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1. Introduction

Let g be a finite-dimensional complex simple Lie algebra of rank n, K a commutative field and q a
nonzero element of K which is not a root of unity. We follow the notation and convention of [Jan96]
for the quantum group Uq(g). In particular, to each choice of a reduced decomposition of the longest
Weyl word w0 of the Weyl group W corresponds a generating system (Xβ)β∈Φ+ of the positive part
U +

q (g) of Uq(g) (see Section 3), where Φ+ denotes the set of positive roots associated to g.
The natural action of an n-dimensional torus on U +

q (g) induces a stratification of the prime spec-
trum Spec(U +

q (g)) of U +
q (g) via the so-called Stratification Theorem (see [GL00]). In this stratification,

the primitive ideals are easily identified: they are the primes of U +
q (g) that are maximal in their

strata. This stratification was recently used in [AD08,Lau07b,Lau07a] in order to describe the auto-
morphism group of U +

q (g) in the case where g is of type A2 and B2.
As U +

q (g) can be presented as a skew-polynomial algebra, this stratification can also be described
via the deleting-derivations theory of Cauchon [Cau03a]. In particular, in this theory, the strata are in
a natural bijection with certain combinatorial objects, called Cauchon diagrams, and their geometry
is completely described by the associated diagram. In fact, in the above situation, Cauchon diagrams
are distinguished subsets of the set of positive roots Φ+ . (For this reason, we often refer to subsets of
Φ+ as diagrams.) Note that to each reduced decomposition of w0 corresponds a PBW basis of U +

q (g)

and so a notion of Cauchon diagrams.
The main aim of this paper is to give an algorithmic description of Cauchon diagrams in the case

where the reduced decomposition of w0 corresponds to a good order of Φ+ (in the sense of [Lus90]).
Moreover, in each type, we exhibit a reduced decomposition of w0 for which we are able to describe
explicitly the corresponding Cauchon diagrams.

Our first ingredient in order to obtain an algorithmic description of Cauchon diagrams is the com-
mutation relation between two generators Xβ and Xβ ′ given by Levendorskiı̌ and Soibelman [LS91].
These formulas are not explicitly known, so that one cannot easily use them in order to perform
the deleting-derivations algorithm. As a consequence, the description of Cauchon diagrams does not
seem accessible in the general case. For this reason, we will limit ourselves to the case where the
reduced decomposition of w0 corresponds to a good order on Φ+ (see [Lus90]). We recall this no-
tion in Section 2. Although we still do not know explicitly all the commutation relations between
the generators of U +

q (g), the situation is better as we control enough commutation relations. More
precisely, in this case, the commutation relation between two variables Xβ , Xβ ′ is known when β and
β ′ span a so-called admissible plane [Lus90] (see Section 3.4). Those relations allow the (algorithmic)
construction of a set of necessary conditions, called implications, for a diagram � to be a Cauchon
diagram (see Section 5.1). In Section 5.2, we prove that these conditions are necessary and sufficient
(see Theorem 5.3.1), so that we get an algorithmic description of Cauchon diagrams.

In Section 6, we use this theorem to give an explicit description of these implications and these
diagrams for special choices of the reduced decomposition of w0. More precisely, in each type, we
exhibit a reduced decomposition of w0 for which we explicitly describe the corresponding Cauchon
diagrams. As a corollary, we prove that in each type the number of diagrams is equal to the size |W |
of the Weyl group. As the strata do not depend on the choice of the reduced decomposition of w0,
this implies that the number of strata is always equal to |W |. This result was first proved by Gorelik
[Gor00] by using different methods, but with the additional assumption that q is transcendental.

In [CM08], we use the results of this paper in order to show that Cauchon diagrams � are in
one-to-one correspondence with positive sub-expressions w� of w0 as defined by Marsh and Rietsch
[MR04]. More precisely, assume w0 has a reduced expression of the form w0 = sα1 ◦ · · · ◦ sαN and
that this decomposition corresponds to a good order on Φ+ . For all i ∈ {1, . . . , N}, we set βi = sα1 ◦
· · · ◦ sαi−1 (αi), so that Φ+ = {β1 < · · · < βN }. For each diagram � = {βi1 < · · · < βit } ⊆ Φ+ , we set
w� := sαi1

◦ · · · ◦ sαit
. Then we have the following results (see [CM08]).

• If � is a Cauchon diagram, the above decomposition of w� is reduced.
• The map � → w� is a bijection from the set D of Cauchon diagrams to W .
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2. Root systems

2.1. Classical results on root systems

Let g be a simple complex Lie algebra. Let follow the notations of [Jan96, Chapter 4]. We denote
by Φ a root system and E = Vect(Φ) (dim E = n). When Π := {α1, . . . ,αn} is a basis of Φ , one has
a decomposition Φ = Φ+ � Φ− , where Φ+ (resp. Φ−) is the set of positive (resp. negative) roots.
Denote by W the Weyl group associated to the root system Φ; it is generated by the reflections
sαi (:= si ), 1 � i � n. The longest Weyl word in W is written w0. A root system Φ is reducible if
Φ = Φ1 � Φ2 where Φ1 and Φ2 are two orthogonal root systems. Otherwise Φ is called irreducible.

Let us recall that there is a one-to-one correspondence between the irreducible root systems and
the simple complex Lie algebras of finite dimension. We say that g is of a given type if the associated
root system is of the same type. The following definitions and results are taken from [Lus90].

Definition 2.1.1. Let Π = {α1,α2, . . . ,αn} be a basis of Φ and j ∈ �1,n� (:= {1,2, . . . ,n}).

