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Let D
n be the polydisk in C

n and the symbols φ,ψ ∈ C(Dn) such that φ and ψ are
pluriharmonic on any (n − 1)-dimensional polydisk in the boundary of D

n . Then H∗
ψ Hφ

is compact on A2(Dn) if and only if for every 1 � j,k � n such that j �= k and any (n − 1)-
dimensional polydisk D , orthogonal to the z j-axis in the boundary of D

n , either φ or
ψ is holomorphic in zk on D . Furthermore, we prove a different sufficient condition for
compactness of the products of Hankel operators. In C

2, our techniques can be used to get
a necessary condition on some product domains involving annuli.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we would like to understand how compactness of products of Hankel operators interacts with the behavior
of the symbols on the boundary. We choose to work on the polydisk and some other product domains in C

2. However, we
believe that this approach could be useful on more general domains.

Let Ω be a domain in C
n and dV denote the Lebesgue volume measure on Ω. The Bergman space A2(Ω) is the closed

subspace of L2(Ω,dV ) consisting of all holomorphic functions on Ω. The Bergman projection P is the orthogonal projection
from L2(Ω) onto A2(Ω). For a function φ ∈ L∞(Ω), the Toeplitz operator Tφ : A2(Ω) → A2(Ω) is defined by Tφ = P Mφ

where Mφ is the multiplication operator by φ.
In their famous paper, Brown and Halmos [5] introduced Toeplitz operators on the Hardy space on the unit disk D of the

complex plane and discovered the most fundamental algebraic properties of these operators. The corresponding questions
for the Bergman space remained elusive for several decades. In 1991, Axler and the first author [1] characterized commuting
Toeplitz operators with harmonic symbols on D and thus obtained an analogue of the corresponding theorem of Brown and
Halmos. In 2001, Ahern and the first author [2] studied when a product of two Toeplitz operators is equal to another Toeplitz
operator. They considered bounded harmonic functions φ and ψ, and a bounded C2-symbol ξ with bounded invariant
Laplacian. Their main result is that Tφ Tψ = Tξ if and only if φ is conjugate holomorphic or ψ is holomorphic. Later Ahern [3]
removed the assumption on ξ and assumed that ξ ∈ L∞(D) only. One of the consequences of the main result in [2] is
that the semicommutator of Toeplitz operator, Tφ Tψ − Tφψ = 0, only in trivial cases. This result was obtained earlier by
Zheng [13], using different methods. In fact, Zheng characterized compact semicommutators of Toeplitz operators with
harmonic symbols on the unit disk. If φ = φ1 + φ2 and ψ = ψ1 + ψ2 are bounded and harmonic on D, where φ1, φ2,ψ1,

and ψ2 are holomorphic, then compactness of Tφ Tψ − Tφψ is equivalent to the condition

lim|z|→1
min

{(
1 − |z|2)∣∣φ′

1(z)
∣∣, (1 − |z|2)∣∣ψ ′

2(z)
∣∣} = 0.
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Later several authors [11,6] extended this result to the Bergman space of the polydisk D
n and in 2007, Choe, Lee, Nam, and

Zheng [8] found characterizations of compactness of Tφ Tψ − Tξ on the polydisk, thus extending Ahern’s result.
A semicommutator of two Toeplitz operators can be expressed in terms of Hankel operators. For φ ∈ L∞(Ω), the Hankel

operator Hφ : A2(Ω) → A2(Ω)⊥ is defined by Hφ = (I − P )Mφ. The following relation between Toeplitz operators and
Hankel operators is well known:

Tφψ − Tφ Tψ = H∗
φ Hψ.

Thus the semicommutator can be expressed as a product of an adjoint of a Hankel operator with another Hankel operator.
Our approach is also motivated by our previous paper [9] in which we studied compactness of one Hankel operator on
pseudoconvex domains in C

n in terms of the behavior of the symbol of the operator on disks in the boundary. Thus, when
faced with the product of two Hankel operators, we are interested in finding how compactness of H∗

φ Hψ interacts with the
behavior of φ and ψ on the boundary of the domain.

