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Abstract

We study noetherian graded idealizer rings which have very different behavior on the rig
left sides. In particular, we construct noetherian graded algebrasT over an algebraically closed fie
k with the following properties:T is left but not right strongly noetherian;T ⊗k T is left but not
right noetherian andT ⊗k T op is noetherian; the left noncommutative projective schemeT -Proj is
different from the right noncommutative projective scheme Proj-T ; andT satisfies leftχd for some
d � 2 yet fails rightχ1.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

As a general principle, rings which are both left and right noetherian are expec
have rather symmetric properties on their leftand the right sides. The theme of this pa
is to show that such intuition fails quite utterly for certain properties which are impo
in the theory of noncommutative projective geometry. Our main result is the follo
theorem.
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Theorem 1.1 (Theorem 8.2).For any integerd � 2, there exists a connected finite
presented graded noetheriank-algebraT , wherek is an algebraically closed field, suc
that

(1) T is strongly left noetherian, but not strongly right noetherian;
(2) T ⊗k T is left but not right noetherian, whileT ⊗k T op is noetherian;
(3) the noncommutative projective schemesT -ProjandProj-T have equivalent underlyin

categories, but non-isomorphic distinguished objects; and
(4) T satisfiesχd−1 but notχd on the left, yetT fails χ1 on the right.

In the remainder of the introduction, we will define and briefly discuss all of the rele
terms in the statement of the theorem and indicate how the ringT is constructed. For a mor
detailed introduction to the theory of noncommutative geometry which motivates the
of these properties, see the survey article [16].

If R is a k-algebra, thenR is calledstrongly left(right) noetherianif R ⊗k B is left
(right) noetherian for every commutative noetheriank-algebraB. The study of the stron
noetherian condition for graded rings in particular has recently become important be
of the appearance of this property in the hypotheses of several theorems in noncomm
geometry. Most notably, Artin and Zhang showed that ifA is a strongly noetherian grade
k-algebra, then the set of gradedA-modules with a given Hilbert function is parametriz
by a projective scheme [3]. It is not a priori obvious that any noetherian finitely gene
k-algebra which is not strongly noetherian should exist; in [11], Resco and Small
the first (ungraded) such example. More recently, the author showed that there ex
noncommutative noetherian graded rings which are not strongly noetherian (on
side) [12]. Theorem 1.1(1) shows that it is also possible for the strong noetherian pr
to fail on one side only of a noetherian graded ring.

It is natural to suspect that a ring for which the noetherian property fails
commutative base ring extension might also have strange properties when tensor
itself or its opposite ring. Theorem 1.1(2) confirms such a suspicion. The existen
a pair of finitely presented noetheriank-algebras whose tensor product is not noethe
answers [4, Appendix, Open Problem 16′]; our example shows that one can even take
algebras in question to beN-graded.

We now explain the third part of Theorem 1.1. LetA = ⊕∞
n=0 An be an arbitrary

N-gradedk-algebra, wherek is an algebraically closed field. In addition, assume
A is connected(A0 = k) and finitely graded(dimk An < ∞ for all n � 0). The left
noncommutative projective scheme associated toA is defined to be the pairA-Proj =
(A-Qgr,A). Here A-Qgr is the quotient category of the category ofZ-graded left
A-modules by the full subcategory of modules which are direct limits of modules
finite k-dimension, andA, called thedistinguished object, is the image of the moduleAA
in A-Qgr. The right noncommutativeprojective scheme Proj-A of A is defined analogously
The motivation for these definitionscomes from the commutative case: ifA is commutative
noetherian and projA = X is its associated scheme, thenA-Qgr and QchX (the category
of quasi-coherent sheaves onX) are equivalent categories, andA corresponds under th
equivalence to the structure sheafOX .
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The result of Theorem 1.1(3) shows that noncommutative projective schemes ass
to the two sides of a noncommutative noetherian ring may well be quite different. In
for the ringT of the theorem we will see that bothT -Qgr and Qgr-T are equivalent to
the category QchX whereX = Pd for somed � 2. However, Proj-T is isomorphic to
(QchX,OX), whileT -Proj is isomorphic to(QchX,I) whereI is a non-locally-free idea
sheaf.

Next we discuss theχ conditions, which are homological properties of graded ri
which arose in Artin and Zhang’s work in [2] to develop the theory of noncommut
projective schemes. For eachi � 0, the connected finitely gradedk-algebraA is said
to satisfyχi on the left (right) if dimk ExtjA(A/A�1,M) < ∞ for all finitely generated
left (right) A-modulesM and all 0� j � i, where Extindicates the Ext group in th
ungraded module category. IfA satisfiesχi on the left for all i � 0, then we say tha
A satisfiesχ on the left. Theχ1 condition is the most important of these conditions
ensures that one can reconstruct the ringA (in large degree) from its associated sche
A-Proj [2, Theorem 4.5]. The otherχi conditions fori � 2 are needed to show the finit
dimensionality of the cohomology groups associated toA-Proj [2, Theorem 7.4].

Although theχ conditions always hold for commutative rings, Stafford and Zh
constructed noetherian rings for whichχ1 fails on both sides [15]. The author studi
rings in [12] which satisfyχ1 but fail χ2 on both sides. Theorem 1.1(3) demonstrates
more possible behaviors of theχ conditions: first, thatχ1 may hold on one side but no
the other of a noetherian ring; and second, that for anyd � 2 there are rings which satisf
χd−1 but notχd (on one side).

Finally, we briefly describe the construction of the ringsT satisfying Theorem 1.1
Recall that ifI is a left ideal in a noetherian ringS, then theidealizerof I , written I(I),
is the largest subring ofS which containsI as a 2-sided ideal. Explicitly,I(I) = {s ∈ S |
Is ⊆ I }. Now let S be a generic Zhang twist of a polynomial ring (see Section 5 for
definition), which is a noncommutative graded ring generated in degree 1. LetI be the left
ideal ofS generated by a generic subspaceI1 ⊆ S1 with dimI1 = dimS1 −1. The ringT =
I(I) ⊆ S is then the ring of interest which will satisfy properties (1)–(4) of Theorem 1

Our approach in this paper will be primarily algebraic. Since this research
completed, the article [8] has developed a geometric framework for the study of a
of algebras quite similar to the ones we study here. We remark that many of the
below can be translated into this geometric language, which would allow one to sho
the properties of Theorem 1.1 hold for a wider class of idealizer rings. Specifically
could work with idealizers inside twisted homogeneous coordinate rings over arb
integral projective schemes, instead of the special case of Zhang twists of polyn
rings we consider here. Since our main purpose is to construct some interesting exa
we will not attempt to be as general as possible and we will prefer the simpler algebra
constructions.