1. The column j is the set C j := {β ∈ Φ+ | β = k1α1 + · · · + k jα j, ki ∈ N, k j �= 0}.
2. A root β = k1α1 + · · · + k jα j ∈ C j is called ordinary if k j = 1; it is called exceptional if k j = 2.
3. A column C j is called ordinary if each root β of C j is ordinary; this column is called exceptional

if every root β of C j is ordinary except a unique one (βex) which is exceptional.

Definition 2.1.2. A numbering Π = {α1,α2, . . . ,αn} is good if all columns C j are ordinary or excep-
tional.

Example 2.1.3 (The G2 case). The root system pf type G2 has rank 2, there are two simple roots
α1 and α2 such that ‖α2‖ = √

3‖α1‖. Π = {α1,α2} is a base for this roots system. The numbering
Π = {α1,α2} is good in this case because C1 = {α1} is ordinary and C2 = {α2,α1 + α2,2α1 + α2,

3α1 + α2,3α1 + 2α2} is exceptional.
On the contrary, the numbering Π = {α2,α1} is not good. For this numbering, C1 = {α2} is ordi-

nary but C2 = {α1,α2 + α1,α2 + 2α1,α2 + 3α1,2α2 + 3α1} is neither ordinary nor exceptional.

Proposition 2.1.4. Les g be a simple Lie algebra of finite dimension. The following numberings of the associated
root system Π are examples of good numberings.

• If g is of type An, with Dynkin diagram: α1 − α2 − · · · − αn−1 − αn, or
• if g is of type Bn, with Dynkin diagram: α1 ⇐ α2 − · · · − αn−1 − αn, or
• if g is of type Cn, with Dynkin diagram: α1 ⇒ α2 − · · · − αn−1 − αn, or

• if g is of type Dn, with Dynkin diagram:

α1
�

α3 — α4 — · · · — αn−1 — αn

�

α2

, then

Π = {α1,α2, . . . ,αn−1,αn} is a good numbering.

• If g is of type G2 , with Dynkin diagram: α1 � α2 , then Π = {α1,α2} is a good numbering.
• If g is of type F4 , with Dynkin diagram: α1 — α2 ⇒ α3 — α4 , then Π = {α4,α3,α2,α1} is a good num-

bering.

• If g is of type E6 , with Dynkin diagram:
α2
|

α1 — α3 — α4 — α5 — α6

, then Π = {α2,α5,α4,α3,α1,α6}
is a good numbering.

• If g is of type E7 , with Dynkin diagram:
α2
|

α1 — α3 — α4 — α5 — α6 — α7

, then

Π = {α2,α5,α4,α3,α1,α6,α7} is a good numbering.
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• If g is of type E8 , with Dynkin diagram:
α2
|

α1 — α3 — α4 — α5 — α6 — α7 — α8

, then Π = {α2,α5,α4,

α3,α1,α6,α7,α8} is a good numbering.

The corresponding columns with these numberings are given explicitly in Section 3 and one could
verify that each column is ordinary or exceptional. In the following, the chosen numbering on Π is always
a good one. From Section 6, we use the numbering from the previous proposition.

2.2. Lusztig order

Definition 2.2.1. (See [Lus90, Section 4.3].) For a root β = k1α1 + · · ·+k jα j ∈ C j , the height of β is the
positive integer h(β) := k1 + · · · + k j ; the Lusztig height of β is the rational number h′(β) := 1

k j
h(β). If

t ∈ h′(C j), then the set B j,t := {β ∈ C j | h′(β) = t} is called the box of height t in the column C j .

This definition gives the following disjoint union C j = ⊔
t∈N∗ B j,t .

Definition 2.2.2 (Lusztig order on Φ+). We define a partial order on Φ+ as follows. Let β1 and β2 be
two positive roots, if β1 ∈ C j1 and β2 ∈ C j2 with j1 < j2, then β1 < β2; if β1 and β2 are in the same
column C j and if h′(β2) < h′(β1), then β1 < β2.

One can refine the previous partial order in a total one by choosing arbitrarily an order inside the
boxes. Such a total order on Φ+ is called “a” Lusztig order.

Observations. The simple root α j is the greatest root in C j for any Lusztig order. The positive roots
of a box are consecutive for any Lusztig order, that is, B j,t = {βp, βp+1, . . . , βp+l}. Any Lusztig order
induces an order on boxes. For example, the box before B j,t in the column C j is B j,t+1.

Proposition 2.2.3. Let j ∈ {2, . . . ,n}. Assume C j is an exceptional column, we denote by βex its exceptional
root. Then:

1. βex⊥(C1 � · · · � C j−1).
2. If D = 〈βex〉 and if sD is the orthogonal against D, then:

• sD(C j) = C j and for any β ∈ C j \ {βex}, we have β + sD(β) = βex.
• Let B j,t be a box different from the box which contain βex. Then sD transforms B j,t into B j,h(βex)−t .

Proof.

1. Let β ∈ C1 ∪ · · · ∪ C j−1. If β is not orthogonal to βex , then sβ(βex) = βex + kβ (k ∈ Z \ {0}) is a
root of C j whose coordinate on α j is equal to 2. This is a contradiction with the unicity of the
exceptional root.

2. We observe that sD = −sβex , so that sD(Φ) = Φ .
• Let β be an ordinary root of C j . We can decompose this root β = a1α1 + · · · + a j−1α j−1 +

1
2 βex (ai ∈ Q). From 1. we deduce that sD(β) = −a1α1 . . . − a j−1α j−1 + 1

2 βex = βex − β . This is
a root from the previous observation. This root is clearly in C j since β is in C j \ {βex}.

