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Abstract

In this paper we study a class of Caffarelli–Kohn–Nirenberg inequalities without restricting the pertinent
parameters. In particular, we determine the values of the corresponding optimal constants and the functions
that achieve them, i.e., minimizers of a suitable functional. By studying a corresponding Euler–Lagrange
equation, we also determine infinitely many sign-changing solutions at higher energy levels in addition to
the found ground-state solutions.
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In this article we will discuss one particular case of the Caffarelli–Kohn–Nirenberg inequal-
ities, introduced in [2]. It was noted by some authors (see e.g. [6] and [7]) that if one chooses
to work with the smaller space C∞

0 (RN \ {0}) of smooth functions in RN which vanish in a
neighborhood of the origin as well as outside of a compact set, then the inequality

C2(N,a, b)

( ∫
RN

u2

|x|a+b+1
dx

)2

�
( ∫

RN

u2

|x|2a
dx

)( ∫
RN

|∇u|2
|x|2b

dx

)
(1)
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Fig. 1.

will hold for some C(N,a, b) independent of u and without restriction on the parameters (a, b)

in the whole plane. The inequality above is void of content if C(N,a, b) = 0 but, as stated in
Remark 1, this only happens at the point (a, b) = (N

2 , N−2
2 ).

In the Caffarelli–Kohn–Nirenberg article [2], since the functions u are not required to vanish
at the origin, it is necessary to have a and b less than N

2 , and a + b < N − 1 for integrability
reasons.

In this new setting, we point out some interesting facts regarding the exact value of the best
constant C(N,a, b) in (1) and the functions that achieve it. Therefore we define on C∞

0 (RN \{0})
the energy functional

E(u) =
(
∫

RN
u2

|x|2a dx)
1
2 (

∫
RN

|∇u|2
|x|2b dx)

1
2∫

RN
u2

|x|a+b+1 dx
, (2)

so that the best constant C(N,a, b) in (1) is the infimum of E(u).
The organization of this paper is the following. We start in Section 1 with the one-dimensional

case and some preliminary lemmas needed in our approach. Then we prove Theorem 2, the one-
dimensional version of Theorem 1. In Section 2 we prove Theorem 3 stating that minimizing
sequences of E(u) may be taken to consist entirely of radial functions. And we show how the
radial case in RN “folds” into the one-dimensional version of (1). In Section 3 we derive the
Euler–Lagrange equation associated with the energy E, and we prove Theorem 1 below, in which
we find the best constants C(N,a, b) in (1) (infima of E(u) in (2)) and possible functions that
achieve them (minimizers of E(u)). In Section 4 we prove the existence of infinitely many other
stationary points of E(u) at discrete energy levels higher than C(N,a, b). Finally, in Section 5
we provide a few concluding remarks and questions.

In order to state Theorem 1, we let the regions A1, A2, B1, and B2 be defined by the lines
b = N−2 and a = b + 1, as shown in Fig. 1. We define A = A1 ∪ A2 and B = B1 ∪ B2, where
2
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we assume that the line a = b + 1 is disjoint of both A and B, and the line b = N−2
2 , with the

point (N
2 , N−2

2 ) removed, is common to A and B.

Theorem 1. According to the location of the point (a, b) in the plane, we have:

(a) In the region A the best constant is C(N,a, b) = |N−(a+b+1)|
2 and it is achieved by the

functions u(x) = D exp(
t |x|b+1−a

b+1−a
), with t < 0 in A1 and t > 0 in A2, and D a nonzero

constant.
(b) In the region B the best constant is C(N,a, b) = |N−(3b−a+3)|

2 and it is achieved by the

functions u(x) = D|x|2(b+1)−N exp(
t |x|b+1−a

b+1−a
), with t > 0 in B1 and t < 0 in B2.

(c) In addition, the only values of the parameters where the best constant is not achieved are
those on the line a = b + 1, where C(N,b + 1, b) = |N−2(b+1)|

2 .

Remark 1. Note that along the line b = N−2
2 , the best constants, as given by the formulas for

regions A and B, do agree. Moreover, at the point (N
2 , N−2

2 ) the constant is zero.

Remark 2. The presence of the parameters D and t in the class of minimizers is due to sym-
metries of the inequalities (1), also inherited by the Euler–Lagrange equations (see (23)). The
homogeneity evidently explains D. As for t , we have that if u = u(x) is a minimizer of (1), then
so is v = v(y), where y = tx and u(x) = v(y). Indeed, if (say) we assume t > 0 we have

∫
RN

|∇xu(x)|2
|x|2b

dx = t2b+2−N

∫
RN

|∇yv(y)|2
|y|2b

dy,

∫
RN

u2(x)

|x|2a
dx = t2a−N

∫
RN

v2(y)

|y|2a
dy,

and ∫
RN

u2(x)

|x|a+b+1
dx = ta+b+1−N

∫
RN

v2(y)

|y|a+b+1
dy,

and we infer that E(u) = E(v). The sign constraints on t in Theorem 1 are dictated by integra-
bility requirements.