2. Idealizer rings and the left and right noetherian property

As mentioned in the introduction, the main examples of this paper will be ce
idealizer rings. Idealizers have certainly proved useful in the creation of counterexa
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before, but it seems that in many natural examples (for example, those in [10] or
the idealizer of a left ideal is a left but not right noetherian ring. Since our intentio
to create two-sided noetherian examples, in this brief section we will give some g
characterizations of both the left and right noetherian properties for an idealizer ring

Let S be a noetherian ring with left idealI , and letT = I(I) ⊆ S = {s ∈ S | Is ⊆ I }
be the idealizer ofI . In [14], Stafford gives a sufficient condition for the left noether
property ofT . In the next proposition, we restate Stafford’s result slightly to show th
characterizes the left noetherian property in caseS is a finitely generated leftT -module,
which occurs in many examples of interest.

Proposition 2.1. Let T be the idealizer of the left idealI of a noetherian ringS, and
assume in addition thatT S is finitely generated. The following are equivalent:

(1) T is left noetherian.
(2) HomS(S/I, S/J ) is a noetherian leftT -module(or T/I -module) for all left idealsJ

of S.

Proof. By [14, Lemma 1.2], if HomS(S/I, S/J ) is a noetherian leftT -module for all left
idealsJ of S containingI , thenT is left noetherian. So if condition (2) holds, thenT is
certainly left noetherian.

On the other hand, ifT is left noetherian, then sinceT S is finitely generated,T S

is also noetherian. Given any left idealJ of S, we can identify the leftT -module
HomS(S/I, S/J ) with the subfactor{x ∈ S | Ix ⊆ J }/J of T S, so HomS(S/I, S/J ) is
a noetherianT -module. �

Next, we give a characterization of the rightnoetherian property for idealizers of le
ideals. It is formally quite similar to the characterization of Proposition 2.1, and may b
independent interest. In fact, the result applies more generally to all subrings ofS inside of
which I is an ideal.

Proposition 2.2. Let S be a noetherian ring with left idealI , and letT be a subring ofS
such thatI ⊆ T ⊆ I(I). The following are equivalent:

(1) T is right noetherian.
(2) T/I is a right noetherian ring, andTorS1(S/K,S/I) = (K ∩ I)/KI is a noetherian

right T -module(or T/I -module) for all right idealsK of S.

Proof. The identification of TorS1(S/K,S/I) with the subfactor(K ∩I)/KI of TT follows
from [13, Corollary 11.27(iii)], and it is immediate that (1) implies (2).

Now suppose that condition (2) holds. SinceS is right noetherian,T is right noetherian
if and only if (JS ∩ T )/J is a noetherian rightT -module for all finitely generated righ
T -idealsJ—see [12, Lemma 6.10] for a proof of this in the graded case; the proof i
ungraded case is the same. LetJ be an arbitrary finitely generated right ideal ofT . Since
T/I is right noetherian,(JS ∩ T )/(JS ∩ I) andJ/J I are noetherian rightT/I -modules
(the first injects intoT/I , andJ surjects onto the second). Then(JS ∩ T )/J is right
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noetherian overT if and only if (JS ∩ I)/J I is. By [13, Corollary 11.27(iii)] and the fac
thatJSI = J I , we may identify(JS∩I)/J I with TorS1(S/JS,S/I), which is a noetherian
right module overT by hypothesis. It follows thatT is a right noetherian ring. �

3. Noncommutative Proj of graded idealizer rings

Starting with this section, we focus our attention on idealizer rings inside conn
finitely gradedk-algebras in particular. Our first task is to study the properties of the
and right noncommutative schemes associated to such idealizer rings, and so we be
a review of some of the relevant definitions.

Below,A will always be a connected finitely gradedk-algebra, and we writeA-Gr for
the category of allZ-graded leftA-modules. A moduleM ∈ A-Gr is calledtorsion if for
everym ∈ M there is somen � 0 such that(A�n)m = 0. LetA-Tors be the full subcategor
of A-Gr consisting of the torsion modules, and defineA-Qgr to be the quotient catego
A-Gr/A-Tors, with quotient functorπ :A-Gr → A-Qgr. For aZ-gradedA-moduleM we
defineM[n] for anyn ∈ Z to beM as an ungraded module, but with a new grading gi
by M[n]m = Mn+m. The shift functorM → M[1] is an autoequivalence ofA-Gr which
naturally descends to an autoequivalence ofA-Qgr we calls, though we usually write
M[n] instead ofsn(M) for anyM ∈ A-Qgr andn ∈ Z.

In general, any collection of data(C,F , t) whereC is an abelian category,F is an object
of C, andt is an autoequivalence ofC is called anArtin–Zhang triple. For every connecte
graded ringA the data(A-Qgr,πA, s) gives such a triple. An isomorphism of two su
triples is an equivalence of categories which commutes with the autoequivalenc
under which the given objects correspond; see [2, p. 237]. For example, ifA is a connected
graded commutative ring andX = projA is the associated scheme, then by a theorem
Serre one has that(A-Qgr,πA, s) is isomorphic to(QchX,OX,− ⊗ O(1)). Motivated
by this, for any connected graded ringA one calls the pairA-Proj= (A-Qgr,πA) the left
noncommutative projective schemeassociated toA, the objectπA thedistinguished object,
and the autoequivalences of A-Qgr thepolarization. We define analogously the right-sid
versions Qgr-A, Proj-A, etcetera of all of the notions above.

Our analysis of the noncommutative schemes for idealizer rings will be restrict
rings which satisfy the following hypotheses, which will hold for a large class of exam
we study later.

Hypothesis 3.1. Let k be a field. LetS be a noetherian connected finitelyN-graded
k-algebra, letI be some homogeneous left ideal ofS such that dimk S/I = ∞, and putT =
I(I). Assume in addition thatT S is a finitely generated module, and that dimk T /I < ∞.

Under the assumptions of Hypothesis 3.1, both the left and right noncommu
schemes for the idealizer ringT are closely related to those for the ringS, as we see
now.
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Lemma 3.2. Assume Hypothesis3.1.

(1) There is an isomorphism of triples(S-Qgr,πI, s) ∼= (T -Qgr,πT , s).
(2) There is an isomorphism of triples(Qgr-S,πS, s) ∼= (Qgr-T ,πT , s).

Proof. (1) Suppose thatM ∈ S-Gr. Then we claim that ifT M ∈ T -Tors, thenSM ∈
S-Tors. To prove this fact, note first that ifT M is finitely generated, thenM is finite-
dimensional overk, so obviouslySM ∈ S-Tors. In general,T M is a direct limit of finite-
dimensionalT -modules, soM ′ = S ⊗T M is a direct limit of finite-dimensionalS-modules
and thusM ′ ∈ S-Tors. Since there is anS-module surjectionM ′ → M, this completes the
proof of the claim.

