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Abstract

We study noetherian graded idealizer rings which have very different behavior on the right and
left sides. In particular, we construct noetherian graded algaba®r an algebraically closed field
k with the following propertiesT is left but not right strongly noetheriaff; ®; T is left but not
right noetherian and” ®; T°P is noetherian; the left noncommutative projective schéiveroj is
different from the right noncommutative projective scheme RrogndT satisfies lefty,; for some
d > 2 yet fails righty.
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Keywords:Noetherian graded ring; Noncommutetiprojective geometry; ldealizer ring

1. Introduction

As a general principle, rings which are both left and right noetherian are expected to
have rather symmetric properties on their kfid the right sides. The theme of this paper
is to show that such intuition fails quite utterly for certain properties which are important
in the theory of noncommutative projective geometry. Our main result is the following
theorem.
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Theorem 1.1 (Theorem 8.2)For any integerd > 2, there exists a connected finitely
presented graded noetheridnalgebraT, wherek is an algebraically closed field, such
that

(1) T is strongly left noetherian, but not strongly right noetherian

(2) T ® T is left but not right noetherian, whil& ®; T°F is noetherian

(3) the noncommutative projective scherfieBrojandProj T have equivalent underlying
categories, but non-isomorphic distinguished objeatsl

(4) T satisfiesyy—1 but noty, on the left, yef fails x1 on the right.

In the remainder of the introduction, we will define and briefly discuss all of the relevant
terms in the statement of the theorem and indicate how th&risgonstructed. For a more
detailed introduction to the theory of noncommutative geometry which motivates the study
of these properties, see the survey article [16].

If R is ak-algebra, themR is calledstrongly left(right) noetherianif R ®; B is left
(right) noetherian for every commutative noethertaalgebraB. The study of the strong
noetherian condition for graded rings in particular has recently become important because
of the appearance of this property in the hypotheses of several theorems in noncommutative
geometry. Most notably, Artin and Zhang showed that i a strongly noetherian graded
k-algebra, then the set of gradddmodules with a given Hilbert function is parametrized
by a projective scheme [3]. It is not a priori obvious that any noetherian finitely generated
k-algebra which is not strongly noetherian should exist; in [11], Resco and Small gave
the first (ungraded) such example. More rdberthe author showed that there exist
noncommutative noetherian graded rings which are not strongly noetherian (on either
side) [12]. Theorem 1.1(1) shows that it is also possible for the strong noetherian property
to fail on one side only of a noetherian graded ring.

It is natural to suspect that a ring for which the noetherian property fails after
commutative base ring extension might also have strange properties when tensored with
itself or its opposite ring. Theorem 1.1(2) confirms such a suspicion. The existence of
a pair of finitely presented noetheriaralgebras whose tensor product is not noetherian
answers [4, Appendix, Open Problem[L&ur example shows that one can even take the
algebras in question to hé-graded.

We now explain the third part of Theorem 1.1. Lét= ;2 ,A, be an arbitrary
N-gradedk-algebra, wheré is an algebraically closed field. In addition, assume that
A is connected(Ag = k) and finitely graded(dim; A, < oo for all n > 0). The left
noncommutative projective scheme associated ts defined to be the paif-Proj=
(A-Qgr, A). Here A-Qgr is the quotient category of the category BHfgraded left
A-modules by the full subcategory of modules which are direct limits of modules with
finite k-dimension, and4, called thedistinguished objecis the image of the modulgA
in A-Qgr. The right noncommutative projective scheme Praif A is defined analogously.

The motivation for these definitiom®mes from the commutative casediis commutative
noetherian and proj = X is its associated scheme, tharQgr and QclX (the category
of quasi-coherent sheaves &) are equivalent categories, apdcorresponds under this
equivalence to the structure shé&ag.
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The result of Theorem 1.1(3) shows that noncommutative projective schemes associated
to the two sides of a noncommutative noetherian ring may well be quite different. In fact,
for the ring T of the theorem we will see that bo#h+Qgr and Qgr? are equivalent to
the category Qcl where X = P4 for somed > 2. However, Projf is isomorphic to
(QchX, Ox), while T-Proj is isomorphic tqQchX, 7) whereZ is a non-locally-free ideal
sheaf.

Next we discuss theg conditions, which are homological properties of graded rings
which arose in Artin and Zhang’s work in [2] to develop the theory of noncommutative
projective schemes. For ea¢h> 0, the connected finitely gradddalgebraA is said
to satisfy x; on the left (right) if dim E_xt’A (A/A>1, M) < oo for all finitely generated
left (right) A-modulesM and all 0< j < i, where Extindicates the Ext group in the
ungraded module category. i satisfiesy; on the left for alli > 0, then we say that
A satisfiesy on the left. Theyx; condition is the most important of these conditions: it
ensures that one can reconstruct the tingn large degree) from its associated scheme
A-Proj [2, Theorem 4.5]. The othe; conditions fori > 2 are needed to show the finite-
dimensionality of the cohoology groups associated to-Proj [2, Theorem 7.4].

Although the x conditions always hold for commutative rings, Stafford and Zhang
constructed noetherian rings for whigh fails on both sides [15]. The author studied
rings in [12] which satisfyy1 but fail x> on both sides. Theorem 1.1(3) demonstrates yet
more possible behaviors of the conditions: first, thafy; may hold on one side but not
the other of a noetherian ring; and second, that for@py?2 there are rings which satisfy
Xd—1 but noty, (on one side).

Finally, we briefly describe the construction of the rinfssatisfying Theorem 1.1.
Recall that if] is a left ideal in a noetherian ring, then theidealizerof I, writtenI(7),
is the largest subring of which containg as a 2-sided ideal. Explicithjfi(/) = {s € S |
Is C I}. Now let S be a generic Zhang twist of a polynomial ring (see Section 5 for the
definition), which is a noncommutative graded ring generated in degree 1 Heethe left
ideal of S generated by a generic subspace S1 with dim/; = dimS; — 1. The ringT =
I(1) C S is then the ring of interest which will satisfy properties (1)—(4) of Theorem 1.1.