We finish the introduction by listing our results. Let ξ ∈ D and

D(ξ, j) = {
(z1, . . . , z j−1, z j, z j+1, . . . , zn) ∈ D

n: z j = ξ
}
.

Theorem 1. Let D
n be the polydisk in C

n, n � 2, and the symbols φ,ψ ∈ C(Dn) such that φ|D(ξ, j) and ψ |D(ξ, j) are pluriharmonic for
all 1 � j � n and all |ξ | = 1. Then H∗

ψ Hφ is compact on A2(Dn) if and only if for any 1 � j,k � n such that j �= k and |ξ | = 1, either
φ|D(ξ, j) or ψ |D(ξ, j) is holomorphic in zk on D(ξ, j).

In C
2 the above theorem immediately implies the following corollary.

Corollary 1. Let D
2 be the bidisk in C

2 and the symbols φ,ψ ∈ C(D2) such that φ ◦ g and ψ ◦ g are harmonic for all holomorphic
g : D → ∂D

2. Then H∗
ψ Hφ is compact on A2(D2) if and only if for any holomorphic function g : D → ∂D

2, either φ ◦ g or ψ ◦ g is
holomorphic.

Remark 1. Let φ(z1, z2) = χ1(z1, z2) + z1z2 and ψ(z1, z2) = χ2(z1, z2) + z1z2 where χ1,χ2 ∈ C∞
0 (D2). Then φ and ψ are

smooth functions but their restrictions on ∂D
2 cannot be extended onto D2 as pluriharmonic functions. So unlike the

results in [11,8], Theorem 1 applies to such symbols and provides many examples of (nonzero) compact products of Hankel
operators. Hence our result generalizes the previously mentioned results in the sense that our symbols do not have to be
pluriharmonic on D

n. On the other hand, we require the symbols to be continuous up to the boundary.

In fact our method can be used to remove the plurihamonicity condition on the symbols when proving the sufficiency,
if we are willing to assume more about the symbols.

Theorem 2. Let D
n be the polydisk in C

n, n � 2, and the symbols φ,ψ ∈ C1(Dn). Assume that for any holomorphic function g : D →
∂D

n, either φ ◦ g or ψ ◦ g is holomorphic. Then H∗
ψ Hφ is compact on A2(Dn).

We also would like to note that the sufficient condition in Theorem 2 is not necessary. For example, Theorem 1 implies
that H∗

φ Hψ is compact on A2(D3) for φ(z1, z2, z3) = z1z2 and ψ(z1, z2, z3) = z1z2. However, φ(ξ, ξ, z3) = ψ(ξ, ξ, z3) = |ξ |2
is not holomorphic.

Our technique can also be applied to some other product domains.

Theorem 3. Let Ω = U × V ⊂ C
2 where U and V are annuli or disks in C, and the symbols φ,ψ ∈ C(Ω). Assume that the restrictions

of φ and ψ on any disk or annulus in the boundary of Ω are of the form f + g, where f and g are holomorphic and continuous up to
the boundary. If H∗

ψ Hφ is compact on A2(Ω) then for any holomorphic function g : D → ∂Ω either φ ◦ g or ψ ◦ g is holomorphic.

Commutators of Toeplitz operators are connected to products of Hankel operators as follows:

[Tφ, Tψ ] = H∗
φ

Hψ − H∗
ψ

Hφ.

Hence, Theorem 2 implies the following corollary.

Corollary 2. Let D
n be the polydisk in C

n and the symbols φ,ψ ∈ C1(Dn) be nonconstant. Assume that for any holomorphic function
g : D → ∂D

n, either φ ◦ g and ψ ◦ g are holomorphic or φ ◦ g and ψ ◦ g are holomorphic. Then [Tφ, Tψ ] is compact on A2(Dn).
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2. Proof of Theorems 1 and 2

One of the important tools we need is the Berezin transform of an integrable function f on the polydisk in C
n which is

defined as B( f )(z) = ∫
Dn f (w)|kn

z (w)|2 dV (w). Here kn
z (w) denotes the normalized Bergman kernel of D

n . More generally,
the Berezin transform of a bounded operator T is defined as B(T )(z) = 〈T kn

z ,kn
z 〉L2(Dn) .