Now we define two functors by the rules

F :T -Gr→ S-Gr,
T M 	→ S(I ⊗T M),

G :S-Gr→ T -Gr,
SN 	→ T N

together with the obvious actions on morphisms. IfT M ∈ T -Gr, then since dimk T /I < ∞,
it follows by calculating using a free resolution ofM that TorTj (T /I,M) is a torsion left
T -module for allj � 0. Then the natural mapI ⊗T M → T ⊗T M = M has torsion kerne
and cokernel for allM ∈ T -Gr. In particular, ifM ∈ T -Tors, thenF(M) ∈ T -Tors, so
F(M) ∈ S-Tors by the earlier claim. It follows thatF ′ = π ◦ F : T -Gr → S-Qgr is an
exact functor, and thatF ′(M) = 0 for all M ∈ T -Tors. Then by the universal property
the quotient category [9, Corollary 4.3.11],F ′ descends to a functorF :T -Qgr→ S-Qgr.
Similarly, it is clear that ifN ∈ S-Tors thenG(N) = N ∈ T -Tors. ThenG′ = π ◦ G :
S-Gr → T -Qgr is an exact functor withG′(N) = 0 for all N ∈ S-Tors, soG′ descends to a
functorG : S-Qgr→ T -Qgr.

We conclude thatF andG are inverse equivalences of categories. Moreover, obvio
F(πT ) ∼= πI , and all of the maps are compatible with the shift functorss, sinceF andG

are compatible with the shift functors in the categoriesS-Gr andT -Gr.
(2) BecauseSI = I ⊆ T , we have(S/T )I = 0 and so sinceT/I is finite-dimensiona

we see that(S/T )T is torsion. By assumption we also know thatT (S/T ) is finitely
generated. Now the proof of this triple isomorphism is entirely analogous to the pro
[15, Proposition 2.7], with the exception that the authors assume there thatT is noetherian
and then prove the required equivalence for the subcategories of noetherian obje
leave it to the reader to make the obvious adjustments to the proof to show witho
noetherian assumption that(Qgr-S,πS, s) ∼= (Qgr-T ,πT , s). �
Remark 3.3. The graded idealizer rings studied by Stafford and Zhang in [15] hav
special property that the idealI is a principal ideal generated by an element of degree
a graded Goldie domainS. In that case,T = I(I) is isomorphic to its opposite ring, an
thus the differences between parts (1) and (2) of Lemma 3.2 must disappear (ind
this caseπI ∼= πS[−1]). In the general case, however, it is clear from Lemma 3.2 tha
should expect the noncommutative schemesT -Proj and Proj-T to be non-isomorphic.
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The information provided by Lemma 3.2 will allow us to prove with ease several fu
results about the noncommutative projective schemes of idealizer rings. First, w
show in wide generality that passing to a Veronese ring ofT does not affect the associat
noncommutative projective schemes. Recall that for anN-graded ringA thenth Veronese
ring of A is the graded ringA(n) = ⊕∞

i=0 Ain.

Proposition 3.4. Assume Hypothesis3.1, and in addition letS be generated in degree1.
Choosen � 1 and writeT ′ = T (n), S′ = S(n), andI ′ = I (n) = ⊕∞

i=0 Iin. Let R′ ⊆ S′ be
the idealizer of the left idealI ′ of S′.

(1) T ′ andR′ are isomorphic in large degree.
(2) There are isomorphisms of noncommutative projective schemesT -Proj∼= T ′-Proj and

Proj-T ∼= Proj-T ′.

Proof. (1) As ungraded rings, we may identifyR′, T ′ andS′ with subrings ofS. Suppose
thatx ∈ (R′

m), so thatI ′x ⊆ I ′. Then since the left idealI of S is generated in some finit
degree, we see that in the ringS we have(I�p)x ⊆ I for somep � 0, wherex ∈ Snm.
Since the torsion submodule ofS(S/I) is finite-dimensional, ifm � 0 thenIx ⊆ I and
hencex ∈ T . Then as an element ofS′, x ∈ T ′. Since the inclusionT ′ ⊆ R′ is obvious,T ′
andR′ must agree in large degree.

(2) SinceT S is finitely generated and dimk T /I < ∞, we see thatT ′S′ is finitely
generated and dimk T ′/I ′ < ∞. Then becauseT ′ andR′ agree in large degree by part (1)
follows thatR′S′ is finitely generated and that dimk R′/I ′ < ∞. Also, sinceS is noetherian
S′ must be noetherian [2, Proposition 5.10(1)].

Now we claim that we have isomorphisms of noncommutative projective scheme

(Qgr-T ,πT ) ∼= (Qgr-S,πI) ∼= (Qgr-S′,πI ′) ∼= (Qgr-R′,πR′) ∼= (Qgr-T ′,πT ′).

To see this, note that sinceS is generated in degree 1, there is an isomorphism ProjS ∼=
Proj-S′ [2, Proposition 5.10(3)]; the associated equivalence of categories Qgr-S � Qgr-S′
sendsπI to πI ′. The second isomorphism follows, and the first and third follow fr
Lemma 3.2(1), applied toT ⊆ S and toR′ ⊆ S′, respectively. Last, the final isomorphis
follows from part (1). Altogether this chain of isomorphisms says that Proj-T ∼= Proj-T ′.

The argument on the left side is very similar, except using the other triple isomorp
of Lemma 3.2, and is left to the reader.�

Next we will show that under mild hypotheses the noncommutative projective sch
associated toS andT (on either side) have the same cohomological dimension; we re
the definition of this property now. Cohomology groups for the noncommutative projecti
schemeA-Proj are defined by settingHi (M) = ExtiA-Qgr(πA,M) for all M ∈ A-Qgr.
Then thecohomological dimensionof A-Proj is

cd(A-Proj) = max
{
i
∣∣ Hi (M) 
= 0 for someM ∈ A-Qgr

}
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and theglobal dimensionof the categoryA-Qgr is

gd(A-Qgr) = max
{
i
∣∣ ExtiA-Qgr(M,N ) 
= 0 for someM,N ∈ A-Qgr

}
.

The right-sided versions of these notions are defined similarly.

Proposition 3.5. Assume Hypothesis3.1.

(1) cd(Proj-T ) = cd(Proj-S).
(2) Assume in addition thatS is a domain withgd(S-Qgr) = cd(S-Proj) < ∞. Then

cd(T -Proj) = cd(S-Proj).