1. The one-dimensional case

We begin with an elementary fact involving functions u in C∞
0 (0,∞), i.e., smooth functions

u : (0,∞) → R having compact support in the open half-line (0,∞).

Lemma 1. Given β ∈ R define v(s) = sβ+1u(s−1) for each u ∈ C∞
0 (0,∞). Then

∞∫
u2

r

rβ
dr =

∞∫
v2
s

sβ
ds.
0 0
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Proof. From u(r) = rβ+1v(r−1) and r = s−1 we calculate

ur = (β + 1)rβv + rβ+1(−r−2)vs = rβ
[−svs + (β + 1)v

]
,

and

u2
r

rβ
dr = −s−(β+2)

[
svs − (β + 1)v

]2
ds.

Then, noticing that the right-hand side above can be written as

−v2
s

sβ
ds + d

(
(β + 1)v2

sβ+1

)
,

the result follows by integration. �
Remark 3. By letting D1,2(0,∞; r−β dr) denote the closure of C∞

0 (0,∞) with respect to

the norm ‖u‖ := (
∫ ∞

0
u2

r

rβ dr)1/2, we note that the above lemma says that the mapping u(s) 	→
sβ+1u(s−1) is a linear isometry from the Hilbert space D1,2(0,∞; r−β dr) onto itself. As such,
Lemma 1 is interesting by itself.

Next, let us consider the one-dimensional version of (1) where, for simplicity, we write
C(a, b) instead of C(1, a, b) for the best constant:

C2(a, b)

( ∞∫
0

u(r)2

ra+b+1
dr

)2

�
( ∞∫

0

u(r)2

r2a
dr

)( ∞∫
0

ur(r)
2

r2b
dr

)
. (3)

A type of proof that is often found in the literature is as follows (where u ∈ C∞
0 (0,∞) is

arbitrary):

0 =
∞∫

0

d

dr

(
u2

ra+b

)
dr = −(a + b)

∞∫
0

u2

ra+b+1
dr + 2

∞∫
0

uur

ra+b
dr, (4)

hence

∣∣∣∣a + b

2

∣∣∣∣
∞∫

0

u2

ra+b+1
dr =

∣∣∣∣∣
∞∫

0

uur

ra+b
dr

∣∣∣∣∣ �
∞∫

0

|u||ur |
ra+b

dr,

so that the Cauchy–Schwarz inequality gives (3) with

C(a, b) �
∣∣∣∣a + b

2

∣∣∣∣. (5)

On the other hand, if we apply Lemma 1 with β = 2b and

u(r) = r2b+1v
(
r−1), s = r−1, (6)
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to the last integral in (3), straightforward calculations on the other two integrals show that (3)
becomes

C2(a, b)

( ∞∫
0

v(s)2

s3b−a+3
ds

)2

�
( ∞∫

0

v(s)2

s4b−2a+4
ds

)( ∞∫
0

vs(s)
2

s2b
ds

)
.

Therefore, by defining ā = 2b − a + 2 and b̄ = b, the above reads

C2(a, b)

( ∞∫
0

v(s)2

sā+b̄+1
ds

)2

�
( ∞∫

0

v(s)2

s2ā
ds

)( ∞∫
0

vs(s)
2

s2b̄
ds

)
. (7)

In other words, if C(a, b) denotes the best constant in (3) for a given (a, b), and if we define the
affine transformation {

ā = 2b − a + 2,

b̄ = b,
(8)

then the best constant C(ā, b̄) in (7) satisfies

C(ā, b̄) = C(2b − a + 2, b) = C(a, b) ∀(a, b) ∈ R2. (9)

For completeness we state the following lemma concerning (8), whose obvious proof we omit.

Lemma 2. Each point (a, b) on the line a = b + 1 is fixed under the affine transformation (8);
in particular, the line a = b + 1 is invariant under (8). In fact, the only other lines which are
invariant under (8) are the vertical lines b = b̂ (constant).

From now on we denote A = A1 ∪ A2, where A1 is the region defined by a < b + 1, b � − 1
2

and A2 is the region defined by a > b+1, b � − 1
2 . We also let B = B1 ∪ B2, where B1 is defined

by a > b + 1, b � − 1
2 and B2 by a < b + 1, b � − 1

2 (cf. Fig. 2).