Proof of Theorem 1. We will use the fact that if an operator T is compact then 〈T f j, f j〉L2(Dn) converges to zero whenever
{ f j} converges to zero weakly. Let us assume that H∗

ψ Hφ is compact and φ|D(z0, j) and ψ |D(z0, j) are pluriharmonic for all
1 � j � n and |z0| = 1. Without loss of generality let us choose j = n and let us denote z = (z′, zn) where z′ = (z1, . . . , zn−1)

and define φ0(z) = φ(z) − φ(z′, z0), ψ0(z) = ψ(z) − ψ(z′, z0), and denote ψz0 (z) = ψ1(z′) = ψ(z′, z0) and φz0(z) = φ1(z′) =
φ(z′, z0). Let us fix F ∈ A2(Dn−1) with ‖F‖L2(Dn−1) � 1 and choose a sequence {p j} ⊂ D such that p j → z0. Now we define
f j(z) = F (z′)kp j (zn) where kp j is the normalized Bergman kernel for D at p j . We note that φ0(z′, z0) = ψ0(z′, z0) = 0 for all
z′ ∈ D

n−1 and for all δ > 0 the sequence {‖ f j‖L2(Dn\D
n
z0,δ )

} converges to zero, where D
n
z0,δ = {z ∈ D

n: |zn − z0| < δ}. Then for

δ > 0 one can show that

‖φ0 f j‖2
L2(Dn)

+ ‖ψ0 f j‖2
L2(Dn)

� sup
{∣∣φ0(z)

∣∣2
: z ∈ D

n
z0,δ

}‖ f j‖2
L2(Dn)

+ sup
{∣∣ψ0(z)

∣∣2
: z ∈ D

n
z0,δ

}‖ f j‖2
L2(Dn)

+ sup
{∣∣φ0(z)

∣∣2
: z ∈ Dn

}‖ f j‖2
L2(Dn\D

n
z0,δ )

+ sup
{∣∣ψ0(z)

∣∣2
: z ∈ Dn

}‖ f j‖2
L2(Dn\D

n
z0,δ )

.

For any ε > 0 we can choose δ > 0 so that

sup
{∣∣φ0(z)

∣∣2
: z ∈ D

n
z0,δ

} + sup
{∣∣ψ0(z)

∣∣2
: z ∈ D

n
z0,δ

}
< ε/2.

Furthermore, we can choose jε,δ so that

‖ f j‖2
L2(Dn\D

n
z0,δ )

<
ε

2 sup{|φ0(z)|2: z ∈ Dn} + 2 sup{|ψ0(z)|2: z ∈ Dn} + 1

for all j � jε,δ . Combining the above inequalities with the fact that ‖ f j‖L2(Dn) � 1 we get ‖φ0 f j‖2
L2(Dn)

+ ‖ψ0 f j‖2
L2(Dn)

< ε

for j � jε,δ. This implies that∥∥Hφ0( f j)
∥∥

L2(Dn)
+ ∥∥Hψ0( f j)

∥∥
L2(Dn)

→ 0 as j → ∞.

The above statement together with the assumption that H∗
ψ Hφ is compact and Hφ = Hφz0

+ Hφ0 and Hψ = Hψz0
+ Hψ0

imply that 〈Hφz0
( f j), Hψz0

( f j)〉L2(Dn) converges to zero. Using the fact that D
n is the polydisk and the function φz0 depends

only on z′ one can show that Hφz0
( f j)(z) = Hφ1(F )(z′)kp j (zn) and〈

Hφz0
( f j), Hψz0

f j
〉
L2(Dn)

= 〈
Hφ1(F ), Hψ1(F )

〉
L2(Dn−1)

‖kp j ‖2
L2(D)

.