Our approach in this paper will be primarily algebraic. Since this research was
completed, the article [8] has developed a geometric framework for the study of a class
of algebras quite similar to the ones we study here. We remark that many of the results
below can be translated into this geometric language, which would allow one to show that
the properties of Theorem 1.1 hold for a wider class of idealizer rings. Specifically, one
could work with idealizers inside twisted homogeneous coordinate rings over arbitrary
integral projective schemes, instead of the special case of Zhang twists of polynomial
rings we consider here. Since our main purpose is to construct some interesting examples,
we will not attempt to be as general as possidhd we will prefer the simpler algebraic
constructions.

2. ldealizer ringsand the left and right noetherian property

As mentioned in the introduction, the main examples of this paper will be certain
idealizer rings. Idealizers have certainly proved useful in the creation of counterexamples
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before, but it seems that in many natural examples (for example, those in [10] or [14]),
the idealizer of a left ideal is a left but not right noetherian ring. Since our intention is
to create two-sided noetherian examples, in this brief section we will give some general
characterizations of both the left and right noetherian properties for an idealizer ring.

Let § be a noetherian ring with left idedl, and letT =1(/) CS={se S|Is C I}
be the idealizer of . In [14], Stafford gives a sufficient condition for the left noetherian
property of 7. In the next proposition, we restate Stafford’s result slightly to show that it
characterizes the left noetherian property in c&se a finitely generated leff’-module,
which occurs in many examples of interest.

Proposition 2.1. Let T be the idealizer of the left idedl of a noetherian rings, and
assume in addition thats is finitely generated. The following are equivatent

(1) T is left noetherian.
(2) Homg(S/1,S/J) is a noetherian lefT"-module(or T/ I-modulg for all left idealsJ
of S.

Proof. By [14, Lemma 1.2], if Hom(S/I, S/J) is a noetherian lefl-module for all left
idealsJ of S containingl, thenT is left noetherian. So if condition (2) holds, th&nis
certainly left noetherian.

On the other hand, iff" is left noetherian, then sincgs is finitely generatedy S
is also noetherian. Given any left idedl of S, we can identify the leftT-module
Homg(S/1, S/J) with the subfactofx € S| Ix € J}/J of 7S, so Homy(S/I, S/J) is
a noetheriarf-module. O

Next, we give a characterization of the rightaetherian property for idealizers of left
ideals. Itis formally quite sirtar to the characterization of Proposition 2.1, and may be of
independentinterest. In fact, the result applies more generally to all subrisgesitie of
which [ is an ideal.

Proposition 2.2. Let S be a noetherian ring with left idedl, and letT be a subring ofS
such thatr C T C I(J). The following are equivalent

(1) T isright noetherian.
(2) T/1I is a right noetherian ring, and’orf(S/K, S/I) = (K N1)/KI is a noetherian
right T-module(or 7/1-modulg for all right ideals K of S.

Proof. The identification of Tof(S/K, S/I) with the subfactotk N1)/K I of Tr follows
from [13, Corollary 11.27(iii)], and it is immediate that (1) implies (2).
Now suppose that condition (2) holds. Sin®és right noetherianT is right noetherian
if and only if (JS N T)/J is a noetherian righT"-module for all finitely generated right
T-ideals/J—see [12, Lemma 6.10] for a proof of this in the graded case; the proof in the
ungraded case is the same. Llebe an arbitrary finitely generated right ideal®f Since
T/I is right noetherian(JSNT)/(JSNI) andJ/JI are noetherian right /I-modules
(the first injects intoT'/1, and J surjects onto the second). ThéhS N 7T)/J is right
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noetherian over if and only if (JSN1)/J1 is. By [13, Corollary 11.27(iii)] and the fact
thatJSI = J1I,we mayidentiffJSN1I)/JI with Torf(S/JS, S/I), which is a noetherian
right module ovefl" by hypothesis. It follows th&f is a right noetherian ring. O

3. Noncommutative Proj of graded idealizer rings

Starting with this section, we focus our attention on idealizer rings inside connected
finitely gradedk-algebras in particular. Our first task is to study the properties of the left
and right noncommutative schemes associated to such idealizer rings, and so we begin with
a review of some of the relevant definitions.

Below, A will always be a connected finitely gradéealgebra, and we writd-Gr for
the category of alZ-graded leftA-modules. A modulé/ € A-Gr is calledtorsionif for
everym € M there is some > 0 such thatA,)m = 0. LetA-Tors be the full subcategory
of A-Gr consisting of the torsion modules, and defin€gr to be the quotient category
A-Gr /A-Tors, with quotient functorr : A-Gr — A-Qgr. For aZ-gradedA-moduleM we
defineM[n] for anyn € Z to be M as an ungraded module, but with a new grading given
by M(nl,, = M, 4. The shift functorM — M[1] is an autoequivalence of-Gr which
naturally descends to an autoequivalencede®qgr we calls, though we usually write
M[n] instead of” (M) for any M € A-Qgr andn € Z.

In general, any collection of daté, F, r) whereC is an abelian categorg; is an object
of C, andr is an autoequivalence 6fis called anArtin—Zhang triple For every connected
graded ringA the data(A-Qgr, T A, s) gives such a triple. An isomorphism of two such
triples is an equivalence of categories which commutes with the autoequivalences and
under which the given objects correspond; see [2, p. 237]. For examglés & connected
graded commutative ring ankl = proj A is the associated scheme, then by a theorem of
Serre one has tha-Qgr, T A, s) is isomorphic to(QchX, Ox, — ® O(1)). Motivated
by this, for any connected graded ridgone calls the pair-Proj= (A-Qgr, = A) theleft
noncommutative projective scheassociated td, the objectr A thedistinguished object
and the autoequivalenc®f A-Qgr thepolarization We define analogously the right-sided
versions QgrA, Proj-A, etcetera of all of the notions above.

Our analysis of the noncommutative schemes for idealizer rings will be restricted to
rings which satisfy the following hypotheses, which will hold for a large class of examples
we study later.

Hypothesis 3.1. Let k be a field. LetS be a noetherian connected finitely-graded
k-algebra, let be some homogeneous left idealSofuch that dimp S/ = oo, and putl’ =
I(I). Assume in addition thatS is a finitely generated module, and that giffy I < co.