Proof. (1) This part is immediate from the triple isomorphism of Lemma 3.2(2).
(2) By Lemma 3.2(1), we have the isomorphism of triples(T -Qgr,πT , s) ∼=

(S-Qgr,πI, s). From this it quickly follows that

cd(T -Proj) � gd(T -Qgr) = gd(S-Qgr) = cd(S-Proj).

Let d = cd(S-Proj). To finish the proof that cd(T -Proj) = cd(S-Proj) we have only
to show that there is someF ∈ S-Qgr such that ExtdS-Qgr(πI,F) 
= 0. SinceS is a
domain, we may choose some injectionS[−m] → I for somem � 0, and passing to
S-Qgr we have a short exact sequence 0→ πS[−m] → πI → N → 0 for someN .
Since S-Proj has cohomological dimensiond , we may choose someF ∈ S-Qgr with
ExtdS-Qgr(πS[−m],F) 
= 0. But Extd+1

S-Qgr(N ,F) = 0 since the global dimension ofS-Qgr
is d , so we conclude from the long exact sequence in Ext that Extd

S-Qgr(πI,F) 
= 0. �

4. The χ conditions for graded idealizers

The goal of this section is to begin an analysis of theχ conditions, which we define
in the introduction, for the case of graded idealizer ringsT satisfying Hypothesis 3.1. Th
main result below will show that ifS itself satisfies leftχ , then the leftχ conditions for
the idealizer ringT may be characterized in terms of homological algebra overS only. We
also study the rightχ conditions forT ; the analysis of these turns out to be a much sim
matter.

We review several definitions which we will need before proving the main resu
this section. A moduleM ∈ A-Gr is right boundedif Mn = 0 for n � 0, left boundedif
Mn = 0 for n � 0, andboundedif it is both left and right bounded.M is finitely gradedif
dimk Mn < ∞ for all n ∈ Z. ForM,N ∈ A-Gr, HomA(M,N) means the group of degre
preserving module homomorphisms, and Exti

A(M,−) is the ith right derived functor of
HomA(M,−). We also set HomA(M,N) = ⊕

n∈Z
Hom(M,N[n]), which is the same a

the group of homomorphisms in the ungraded category ifM is finitely generated. More
generally, we write ExtiA(M,N) = ⊕

n∈Z
ExtiA(M,N[n]). We make similar definitions in

the categoryA-Qgr; so ExtiA-Qgr(M,N ) = ⊕
n∈Z

ExtiA-Qgr(M,N [n]). Finally, let A-gr
be the subcategory of all noetherian modules inA-Gr.
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Note that we have defined theχ conditions for not necessarily noetherian algeb
it is easy to prove, however, that the leftχ0 condition for a connected graded ringA
is equivalent to the left noetherian property forA. Recall also that ifA is connected
graded left noetherian with modulesM ∈ A-gr andN ∈ A-Gr, then for anyj � 0 we
have ExtjA-Qgr(πM,πN) ∼= limn→∞ ExtjA(M�n,N) [2, Proposition 7.2(1)]. In particula
in this case there is a natural map of vector spaces Extj

A(M,N) → ExtjA-Qgr(πM,πN). In
the proof of the following proposition we willuse several results of Artin and Zhang fro
[2] which interpret theχ conditions in terms of the properties of such maps.

Proposition 4.1. Assume Hypothesis3.1, and assume also thatS satisfiesχ on the left.
ThenT satisfiesχi on the left for somei � 0 if and only ifdimk ExtjS(S/I,M) < ∞ for all
0 � j � i and allM ∈ S-gr.

Proof. Since anyM ∈ S-gr has a finite filtration by cyclicS-modules, it follows from
Proposition 2.1 thatT is left noetherian if and only if HomS(S/I,M) is a noetherian
left T/I -module (equivalently, of finitek-dimension) for allM ∈ S-gr. Since the left
noetherian property forT is equivalent to leftχ0 for T (as we remarked before th
proposition), the characterization of the proposition holds wheni = 0.

Now assume thatT is left noetherian. There is an isomorphism of triples(S-Qgr,
πI, s) ∼= (T -Qgr,πT , s) by Lemma 3.2(1). For anyM ∈ S-gr we have a diagram

M
γ

α

HomS(I,M)

β

HomT -Qgr(πT ,πM)
∼= HomS-Qgr(πI,πM),

where the bottom arrow is an isomorphism by the triple isomorphism,α andβ are the
natural maps, andγ is part of the long exact sequence in Ext. It is straightforward to chec
that this diagram commutes. Now sinceS hasχ , the mapβ is an isomorphism in larg
degree [2, Proposition 3.5(3)]. Furthermore,χ1 holds on the left forT if and only if the
mapα has right bounded cokernel for allM ∈ T -gr [2, Proposition 3.14(2a)]. Note th
it is equivalent to require thatα have bounded cokernel for allM ∈ S-gr, as follows: if
M ∈ T -gr, thenIM ∈ S-gr with dimk M/IM < ∞ and thusπM = πIM; conversely, if
M ∈ S-gr thenM ∈ T -gr sinceT S is finitely generated andT is left noetherian. Thus from
the diagram it follows thatχ1 holds forT on the left if and only ifγ has right bounded
cokernel for allM ∈ S-gr. But the cokernel ofγ is Ext1S(S/I,M), which is always finitely
graded and left bounded, so is right bounded if and only if it has finitek-dimension. Thus
the proposition holds fori = 1.

Next, assume thatχ1 holds on the left forT . Then the proof of the noncommutati
version of Serre’s finiteness theorem [2, Theorem 7.4] shows thatχi holds for T for
somei � 2 if and only if for everyM ∈ T -gr, the graded cohomology groupHj (πM) =
Extj (πT ,πM) is finitely graded for all 0� j < i and right bounded for all 1� j < i.
T -Qgr
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Similarly as in the last paragraph, one sees that it is equivalent to require this condit
all M ∈ S-gr. Now for everyM ∈ S-gr andj � 1 we have a sequence of maps

Extj+1
S (S/I,M)

∼=−→ ExtjS(I,M)
α−→ ExtjS-Qgr(πI,πM)

∼=−→ ExtjT -Qgr(πT ,πM),

where the first isomorphism comes from the long exact sequence in Ext, the natural map
α is an isomorphism in large degree sinceS satisfiesχ [2, Proposition 3.5(3)], and the
final isomorphism comes from the isomorphism of triples in Lemma 3.2(1). In add
ExtjS-Qgr(πI,πM) is always finitely graded for anyj , sinceS hasχ [2, Corollary 7.3(3)].
Thus we see altogether that, assumingχ1 holds forT , χi holds forT for somei � 2 if and
only if ExtjS(S/I,M) is right bounded (equivalently, finite-dimensional overk since it is
always left bounded and finitely graded) for all 2� j � i and allM ∈ S-gr. This proves
the characterization ofχi for i � 2, and concludes the proof of the proposition.�

In contrast to Proposition 4.1, on the right side only theχ0 condition forT (equivalently,
the right noetherian property forT ) is potentially subtle to analyze. The higherχ

conditions automatically must fail, as follows.