• By the previous assertion, sD transforms two element from B j,t into two roots of the same
height. We deduce from this fact (and from the fact that sD is an involution) that sD(B j,t) is a
box denoted by B j,s . The formula t + s = h(βex) is a consequence of the previous assertion. �

Definition 2.2.4. The support of a root β = a1α1 + · · · + a jα j ∈ C j is the set Supp(β) := {αi ∈ Π |
ai �= 0}. In particular, for β ∈ C j , we have Supp(β) ⊂ {1, . . . , j}.

We are now ready to prove that the box containing the exceptional root of an exceptional column
is reduced to the exceptional root.
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Proposition 2.2.5. Let j ∈ {2, . . . ,n}. Assume C j is an exceptional column and denote by βex its exceptional
root. Then h′(βex) /∈ N, so that βex is alone in its box.

Proof. Denote Π j = {α1, . . . ,α j} and Φ j = Φ ∩ Vect(Π j). Then Φ j is a root system with basis Π j and
Φ+

j = Φ+ ∩ Vect(Π j).
Let us consider the case where Φ j irreducible. Then we have

Observation 1. If β is a root of Φ+
j of maximal height then β ∈ C j .

Proof of Observation 1. Assume that β ∈ Ci with i < j. In the Dynkin diagram of Φ j which is convex
as Φ j is irreducible, we can construct a path from αi to α j . Denote this path by P = (αi1 , . . . ,αit ),
where i1 = i and it = j. We know that αi ∈ Supp(β) and that α j /∈ Supp(β). So there is a smallest
index l such that αil ∈ Supp(β) and αil+1 /∈ Supp(β). Thus, for all α ∈ Supp(β), we have 〈α,αil+1 〉 � 0
and, since αil and αil+1 are two consecutive elements from P , we have 〈αil ,αil+1 〉 < 0. We deduce
that, 〈β,αil+1 〉 < 0 thus β + αil+1 ∈ Φ+

j which contradicts the maximality of the height of β . �
Observation 2. βex is the largest root of Φ j .

Proof of Observation 2. Let β be a largest root in Φ j . We assume that β �= βex . By the previous
observation, we know that β ∈ C j and, by Proposition 2.2.3, βex = β + sD(β) is a sum of two positive
roots, thus its height is greater than the height of β . So β is equal to βex .

We note that the existence of an exceptional root implies that Φ j is not of type A j . So Φ j is of
type B j, C j, D j, E6, E7, E8, F4 or G2 and, we deduce from [Bou68] that the height of the largest root
is odd. Hence it follows from Observation 2. that the height of βex is odd, so that h′(βex) /∈ N.

Let us now assume that Φ j is reducible. Denote by Γ j the Dynkin diagram whose vertices are
α1, . . . ,α j , and whose edges come from the Dynkin diagram of Φ . We note Π ′ the connected com-
ponent of α j in Γ j , i.e. Π ′ := {αi ∈ Π j | there exists a path contained in Γ j connecting αi to α j}. We
note Φ ′ = Φ ∩ Vect(Π ′). It is a root system, with basis Π ′ , and we have Φ ′+ = Φ+ ∩ Vect(Π ′). �
Observation 3. C j ⊆ Φ ′+ .

Proof of Observation 3. Otherwise, there is a root in C j \ Φ ′+ . If β is such a root, there is a simple
root in its support which is also in the set Π j \ Π ′ . As the support of β contains α j ∈ Π ′ too, we can
write β = u + v with u = αi1 +· · ·+αil whose support is a subset of Π j \Π ′ and v = αil+1 +· · ·+αip

whose support is a subset of Π ′ . Let us choose β such that the integer l is minimal.

• If l = 1, then β = αi1 + v . As αi1 /∈ Π ′ , there is no link between αi1 and the element of Supp(v).
Then si1 (β) = −αi1 + v ∈ Φ , which is impossible because the coordinates of this root in the basis
Π do not have the same sign.

• So l � 2. As 〈u, u〉 > 0, there exists a root in Supp(u), for example αil , such that 〈u,αil 〉 > 0. As
above:

〈v,αil 〉 = 0 ⇒ 〈β,αil 〉 > 0 ⇒ β ′ = β − αil ∈ C j \ Φ ′+,

which is a contradiction with the minimality of l.

So we can conclude that C j ⊆ Φ ′+ . Hence C j is an exceptional column of Φ ′ which is irreducible by
construction. The proof above also shows that the exceptional root βex satisfies h′(βex) /∈ N. �

We can now prove that any Lusztig order is a convex order.

Proposition 2.2.6. “<” is a convex order over Φ+ .
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Proof. Let β1 < β2 be two positives roots such that β1 + β2 ∈ Φ+ .

• If the two roots β1 and β2 do not belong to the same column, then β1 + β2 is in the same
column as β2. In this case, neither β2, nor β1 +β2 are exceptional and h′(β1 +β2) = h(β1 +β2) =
h(β1) + h(β2) > h(β2) = h′(β2). Hence we have: β1 < β1 + β2 < β2.

• If the two roots β1 and β2 belong to the same column, then β1 + β2 is an exceptional root. We
deduce from Proposition 2.2.3 that h′(β1 + β2) = h′(β1)+h′(β2)

2 . Proposition 2.2.5 excludes the case
where h′(β1 + β2) = h′(β1) = h′(β2) because the exceptional root is alone in its box. So we get
h′(β1) > h′(β1 + β2) > h′(β2), so that β1 < β1 + β2 < β2. �

Consider a reduced decomposition of w0 = si1 ◦ si2 ◦ · · · ◦ siN of the longest Weyl word w0. For all
j ∈ �1, N �, we set β j := si1 ◦ si2 ◦ · · · ◦ si j−1(αi j ). Then it is well known (cf., for example, [BG02, I.5.1])
that {β1, . . . , βN } = Φ+ . For each integer j ∈ �1, N �, we say that αi j is the simple root associated to the
positive root β j .