Then compactness of H∗
ψ Hφ implies that 〈Hφ1 (F ), Hψ1 (F )〉L2(Dn−1) = 0 for all F ∈ A2(Dn−1). Now Theorem 2.3 in [11]

implies that for any 1 � k � n − 1 either φ1 or ψ1 is holomorphic in zk . Therefore, for any 1 � k � n − 1 either φ or ψ is
holomorphic in zk .

To prove the other direction of the theorem, let q be a boundary point of ∂D
n and kn

q j
denote the normalized Bergman

kernel of D
n centered at q j ∈ D

n where q j → q. First, we will show that 〈Hφkn
q j

, Hψkn
q j

〉L2(Dn) converges to zero. Then we will
use the fact ([4,12], see also [7, Theorem 2.1]) that H∗

ψ Hφ is compact if and only if B(H∗
ψ Hφ) ∈ C0(D

n) where C0(Ω) denotes
the class of functions that are continuous on Ω and have zero boundary limits. It is easy to see that B(H∗

ψ Hφ) ∈ C(Dn).

There exists 1 � j � n and ξ ∈ C such that |ξ | = 1 and q ∈ D(ξ, j). We extend ψ |D(ξ, j) and φ|D(ξ, j) trivially in z j so that
the extensions, ψ1 and φ1, are independent of z j variable and are continuous up to the boundary of D

n. Let us define
φ0 = φ −φ1 and ψ0 = ψ −ψ1. Then φ0 = ψ0 = 0 on D(ξ, j) and, as is done in the first part of this proof, one can show that
both sequences {Hφ0kq j } and {Hψ0kq j } converge to zero. Since φ1 and ψ1 are pluriharmonic on D

n, continuous up to the
boundary, and for each variable either φ1 or ψ1 is holomorphic, Theorem 3.2 in [11] implies that H∗

ψ1
Hφ1 = 0. Therefore,

H∗
ψ Hφ is compact. �

In order to prove Theorem 2 we need the following lemma.

Lemma 1. Let U be a domain in C
n and the functions φ,ψ ∈ C1(U ) are such that for any holomorphic function g : D → U either

φ ◦ g or ψ ◦ g is holomorphic. Then either φ or ψ is holomorphic on U .

Proof. Let p,q ∈ U such that ∂φ(p) �= 0 and ∂ψ(q) �= 0. Assume that p �= q. Let ε > 0 and γ : [0,1] → U be a curve so that
γ (0) = p, γ (1) = q, and{

z ∈ C
n: dist(z, γ ) < ε

} ⊂ U
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where dist denotes the Euclidean distance. Using Stone–Weierstrass Theorem we choose a complex-valued (real) polynomial
P : R → C

n so that |P (x) − γ (x)| < ε/4 for all x ∈ [0,1]. Let us define

f (x) = P (x) + x
(
q − P (1)

) + (1 − x)
(

p − P (0)
)
.

The function f has a holomorphic extension to C and we will denote the extension by f as well. Hence, f : C → C
n is

holomorphic such that f (0) = p, f (1) = q, and f (z) ⊂ U for z ∈ L = {z ∈ R: 0 � z � 1}.
Let {e1, e2, . . . , en} denote the standard basis in C

n , and define E j = e j for 1 � j � n and En+ j = ∑n
k=1 k j−1ek for 1 �

j � n − 1. Using Vandermonde matrix one can show that the set {E j1 , E j2 , . . . , E jn } is linearly independent for any 1 � j1 <

j2 < · · · < jn � 2n − 1.
Let M > 0 and define

g j,M(z) = f (z) + z(z − 1)

M
E j.

Let us fix M > 0 large enough so that g j,M(z) ∈ U for z ∈ L. Then there exists a simply connected neighborhood V of L
such that g j,M(z) ∈ U for z ∈ V . We choose a conformal mapping h : D → V and define g j = g j,M ◦ h. Then g j : D → U
for 1 � j � 2n − 1, and the sets {g′

j1
(z0), g′

j2
(z0), . . . , g′

jn
(z0)} and {g′

j1
(z1), g′

j2
(z1), . . . , g′

jn
(z1)} are linearly independent for

h(z0) = 0, h(z1) = 1 and any 1 � j1 < j2 < · · · < jn � 2n−1. Since for any j, either φ◦ g j or ψ ◦ g j is holomorphic, there exist
1 � j1 < j2 < · · · < jn � 2n − 1 such that either φ ◦ g jk is holomorphic for 1 � k � n or ψ ◦ g jk is holomorphic for 1 � k � n.