Proposition 4.2. Assume Hypothesis3.1. ThenT fails χi on the right for alli � 1.

Proof. We may assume thatT is right noetherian, since otherwise rightχ0 fails for T and
so by definition rightχi fails for all i � 0. Also, we need only show thatT fails right χ1.
For this, the same argument outlined in [15, p. 424] works here; since it is simp
briefly repeat it. By hypothesis, we haveSI = I , dimk T /I < ∞, and dimk S/I = ∞. So
the natural map

T → HomQgr-T (πT ,πT ) = HomQgr-T (πI,πI)

has a cokernel which is not right bounded, sinceS ⊆ HomQgr-T (πI,πI). Then by [2,
Proposition 3.14(2a)],T must failχ1 on the right. �

5. Idealizers inside Zhang twists of polynomial rings

In the current section, we introduce a special class of graded idealizers on whi
will focus for the remainder of the paper.

Fix a commutative polynomial ringU = k[x0, x1, . . . , xd ] in d + 1 variables, and som
graded automorphismφ of U . Let S be theleft Zhang twistof U by φ. This is a new ring
which has the same underlyingk-space as the ringU , but a new multiplication defined b
the rulefg = φn(f )◦g for f ∈ Sm,g ∈ Sn, where◦ is the multiplication inU . We continue
this same notational convention throughout, whereby juxtaposition means multiplication
S and the symbol◦ appears when the commutative multiplication inU is intended.

It is immediate thatS is a noetherian domain [17, Theorem 1.3]. One may also t
modules: given a gradedU -moduleM, one may form a graded leftS-module with the
same underlying vector space asM but withS-actionfg = φn(f ) ◦ g for f ∈ Sm,g ∈ Mn,
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where again◦ indicates theU -action. In this way we get a functorU -Gr → S-Gr which is
an equivalence of categories [17, Corollary 4.4(1)]. In particular, the graded left ide
S and the graded (left) ideals ofU are in one-to-one correspondence, and ifJ is a graded
left S-ideal we use the same nameJ for the corresponding gradedU -ideal.

Now we will idealize left ideals ofS which are generated by a codimension-1 subsp
of the elements of degree 1. Specifically, from now on we will consider the follow
hypothesis and notations.

Hypothesis 5.1. Let k be an algebraically closed base field. Choose somed � 2, a point
c ∈ Pd , and an automorphismϕ ∈ AutPd . Let φ be a graded automorphism ofU =
k[x0, . . . , xd ] such thatϕ is the corresponding automorphism of projU = Pd , and define
S = S(ϕ) to be the left Zhang twist ofU = k[x0, . . . , xd ] by the automorphismφ.
(Although the automorphismφ corresponding toϕ is determined only up to scalar multip
[5, Example 7.1.1], it is easy to check that changingφ by a nonzero scalar does not chan
the ringS up to isomorphism.) LetI be the left ideal ofS consisting of all homogeneou
elements vanishing at the pointc. DefineT = T (ϕ, c) = I(I) ⊆ S. Also writecn = ϕ−n(c)

for n ∈ Z.

In general, the properties of the ringT = T (ϕ, c) depend on the properties of the or
C = {cn}n∈Z. We are most interested in the “generic” case, and so we will usually as
at least thatC is infinite. Under such an assumption, we see next that the idealizer rinT

have the following basic properties.

Lemma 5.2. Assume Hypothesis5.1. If the points{cn}n∈Z are all distinct, then

(1) T = k + I .
(2) T (n) is not generated in degree1 for anyn � 1.
(3) dimk(S/IS) < ∞.
(4) T S is finitely generated.
(5) T is a finitely generatedk-algebra.
(6) Hypothesis3.1 is satisfied.

Proof. (1) We haveTn = {x ∈ Sn | Ix ⊆ I }. If φn(I) 
= I , then sinceI is prime in U ,
φn(I) ◦ x ⊆ I forcesx ∈ I . Since we assume thatc has infinite order underϕ, φn(I) 
= I

for all n 
= 0 and soTn = In for n � 1.
(2) If T (n) were generated in degree one for somen � 1, then would we have

TnTn = T2n, which in the commutative ringU translates toφn(I)n ◦ In = I2n. SinceI

andφn(I) are different homogeneous prime ideals ofU which are generated in degree
it is easy to see that such an equation is impossible.

(3) Set J = IS. We have thatJ = ∑∞
i=0 ISi = ∑∞

i=0 φi(I) ◦ Ui . Since the points
{ci} are all distinct, it is clear that the vanishing set of the idealJ in Pd is empty. Thus
dimk U/J < ∞ by the graded Nullstellensatz; equivalently, dimk(S/IS) < ∞.

(4) By the graded Nakayama lemma, ak-basis ofS/T�1S = S/IS is a minimal
generating set forT S, so (4) follows immediately from (3).
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(5) T is generated as ak-algebra by some elementsti ∈ T�1 if and only if T�1 is
generated as leftT -ideal by theti ; so to prove (5) we just need to show thatT I is finitely
generated. Since by part (4) we know thatT S is finitely generated, we haveT S�n = S for
somen � 0. ThenT S�nT1 = ST1 = I is a finitely generated leftT -module.

(6) Since dimk In = dimk Sn − 1 for all n � 1, it is clear that dimk S/I = ∞. The other
necessary properties follow from (1) and (4).�

The noetherian property on the left is also straightforward to analyze.

Proposition 5.3. Assume Hypothesis5.1, and that the points{cn}n∈Z are all distinct. Then
T is left noetherian.

Proof. We have thatT = k + I and thatT S is finitely generated, by Lemma 5.2. Th
the hypotheses of Proposition 2.1 are satisfied and to show thatT is left noetherian we
need to show that HomS(S/I, S/J ) is a left noetherian (equivalently, finite-dimension
T/I = k-module for all graded left idealsJ of S. Using the equivalence of categori
S-Gr ∼ U -Gr and the existence of prime filtrations inU , we see that every cyclic grade
left S-moduleS/J has a finite graded filtration with factors of the formS/L whereL is
prime when considered as an ideal ofU . Thus we may reduce to the case thatJ is a prime
ideal ofU . If J = U�1, then obviously HomS(S/I, S/J ) is finite-dimensional, so we als
may assume thatJ 
= U�1.

Now we may make the identification of vector spaces

HomS(S/I, S/J )n = {
x ∈ Un

∣∣ φn(I) ◦ x ⊆ J
}
/Jn.