Under the assumptions of Hypothesis 3.1, both the left and right noncommutative
schemes for the idealizer rinf are closely related to those for the risg as we see
now.
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Lemma 3.2. Assume Hypothes&1

(1) There is an isomorphism of tripl€s-Qgr, 7 1, s) = (T-Qgr, n T, s).
(2) There is an isomorphism of tripl€®gr-S, 7 S, s) = (QgrT, T, s).

Proof. (1) Suppose thatf € S-Gr. Then we claim that ifrM € T-Tors, thensM €
S-Tors. To prove this fact, note first that M is finitely generated, thei is finite-
dimensional ovek, so obviouslysM < S-Tors. In generaly M is a direct limit of finite-
dimensionall’-modules, s/’ = S ®7 M is a direct limit of finite-dimensiona-modules
and thusM’ € S-Tors. Since there is astrmodule surjectior’ — M, this completes the
proof of the claim.

Now we define two functors by the rules

F:T-Gr— S-Gr, G:S-Gr— T-Gr,
TM— s(I ®r M), sN+—= 1N

together with the obvious actions on morphismg.M € T-Gr, then since dipnT /I < oo,
it follows by calculating using a free resolution df thatDr]T(T/I, M) is a torsion left
T-module for allj > 0. Then the natural map®r M — T ®r M = M has torsion kernel
and cokernel for allM € T-Gr. In particular, if M € T-Tors, thenF (M) € T-Tors, so
F(M) € S-Tors by the earlier claim. It follows thak’ =7 o F : T-Gr — S-Qgr is an
exact functor, and thak’ (M) = 0 for all M € T-Tors. Then by the universal property of
the quotient category [9, Corollary 4.3.1¥, descends to a functdf : T-Qgr — S-Qgr.
Similarly, it is clear that if NV € S-Tors thenG(N) = N € T-Tors. ThenG' =7 0 G :
S-Gr— T-Qgr is an exact functor witl’(N) = 0 for all N € S-Tors, soG’ descends to a
functorG : S-Qgr— T-Qgr.

We conclude thaF andG are inverse equivalences of categories. Moreover, obviously
F(nT) =1, and all of the maps are compatible with the shift functgrsince F andG
are compatible with the shift functors in the catego§eGr and7'-Gr.

(2) BecauseSI =1 C T, we have(S/T)I =0 and so sincd'/1 is finite-dimensional
we see that(S/T)r is torsion. By assumption we also know thatS/T) is finitely
generated. Now the proof of this triple isomorphism is entirely analogous to the proof of
[15, Proposition 2.7], with the exceptidhat the authors assume there thias noetherian
and then prove the required equivalence for the subcategories of noetherian objects. We
leave it to the reader to make the obvious adjustments to the proof to show without the
noetherian assumption th@agr-S, = S, s) = (Qgr-T, = T,s). O

Remark 3.3. The graded idealizer rings studied by Stafford and Zhang in [15] have the
special property that the idealis a principal ideal generated by an element of degree 1 in

a graded Goldie domais.. In that case7 = I(/) is isomorphic to its opposite ring, and
thus the differences between parts (1) and (2) of Lemma 3.2 must disappear (indeed, in
this caser I = 7 S[—1]). In the general case, however, it is clear from Lemma 3.2 that we
should expect the noncommutative scherfieBroj and Proj¥ to be non-isomorphic.
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The information provided by Lemma 3.2 will allow us to prove with ease several further
results about the noncommutative projective schemes of idealizer rings. First, we may
show in wide generality that passing to a Veronese rinfj dbes not affect the associated
noncommutative projective schemes. Recall that foNegraded ringA thenth Veronese
ring of A is the graded ringA ™ = @2, Ajn.

Proposition 3.4. Assume Hypothes&1, and in addition letS be generated in degrek
Choosen > 1 and write 7' =T™, §' = S™, andI' = 1™ = @2 I;y. LetR' € S’ be
the idealizer of the left idedl’ of §'.

(1) T’ and R’ are isomorphic in large degree.
(2) There are isomorphisms of noncommutative projective sch&ri®j= T’-Projand
ProjT = Pro}T’.

Proof. (1) As ungraded rings, we may identiR/, 7' andS’ with subrings ofS. Suppose
thatx € (R),), so that/’x C I’. Then since the left idedl of S is generated in some finite
degree, we see that in the rifgwe have(/x ,)x € I for somep > 0, wherex € S,,,.
Since the torsion submodule ¢tS/I) is finite-dimensional, ifn > 0 thenlx C I and
hencex € T. Then as an element &f, x € T’. Since the inclusiori’ C R’ is obvious,T’
andR’ must agree in large degree.

(2) SincerS is finitely generated and digT /I < oo, we see thay S’ is finitely
generated and dipT’/I’ < co. Then becausg’ andR’ agree in large degree by part (1), it
follows thatg/ S’ is finitely generated and that din®’ /I’ < co. Also, sinceS is noetherian,
S must be noetherian [2, Proposition 5.10(1)].

Now we claim that we have isomorphisms of noncommutative projective schemes

(Qor-T,nT) = (Qgr-S, 7w 1) = (Qgr-S’, 7 I') = (Qgr-R’, n R") = (Qgr-T', = T").

To see this, note that sincgis generated in degree 1, there is an isomorphism $&j-
Proj-S’ [2, Proposition 5.10(3)]; the associated equivalence of categories Qgpgr-S’
sendsr ] to w1’. The second isomorphism follows, and the first and third follow from
Lemma 3.2(1), applied t& € S and toR’ C §’, respectively. Last, the final isomorphism
follows from part (1). Altogether this chain of isomorphisms says that Pr&jProj-7’.

The argument on the left side is very similar, except using the other triple isomorphism
of Lemma 3.2, and is left to the readero

Next we will show that under mild hypotheses the noncommutative projective schemes
associated t¢ andT (on either side) have the same cohomological dimension; we review
the definition of this property now. Cohonagly groups for the noncommutative projective
schemeA-Proj are defined by setting’ (M) = Ext"A_Qgr(nA, M) for all M € A-Qgr.