Theorem 2 (One-dimensional case of Theorem 1). For each (a, b) ∈ A the best constant C(a, b)

in (3) is given by

C(a, b) = |a + b|
2

and is achieved by the functions

u(r) = D exp

(
t

b + 1 − a
rb+1−a

)
, (10)

for arbitrary D ∈ R and t �= 0 with sgn(t) = −sgn(b + 1 − a). On the other hand, for (a, b) ∈ B,
the best constant C(a, b) in (3) is

C(a, b) = |3b − a + 2|

2
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Fig. 2.

and it is achieved by the functions

u(r) = Dr2b+1 exp

(
t

b + 1 − a
rb+1−a

)
, (11)

where D ∈ R is arbitrary and t �= 0 is such that sgn(t) = −sgn(b + 1 − a).

Proof. First note that the region B1 (resp. B2) is the image of A1 (resp. A2) under the affine
mapping given in (8). Also note that the line given by a = b + 1 is the complement of A ∪ B.

Now, in view of (5), (8) and (9), we have that

C(ā, b̄) = C(a, b) � max

{ |ā + b̄|
2

,
|a + b|

2

}
. (12)

On the other hand, it was shown in [6] that, for (a, b) in the region A = A1 ∪ A2, one has

C(a, b) = |a + b|
2

(13)

with C(a, b) being achieved by the functions

u(r) = D exp

(
t

b + 1 − a
rb+1−a

)
,

for arbitrary D ∈ R and t �= 0 with sgn(t) = −sgn(b + 1 − a). In particular, such u satisfy

∞∫
u2

r

r2b
dr < ∞,

∞∫
u2

r2a
dr < ∞. (14)
0 0
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Therefore, by noticing that

|ā + b̄| > |a + b| ⇔ (ā + b̄)2 > (a + b)2 ⇔ (a − b − 1)(2b + 1) < 0

we also conclude that, for (a, b) in the region B = B1 ∪ B2, one has

C(a, b) = |ā + b̄|
2

= |3b − a + 2|
2

, (15)

with C(a, b) being achieved (recall (6)) by the functions

v(s) = Ds2b+1 exp

(
t

b + 1 − a
sb+1−a

)
,

for arbitrary D ∈ R and t with sgn(t) = −sgn(b + 1 − a).
The proof is complete. We point out that, when a = b + 1 (i.e., (a, b) is in the complement of

A ∪ B), it was shown in [4] (cf. also [5]), that the best constant is C(b + 1, b) = |2b+1|
2 and that

it is not achieved. �
2. Reduction to the radial case

Let us denote by Crad(N,a, b) the best constant in the inequality (1) when restricted to the
space of radial functions

C∞
0,rad

(
RN \ {0}) = {

u ∈ C∞
0

(
RN \ {0}): u(x) = u

(|x|)}.
That is,

Crad(N,a, b) = infE(u) when u ∈ C∞
0,rad

(
RN \ {0}) \ {0}.

Theorem 3. For all pairs (a, b) we have Crad(N,a, b) = C(N,a, b).

The proof follows at once from the following

Lemma 3. For any u ∈ C∞
0 (RN \ {0}) there exists a function urad ∈ C∞

0,rad(R
N \ {0}) such that

E(u) � E(urad).

Proof. For a number of other calculations (e.g. in [4], or prior to this, in [8]), the transformation
of integrals over RN to integrals over the cylinder C = SN−1 ×R has turned out to be very useful.
The idea for the proof of the lemma is to convert inequality (1) into a new inequality in terms of
functions on C . Decomposition in terms of spherical harmonics then reveals that the inequality
is sharp for radial functions only.

So, consider the diffeomorphism Υ : RN \ {0} → C = SN−1 × R given by Υ (x) =
( x
|x| ,−ln |x|) = (θ, t). To any function u ∈ C∞

0 (RN \ {0}) we associate the function v ∈ C∞
0 (C)

by

v
(
Υ (x)

) = |x|N−2−2b
2 u(x). (16)
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It is a straightforward calculation to check that

∫
RN

|x|−2b|∇u|2 dx =
∫

C

[
|∇v|2 +

(
N − 2 − 2b

2

)2

v2
]

dμ,

where the gradient of v and the measure dμ correspond to the standard metric on the cylinder
induced by the Euclidean metric in RN+1. Also,∫

RN

|x|−2au2 dx =
∫

C

e2(a−b−1)t v2 dμ

and ∫
RN

|x|−a−b−1u2 dx =
∫

C

e(a−b−1)t v2 dμ.

Therefore, on the cylinder C , the inequality (1) is equivalent to

C2(N,a, b) � E2(v) = (
∫

C e2(a−b−1)t v2 dμ)(
∫

C [|∇v|2 + (N−2−2b
2 )2v2]dμ)

(
∫

C e(a−b−1)t v2 dμ)2
. (17)

We now decompose v in terms of spherical harmonics Yk(θ), where we require

−ΔθYk = λkYk and
∫

SN−1

YkYl dθ = δkl .

