)

+
√

m̃2

m̃2 − (� − q0x)2

(
x2(2x − 1)q2(� − q0x)

m̃2 − (� − q0x)2

+ q0x
(
5(1 − 2x) − 4x

)+ �
(
4x + 3(2x − 1)

) )
Z
(

� − q0x√
m̃2

)}
+O(ε), (C.85)

h�
6

(
q2, q0

)= − 1

6π2
�L̃ + �

9π2
+ 1

6π2

1∫
0

dx(1 − x)

{
−2� ln

(
m̃2

m2
π

)

+ q2x2
(

� + q0x

m̃2 − (� + q0x)2
+ � − q0x

m̃2 − (� − q0x)2

)

+
√

m̃2

(
q2x2(� + q0x)2

(m̃2 − (� + q0x)2)2
+ 4q0x(� + q0x) + q2x2

m̃2 − (� + q0x)2
− 2

)

×Z
(

� + q0x√
m̃2

)
+
√

m̃2

(
q2x2(� − q0x)2

(m̃2 − (� − q0x)2)2

+ q2x2 − 4q0x(� − q0x)

m̃2 − (� − q0x)2
− 2

)
Z
(

� − q0x√
m̃2

)}
+O(ε), (C.86)

h�
7

(
q2, q0

)= − 1

3π2
�L̃ + 2�

9π2
− 1

3π2

1∫
0

dx

{
� ln

(
m̃2

m2
π

)

+
√

m̃2

(
Z
(

� − q0x√
2

)
+Z

(
� + q0x√

2

))}
+O(ε), (C.87)
m̃ m̃
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h�
8

(
q2, q0

)= 1

6π2

1∫
0

dx(1 − 2x)x
√

m̃2

{ Z(
�+q0x√

m̃2
)

m̃2 − (� + q0x)2
+

Z(
�−q0x√

m̃2
)

m̃2 − (� − q0x)2

}

+O(ε), (C.88)

h�
9

(
q2, q0

)= 1

3π2
�L̃ − 2�

9π2
+ 1

3π2

1∫
0

dx

{
� ln

(
m̃2

m2
π

)

+
√

m̃2

((
1 − x(q0(� + q0x))

m̃2 − (� + q0x)2

)
Z
(

� + q0x√
m̃2

)

+
(

x(q0(� − q0x))

m̃2 − (� − q0x)2
+ 1

)
Z
(

� − q0x√
m̃2

))}
+O(ε), (C.89)

h�
10

(
q2, q0

)= 1

12π2

1∫
0

dx
√

m̃2x

{ (2� + q0(4x − 1))Z(
�+q0x√

m̃2
)

m̃2 − (� + q0x)2

+
(q0(4x − 1) − 2�)Z(

�−q0x√
m̃2

)

m̃2 − (� − q0x)2

}
+O(ε), (C.90)

h�
11

(
q2, q0

)= −q0L̃

6π2
+ 5q0

18π2
− 1

3π2

1∫
0

dx

{
q0x ln

(
m̃2

m2
π

)
−
√

m̃2

(
Z
(

� − q0x√
m̃2

)

−Z
(

� + q0x√
m̃2

))}
+O(ε), (C.91)

h�
12

(
q2, q0

)= − 1

12π2

1∫
0

dx(1 − 2x)x
√

m̃2

{ Z(
�−q0x√

m̃2
)

m̃2 − (� − q0x)2

−
Z(

�+q0x√
m̃2

)

m̃2 − (� + q0x)2

}
+O(ε), (C.92)

h�
13

(
q2, q0

)= − L̃

12π2
− 1

36π2
− 1

6π2

1∫
0

dxx

{
ln

(
m̃2

m2
π

)

−
√

m̃2

( (� + q0x)Z(
�+q0x√

m̃2
)

m̃2 − (� + q0x)2
+

(� − q0x)Z(
�−q0x√

m̃2
)

m̃2 − (� − q0x)2

)}
+O(ε), (C.93)

h�
14

(
q2, q0

)= �L̃

π2
+ 1

3π2

1∫
0

dx

{
(−1 + 8x)� ln

(
m̃2

m2
π

)

+
√

m̃2

q0

((
3� − q0(1 − 5x) − q2(1 − x)x(q0x + �)

(� + q0x)2 − m̃2

)
Z
(−q0x − �√

m̃2

)
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−
(

3� + q0(1 − 5x) − q2(1 − x)x(−q0x + �)