Then thecohomological dimensioof A-Proj is

cd(A-Proj) = max{i | H' (M) # 0 for someM e A-Qgr}
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and theglobal dimensiorof the categornA-Qgr is

gd(A-Qgn = max{i | Ext oq (M, N) 0 for someM, N € A-Qgr}.
The right-sided versions of these notions are defined similarly.
Proposition 3.5. Assume Hypothesi 1

(1) cdProjT) = cd(ProfS).
(2) Assume in addition thaf is a domain withgd(S-Qgr = cd(S-Proj) < co. Then
cd(T-Proj) = cd(S-Pro)).

Proof. (1) This part is immediate from the triple isomorphism of Lemma 3.2(2).
(2) By Lemma 3.2(1), we have the isomorphism of tripl€éB-Qgr,=T,s) =
(S-Qgr, 1, s). From this it quickly follows that

cd(T-Proj) < gd(T-Qgr = gd(S-Qgr = cd(S-Proj).

Let d = cd(S-Proj. To finish the proof that o@’-Proj) = cd(S-Proj) we have only
to show that there is som& < S-Qgr such that E>§1_Qgr(7r1,]-‘) # 0. SinceS is a
domain, we may choose some injectiSf—m] — I for somem > 0, and passing to
S-Qgr we have a short exact sequence>0r S[-m] — 7l — N — 0 for someN.
Since S-Proj has cohomological dimensiah we may choose som& € S-Qgr with
EX4 g (7 S[—m], F) 5 0. But Ex{’5 (V, F) = 0 since the global dimension 6tQgr
is d so we conclude from the long exact sequence in Ext th%t@g(nl F)#0. O

4. The x conditionsfor graded idealizers

The goal of this section is to begin an analysis of gheonditions, which we defined
in the introduction, for the case of graded idealizer rifigsatisfying Hypothesis 3.1. The
main result below will show that if itself satisfies lefty, then the lefty conditions for
the idealizer ring” may be characterized in terms of homological algebra Swarly. We
also study the righg conditions forT'; the analysis of these turns out to be a much simpler
matter.

We review several definitions which we will need before proving the main result of
this section. A modulés € A-Gr isright boundedf M, = 0 for n > 0, left boundedf

=0 forn « 0, andboundedf it is both left and right boundedV is finitely gradedf

dimy M,, < oo foralln € Z. ForM, N € A-Gr, Homy (M, N) means the group of degree-
preserving module homomorphisms, and’E#, —) is theith right derived functor of
Homy (M, —). We also set Hom(M, N) = 6, ., Hom(M, N[n]), which is the same as
the group of homomorphisms in the ungraded categowy iis finitely generated. More
generally, we write EXt(M, N) = @, 5 Ext, (M, N[n]). We make similar definitions in
the categoryA-Qgr; SOQ(’L\_Qgr(M,N) =B,z Ext‘A_Qgr(M,N[n]). Finally, let A-gr
be the subcategory of all noetherian moduled ir.
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Note that we have defined the conditions for not necessarily noetherian algebras;
it is easy to prove, however, that the lefg condition for a connected graded ring
is equivalent to the left noetherian property far Recall also that ifA is connected
graded left noetherian with modulég € A-gr and N € A-Gr, then for anyj > 0 we
have@c@x_Qgr(nM, 7 N) Z1lim,_, o Ext), (M=, N) [2, Proposition 7.2(1)]. In particular,
in this case there is a natural map of vector spzﬁg Bft N) — E_xt’A_Qgr(nM, 7 N).In
the proof of the following proposition we wilise several results of Artin and Zhang from
[2] which interpret they conditions in terms of the properties of such maps.

Proposition 4.1. Assume Hypothesi 1, and assume also that satisfiesy on the left.
ThenT satisfiesy; on the left for somé > 0if and only ifdimy @’S(S/I, M) < oo for all
O<j<iandallM e S-gr.

Proof. Since anyM € S-gr has a finite filtration by cyclicS-modules, it follows from
Proposition 2.1 thaf is left noetherian if and only if Hora(S/1, M) is a noetherian
left T/I-module (equivalently, of finit&k-dimension) for allM € S-gr. Since the left
noetherian property fof’ is equivalent to leftyg for T (as we remarked before the
proposition), the characterization of the proposition holds whei®.

Now assume that" is left noetherian. There is an isomorphism of tripl&sQgr,
wl,s) = (T-Qgr, 7 T,s) by Lemma 3.2(1). For anyf € S-gr we have a diagram

M Hom (1, M)

’ lﬁ

~

Homy g T, 7 M) — Homg o (1, T M),

where the bottom arrow is an isomorphism by the triple isomorphismand g are the
natural maps, angd is part of the long exact sequence in Bxis straightforward to check
that this diagram commutes. Now sin8ehas y, the mapg is an isomorphism in large
degree [2, Proposition 3.5(3)]. Furthermoge, holds on the left forT if and only if the
mapea has right bounded cokernel for @i € T-gr [2, Proposition 3.14(2a)]. Note that
it is equivalent to require that have bounded cokernel for alf € S-gr, as follows: if
M € T-gr, thenI M € S-gr with dim, M/IM < oo and thust M = I M; conversely, if
M € S-grthenM e T-gr sincer S is finitely generated and is left noetherian. Thus from
the diagram it follows thaj; holds forT on the left if and only ify has right bounded
cokernel for allM € S-gr. But the cokernel of is E_xt}g(S/I, M), which is always finitely
graded and left bounded, so is right bounded if and only if it has findénension. Thus
the proposition holds far= 1.

Next, assume thagt; holds on the left forT'. Then the proof of the noncommutative
version of Serre’s finiteness theorem [2, Theorem 7.4] shows ghéiolds for T for
somei > 2 if and only if for everyM e T-gr, the graded cohomology growy (= M) =

@’T_Qgr(nT,nM) is finitely graded for all 6< j < i and right bounded forall & j <.
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Similarly as in the last paragraph, one sees that it is equivalent to require this condition for
all M € S-gr. Now for everyM € S-gr and;j > 1 we have a sequence of maps

Exts(S/1 M) > EXt(1, M) > Ext) oo (n 1. mM) —> Exty o (2T, 7 M),
where the first isomorphism comes from the long exact sequence jithextatural map
a is an isomorphism in large degree singesatisfiesy [2, Proposition 3H(3)], and the
final isomorphism comes from the isomorphism of triples in Lemma 3.2(1). In addition,
@’S_Qgr(nl, 7 M) is always finitely g_raded for any, sinceS hasy [2, Corollary 7j3(3)].
Thus we see altogether that, assumadnolds for7', x; holds forT for some: > 2 if and
only if M’S(S/I, M) is right bounded (equivalently, finite-dimensional o¥esince it is
always left bounded and finitely graded) for alk2j <i and allM € S-gr. This proves
the characterization of; for i > 2, and concludes the proof of the propositionm

In contrast to Proposition 4.1, on the right side only ggeondition for7T (equivalently,
the right noetherian property fof) is potentially subtle to analyze. The highgr
conditions automatically must fail, as follows.