We define an order on Φ+ by setting βi < β j when i < j. We say that “<” is the order associated
to the reduced decomposition w0 = si1 ◦ si2 ◦ · · · ◦ siN of w0.

In [Pap94, Theorem and remark p. 662], it is shown that this is a convex order and that this leads
to a one-to-one correspondence between reduced decompositions of w0 and convex orders on Φ+ .

Hence, as the Lusztig order “<” is convex, there is a unique reduced decomposition w0 = si′1 ◦ si′2 ◦ · · · ◦ si′N
of w0 whose associated order is “<”. In this article, we always choose such a decomposition for w0.

The following proposition of Lusztig [Lus90, Section 4.3] explains the behaviour of the positive
roots inside (non-exceptional) boxes.

Proposition 2.2.7. Inside each ordinary box (box which does not contain the exceptional root), roots are pair-
wise orthogonal. Moreover, simple roots associated to the positive roots of a given box are pairwise orthogonal.

Proof. For the type G2, explicit computations leads to the result. We now assume that g is a finite-
dimensional simple Lie algebra which is not of type G2. Recall that the positive roots of a box are
consectutives. Let β1 and β2 be two consecutive roots of a box B in the column C j . We note αi1 and
αi2 the associated simple roots.

Suppose that αi1 is not orthogonal to αi2 , hence λ = −〈α∨
i1
,αi2 〉 = 1 or 2 (recall that g is not of

type G2). So we can write β2 = w ◦ si1(αi2 ) = w(λαi1 + αi2 ) = λβ1 + w(αi2 ).As w(αi2 ) ∈ Φ , we must
have λ = 2, otherwise h(w(αi2)) = h(β2) − h(β1) = 0, which is absurd.

In this case, γ = −w(αi2 ) = 2β1 − β2 ∈ C j and h(γ ) = 2h(β1) − h(β2) = h(β1). As β1 and β2 are
distinct roots, so they are not collinear. So the set Φ ′ = Φ ∩ Vect(β1, β2) is a root system of rank 2
which contains β1, β2, γ and their opposites. The equality 2β1 = γ + β2 allows to state that Φ ′ is of
type B2 and that the situation is the following one:

So γ − β1 ∈ Φ , with h(γ − β1) = h(γ ) − h(β1) = 0. This is impossible, and so αi1⊥αi2 .
Then we get 〈β1, β2〉 = 〈w(αi1 ), w(si1 (αi2))〉 = 〈αi1 , si1(αi2 )〉 = 〈αi1 ,αi2 〉 = 0, as desired. This fin-

ishes the case where the two roots are consecutive. One concludes using an induction on the “dis-
tance” between the two roots β1 and β2. �
Convention. For j ∈ �1,n�, denote δ j the smallest root of C j . Let us recall that α j is the largest root
of C j .
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Proposition 2.2.8. δ j and α j are alone in their boxes.

Proof. The root α j is alone in its box because it is the only roots of C j whose height is equal to 1.
To prove that δ j is alone in its box, we need the following result which can be shown easily by

induction on l.

Lemma 2.2.9. Let 1 � l � N and 1 � m � n. Set Πm := {α1, . . . ,αm}. If βl = si1 . . . sil−1(αil ) is in the col-
umn Cm, then αi j ∈ Πm for j ∈ �1, l�.

Back to the proof of Proposition 2.2.8. There is an integer 1 � l � N such that δ j = βl = si1 ◦ si2 ◦
· · · ◦ sil−1(αil ). As above, βl = αil + nl−1αil−1 + · · · + n1αi1 (nt ∈ Z) with αi1 , . . . ,αil−1 in Π j−1 since
βl−1 ∈ C j−1. As βl ∈ C j , it implies that αil = α j .

If δ j (= βl) is not alone in its box, then βl+1 is also in this box and one has (Proposition 2.2.7)
αil ⊥αil+1 . By the previous lemma, it implies that αil+1 ∈ Π j \ {α j} = Π j−1 and βl+1 = si1 ◦ si2 ◦ · · · ◦
sil−1 ◦ sil (αil+1 ) = si1 ◦ si2 ◦ · · · ◦ sil−1(αil+1 ) = αil+1 + n′

l−1αil−1 + · · · + n′
1αi1 (n′

t ∈ Z), which contradicts
the hypothesis βl+1 ∈ C j . �

Let us recall the following result (see, for example, [Hum78, Lemma 9.4]).

Lemma 2.2.10. Let β and δ be two distinct roots of Φ+ such that 〈β, δ〉 �= 0. If 〈β, δ〉 > 0, then β − δ ∈ Φ . If
〈β, δ〉 < 0, then β + δ ∈ Φ .

Proposition 2.2.11. Let β be an ordinary root of a column C j . Denote (as in the proof of Proposition 2.2.5) by
Γ j the diagram whose vertices are α1, . . . ,α j , and whose edges are the edges from the Dynkin diagram of Φ .
Denote by Ω j the connected component of α j in Γ j .

1. If β �= α j then there exists ε ∈ {α1, . . . ,α j−1} such that β − ε ∈ C j .
2. Suppβ ⊂ Ω j .
3. If β �= δ j then there exists ε ∈ {α1, . . . ,α j−1} such that β + ε ∈ C j .

The proof of this result is technical and can be found in the ArXiv version of this article [Mér08].

Proposition 2.2.12. Let j ∈ �1,n�.

1. If C j is ordinary, then h′(C j) is an interval of the form �1, t �.
2. If C j is exceptional, then h′(C j \ {βex}) is an interval of the form �1,2t � (t ∈ N
).

Moreover we have h′(βex) = t + 1
2 .

Proof. The fact that h′(C j) in the ordinary case (resp. h′(C j \ {βex}) in the exceptional case) is an
interval of integers comes from Proposition 2.2.11. It contains 1 = h(α j), and so the first case is
proved.