Note that λ0 = 0 is a simple eigenvalue and Y0 is constant on SN−1. There exist functions
fk ∈ C∞

0 (R) such that

v(θ, t) =
∞∑

k=0

fk(t)Yk(θ).

One can now check that, for any function ρ = ρ(t), it holds

∫
C

ρv2 dμ =
∫
R

ρ(t)

∫
SN−1

v2(θ, t) dθ dt =
∞∑

k=0

∫
R

ρ(t)f 2
k (t) dt.

Similarly, it holds that

∫
C

[
|∇v|2 +

(
N − 2 − 2b

2

)2

v2
]

dμ

=
∞∑

k=0

∫ {(
f ′

k

)2
(t) +

[
λk +

(
N − 2 − 2b

2

)2]
f 2

k (t)

}
dt.
R
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Therefore, if fk is not identically zero for some k � 1, i.e., if v is not constant on every sphere
SN−1 × {t} then, since λk > 0, we have that

E2(v) >
(
∑∞

k=0

∫
R

e2(a−b−1)t f 2
k (t) dt)(

∑∞
k=0

∫
R
[(f ′

k)
2(t) + (N−2−2b

2 )2f 2
k (t)]dt)

(
∑∞

k=0

∫
R

e(a−b−1)t f 2
k (t) dt)2

. (18)

Next, if we let ϕ(t) = (
∑∞

k=0 f 2
k (t))

1
2 , then

∞∑
k=0

(
f ′

k

)2
(t) �

(
∑∞

k=0 f ′
k(t)fk(t))

2∑∞
k=0 f 2

k (t)
= (ϕ′)2(t)

which, substituted into (18), gives

E2(v) >
(
∫

R
e2(a−b−1)tϕ2(t) dt)(

∫
R
[(ϕ′)2(t) + (N−2−2b

2 )2ϕ2(t)]dt)

(
∫

R
e(a−b−1)tϕ2(t) dt)2

.

This means that, when we view ϕ(t) as a function on the cylinder which is independent of θ and

we define urad(x) = |x|− N−2−2b
2 ϕ(Υ (x)), we then have

E(u) = E(v) � E(ϕ) = E(urad),

with equality if and only if u = urad. This concludes our proof. �
The inequalities (1) have a nice “folding” property. Namely, under appropriate symmetry

assumptions on the functions u, they reduce to inequalities in lower dimensions of exactly the
same type. We exemplify this fact by reducing the inequality for radial functions from dimension
N to one dimension, i.e., from C∞

0,rad(R
N \ {0}) to C∞

0 (0,∞).

When we work with the class of radial functions in RN , inequality (1) becomes

C2(N,a, b)

( ∞∫
0

rN−a−b−2u2 dr

)2

�
( ∞∫

0

rN−2a−1u2 dr

)( ∞∫
0

rN−2b−1u2
r dr

)
.

And, when N = 1 this inequality reads

C2(â, b̂)

( ∞∫
0

u2

râ+b̂+1
dr

)2

�
( ∞∫

0

u2

r2â
dr

)( ∞∫
0

u2
r

r2b̂
dr

)
,

where we are using C(â, b̂) instead of C(1, â, b̂). Therefore, we have:

Remark 4. Regardless of the starting dimension N , the radial case (N,a, b) drops down to
one dimension (1, â, b̂), when we consider â = a − N−1

2 and b̂ = b − N−1
2 . Moreover, the best

constant satisfies C(N,a, b) = C(â, b̂).
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3. Proof of Theorem 1 – The Euler–Lagrange equations

Proof. We have seen from Theorem 2 in Section 1 that, when N = 1, it holds

C2(a, b)

( ∞∫
0

u2(r)

ra+b+1
dr

)2

�
( ∞∫

0

u2(r)

r2a
dr

)( ∞∫
0

u2
r (r)

r2b
dr

)
, (19)

where the best constant is given by

C(a, b) =
{ |a+b|

2 if (a, b) ∈ A,
|3b−a+2|

2 if (a, b) ∈ B.
(20)

Moreover, these optimal constants are achieved by the functions

u(r) = D exp

(
t

b + 1 − a
rb+1−a

)
(21)

and

u(r) = Dr2b+1 exp

(
t

b + 1 − a
rb+1−a

)
, (22)

respectively, where D ∈ R \ {0} and t (of the right sign) are arbitrary. Therefore, Remark 4 above
concludes the proof of Theorem 1. In other words, we have the inequality

C2(N,a, b)