Proposition 4.2. Assume Hypothes&1 ThenT fails x; on the right for alli > 1.

Proof. We may assume that is right noetherian, since otherwise right fails for T and

so by definition righty; fails for all i > 0. Also, we need only show thdt fails right x1.

For this, the same argument outlined in [15, p. 424] works here; since it is simple we
briefly repeat it. By hypothesis, we hagé = 7, dim, T/I < oo, and dim S/I = co. So

the natural map

T — Hongr_T(nT,er) = Hongr_T(nI,yrI)

has a cokernel which is not right bounded, sirfc& Homgg. (71, w1). Then by [2,
Proposition 3.14(2a)[l must fail x1 on the right. O

5. ldealizersinside Zhang twists of polynomial rings

In the current section, we introduce a special class of graded idealizers on which we
will focus for the remainder of the paper.

Fix a commutative polynomial rin§y = k[xo, x1, ..., x4] in d + 1 variables, and some
graded automorphisigh of U. Let S be theleft Zhang twisof U by ¢. This is a new ring
which has the same underlyikgspace as the riny, but a new multiplication defined by
therulefg =¢"(f)ogfor f € S,u, g € S, whereo is the multiplication inU . We continue
this same notational convention throughout, vety juxtaposition means multiplication in
S and the symbod appears when the commutative multiplicatiorliris intended.

It is immediate thatS is a noetherian domain [17, Theorem 1.3]. One may also twist
modules: given a gradeti-module M, one may form a graded lef-module with the
same underlying vector spaceMsbut with S-action fg = ¢"(f)o g for f € S,,,, g € My,
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where agair indicates thd/-action. In this way we get a functéf-Gr — S-Gr which is
an equivalence of categories [17, Corollary 4.4(1)]. In particular, the graded left ideals of
S and the graded (left) ideals &f are in one-to-one correspondence, and i§ a graded
left S-ideal we use the same naniidor the corresponding graddd-ideal.

Now we will idealize left ideals of which are generated by a codimension-1 subspace
of the elements of degree 1. Specifically, from now on we will consider the following
hypothesis and notations.

Hypothesis 5.1. Let k be an algebraically closed base field. Choose sdpe2, a point

c € P4, and an automorphism € AutP?. Let ¢ be a graded automorphism 6f =
k[xo, ..., xq] such thaty is the corresponding automorphism of plibj= P4, and define

S = S(¢) to be the left Zhang twist o/ = k[xo,...,xs] by the automorphisny.
(Although the automorphisih corresponding te is determined only up to scalar multiple
[5, Example 7.1.1], it is easy to check that changpnigy a nonzero scalar does not change
the ringS up to isomorphism.) Let be the left ideal ofS consisting of all homogeneous
elements vanishing at the pointDefineT = T (¢, ¢) =1(I) C S. Also writec, = ¢ ™" (c)
forn € Z.

In general, the properties of the riffg= T (¢, ¢) depend on the properties of the orbit
C = {cnlnez. We are most interested in the “generic” case, and so we will usually assume
at least that is infinite. Under such an assumption, we see next that the idealizerfings
have the following basic properties.

Lemma 5.2. Assume Hypothests1 If the points{c,},cz are all distinct, then

Q) T=k+1.

(2) T™ is not generated in degrekefor anyn > 1.
(3) dimy(S/1S) < oc.

(4) 7S is finitely generated.

(5) T is a finitely generated-algebra.

(6) Hypothesi.1is satisfied.

Proof. (1) We haveT, ={x € S, | Ix C I}. If ¢"(I) # I, then sincel is prime inU,
¢" (1) ox C I forcesx € I. Since we assume thathas infinite order undep, ¢ (1) # 1
foralln£0andsol, =1, forn > 1.

(2) If T™ were generated in degree one for some: 1, then would we have
1, T, = T»,, which in the commutative ring/ translates tap"(I), o I, = I,. Sincel
and¢” (1) are different homogeneous prime idealdbfvhich are generated in degree 1,
it is easy to see that such an equation is impossible.

(3) SetJ = IS. We have that/ = Y 72 IS; = Y °q¢'(I) o U;. Since the points
{c;} are all distinct, it is clear that the vanishing set of the idgah P¢ is empty. Thus
dimy U/J < oo by the graded Nullstellensatz; equivalently, disy 1) < co.

(4) By the graded Nakayama lemma,kebasis of S/T>15 = S/I1S is a minimal
generating set for S, so (4) follows immediately from (3).
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(5) T is generated as k-algebra by some elementse T if and only if T4 is
generated as leff-ideal by ther;; so to prove (5) we just need to show thdt is finitely
generated. Since by part (4) we know thatis finitely generated, we haveS¢,, = S for
somen > 0. ThenT S¢, T1 = STy =1 is afinitely generated leff -module.

(6) Since dim I, =dim; S, — 1 foralln > 1, itis clear that dimS/I = co. The other
necessary properties follow from (1) and (4

The noetherian property on the left is also straightforward to analyze.

Proposition 5.3. Assume Hypothesis1, and that the pointgc, },.c7 are all distinct. Then
T is left noetherian.

Proof. We have thatl" = k + I and thaty S is finitely generated, by Lemma 5.2. Thus
the hypotheses of Proposition 2.1 are satisfied and to show'tledeft noetherian we
need to show that Hog(S/1, S/J) is a left noetherian (equivalently, finite-dimensional)
T/I = k-module for all graded left idealg of S. Using the equivalence of categories
S-Gr ~ U-Gr and the existence of prime filtrations ih, we see that every cyclic graded
left S-moduleS/J has a finite graded filtration with factors of the foSyiL whereL is
prime when considered as an ideallof Thus we may reduce to the case thids a prime
ideal ofU. If J = U1, then obviously Hom(S/1, S/J) is finite-dimensional, so we also
may assume thak # U .