Let us assume that C j is exceptional. Denote by B1, . . . , Bt the boxes which contain the roots
smaller than βex for the Lusztig order. For these boxes, we have h′(Bi) > h′(βex). But the relation
h(Bi) + h(B ′

i) = h(βex), for the image B ′
i of Bi by sD , implies h′(Bi) > h′(βex) > h′(B ′

i). So we have
exactly t boxes appearing after βex and the interval h′(C j \ {βex}) is of the form �1,2t � (t ∈ N
).

Moreover h(βex) = h(α j + sD(α j)) = 1 + 2t and finally h′(βex) = t + 1
2 . �

We now recall the notion of admissible planes introduced by Lusztig in [Lus90, Section 6.1].

Definition 2.2.13. We call admissible plane P := 〈β,β ′〉 a plane spanned by two positive roots β and
β ′ such that: β belongs to an exceptional column C j and β ′ = sD(β) is such that |h′(β ′) − h′(β)| = 1.
(In this case β + β ′ = βex and h′(βex) = t ± 1

2 .)
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Or β is an ordinary root in any column C j and β ′ = αi with i < j. We set ΦP := Φ ∩ P and
Φ+

P := Φ+ ∩ P .

Remark 2.2.14. If ΦP is of type G2 then Φ = G2 (due to the lengths of the roots).
If Φ is not of type G2 then the first condition leads to two different type of admissible planes,

Φ+
P is of one of the following types:

Type (1.1) Type (1.2)

A2 B2

β > βex > β ′ β > βex > β ′ > αi

The second condition leads to four types of admissible planes, Φ+
P is of one of the following types:

Type (2.1) Type (2.2) Type (2.3) Type (2.4)

A2 B2 with long αi B2 with short αi A1 × A1

β1 > β2 > αi β > βex > β ′ > αi β1 > β2 > β3 > αi β > αi

We note that types (1.2) and (2.2) are the same.

3. The quantized enveloping algebra Uq(g)

Let K be a field of characteristic not equal to 2 and 3, and q an element K∗ which is not a root
of unity. Firstly, we recall definitions about Uq(g) and U +

q (g) using notations from [Jan96, Chapter 4].
We recall then the Poincaré–Birkhoff–Witt bases of Uq(g) construction using Lusztig automorphisms.
There are several ways to construct the so called Lusztig automorphisms, we recall here three different
methods. The Lusztig’s one follows [Lus90, Section 3], Jantzen’s one, which is the same as De Concini,
Kac and Procesi, is explained in [Jan96, Section 8.14] and [DCKP95, Section 2.1] and a third one is
necessary to established a link between the two others. We will explain each method and then see
the links between the obtained bases.

3.1. Recalls on Uq(g)

For all a and n integers such that a � n � 0, we set [n]q = qn−q−n

q−q−1 , [n]!q = [n]q[n − 1]q . . . [2]q[1]q ,[ a
n

]
q = [a]!q

[n]! [a−n]! . Moreover for all α ∈ Π , we set qα = q
(α,α)

2 .

q q
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Definition 3.1.1.

• The quantized enveloping algebra Uq(g) is the K-algebra with generators Eα , Fα , Kα and K −1
α

(for all α in Π ) and relations (for all α,β ∈ Π ):
•• Kα K −1

α = 1 = K −1
α Kα , Kα Kβ = Kβ Kα , Kα Eβ K −1

α = q(α,β)Eβ , Kα Fβ K −1
α = q−(α,β) Fβ .

•• Eα Fβ − Fβ Eα = δαβ
Kα−K −1

α

qα−q−1
α

, where δαβ is the Kronecker symbol.

And (for α �= β), set aαβ = 2(α,β)/(α,α):

1−aαβ∑
s=0

(−1)s
[

1 − aαβ

i

]
qα

E
1−aαβ−s
α Eβ Es

α = 0,

1−aαβ∑
s=0

(−1)s
[

1 − aαβ

i

]
qα

F
1−aαβ−s
α Fβ F s

α = 0.

• U +
q (g) (resp. U −

q (g)) is the subalgebra of Uq(g) generated by all Eα (resp. Fα ) with α ∈ Π .

Let us recall two important results proven for example in [BG02, Section I.6].

Theorem 3.1.2. U +
q (g) is Noetherian domain and is graded by ZΦ with wt(Eα) = α, wt(Fα) = −α and

wt(K ±1
α ) = 0.

3.2. Lusztig’s construction

Definition 3.2.1 (Lusztig’s automorphisms). For all i ∈ �1,n� there is a unique automorphism Tαi of the
algebra Uq(g) such that:

(
j ∈ �1,n�

)
Tαi Eαi = −Fαi Kαi , Tαi Fαi = −K −1

αi
Eαi , Tαi Kα j = Kα j K

−aij
αi ,

( j �= i) Tαi Eα j =
∑

r+s=−aij

(−1)rq−di s E(r)
αi Eα j E(s)

αi , Tαi Fα j =
∑

r+s=−aij

(−1)rqdi s F (s)
αi Fα j F (r)

αi

where E(n)
αi := En

αi

[n]!di

and di = (αi ,αi)
2 .

We now a fix a Lusztig order so that we can use the notations of columns and boxes as in the
Section 2. The following result is given by Lusztig in [Lus90, Section 4.3]:

Proposition 3.2.2. There is a unique map from Φ+ to �1,n�, sending β to iβ such that the following properties
are satisfied:

1. siβ1
and siβ2

commute in W whenever β1 and β2 are in the same box. Hence, for a box B, the product of
all siβ with β ∈ B is a well-defined element s(B) in W , independent of the order of the factors.