( ∫
RN

u2

|x|a+b+1
dx

)2

�
( ∫

RN

u2

|x|2a
dx

)( ∫
RN

|∇u|2
|x|2b

dx

)
,

where the best constant is

C(N,a, b) = C(â, b̂) = C

(
a − N − 1

2
, b − N − 1

2

)

and C(·,·) is given in (20). In addition, C(N,a, b) is achieved, respectively, by the functions in
(21) and (22), with r = |x|. �
Remark 5. The case a = b + 1 was considered in [4], and it appears also in [5]. It is known that
the best constant is C(b + 1, b) = |2b+1|

2 and it is not achieved. The way this was shown in [4]
was through the change of variables

u(r) = r− 2b+1
2 v(−ln r), t = −ln r,

which is just the one-dimensional variant of (16). Indeed, one has

∞∫
u2

r (r)

r2b
dr =

∞∫ [
v2
t (t) +

(
2b + 1

2

)2

v2(t)

]
dt
0 −∞
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and

∞∫
0

u2(r)

r2(b+1)
dr =

∞∫
−∞

v2(t) dt.

Therefore, it follows that

C2(b + 1, b) = inf

∫ ∞
−∞[v2

t (t) + ( 2b+1
2 )2v2(t)]dt∫ ∞

−∞ v2(t) dt
=

(
2b + 1

2

)2

and it is not achieved because the corresponding Euler–Lagrange equation

−vtt +
(

2b + 1

2

)2

v = λv

has solution of exponential type, linear, or oscillatory, none of which is integrable.

Next, let us consider (cf. [6]) the space H 1
a,b(R

N) obtained from C∞
0 (RN \{0}) by completion

under the weighted Sobolev norm

‖u‖H 1
a,b

:=
( ∫

RN

[ |∇u|2
|x|2b

+ u2

|x|2a

]
dx

)1/2

.

Recalling that the square of the energy functional is given by

E2(u) =
(
∫

RN
u2

|x|2a dx)(
∫

RN
|∇u|2
|x|2b dx)

(
∫

RN
u2

|x|a+b+1 dx)2
,

it is not hard to calculate its Euler–Lagrange equation, which is given by

−div(
∇u

|x|2b
) + K(u)

u

|x|2a
− 2M(u)

u

|x|a+b+1
= 0, (23)

where

K(u) =
∫

RN
|∇u|2
|x|2b dx∫

RN
u2

|x|2a dx
and M(u) =

∫
RN

|∇u|2
|x|2b dx∫

RN
u2

|x|a+b+1 dx
. (24)

We should note that the coefficients K(u) and M(u) in (23) are homogeneous functionals of
degree 0 and that (23) itself is homogeneous of degree 1 (so, if u is a solution so is αu for all
α ∈ R). Also, u ∈ H 1

a,b(R
N) is a weak solution of (23) if and only if

〈
D

(
E2)(u),ϕ

〉 := d
E2(u + tϕ)|t=0 = 0 ∀ϕ ∈ H 1

a,b.
dt



F. Catrina, D.G. Costa / J. Differential Equations 246 (2009) 164–182 175
In particular, since we know from Theorem 2 that the (radial) functions u that achieve the best
constants in (1) satisfy

∞∫
0

u2
r

r2b
dr < ∞,

∞∫
0

u2

r2a
dr < ∞,

it follows any such function belongs to H 1
a,b(R

N) (recall Remark 4). Moreover, it is a standard
fact that any such u is a weak solution of (23), i.e., one has the following lemma (for completeness
we provide its easy proof):

Lemma 4. Let U ∈ H 1
a,b(R

N) be a minimizer of E(u). Then U is a weak solution of (23).

Proof. Since U is a minimizer of E(u), it is also a minimizer of E2(u), and so, for any given
ϕ ∈ H 1

a,b , one has

E2(U + tϕ) � E2(U) ∀t ∈ R.

Therefore, for t > 0 (resp. t < 0), it follows that

1

t

[
E2(U + tϕ) − E2(U)

]
� 0 (resp. � 0).

Letting t → 0 gives

〈
D

(
E2)(U),ϕ

〉 = 0,

that is, U is a weak solution of (23). �
4. Multiple solutions

In this section we construct multiple solutions for (23). Namely, we prove the following:

Theorem 4.

(a) For any pair (a, b) with a �= b + 1 Eq. (23) has infinitely many sign-changing solutions on
discrete energy levels.

(b) For certain pairs (a, b), Eq. (23) has multiple (nontrivially distinct) solutions on the same
energy level.

Proof. For the proof we use again the transformation on the cylinder (16) that was used in
Section 2.