Now we may make the identification of vector spaces

Hi“s(s/l, S/In Z{Xe U, |¢n(l)°x§ J}/Jn~

Since the pointdc;};>0 are distinct,¢”(I) € J can occur for at most one value of
since J is prime, we see thatx € U, | ¢"(I) ox € J} = J, for all n > 0 and so
Hom(S/1,8/J), = 0 for n > 0. Thus_Hom(S/1, S/J) is indeed finite-dimensional
overk. O

The right noetherian property and the Igftonditions for the rind” depend on a more
subtle property of the set of points, },cz. Given a subset of closed points oP?, we say
that( is critically densef every infinite subset of has Zariski closure equal to all Bf.

Proposition 5.4. Assume Hypothesk.1, and assume in addition that the set of points
{cn}nez is critically dense ifP?. Then

(1) T satisfies leftyy_1 but fails left x,.
(2) T isright noetherian.

Proof. (1) By [12, Lemma 8.4(2)], it/ is a graded left ideal o then we have
Ext(S/1.8/n ZEXty, (U/1,U/$™"(])),

as k-spaces, for each € Z. It follows thatgté(S/I, Sy = E_xth(U/I, U), # 0 for
all n > 0, since one may calculate that B/ /I, U) = (U/I)[d] easily from a Koszul



D. Rogalski / Journal of Algebra 279 (2004) 791-809 803

resolution ofU/I. So S fails yx,; on the left. On the other hand, [12, Proposition 8.6(1)]
proves that sincdc,},cz is critically dense, we have d'knE_xt"S(S/I, M) < oo for all
0<i <d -1 and all finitely generated leR-modulesM. ThenT satisfiesy;—1 on the
left by Proposition 4.1.

(2) If we can show that every module of the fotthS N 7))/ J, for J a finitely generated
right ideal of T, is finite-dimensional, then [12, Lemma 5.10] shows tliais right
noetherian. Note thaf is an Ore domain, since it is a domain of finite GK-dimension
[7, Proposition 4.13]. ien the same proof as in [12, Lemma 5.9] shows that every module
of the form(JS N T)/J for J afinitely generated right ideal df is filtered by subfactors
of modules of the formgfS N T)/fT andS/(f S + T) for nonzero homogeneoyse T.
Thus we will just need to prove that modules of those forms are finite-dimensionat.over

Recall thatT =k + I by Lemma5.2(1). Fix > 1 and letf € T, be arbitrary. We have
form>nthat(fS+T)m =¢" " (f) o Up—n + Iy. SinceT,, = I,, has codimension 1
inside S, for all m > 1 and/ is prime inU, this implies tha{ f S + T),, = S, if and only
if ™" (f) ¢ 1.

Similarly, again assuming: > n, we have(fSNT), = (@™ " (f) o Up—pn) N I, If
¢ (f) ¢ I, then asl is prime,(¢" " (f) o Up—n) N Iy = ¢™ " (f) 0 Lp—pn = (f T ).
Conversely, ilp™ " (f)e I, then(fSNT)w =(fS)m % (fT)m.

Now since{c, },ez is a critically dense set of points, every homogenebusS satisfies
f ¢ ¢"() for n <« 0, which is equivalent ta@" (f) ¢ I for n > 0. We conclude that
for any homogeneous® f € T the modules fSNT)/fT andS/(fS + T) are finite-
dimensional, as required.O

6. Thestrong noetherian property

We continue to study idealizer rings satisfying Hypothesis 5.1, and we maintain the
notation introduced in the previous section. In [12], the author showed the existence of
rings which are not strongly noetherian on either side. Here we will show that the idealizer
ringsT are typically strongly noetherian on one side but not the other.

Let A be an arbitraryk-algebra. We call a lefA-module M strongly noetheriarif
M ®y. B is a noetherian left ®; B-module for every commutative noetheriaalgebraB.

More generallyM is universally noetheriaif M ®; B is noetherian oved ®j B for every
noetheriark-algebraB.

Proposition 6.1. Assume Hypothesis1, and assume further that the set of poifis}, <z
is critically dense. Theff is a noetherian ring such that

(1) T is universally left noetherian.
(2) T is not strongly right noetherian.

Proof. ThatT is noetherian follows from Propositions 5.3 and 5.4.

(1) We note that the ring is universally left noetherian, as follows. For any noetherian
k-algebraB, the ringU ®; B = B[xo, ..., x4] is hoetherian by the Hilbert basis theorem.
Then sinceS ®; B is a left Zhang twist ofU ®; B, it is also left noetherian [17,
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Theorem 1.3]. Now we prove that is universally noetherian on the left. We know
that M = 7(S/T) is finitely generated by Lemma 5.2, and since divh, = 1 for all

n > 1, we see that¥ must have Krull dimension 1. By [1, Theorem 4.23)}, is a
universally noetherian leff-module. So ifB is any noetheriak-algebra, thed ®; B =

(S ®x B)/(T ® B) is a noetherian lefi’ ®, B-module. Then by [1, Lemma 4.2], since
S ®i B is left noetherianT ®; B is also left noetherian.

(2) The proof which we now present thH&is not strongly noetherian on the rightis quite
analogous to the proofin [12, Section 7] that the rivgtudied in that paper is not strongly
noetherian. Let us first make a few comments about notation. We use subscripts to indicate
extension of scalars, for examplEg = U ® B. The automorphisnp of U naturally
extends to an automorphism &fz such thatSp is again the left Zhang twist o/ by
¢. We extend also our notational convention, so that juxtaposition means multiplication
in Sp and o means the commutative multiplication tiz. Fix once and for all some
particular choice of homogeneousardinates for each of the points{iey, },cz C Pi. Then
for f € Up, the expressiorf (c,) denotes polynomial evaluation at the fixed coordinates
for ¢,, giving a well-defined value in the ring.