Furthermore, using the chain rule together with linear independence of {g′
jk
(z0): 1 � k � n} and {g′

jk
(z1): 1 � k � n} one

can show that either ∂φ(p) = ∂φ(q) = 0 or ∂ψ(p) = ∂ψ(q) = 0.
If p = q then one can use affine disks along E j ’s to show that either ∂φ(p) = 0 or ∂ψ(p) = 0. Hence, we reached a

contradiction completing the proof. �
Proof of Theorem 2. We will use Lemma 1 together with the ideas in the second part of the proof of Theorem 1. For any
|ξ | = 1 and 1 � j � n we decompose the symbols as φ = φ0 + φ1 and ψ = ψ0 + ψ1 such that

(i) φ0 = ψ0 = 0 on D(ξ, j),
(ii) φ1|D(ξ, j) = φ|D(ξ, j),ψ1|D(ξ, j) = ψ |D(ξ, j),

(iii) φ1 and ψ1 are continuous on Dn,

(iv) either φ1 or ψ1 is holomorphic on D
n.

Then either Hφ1 = 0 or Hψ1 = 0 and both sequences {Hφ0kq j } and {Hψ0kq j } converge to 0 in L2(Dn) for q j → q ∈ D(ξ, j).
Hence, B(H∗

ψ Hφ) ∈ C0(D
n) and in turn this implies that H∗

ψ Hφ is compact. �
3. Proof of Theorem 3

To prove Theorem 3 one reduces the problem onto U or V as in the first part of the proof of Theorem 1. Then if the
problem is reduced onto an annulus one uses the following proposition instead of Ding and Tang’s Theorem.

Proposition 1. Let A = {z ∈ C: 0 < r < |z| < R} and φ and ψ be holomorphic on A and continuous on Ω. Assume that B(ψφ) = ψφ.

Then either φ or ψ is constant.

Proof. Let us assume that B(ψφ) = ψφ. Then by a result of C̆uc̆ković [10, Theorem 9] B(ψφ) = ψφ implies that

ψφ = R(ψφ) + h (1)

where h is a harmonic function and the radialization operator R is defined as R(k)(z) = (2π)−1
∫ 2π

0 k(zeiθ )dθ. If we apply
the Laplacian to (1) we get ψ ′φ′ = R(
(ψφ)). Hence, ψ ′φ′ is radial. Let φ′(z) = ∑∞

n=−∞ anzn and ψ ′(z) = ∑∞
m=−∞ bmzm.

Then, on one hand

ψ ′(z)φ′(z) =
∞∑

n,m=−∞
anbmrn+mei(n−m)ξ

where z = reiξ . On the other hand, since ψ ′φ′ is a radial function we get

ψ ′(z)φ′(z) = 1

2π

2π∫
ψ ′(zeiθ )φ′(zeiθ )dθ
0
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= 1

2π

∞∑
n,m=−∞

anbmrn+mei(n−m)ξ

2π∫
0

ei(n−m)θ dθ

=
∞∑

n=−∞

anbnr2n

2π
.

Hence,
∑

n �=m anbmrn+mei(n−m)ξ = 0 for all ξ. We can rewrite the last equation as

∑
k �=0

( ∞∑
m=−∞

am+kbmr2m+k

)
eikξ = 0.

This is a Fourier series that is equal to zero. Hence
∑∞

m=−∞ am+kbmr2m+k = 0 for all k �= 0. This is a Laurent series that is

equal to zero. Therefore, am+kbm = 0 for all k �= 0 and all m. In return this implies that if bm0 �= 0 then am = 0 for m �= m0.