Similarly to before, given u ∈ C∞(RN \ {0}) ∩ H 1
a,b(R

N), there exist fk ∈ C∞(R) ∩ H 1(R)

such that

v(θ, t) =
∞∑

fk(t)Yk(θ). (25)

k=0
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Then

E(v) = {∑∞
k=0

∫
R

e2(a−b−1)t f 2
k (t) dt} 1

2 {∑∞
k=0

∫
R
(f ′

k)
2(t) + [λk + (N−2−2b

2 )2]f 2
k (t) dt} 1

2∑∞
k=0

∫
R

e(a−b−1)t f 2
k (t) dt

.

(26)

We therefore look at the equations

−f ′′
k +

{[
λk +

(
N − 2 − 2b

2

)2]
+ K(v)e2(a−b−1)t − 2M(v)e(a−b−1)t

}
fk = 0, (27)

where, similarly to (24), we have

K(v) =
∫

C [|∇v|2 + (N−2−2b
2 )2v2]dμ∫

C e2(a−b−1)t v2 dμ
(28)

and

M(v) =
∫

C [|∇v|2 + (N−2−2b
2 )2v2]dμ∫

C e(a−b−1)t v2 dμ
. (29)

With these notations, we have

E(v) = M(v)/
√

K(v).

Remark 6. In fact, only the ratio E(v) = M(v)/
√

K(v) matters in (27), since the translation
t → t − 1

2(a−b−1)
lnK reduces (27) to

−f ′′
k +

{[
λk +

(
N − 2 − 2b

2

)2]
+ e2(a−b−1)t − 2E(v)e(a−b−1)t

}
fk = 0.

Note that K and M in (27) are non-local coefficients in that they depend on v. For the inter-
mediate calculations we disregard this dependency and we will assume K and M to be two fixed
positive constants. We then “assemble” the higher-energy solutions as in (25), sometimes using
more than one Yk . It is important to make sure that the constants K and M used to construct v are
indeed related to v through (28) and (29). This will be checked (see Remark 6) in what follows.

Consider k a nonnegative integer, and K and M fixed positive constants. It is convenient to
transform Eq. (27) into the Whittaker equation

wzz +
{
−1

4
+ κ

z
+

1
4 − μ2

z2

}
w = 0. (30)

A change of variables realizing this transformation (using f instead of fk) is

z = 2
√

K
e(a−b−1)t and

w(z)√ = f (t), (31)
|a − b − 1| z
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where we denoted

κ = M/
√

K

|a − b − 1| and μ =
√

λk + (N−2−2b
2 )2

|a − b − 1| . (32)

Assuming that w is a differentiable function on (0,∞) satisfying

lim
z→0+

w2(z)

z
= lim

z→∞
w2(z)

z
= 0 (33)

and that f and w are related through (31), it is not difficult to check that

∫
R

[
(f ′)2 +

(
λk +

(
N − 2 − 2b

2

)2)
f 2

]
dt = |a − b − 1|

∞∫
0

[
w2

z +
(

−1

4
+ μ2

)
1

z2
w2

]
dz,

(34)

because

∫
R

(f ′)2 dt = |a − b − 1|
∞∫

0

[
w2

z − z−1wwz + 1

4
z−2w2

]
dz

= |a − b − 1|
∞∫

0

[
w2

z − d

dz

(
z−1 w2

2

)
− 1

2
z−2w2 + 1

4
z−2w2

]
dz

= |a − b − 1|
∞∫

0

[
w2

z − 1

4
z−2w2

]
dz,

since the boundary terms vanish in view of (33). We also have

∫
R

e2(a−b−1)t f 2 dt = |a − b − 1|
4K

∞∫
0

w2 dz (35)

and

∫
R

e(a−b−1)t f 2 dt = 1

2
√

K

∞∫
0

1

z
w2 dz. (36)

Note that if v(θ, t) = fk(t)Yk(θ) (we call such a v a single mode), and fk is obtained from w

via (31), then we have from (34)–(36) that

E(v) = |a − b − 1| (
∫ ∞

0 w2 dz)
1
2 (

∫ ∞
0 [w2

z + (− 1
4 + μ2) 1

z2 w2]dz)
1
2∫ ∞ 1w2 dz
. (37)
0 z
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Moreover, if w is solution of (30) then, after multiplying the equation by w and integrating
by parts, we obtain

∞∫
0

[
w2

z +
(

−1

4
+ μ2

)
1

z2
w2

]
dz = κ

∞∫
0

1

z
w2 dz − 1

4

∞∫
0

w2 dz. (38)

On the other hand, it is known (e.g. see [9]) that a solution of (30) is given by

Mκ,μ(z) = e− z
2 z

1
2 +μ

1F1

(
1

2
+ μ − κ;1 + 2μ; z

)
,

where, for any β not a negative integer or zero, 1F1(α;β; z) is the hypergeometric series

1F1(α;β; z) = 1 + α

1!β z + α(α + 1)

2!β(β + 1)
z2 + · · · + α(α + 1) · · · (α + r − 1)

r!β(β + 1) · · · (β + r − 1)
zr + · · · .