Because by assumption the point é&t},cz is critically dense, the same proof as in
[12, Theorem 7.4] shows that there exists a noetherian commukasilgebraB which is
a unique factorization domain, constructed agdinite affine blowupf affine space, and
containing elementg, g € (Up)1 with the following properties:

(1) g(ci) = £2; f(c;) for somes2; € B, foralli <O0.
(2) Foralli «0, f(c;)is notaunitinB.
(3) ged f,8) =1inUs.

Note that a homogeneous elemgnt Up isin (Tg)>1 =1 ® B ifand only if f(co) =0.
Now for eachn > 1 we may choose some eleméqte (Sg), \ (Tg), with coefficients
in k. Puttingz,, = (22—, f — g)6,, we have in terms of the commutative multiplication in
Up thatt, = ¢" (2, f — g) o 0y, and sincep” (22—, f — g)(co) = ($2—n f — g)(c—n) =0,
we see that, € (Tg),+1. Suppose for some thatt, 11 =Y _; tir; With ri € (Tg)p—i41.
Then

"1 f =) 0bhp1=) "R f — @) 0d" ) ori.
i=1

Rewriting this equation in the formy o ¢"t1(f) = ha o ¢"*1(g), and using that
gcd £, g) = 1, we may conclude that"+1(g) dividesh1, where

n

hi=Q2-n-16m41— ) R-i¢" O o1,
i=1

Then(¢"*1(g))(co) = g(c_n—1) divideshi(co). Eachr; € (TB)»1 and sor;(cg) =0, and
by assumptior®, 1 ¢ Tp and s06,+1(co) € k™. Thusg(c—,—1) divides2_,,_1, which
implies that f(c_,—1) IS @ unit in B. This contradicts property (2) above far> 0.
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Thus forn > 0 we must have, 11 ¢ Y i, Tp. We conclude tha}_ 7; T is an infinitely
generated right ideal dfp, sSOT ®; B is not right noetherian and is not strongly right
noetherian. O

7. Tensor products of algebras

In Proposition 6.1 we showed explicitly thdt is not strongly right noetherian by
exhibiting a commutative noetheriaralgebraB such thatl’ ®; B is not right noetherian.
Necessarily, such & is not a finitely generated commutative algebra. By contrast, if we
allow ourselves to tensor by noncommutative rings then we may find a finitely generated
noetheriark-algebraB’ such thatT’ ®; B’ is not right noetherian. In fact, we will see in
the next theorem that one may taBéto beT itself.

In order to stay within the class ®f-graded algebras, in addition to tensor products
it will be useful also to con5|de$egre productdefined as follows. 1A and B are two
N-graded algebras we Iet®k B be theN-graded algebr@n ~0An ®« B,. The following
lemma is then elementary.

Lemma 7.1. Let A and B beN-graded algebras. 1A ®; B is left (right) noetherian, then
A ®k B is left (right) noetherian.

Proof. Since any homogeneous left iddabf A ® B sat|sf|es(A ® B)IN(A ® B)=1,
a proper ascending chain of homogeneous left ideals®fB induces a proper ascending
chain of leftidealsoA ® B. O

We thank James Zhang for pointing out to us the following useful fact.
Lemma 7.2. Let A be connecteti-graded and noetherian. Thetis finitely presented.

Proof. Let

r1 ro
L @A[—dli] - @A[—d()i] S A—>k—0
i=1 i=1

be a graded free resolution @k by free modules of finite rank. Then one may check that
A has a presentation witly generators ang relations. O

The following theorem shows that it is possible to find two connected graded noetherian
rings whose tensor product is noetherian on one side only, as well a pair of connected
graded noetherian rings whose tensor product is noetherian on neither side.

Theorem 7.3. Assume Hypothests], and in addition thafc, }, <z is critically dense. Let
T' =T @ T°. Then

(1) T and T’ are noetherian finitely presented connected grakledgebras.
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(2) T ®; T is left noetherian, but not right noetherian.
() T' ®i T' =T’ @ (T")°P is neither left nor right noetherian.

Proof. (1) The ringT is noetherian by Propositions 5.3 and 5.4. In fact, by Proposition 6.1
T is universally left noetherian. It follows immediately th&afP is universally right
noetherian. Thus ®; T°° is both left and right noetherian. By Lemma 71, is
noetherian. Then by Lemma 7.2, bdthand T’ are finitely presented.

(2) As we saw in part (1)T is universally left noetherian, so that ®; T is left
noetherian. Now we will prove that ® T is not right noetherian. By Lemma 7.1, it is
enough to prove th&t & T is not right noetherian.

For a graded ringA we will use the abbreviatiom® = A ®A. Now let X =
projU* = P4 x P4, The graded rind/* has the automorphisg® ¢ with corresponding
automorphisny x ¢ of X. The graded ring* may be thought of as the left Zhang twist of
U* by ¢ ® ¢, and we identify the underlying vectspaces. In particular, any homogeneous
element ofs* defines a vanishing locus iX. Now let A C X be the diagonal subscheme,
and letJ be the left ideal ofs* consisting of those elements which vanish anmgSsince
(p x 9)(A) = A, it follows easily that/ is a two-sided ideal of*. Writing K = I®;1,

a left ideal of S, we haveT® =k @& K. Then to prove that® is not right noetherian,
by Proposition 2.2 it will be enough to show that N K)/J K is not finite-dimensional
overk.

Let o indicate multiplication in the commutative ring®. SinceJ is invariant under
¢ ®¢,we have/ o K = JK, and so it will be equivalent to prove thét = (JNK)/(J oK)
is not a torsion/*-module. To show this, we consider the corresponding sheah X,
look locally at the poinp = (c, ¢), and prove thad/,, # 0.

Choose local affine coordinates, . . ., ug for a principal open set?  P? such thatthe
pointc corresponds to the origin. Let, ..., vy be the same coordinates for the equivalent
open set\? in the second copy df, so thatus, ..., ug, v1, ..., vg are local coordinates
for an affine neighborhood?? of p in X such thatp is the origin in these coordinates.
Now letp be the homogeneous prime ideal@f corresponding to the point = (c, ¢).
SettingU/ = (U‘g)(p) = Ox)p, J = J(p), andK’ = K(p), we have

My=Mgp = NK/J'K),

where we revert to the use of juxtaposition to indicate multiplication in the commutative
local ring U’. Explicitly, U’ is the polynomial ringk[uz, ...,uq,v1,...,vs] localized

at the maximal idealm = (uq1,...,uq,v1,...,v4), J = (U1 — v1,...,uq — vg), and

K' =1, up,...,uq)(vy, v2,...,v7). Now it is clear thatw = ujvo — uov1 € J' N K/,

butw ¢ J'K’ sincew ¢ m 2 J'K'. Thus]\71p # 0, as we needed to show.