2. iα j = j for j ∈ �1,n�.
3. If β ∈ C j and if B1, . . . , Bk are the boxes in C j whose elements are strictly greater than β for the Lusztig

order then s(B1)s(B2) . . . s(Bk)(αiβ ) = β .

We then set wβ := s(B1)s(B2) . . . s(Bk).

We now recall the construction of a PBW basis of U +
q (g) due to Lusztig [Lus90, Theorem 3.2].

Theorem 3.2.3. Let w ∈ W and si1 . . . sip be a reduced decomposition of w. Then the automorphism T w :=
Tαi1

. . . Tαip
depends only on w and not on the choice of reduced expression for it. Hence the Tαi define a

homomorphism of the braid group of W in the group of automorphisms of the algebra Uq(g).
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Proposition 3.2.4. For all positive roots β , we define Eβ := T wβ (Eiβ ) ∈ Φ+ . These elements form a Poincaré–
Birkhoff–Witt basis of U +

q (g) (see [Lus90, Proposition 4.2]).

Notation. If β > β ′ , then we set [Eβ, Eβ ′ ]q = Eβ Eβ ′ − q(β,β ′)Eβ ′ Eβ .

Our aim in the remaining of this paragraph is to exhibit the form of the commutation relation
between two generators Eγ and Eγ ′ , when γ and γ ′ belong to the same admissible plane P .

We first consider the case where ΦP (= Φ ∩ P ) is of type G2. In this case, Φ is also of type G2 and
the commutation relations have been computed in [Lus90, Section 5.2]. This leads us to the following
result.

Proposition 3.2.5. Assume that Φ is of type G2 . Denote by α1 the short simple root and by α2 the long
simple root. This is a good numbering of the set of simple roots (see Example 2.1.3). The corresponding reduced
decomposition of w0 is s1s2s1s2s1s2 (si = sαi ) and, describing the roots in the associated convex order, one
has:

Φ+ = {β1 = α1, β2 = 3α1 + α2, β3 = 2α1 + α2, β4 = 3α1 + 2α2, β5 = α1 + α2, β6 = α2}.
The first column C1 is reduced to {β1}, the second column C2 = {β2, β3, β4, β5, β6} is exceptional with
βex = β4 . One has:

[Eβ3 , Eβ1 ]q = λEβ2 with λ �= 0, [Eβ4 , Eβ1 ]q = λE2
β3

with λ �= 0, [Eβ5 , Eβ1 ]q = λEβ3 with λ �= 0,
[Eβ6 , Eβ1 ]q = λEβ5 with λ �= 0, [Eβ3 , Eβ1 ]q = λEβ2 with λ �= 0 and [Eβ5 , Eβ3 ]q = λEβ4 with λ �= 0.

If Φ is not of type G2, the commutation relations between the Lusztig’s generators corresponding
to two roots which are in the same admissible plane are known in several cases [Lus90, Section 5.2].
In particular, we have the following relations.

Proposition 3.2.6 (Φ not of type G2).

• If P = 〈β,β ′〉 is an admissible plane of type (1.1), then Φ+
P = {β,βex = β + β ′, β ′} and the relations are:

[Eβ, Eβ ′ ]q = λEβex with λ �= 0, [Eβ, Eβex ]q = [Eβex , Eβ ′ ]q = 0.
• If P = 〈β,β ′〉 is an admissible plane of type (1.2), then Φ+

P = {β,βex = β + β ′, β ′,αi} and the relations
are: [Eβ, Eβ ′ ]q = λEβex with λ �= 0, [Eβex , Eαi ]q = λ′E2

β ′ with λ′ �= 0, [Eβ, Eαi ]q = λ′′Eβ ′ with λ′′ �= 0,
[Eβ, Eβex ]q = [Eβex , Eβ ′ ]q = [Eβ ′ , Eαi ]q = 0.

• If P = 〈β,αi〉 is an admissible plane of type (2.1), then Φ+
P = {β1, β2 = β1 + αi,αi} (β = β1 or β2) and

the relations are: [Eβ1 , Eαi ]q = λEβ2 with λ �= 0, [Eβ1 , Eβ2 ]q = [Eβ2 , Eαi ]q = 0.
• If P = 〈β,αi〉 is an admissible plane of type (2.2), then we have the same relations as in type (1.2).
• If P = Vect(β,αi) is an admissible plane of type (2.3), then Φ+

P = {β1, β2 = β1 + αi, β3 = β1 + 2αi,αi}
(β = β1 , β2 or β3) and the relations are: [Eβ2 , Eαi ]q = λEβ3 with λ �= 0, [Eβ1 , Eβ3 ]q = λ′E2

β2
with λ′ �= 0,

[Eβ1 , Eαi ]q = λ′′Eβ2 with λ′′ �= 0, [Eβ1 , Eβ2 ]q = [Eβ2 , Eβ3 ]q = [Eβ3 , Eαi ]q = 0.
• If P = 〈β,αi〉 is an admissible plane of type (2.4), then Φ+

P = {β,αi} with β⊥αi and, if β is ordinary,
then [Eβ, Eαi ]q = 0.

Corollary 3.2.7. Assume Φ is not of type G2 . Let i, l be two integers such that 1 � i < l � n and η ∈ Cl:

1. If (η,αi) > 0, then [Eη, Eαi ]q = 0.
2. If η + αi = mγ with γ ∈ Φ+ and m ∈ N
 , then [Eη, Eαi ]q = λEm

γ , with λ ∈ K
 .
3. If η = η1 + η2 with η1 and η2 in Cl such that h(η1) + 1 = h(η2) then [Eη1 , Eη2 ]q = λEη , with λ ∈ K
 .

Proof. P = Vect(η,αi) is an admissible plane of type (2.1), (2.2), (2.3) or (2.4) by definition.