Since the points{ci}i�0 are distinct,φn(I) ⊆ J can occur for at most one value ofn;
since J is prime, we see that{x ∈ Un | φn(I) ◦ x ⊆ J } = Jn for all n � 0 and so
HomS(S/I, S/J )n = 0 for n � 0. Thus HomS(S/I, S/J ) is indeed finite-dimensiona
overk. �

The right noetherian property and the leftχ conditions for the ringT depend on a mor
subtle property of the set of points{cn}n∈Z. Given a subsetC of closed points ofPd , we say
thatC is critically denseif every infinite subset ofC has Zariski closure equal to all ofPd .

Proposition 5.4. Assume Hypothesis5.1, and assume in addition that the set of poi
{cn}n∈Z is critically dense inPd . Then

(1) T satisfies leftχd−1 but fails leftχd .
(2) T is right noetherian.

Proof. (1) By [12, Lemma 8.4(2)], ifJ is a graded left ideal ofS then we have

ExtiS(S/I, S/J )n ∼= ExtiU
(
U/I,U/φ−n(J )

)
n

as k-spaces, for eachn ∈ Z. It follows that ExtdS(S/I, S)n ∼= ExtdU(U/I,U)n 
= 0 for
all n � 0, since one may calculate that Extd(U/I,U) ∼= (U/I)[d] easily from a Koszu
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resolution ofU/I . SoS fails χd on the left. On the other hand, [12, Proposition 8.6(
proves that since{cn}n∈Z is critically dense, we have dimk ExtiS(S/I,M) < ∞ for all
0 � i � d − 1 and all finitely generated leftS-modulesM. ThenT satisfiesχd−1 on the
left by Proposition 4.1.

(2) If we can show that every module of the form(JS ∩T )/J , for J a finitely generated
right ideal of T , is finite-dimensional, then [12, Lemma 5.10] shows thatT is right
noetherian. Note thatT is an Ore domain, since it is a domain of finite GK-dimens
[7, Proposition 4.13]. Then the same proof as in [12, Lemma 5.9] shows that every mo
of the form(JS ∩ T )/J for J a finitely generated right ideal ofT is filtered by subfactors
of modules of the form(f S ∩ T )/f T andS/(f S + T ) for nonzero homogeneousf ∈ T .
Thus we will just need to prove that modules of those forms are finite-dimensional ok.

Recall thatT = k + I by Lemma 5.2(1). Fixn � 1 and letf ∈ Tn be arbitrary. We have
for m � n that (f S + T )m = φm−n(f ) ◦ Um−n + Im. SinceTm = Im has codimension 1
insideSm for all m � 1 andI is prime inU , this implies that(f S + T )m = Sm if and only
if φm−n(f ) /∈ I .

Similarly, again assumingm � n, we have(f S ∩ T )m = (φm−n(f ) ◦ Um−n) ∩ Im. If
φm−n(f ) /∈ I , then asI is prime,(φm−n(f ) ◦ Um−n) ∩ Im = φm−n(f ) ◦ Im−n = (f T )m.
Conversely, ifφm−n(f ) ∈ I , then(f S ∩ T )m = (f S)m 
= (f T )m.

Now since{cn}n∈Z is a critically dense set of points, every homogeneousf ∈ S satisfies
f /∈ φn(I) for n � 0, which is equivalent toφn(f ) /∈ I for n � 0. We conclude tha
for any homogeneous 0
= f ∈ T the modules(f S ∩ T )/f T andS/(f S + T ) are finite-
dimensional, as required.�

6. The strong noetherian property

We continue to study idealizer ringsT satisfying Hypothesis 5.1, and we maintain t
notation introduced in the previous section. In [12], the author showed the existen
rings which are not strongly noetherian on either side. Here we will show that the ide
ringsT are typically strongly noetherian on one side but not the other.

Let A be an arbitraryk-algebra. We call a leftA-moduleM strongly noetherianif
M ⊗k B is a noetherian leftA⊗k B-module for every commutative noetheriank-algebraB.
More generally,M is universally noetherianif M ⊗k B is noetherian overA⊗k B for every
noetheriank-algebraB.

Proposition 6.1. Assume Hypothesis5.1, and assume further that the set of points{cn}n∈Z

is critically dense. ThenT is a noetherian ring such that

(1) T is universally left noetherian.
(2) T is not strongly right noetherian.

Proof. ThatT is noetherian follows from Propositions 5.3 and 5.4.
(1) We note that the ringS is universally left noetherian, as follows. For any noethe

k-algebraB, the ringU ⊗k B ∼= B[x0, . . . , xd ] is noetherian by the Hilbert basis theore
Then sinceS ⊗k B is a left Zhang twist ofU ⊗k B, it is also left noetherian [17
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Theorem 1.3]. Now we prove thatT is universally noetherian on the left. We kno
that M = T (S/T ) is finitely generated by Lemma 5.2, and since dimk Mn = 1 for all
n � 1, we see thatM must have Krull dimension 1. By [1, Theorem 4.23],M is a
universally noetherian leftT -module. So ifB is any noetheriank-algebra, thenM ⊗k B =
(S ⊗k B)/(T ⊗k B) is a noetherian leftT ⊗k B-module. Then by [1, Lemma 4.2], sinc
S ⊗k B is left noetherian,T ⊗k B is also left noetherian.

(2) The proof which we now present thatT is not strongly noetherian on the right is qu
analogous to the proof in [12, Section 7] that the ringR studied in that paper is not strong
noetherian. Let us first make a few comments about notation. We use subscripts to i
extension of scalars, for example,UB = U ⊗k B. The automorphismφ of U naturally
extends to an automorphism ofUB such thatSB is again the left Zhang twist ofUB by
φ. We extend also our notational convention, so that juxtaposition means multiplic
in SB and ◦ means the commutative multiplication inUB . Fix once and for all som
particular choice of homogeneous coordinates for each of the points in{cn}n∈Z ⊆ Pd

k . Then
for f ∈ UB , the expressionf (cn) denotes polynomial evaluation at the fixed coordina
for cn, giving a well-defined value in the ringB.

Because by assumption the point set{cn}n∈Z is critically dense, the same proof as
[12, Theorem 7.4] shows that there exists a noetherian commutativek-algebraB which is
a unique factorization domain, constructed as aninfinite affine blowupof affine space, an
containing elementsf,g ∈ (UB)1 with the following properties:

(1) g(ci) = Ωif (ci) for someΩi ∈ B, for all i � 0.
(2) For alli � 0, f (ci) is not a unit inB.
(3) gcd(f, g) = 1 in UB .