Let n be any nonnegative integer, and assume κ and μ are such that

μ = κ − n − 1

2
> 0. (39)

We then consider the solution of (30) given by

w(z) = M
κ,κ−n− 1

2
(z) = e− z

2 zκ−n
1F1(−n;2κ − 2n; z). (40)

Note that, since α = −n, the hypergeometric series 1F1(−n;2κ − 2n; z) is a polynomial of
degree n, so that w satisfies conditions (33). We now show that this w satisfies the equality

∞∫
0

w2 dz = 2κ

∞∫
0

1

z
w2 dz. (41)

Indeed, we have

∞∫
0

w2 dz =
∞∫

0

e−zz2κ−2n
1F

2
1 (−n;2κ − 2n; z) dz

= −
∞∫

0

d

dz

(
e−zz2κ−2n

1F
2
1 (−n;2κ − 2n; z))dz + 2κ

∞∫
0

1

z
w2 dz

+
∞∫

e−zz2κ d

dz

(
z−n

1F1(−n;2κ − 2n; z))2
dz
0
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and (41) will follow if we show that

∞∫
0

e−zz2κ d

dz

(
z−n

1F1(−n;2κ − 2n; z))2
dz = 0. (42)

So, we need to show that

∞∫
0

e−zz2κ
(
z−n

1F1(−n;2κ − 2n; z)) d

dz

(
z−n

1F1(−n;2κ − 2n; z))dz = 0.

But it is straightforward to see that

d

dz

(
z−n

1F1(−n;2κ − 2n; z)) = −nz−(n+1)
1F1

(−(n − 1);2κ − 2n; z)
and, hence, (42) follows from the equality

∞∫
0

e−zz2κ−2n−1
1F1(−n;2κ − 2n; z)1F1

(−(n − 1);2κ − 2n; z)dz = 0. (43)

The above equality (43) is obtained from the more general fact that Laguerre polynomials
{Lβ−1

n (z)}n are orthogonal with respect to the gamma distribution e−zzβ−1 dz for β > 0 (e.g.
see [1], p. 282). The relevant relation is

1F1(−n;β; z) = n!
β(β + 1) · · · (β + n − 1)

Lβ−1
n (z),

where β = 2κ − 2n in our case.
Next, having shown (41), we obtain from (38) and (41) that

∞∫
0

[
w2

z +
(

−1

4
+ μ2

)
1

z2
w2

]
dz = κ

2

∞∫
0

1

z
w2 dz. (44)

And, by substituting (41) and (44) in (37), we get

E(v) = |a − b − 1|κ.

Therefore, recalling (32), we obtain E(v) = M/
√

K , which verifies Remark 6.
We note that, whenever condition (39) holds, it follows by substitution from (32) that

E = M√ =
√

λk +
(

N − 2 − 2b

2

)2

+ |a − b − 1|
(

n + 1

2

)
. (45)
K
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Radial solutions
For (a, b) fixed, let n ∈ {0,1,2, . . .} be arbitrary. Then, on the energy level

En =
∣∣∣∣N − 2 − 2b

2

∣∣∣∣ + |a − b − 1|
(

n + 1

2

)
,

there is a radial solution u(|x|) obtained from v(θ, t) = f (t) through (16) where, in turn, f (t) is
obtained from w(z) given by (40) via (31).

Single mode nonradial solutions
More generally, for λk > 0 fixed, let n ∈ {0,1,2, . . .} be arbitrary. Then, on the energy level

Ek,n given by (45) there is a solution u(x) obtained via (16) from the 1-mode solution v(θ, t) =
Yk(θ)fk,n(t).

Multiple mode solutions
Let a be such that, for different pairs (λk, n) and (λl,m), the energy level given by (45)

satisfies E = Ek,n = El,m, that is, a is such that

|a − b − 1| = 1

n − m

(√
λl +

(
N − 2 − 2b

2

)2

−
√

λk +
(

N − 2 − 2b

2

)2)
.

Then, there is a solution on the energy level E obtained from the 2-mode v(θ, t) = Yk(θ)fk,n(t)+
Yl(θ)fl,m(t).

By the same token, if there are three pairs (λk, n), (λl,m) and (λj ,p) such that

|a − b − 1| = 1

n − m

(√
λl +

(
N − 2 − 2b

2

)2

−
√

λk +
(

N − 2 − 2b

2

)2 )

= 1

p − n

(√
λk +

(
N − 2 − 2b

2

)2

−
√

λj +
(

N − 2 − 2b

2

)2 )
,

then there is a solution obtained from 3-mode solution v(θ, t) = Yj (θ)fj,p(t) + Yk(θ)fk,n(t) +
Yl(θ)fl,m(t).