1. P is not of type (2.4) because (η,αi) �= 0. We distinguish between three remaining cases.
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• If P is of type (2.1), then with the notations of Remark 2.2.14, we have η = β2, and so the
result follows from Proposition 3.2.6.

• If P is of type (2.2), then we have η = β ′ , and so the result follows from Proposition 3.2.6.
• If P is of type (2.3), then we have η = β3, and so the result follows from Proposition 3.2.6.

2. Since m �= 0, we have γ ∈ P ∩ Φ+ = Φ+
p , so P is not of type (2.4). We distinguish between three

remaining cases.
• If P is of type (2.1), then we deduce that m = 1, η = β1 and γ = β2, and so the result follows

from Proposition 3.2.6.
• If P is of type (2.2), then there are two possibilities: (m = 1, η = β and γ = β ′) or (m = 2,

η = βex and γ = β ′). In both cases, the result follows from Proposition 3.2.6.
• If P is of type (2.3), then we have m = 1, η = β1 (resp. η = β2) and γ = β2 (resp. γ = β3), and

so the result follows from Proposition 3.2.6.
3. Let us consider the plane P := 〈η1, η2〉. It is an admissible plane (see Definition 2.2.13) and Φ+

P =
{η1, η,η2} (if P is of type 1.1) or {η1, η,η2,αi} with i < l (if P is of type 1.2). The previous
proposition implies that [Eη1 , Eη2 ]q = λEη , with λ ∈ K
 in both cases. �

3.3. Jantzen’s construction

In [Jan96, Section 8.14], a different construction of a PBW basis is explained which also uses the
automorphisms Tα, (α ∈ Π). For a given reduced decomposition of w0 = si1 . . . siN , we know that, for
all β ∈ Φ+ , there exists iβ ∈ �1, N � such that β = si1 . . . siβ−1(αiβ ).

Definition 3.3.1. Let β ∈ Φ+ , we set w ′
β := si1 . . . siβ−1 and define Xβ := T w ′

β
(Eαiβ

), Yβ := T w ′
β
(Fαiβ

).

The following result follows from [Jan96, Theorems 4.21 and 8.24].

Theorem 3.3.2.

• If α ∈ Π , then Xα = Eα (see [Jan96, Proposition 8.20]).
• The products Xk1

β1
. . . XkN

βN
(ki ∈ N) form a basis of U +

q (g).

• The products Xk1
β1

. . . XkN
βN

K m1
α1 . . . K mn

αn Y l1
β1

. . . Y lN
βN

(resp. K m1
α1 . . . K mn

αn Y l1
β1

. . . Y lN
βN

Xk1
β1

. . . XkN
βN

, resp. Y l1
β1

. . .

Y lN
βN

K m1
α1 . . . K mn

αn Xk1
β1

. . . XkN
βN

), (ki, li ∈ N, mi ∈ Z) form a basis of Uq(g).

The following theorem was proved by Levendorskiı̌ and Soibelman [LS91, Proposition 5.5.2] in
a slightly different case. One can find other formulations in the literature (several containing small
mistakes). That is why we give a proof of this result in [Mér08, Section 3.3]. We make this proof
essentially by rewriting the one from [LS91, Proposition 5.5.2].

Theorem 3.3.3 (of Levendorskiı̌ and Soibelman). If i and j are two integers such that 1 � i < j � N, then we
have

Xβi Xβ j − q(βi ,β j) Xβ j Xβi =
∑

βi<γ1<···<γp<β j
p�1, ki∈N

ck,γ Xk1
γ1

. . . X
kp
γp ,

where ck,γ ∈ K and ck,γ �= 0 only if wt(Xk1
γ1 . . . X

kp
γp ) := k1 × γ1 + · · · + kp × γp = βi + β j .

3.4. Commutation relations between Xγ in admissible planes

The goal of this section is to show that the Xγ satisfy analogous relations to the Eγ (see Sec-
tion 3.2). In order to achieve this aim, we start by introducing an intermediate generating system.
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3.4.1. Construction of a third generating system
Let us recall the following well-known result:

Lemma 3.4.1. (See [Jan96, Section 4.6].)

1. There is a unique automorphism ω of Uq(g) such that ω(Eα) = Fα , ω(Fα) = Eα and ω(Kα) = K −1
α . One

has ω2 = 1.
2. There is a unique anti-automorphism τ of Uq(g) such that τ (Eα) = Eα , τ (Fα) = Fα and τ (Kα) = K −1

α .
One has τ 2 = 1.

Convention.

• Let i be an integer of �1,n�. And set T ′
αi

:= τ ◦ Tαi ◦ τ . This is an automorphism of Uq(g) which
satisfies the following conditions:

T ′
αi

Eαi = −K −1
αi

Fαi , T ′
αi

Fαi = −Eαi Kαi , T ′
αi

Kα j = Kα j K
−aij
αi

(
j ∈ �1,n�

)
and for j �= i:

T ′
αi

Eα j =
∑

r+s=−aij

(−1)rqdi s E(s)
αi Eα j E(r)

αi and T ′
αi

Fα j =
∑

r+s=−aij

(−1)rq−di s F (r)
αi Fα j F (s)

αi .

• If w p ∈ W has a reduced decomposition given by w p = si1 . . . sip , then we set T ′
w p

:= τ ◦ T w p ◦ τ .
We have T ′

w p
= T ′

αi1
. . . T ′

αip
.

• If β ∈ Φ+ , then we set wβ := si1 . . . siβ−1 and we define X ′
β := T ′

wβ
(Eαiβ

) and Y ′
β := T wβ (Fαiβ

).

One has X ′
α = Eα and Y ′

α = Fα for α ∈ Π .