Note that a homogeneous elementf ∈ UB is in (TB)�1 = I ⊗k B if and only if f (c0) = 0.
Now for eachn � 1 we may choose some elementθn ∈ (SB)n \ (TB)n with coefficients
in k. Puttingtn = (Ω−nf − g)θn, we have in terms of the commutative multiplication
UB that tn = φn(Ω−nf − g) ◦ θn, and sinceφn(Ω−nf − g)(c0) = (Ω−nf − g)(c−n) = 0,
we see thattn ∈ (TB)n+1. Suppose for somen that tn+1 = ∑n

i=1 tiri with ri ∈ (TB)n−i+1.
Then

φn+1(Ω−n−1f − g) ◦ θn+1 =
n∑

i=1

φn+1(Ω−if − g) ◦ φn−i+1(θi) ◦ ri .

Rewriting this equation in the formh1 ◦ φn+1(f ) = h2 ◦ φn+1(g), and using tha
gcd(f, g) = 1, we may conclude thatφn+1(g) dividesh1, where

h1 = Ω−n−1θn+1 −
n∑

i=1

Ω−iφ
n−i+1(θi) ◦ ri .

Then(φn+1(g))(c0) = g(c−n−1) dividesh1(c0). Eachri ∈ (TB)�1 and sori(c0) = 0, and
by assumptionθn+1 /∈ TB and soθn+1(c0) ∈ k×. Thusg(c−n−1) dividesΩ−n−1, which
implies thatf (c−n−1) is a unit in B. This contradicts property (2) above forn � 0.
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Thus forn � 0 we must havetn+1 /∈ ∑n
i=1 tiTB . We conclude that

∑
tiTB is an infinitely

generated right ideal ofTB , soT ⊗k B is not right noetherian andT is not strongly right
noetherian. �

7. Tensor products of algebras

In Proposition 6.1 we showed explicitly thatT is not strongly right noetherian b
exhibiting a commutative noetheriank-algebraB such thatT ⊗k B is not right noetherian
Necessarily, such aB is not a finitely generated commutative algebra. By contrast, i
allow ourselves to tensor by noncommutative rings then we may find a finitely gene
noetheriank-algebraB ′ such thatT ⊗k B ′ is not right noetherian. In fact, we will see
the next theorem that one may takeB ′ to beT itself.

In order to stay within the class ofN-graded algebras, in addition to tensor produ
it will be useful also to considerSegre products, defined as follows. IfA andB are two
N-graded algebras we letA

s⊗k B be theN-graded algebra
⊕∞

n=0 An ⊗k Bn. The following
lemma is then elementary.

Lemma 7.1. LetA andB beN-graded algebras. IfA ⊗k B is left (right) noetherian, then
A

s⊗k B is left (right) noetherian.

Proof. Since any homogeneous left idealI of A
s⊗ B satisfies(A ⊗ B)I ∩ (A

s⊗ B) = I ,
a proper ascending chain of homogeneous left ideals ofA

s⊗ B induces a proper ascendin
chain of left ideals ofA ⊗ B. �

We thank James Zhang for pointing out to us the following useful fact.

Lemma 7.2. LetA be connectedN-graded and noetherian. ThenA is finitely presented.

Proof. Let

. . . →
r1⊕

i=1

A[−d1i] →
r0⊕

i=1

A[−d0i] → A → k → 0

be a graded free resolution ofAk by free modules of finite rank. Then one may check t
A has a presentation withr0 generators andr1 relations. �

The following theorem shows that it is possible to find two connected graded noet
rings whose tensor product is noetherian on one side only, as well a pair of con
graded noetherian rings whose tensor product is noetherian on neither side.

Theorem 7.3. Assume Hypothesis5.1, and in addition that{cn}n∈Z is critically dense. Le

T ′ = T
s⊗k T op. Then

(1) T andT ′ are noetherian finitely presented connected gradedk-algebras.
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(2) T ⊗k T is left noetherian, but not right noetherian.
(3) T ′ ⊗k T ′ ∼= T ′ ⊗k (T ′)op is neither left nor right noetherian.

Proof. (1) The ringT is noetherian by Propositions 5.3 and 5.4. In fact, by Proposition
T is universally left noetherian. It follows immediately thatT op is universally right
noetherian. ThusT ⊗k T op is both left and right noetherian. By Lemma 7.1,T ′ is
noetherian. Then by Lemma 7.2, bothT andT ′ are finitely presented.

(2) As we saw in part (1),T is universally left noetherian, so thatT ⊗k T is left
noetherian. Now we will prove thatT ⊗ T is not right noetherian. By Lemma 7.1, it
enough to prove thatT

s⊗ T is not right noetherian.
For a graded ringA we will use the abbreviationAs = A

s⊗ A. Now let X =
projUs ∼= Pd × Pd . The graded ringUs has the automorphismφ ⊗ φ with corresponding
automorphismϕ ×ϕ of X. The graded ringSs may be thought of as the left Zhang twist
Us by φ ⊗φ, and we identify the underlying vectorspaces. In particular, any homogeneo
element ofSs defines a vanishing locus inX. Now let∆ ⊂ X be the diagonal subschem
and letJ be the left ideal ofSs consisting of those elements which vanish along∆. Since
(ϕ × ϕ)(∆) = ∆, it follows easily thatJ is a two-sided ideal ofSs . Writing K = I

s⊗kI ,
a left ideal ofSs , we haveT s = k ⊕ K. Then to prove thatT s is not right noetherian
by Proposition 2.2 it will be enough to show that(J ∩ K)/JK is not finite-dimensiona
overk.

Let ◦ indicate multiplication in the commutative ringUs . SinceJ is invariant under
φ⊗φ, we haveJ ◦K = JK, and so it will be equivalent to prove thatM = (J ∩K)/(J ◦K)

is not a torsionUs -module. To show this, we consider the corresponding sheafM̃ on X,
look locally at the pointp = (c, c), and prove that̃Mp 
= 0.

Choose local affine coordinatesu1, . . . , ud for a principal open setAd ⊆ Pd such that the
pointc corresponds to the origin. Letv1, . . . , vd be the same coordinates for the equival
open setAd in the second copy ofPd , so thatu1, . . . , ud, v1, . . . , vd are local coordinate
for an affine neighborhoodA2d of p in X such thatp is the origin in these coordinate
Now let p be the homogeneous prime ideal ofUs corresponding to the pointp = (c, c).
SettingU ′ = (Us)(p) =OX,p , J ′ = J(p), andK ′ = K(p), we have

M̃p = M(p)
∼= (J ′ ∩ K ′)/(J ′K ′),

where we revert to the use of juxtaposition to indicate multiplication in the commut
local ring U ′. Explicitly, U ′ is the polynomial ringk[u1, . . . , ud, v1, . . . , vd ] localized
at the maximal idealm = (u1, . . . , ud, v1, . . . , vd), J ′ = (u1 − v1, . . . , ud − vd), and
K ′ = (u1, u2, . . . , ud)(v1, v2, . . . , vd). Now it is clear thatw = u1v2 − u2v1 ∈ J ′ ∩ K ′,
butw /∈ J ′K ′ sincew /∈ m3 ⊇ J ′K ′. ThusM̃p 
= 0, as we needed to show.