(� − q0x)2 − m̃2

)
Z
(

q0x − �√
m̃2

))}
+O(ε), (C.94)

h�
15

(
q2, q0

)= 1

24π2q0

1∫
0

dx(1 − 2x)

{
10� ln

(
m̃2

m2
π

)

+ 2
√

m̃2

((
q2(1 − x)x

m̃2 − (� + q0x)2
+ 5

)
Z
(

� + q0x√
m̃2

)

+
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m̃2 − (� − q0x)2
+ 5

)
Z
(

� − q0x√
m̃2

))}
+O(ε), (C.95)
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(
q2, q0

)= L̃

12π2
− 5

36π2
+ 1

6π2

1∫
0

dx

{
x ln

(
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m2
π

)
+

√
m̃2

q0

(
Z
(

� + q0x√
m̃2

)

−Z
(

� − q0x√
m̃2

))}
+O(ε), (C.96)

h�
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(
q2, q0

)= −1

6π2

(
−3L̃� + 2� − mπ

q2
0

((
(q0 + �)2 − m2

π

)
Z
(

� + q0

mπ

)
.

+ ((q0 − �)2 − m2
π

)
Z
(−� + q0

mπ

)
− 2
(−m2

π + �2)Z(− �

mπ

)))
+O(ε), (C.97)

h�
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(
q2, q0

)= 1

4π2

(
−3L̃� + 2� − mπ

q2
0

((
(q0 + �)2 − m2

π

)
Z
(

� + q0

mπ

)

+ ((q0 − �)2 − m2
π

)
Z
(−� + q0

mπ

)
− 2
(−m2

π + �2)Z(− �

mπ

)))
+O(ε), (C.98)

h�
19

(
q2, q0

)= 1

12π2

(
−3L̃� + 2� − mπ

q2
0

((
(q0 + �)2 − m2

π

)
Z
(

� + q0

mπ

)

+ ((q0 − �)2 − m2
π

)
Z
(−� + q0

mπ

)
− 2
(−m2

π + �2)Z( �

mπ

)))
+O(ε). (C.99)

We have explicitly checked that our result is gauge invariant through the following relations 
between the h�’s:

h�
2

(
q2, q0

)+ h�
11

(
q2, q0

)+ q2h�
12

(
q2, q0

)+ q0
(
h�

13

(
q2, q0

)+ h�
16

(
q2, q0

))= 0, (C.100)

h�
0

(
q2, q0

)+ h�
1

(
q2, q0

)+ h�
3

(
q2, q0

)+ h�
7

(
q2, q0

)+ q0
(
h�

10

(
q2, q0

)+ h�
15

(
q2, q0

))
+ q2(h�

4

(
q2, q0

)+ h�
8

(
q2, q0

))= 0, (C.101)

−q2
0

q2

(−h�
1

(
q2, q0

)+ h�
6

(
q2, q0

)+ h�
9

(
q2, q0

)+ h�
14

(
q2, q0

)+ h�
17

(
q2, q0

)
+ h�

18

(
q2, q0

)+ h�
19

(
q2, q0

))+ h�
0

(
q2, q0

)+ h�
1

(
q2, q0

)+ h�
3

(
q2, q0

)+ h�
7

(
q2, q0

)
+ q2(h�

(
q2, q0

)+ h�
(
q2, q0

))= 0, (C.102)
4 8
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which are equivalent to:

h2
(
q2, q0 − �

)+ h11
(
q2, q0 − �

)+ q2h12
(
q2, q0 − �

)+ q0
(
h13
(
q2, q0

)
+ h16

(
q2, q0 − �

))= 0, (C.103)

h0
(
q2, q0 − �

)+ h1
(
q2, q0 − �

)+ h3
(
q2, q0 − �

)+ h7
(
q2, q0 − �

)
+ q0

(
h10
(
q2, q0 − �

)+ h15
(
q2, q0 − �

))+ q2(h4
(
q2, q0 − �

)
+ h8

(
q2, q0 − �

))= 0, (C.104)

−q2
0

q2

(−h1
(
q2, q0 − �

)+ h6
(
q2, q0 − �

)+ h9
(
q2, q0 − �

)
+ h14

(
q2, q0 − �

)+ h17
(
q2, q0 − �

)+ h18
(
q2, q0 − �

)+ h19
(
q2, q0 − �

))
+ h0

(
q2, q0 − �

)+ h1
(
q2, q0 − �

)+ h3
(
q2, q0 − �

)+ h7
(
q2, q0 − �

)
+ q2(h4

(
q2, q0 − �

)+ h8
(
q2, q0 − �

))= 0. (C.105)
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