(3) Note that(7T")°P = TP & T = T’. The fact that?’ ® T’ is neither left nor right
noetherian follows immediately from part (2)O

Remark 7.4. Assuming the setup of Hypothesis 5.1, the riRg= k(I1) € S which is
generated by the degree 1 piecdas a graded ring of the type studied in the article [12].

In case the pointge, },.c7 are critically dense, this rin@ has similarly strange properties
under tensor products. For example, a similar but slightly more complicated version of
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the argument in Theorem 7.3(2) above would show tha; R is neither left nor right
noetherian.

8. Proof of the main theorem

In the final section, we recapitulate all ofir preceding results to prove Theorem 1.1,
which we restate as Theorem 8.2 below. The only thing we have left to show is that given
the setup of Hypothesis 5.1, there exists a plentiful supply of choices of aeit and
an automorphisnp € AutP? such thatC = {c,},cz is critically dense. This situation has
already been studied in the paper [12]; we repleatresult for the reader’s reference as the
next proposition.

We call a subset of a variety genericif its complement is contained in a countable
union of closed subvarieties C X. Note that as long as the base fiélds uncountable,
any generic subset is intuitively “almost all” of, in particular it is nonempty. Thus the
first part of the following proposition shows that if the base fielts uncountable, then
any suitably general paifp, ¢) will lead to a critically dense sé&t. The second part shows
that in case char= 0 we may easily write down many explicit examples of pairsc)
for which C is critically dense.

Proposition 8.1 [12, Theorem 12.4, Example 12.8Assume Hypothesis.1 and set
C= {Cn}nEZ-

(1) Letk be uncountable. For any givane P4, there is a generic subsét C AutP¢ =
PGL(k, d) such that ifp € Y then( is critically dense.
(2) If chatk =0,c=(1:1:---:1), andy is defined by

(ap:ai:---:aq) > (ao: prai: pzaz2:---: piaq),

thenC is critically dense if and only ip1, ..., ps generate a multiplicative subgroup
of k> which is isomorphic t&<.

Finally, we summarize all of the properties that the rifigpas in case the set of points
C is critically dense.

Theorem 8.2. Assume HypothesB.1 Let k be uncountable and assume that the pair
(¢, c) is chosen so thaf = {c,},ez is critically dense. Then the idealizer rinfj =

I(I) =T (¢, c¢) is a noetherian connected finitely presented graded ring with the following
properties

(1) T is left universally noetherian, but not strongly right noetherian.

(2) T ® T is left noetherian but not right noetherian. The Segre produet T&Tis
also a finitely presented connected graded noetherian ringl’bgt; 7’ is noetherian
on neither side.
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(3) ProjT and T-Proj have the same underlying category but non-isomorphic distin-
guished objectsspecifically, Proj7 = (QchP¢, Ops) and T-Proj = (QchP?, 7),
whereZ is the sheaf of ideals corresponding to the pairtP<.

(4) T satisfies leftyy—1 but not lefty,, andT fails x1 on the right.

(5) cd(Pro}T) =cd(T-Proj) =d.

(6) Although no Veronese ring df is generated in degre&, one has isomorphisms
T-Proj= T™-ProjandProjT = Pro}T™ for all n > 1.

Proof. Note that by Proposition 8, e may indeed find a paip, ¢) so thatC is critically
dense. ThefT is noetherian by Propositions 5.4(2) and 5.3, @nid finitely presented by
Lemma 7.2.

Now (1) follows from Proposition 6.1, and (2) from Theorem 7.3.

For (3), note that sincé is a left Zhang twist ofU, we haveS-Gr >~ U-Gr and so
it easily follows thatS-Proj= U-Proj. Now the opposite ring°P of S is isomorphic to
the left Zhang twist oV by ¢—1; this may be checked directly, or see the proof of [12,
Lemma 4.2(1)]. Thus we also have an isomorphism Br&jProj-U. By Serre’s theorem,
we also have an equivalence of categotie®gr~ QchP?, where QcliP? is the category
of quasi-coherent sheaves Bf.

Now using Lemma 3.2, it follows that

T-Proj= (S-Qgr, 1) = (QchP?,Z) and ProjT = (Qgr-S, 7 S) = (QchP?, Opy).

Sinced > 2, the ideal sheaf which defines the closed pointis not locally free, so in
particular we hav& 2 Ops and (3) is proved.

Next, result (4) is a combination of Propositions 4.2 and 5.4(1). SSheeoj= U-Proj
and Proj$ = Proj-U, it follows easily that cdS-Proj) = gd(S-Qgrn = cd(Proj-S) =
gd(Qgr-S) = d, and so (5) is a consequence of Proposition 3.5. Finally, (6) follows from
Proposition 3.4 and Lemma 5.2(2)0

We close with a few remarks concerning Theorem 8.2.

Remark 8.3. Theorem 8.2(2) shows that the tensor product of two noetherian finitely
presented connected graded algebras (omealgebraically closed field) can fail to be
noetherian. This answers [4, Appendix, Open Questidh 16

Remark 8.4. Suppose that is a connected graded noetiaerring satisfying lefty; such
that A-Proj= (QchX, Ox) for some proper schené. Keeler showed that in this cage
must be equal in large degree to a twisted homogeneous coordinai®ting’, o) where

L is o-ample [6, Theorem 7.17]. In particulat, must be universally noetherian and must
satisfy x on both sides.

Now consider instead connected graded noetherian rihggith left x;1 such that
A-Proj= (QchX, F) for some proper schem¥, but whereF is not assumed to be the
structure sheaf. Thed = T, whereT satisfies the conclusions of Theorem 8.2, is an
example showing that rings with much more unusual behavior may occur in this case.
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