(3) Note that(T ′)op ∼= T op s⊗ T ∼= T ′. The fact thatT ′ ⊗ T ′ is neither left nor right
noetherian follows immediately from part (2).�
Remark 7.4. Assuming the setup of Hypothesis 5.1, the ringR = k〈I1〉 ⊆ S which is
generated by the degree 1 piece ofT is a graded ring of the type studied in the article [1
In case the points{cn}n∈Z are critically dense, this ringR has similarly strange propertie
under tensor products. For example, a similar but slightly more complicated vers
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the argument in Theorem 7.3(2) above would show thatR ⊗k R is neither left nor right
noetherian.

8. Proof of the main theorem

In the final section, we recapitulate all ofour preceding results to prove Theorem 1
which we restate as Theorem 8.2 below. The only thing we have left to show is that
the setup of Hypothesis 5.1, there exists a plentiful supply of choices of a pointc ∈ Pd and
an automorphismϕ ∈ AutPd such thatC = {cn}n∈Z is critically dense. This situation ha
already been studied in the paper [12]; we repeatthe result for the reader’s reference as
next proposition.

We call a subset of a varietyX genericif its complement is contained in a countab
union of closed subvarietiesZ � X. Note that as long as the base fieldk is uncountable
any generic subset is intuitively “almost all” ofX, in particular it is nonempty. Thus th
first part of the following proposition shows that if the base fieldk is uncountable, the
any suitably general pair(ϕ, c) will lead to a critically dense setC. The second part show
that in case chark = 0 we may easily write down many explicit examples of pairs(ϕ, c)

for whichC is critically dense.

Proposition 8.1 [12, Theorem 12.4, Example 12.8].Assume Hypothesis5.1 and set
C = {cn}n∈Z.

(1) Let k be uncountable. For any givenc ∈ Pd , there is a generic subsetY ⊆ AutPd =
PGL(k, d) such that ifϕ ∈ Y thenC is critically dense.

(2) If chark = 0, c = (1 : 1 : · · · : 1), andϕ is defined by

(a0 : a1 : · · · : ad) 	→ (a0 : p1a1 : p2a2 : · · · : pdad),

thenC is critically dense if and only ifp1, . . . , pd generate a multiplicative subgrou
of k× which is isomorphic toZd .

Finally, we summarize all of the properties that the ringT has in case the set of poin
C is critically dense.

Theorem 8.2. Assume Hypothesis5.1. Let k be uncountable and assume that the p
(ϕ, c) is chosen so thatC = {cn}n∈Z is critically dense. Then the idealizer ringT =
I(I) = T (ϕ, c) is a noetherian connected finitely presented graded ring with the follow
properties:

(1) T is left universally noetherian, but not strongly right noetherian.
(2) T ⊗k T is left noetherian but not right noetherian. The Segre productT ′ = T

s⊗kT
op is

also a finitely presented connected graded noetherian ring, butT ′ ⊗k T ′ is noetherian
on neither side.
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(3) Proj-T and T -Proj have the same underlying category but non-isomorphic di
guished objects; specifically, Proj-T ∼= (QchPd ,OPd ) and T -Proj ∼= (QchPd,I),
whereI is the sheaf of ideals corresponding to the pointc ∈ Pd .

(4) T satisfies leftχd−1 but not leftχd , andT fails χ1 on the right.
(5) cd(Proj-T ) = cd(T -Proj) = d .
(6) Although no Veronese ring ofT is generated in degree1, one has isomorphism

T -Proj∼= T (n)-Proj andProj-T ∼= Proj-T (n) for all n � 1.

Proof. Note that by Proposition 8.1, we may indeed find a pair(ϕ, c) so thatC is critically
dense. ThenT is noetherian by Propositions 5.4(2) and 5.3, andT is finitely presented by
Lemma 7.2.

Now (1) follows from Proposition 6.1, and (2) from Theorem 7.3.
For (3), note that sinceS is a left Zhang twist ofU , we haveS-Gr � U -Gr and so

it easily follows thatS-Proj∼= U -Proj. Now the opposite ringSop of S is isomorphic to
the left Zhang twist ofU by φ−1; this may be checked directly, or see the proof of [
Lemma 4.2(1)]. Thus we also have an isomorphism Proj-S ∼= Proj-U . By Serre’s theorem
we also have an equivalence of categoriesU -Qgr� QchPd , where QchPd is the category
of quasi-coherent sheaves onPd .

Now using Lemma 3.2, it follows that

T -Proj∼= (S-Qgr,πI) ∼= (
QchPd,I

)
and Proj-T ∼= (Qgr-S,πS) ∼= (

QchPd,O
Pd

)
.

Sinced � 2, the ideal sheafI which defines the closed pointc is not locally free, so in
particular we haveI � OPd and (3) is proved.

Next, result (4) is a combination of Propositions 4.2 and 5.4(1). SinceS-Proj∼= U -Proj
and Proj-S ∼= Proj-U , it follows easily that cd(S-Proj) = gd(S-Qgr) = cd(Proj-S) =
gd(Qgr-S) = d , and so (5) is a consequence of Proposition 3.5. Finally, (6) follows f
Proposition 3.4 and Lemma 5.2(2).�

We close with a few remarks concerning Theorem 8.2.

Remark 8.3. Theorem 8.2(2) shows that the tensor product of two noetherian fin
presented connected graded algebras (over an algebraically closed field) can fail to b
noetherian. This answers [4, Appendix, Open Question 16′].

Remark 8.4. Suppose thatA is a connected graded noetherian ring satisfying leftχ1 such
thatA-Proj∼= (QchX,OX) for some proper schemeX. Keeler showed that in this caseA
must be equal in large degree to a twisted homogeneous coordinate ringB(X,L, σ ) where
L is σ -ample [6, Theorem 7.17]. In particular,A must be universally noetherian and mu
satisfyχ on both sides.

Now consider instead connected graded noetherian ringsA with left χ1 such that
A-Proj∼= (QchX,F) for some proper schemeX, but whereF is not assumed to be th
structure sheaf. ThenA = T , whereT satisfies the conclusions of Theorem 8.2, is
example showing that rings with much more unusual behavior may occur in this cas
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