Note that, in the cases b = 0 or b = N − 2, one has λk + (N−2−2b
2 )2 = (k + N−2

2 )2, since
λk = k(k + N − 2). Therefore, the above equality becomes

|a − b − 1| = 1

n − m
(l − k) = 1

p − n
(k − j),

and if one is able to find distinct pairs (k1, n1), . . . , (kr , nr) such that |a−b−1| = 1
ni−ni+1

(ki+1 −
ki) for all i = 1, . . . , r − 1, then an r-mode solution can be found at the corresponding energy
level. �

In fact, we have the following (explicit) consequence of Theorem 4:
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Corollary 1. Let b = 0 (resp. b = N −2) and let a �= 1 (resp. a �= N −1) be an arbitrary rational
number. Then, for any positive integer r , there exists a countable set of energy levels

E = Ek,n =
(

k + N − 2

2

)
+ |a − b − 1|

(
n + 1

2

)
,

with k,n → ∞, such that, on the level Ek,n, there are r-mode solutions.

Proof. Given (a, b) as above, we write the positive rational number |a − b − 1| in irreducible
form as

|a − b − 1| = p

q
.

In view of the preceding arguments, if we find distinct pairs (k1, n1), . . . , (kr , nr) such that |a −
b − 1| = 1

ni−ni+1
(ki+1 − ki) for all i = 1, . . . , r − 1, then an r-mode solution can be found at the

corresponding energy level

Ek1,n1 =
(

k1 + N − 2

2

)
+ p

q

(
n1 + 1

2

)
. (46)

Then, the idea is to consider the linear Diophantine equation

xq − yp = 1 (47)

and use the fact that, in view of our assumption of p and q being relatively prime, (47) has
infinitely many solutions (x, y) given by

x = k + zp, y = n + zq,

with (k, n) being a fixed solution and z ∈ Z arbitrary.
For k and n fixed, the energy level E = E

k̂,n̂
as in (46) will have at least

r =
⌊

k

p

⌋
+

⌊
n

q

⌋
+ 1 (48)

solutions (as usual, �x� denotes the largest integer less than, or equal to, x), with k̂ = k + jp,
n̂ = n − jq , with j ∈ {−� k

p
�,−� k

p
� + 1, . . . , � n

q
�}. Clearly, as k or n (or both) tend to infinity,

r → ∞ as follows from (48).
As an illustration, say p and q are fixed, and we want to construct r-mode solutions with

1 � r � 3. For that, we can consider k � p and n � 2q and the energy level E = Ek−p,n and the
3-mode solution v(θ, t) = Yk1(θ)fk1,n1(t) + Yk2(θ)fk2,n2(t) + Yk3(θ)fk3,n3(t), with

k1 = k + p, k2 = k, k3 = k − p,

n1 = n − 2q, n2 = n − q, n3 = n.

An important point to note is that the coefficients of p and q add up to the same constant.
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And, for 1-mode and 2-mode solutions (at the same level E = Ek−p,n), we simply take anyone
of the terms in the above v(θ, t), and the sum of any two such terms. �
5. Concluding remarks and questions

Remark 7. This paper was inspired by the work in [6] after the present authors realized that,
for (a, b) in B, the value of the best constant obtained in [6] was not correct. As a result, we
now obtained the best constant for all pairs (a, b) as well as the corresponding minimizers (ex-
cept for a = b + 1, when the best constant is not achieved). In addition, we showed that all
minimizers were one-signed, radial functions forming a 2-dimensional manifold parameterized
by D ∈ R \ {0}, t ∈ (0,∞) (resp. t ∈ (−∞,0)), and we constructed infinitely many other sign-
changing, nonradial, higher-energy solutions of the Euler–Lagrange equation corresponding to
the pertinent functional.

Remark 8. As we saw in Section 4, the approach we used to (explicitly) construct some of the
multiple-mode solutions in the case (a, b) ∈ Q × {b̂} (with b̂ = 0 or N − 2, and a �= b̂ + 1)
involved solving a linear Diophantine equation. If we want to consider other values of b̂, the
same approach would lead to more complicated higher order Diophantine equations. Therefore,
considering that the Euler–Lagrange equation (23) is “almost linear” (in the sense that it is ho-
mogeneous of degree 1), the question of describing/constructing all solutions of (23) (perhaps
by a different method) would naturally arise. A possible difficulty may be the fact that Eq. (23) is
non-local. As far as we are aware, there is not much done regarding non-local equations in RN .

In particular, it would be interesting to see whether there are solutions with infinitely many
modes.

Remark 9. The general case of weighted-norm inequalities involving Lp-norms must be handled
differently and constitutes work in progress [3] which will appear elsewhere.
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