That is, either there exists an integer m and two nonzero constants a and b such that φ(z) = azm and ψ(z) = bzm or
either φ and ψ is constant. Next we will show that in the first case m = 0. Recall that the Bergman kernel for the annulus
{z ∈ C: ρ < |z| < 1} is

K w(z) = 1

π

∞∑
−∞

n + 1

1 − ρ2n+2
(wz)n − 1

2π lnρ
(wz)−1.

Without loss of generality we may assume that R = 1 and r = ρ < 1 for a fixed m we have B(|z|2m)(w) = |w|2m. Then

|w|2m‖K w‖2 =
1∫

ρ

2π∫
0

r2m+1
∣∣K w

(
reiθ )∣∣2

dθ dr.

The last equation can be expanded as

−|w|2m−2

2π lnρ
+

∑
n �=−1

(n + 1)|w|2(m+n)

1 − ρ2n+2
= π(1 − ρ2m)

|w|2m(2π lnρ)2|w|2 +
∑

n �=−1

(n + 1)2|w|2n

(1 − ρ2n+2)2

(1 − ρ2(n+m+1))

2(n + m + 1)
.

Now let k = m + n then n = k − m and the last equation becomes

−|w|2m−2

2π lnρ
+

∑
k �=m−1

(k − m + 1)|w|2k

1 − ρ2(k−m+1)
= π(1 − ρ2m)

|w|2m(2π lnρ)2|w|2 +
∑

n �=−1

(n + 1)2|w|2n

(1 − ρ2n+2)2

(1 − ρ2(n+m+1))

2(n + m + 1)
.

By equating the coefficients of each term we get

n − m + 1

1 − ρ2(n−m+1)
= (n + 1)2(1 − ρ2(n+m+1))

(n + m + 1)(1 − ρ2(n+1))2

for n �= −1 and n �= m − 1. Let l = n + 1 and ξ = ρ2. Then the last equation turns into

l2 − m2

l2
= (1 − ξ l+m)(1 − ξ l−m)

(1 − ξ l)2
(2)

for l �= 0 and l �= m. From now on we will choose l > m. Let us define the following function

fl(x) = (1 − ξ l+x)(1 − ξ l−x)

l2 − x2
.

One can show that fl is an even, nonnegative function defined on (−l, l) and (2) implies that fl(0) = fl(m). Then using the
logarithmic differentiation we get

(
l2 − x2) f ′

l (x)

fl(x)
= (

l2 − x2)ξ l ln ξ

(
ξ−x

1 − ξ l−x
− ξ x

1 − ξ l+x

)
+ 2x

= (
l2 − x2)ξ l ln ξ

(
ξ−x − ξ x

x l −x l

)
+ 2x. (3)
(ξ − ξ )(ξ − ξ )
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Power series expansions for ξ x and ξ−x imply that

ξ−x − ξ x = −2 ln ξ

∞∑
j=0

(ln ξ)2 j

(2 j + 1)! x2 j+1.

Then there exists 0 < δ < l so that |ξ−x − ξ x| � −3 ln ξ |x| for |x| � δ. Now we use estimate (ξ δ − ξ l)2 � (ξ x − ξ l)(ξ−x − ξ l)

for 0 < x � δ to get

(
l2 − x2) f ′

l (x)

fl(x)
�

(−6(ln ξ)2(l2 − δ2)ξ l

(ξ δ − ξ l)2
+ 2

)
x for 0 � x � δ.

Then since 0 < ξ < 1 there exists l0 > 4m so that (l2 − x2)
f ′
l (x)

fl(x) � x
2 for l � l0 and 0 � x � δ. Hence fl are increasing functions

on [0, δ] for all l � l0. On the other hand for δ � x � m there exists l1 � 4m such that l � l1 implies that∣∣∣∣(l2 − x2)ξ l ln ξ

(
ξ−x

1 − ξ l−x
− ξ x

1 − ξ l+x

)∣∣∣∣ � δ.

Then (3) implies that f ′
l > 0 on [δ,m] for l � l1. Therefore, fl are increasing functions on [0,m] and fl(m) > 0 for l �

max{l0, l1} > 4m. �
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