The theorem of Levendorskiı̌ and Soibelman can be rewritten as below. The proof can be found in
[Mér08, Section 3.4]:

Proposition 3.4.2. If i and j are two integers such that 1 � i < j � N then we have

X ′
βi

X ′
β j

− q−(βi ,β j) X ′
β j

X ′
βi

=
∑

βi<γ1<···<γp<β j
p�1, ki∈N

ck,γ X ′k1
γ1

. . . X
′kp
γp

with ck,γ ∈ K and ck,γ �= 0 only if wt(X ′k1
γ1 . . . X

kp′γp
) := k1 × γ1 + · · · + kp × γp = βi + β j .

3.4.2. Relations between Eβ and X ′
β

As in previous sections, Φ+ is provided with a given Lusztig order associated to a reduced decom-
position of w0 = si1 . . . siN . In this case, we can improve the theorem of Levendorskiı̌ and Soibelman.

Theorem 3.4.3. If i and j are two integers such that 1 � i < j � N, then one has:

X ′
βi

X ′
β j

− q−(βi ,β j) X ′
β j

X ′
βi

=
∑

βi<γ1<···<γp<β j

Ck,γ X ′k1
γ1

. . . X
′kp
γp .

The monomials on the left-hand side whose coefficient Ck,γ is not equal to zero satisfies: wt(X ′k1
γ1 . . . X

′kp
γp ) =

βi + β j ; γ1 is not in the same box as βi and γp is not in the same box as β j .
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The proof of this theorem is essentially based on the following result:

Lemma 3.4.4. Let B = {βp, . . . , βp+l} be a box and αip , . . . ,αip+l be the corresponding simple roots. Then
∀k ∈ �0, l�, we have:

T ′
αip

. . . T ′
αip+k−1

(Eαip+k
) = Eαip+k

= T ′
αip

. . . T ′
iαp+k−1

T ′
iαp+k+1

. . . T ′
αip+l

(Eαip+k
).

Proof. We already know that if α1 and α2 are two simple orthogonal roots, then Tα1 (Eα2 ) = Eα2 =
τ (Eα2 ), hence T ′

α1
(Eα2 ) = Eα2 . As αip , . . . ,αip+l are orthogonal to each others by Proposition 2.2.7, the

formulas above are proved. �
Proof of Theorem 3.4.3. The first point is provided by Proposition 3.4.2. If in the reduced decomposi-
tion of w0, we change the order of the reflexions associated to the simple roots coming from a single
box B , we find a new reduced decomposition of w0. The positive roots of B constructed with this
new decomposition of w0 are permuted as the simple roots are but the other roots are not moved.
By the previous lemma, the X ′

β , β ∈ B , are also permuted in the same way but are not modified, and
the X ′

γ , γ /∈ B , are not modified. Thus, without lost of generality, we can assume that βi is maximal
in its box and that β j is minimal in its box. As a result, if βi < γ1 < · · · < γp < β j , then γ1 is not in
the same box as βi and γp is not in the same box as β j . �
Remark 3.4.5. The proof of the previous theorem can be rewritten with the elements Xβ(β ∈ Φ+) so
that we also apply Theorem 3.4.3 to those elements.

We can now establish a link between the X ′
β ’s and the Eβ ’s.

Theorem 3.4.6.

∀β ∈ Φ+, ∃λβ ∈ K \ {0} such that X ′
β = λβ Eβ .

Proof. Let β and β ′ be two positive roots such that β > β ′ . Set [X ′
β, X ′

β ′ ]q = X ′
β X ′

β ′ − q(β,β ′) X ′
β ′ X ′

β .
Let us deal first with the case where Φ is of type G2. We keep the conventions of Proposition 3.2.5.

It is known (Conventions 3.4.1) that, since β1 and β6 are simple, one has X ′
β1

= Eβ1 and X ′
β6

= Eβ6 .
Thus

[
X ′

β6
, X ′

β1

]
q = [Eβ6 , Eβ1 ]q = λEβ5 with λ ∈ K
.

By Theorem 3.4.3, one also has [X ′
β6

, X ′
β1

]q = μX ′
β5

with μ ∈ K and, then, X ′
β5

= λβ5 Eβ5 with λβ5 ∈ K
 .
It implies that [X ′

β5
, X ′

β1
]q = λβ5 [Eβ5 , Eβ1 ]q = νEβ3 with ν ∈ K
 . We deduce as above that X ′

β3
=

λβ3 Eβ3 with λβ3 ∈ K
 .
Using the same method and considering [X ′

β3
, X ′

β1
]q = λβ3 [Eβ3 , Eβ1 ]q , one proves that X ′

β2
= λβ2 Eβ2

with λβ2 ∈ K
 .
At last, one has [X ′

β5
, X ′

β3
]q = λβ5λβ3 [Eβ5 , Eβ3 ]q = νEβ4 with ν ∈ K
 , so it implies that X ′

β4
=

λβ4 Eβ4 with λβ4 ∈ K
 .
Suppose now that Φ is of type G2, and consider a column Ct (t ∈ �1,n�). We just prove the

theorem for all the roots of Ct .
We first study the case of ordinary roots.
Let β ∈ Ct be an ordinary root. Let us prove the result by induction on h(β).
If h(β) = 1, then β = αt and as above X ′

αt
= Eαt .

Assume h(β) > 1 and the result proved for all δ ∈ Ct an ordinary root such that h(δ) < h(β). By
Proposition 2.2.11, there is a simple root αi (i < t) such that β − αi = γ ∈ Ct . Moreover, γ is ordinary
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Fig. 1.

because, if it is not the case β = γ + αi would be exceptional which contradicts the uniqueness of an
exceptional root in a column. So P := 〈αi, β〉 is an admissible plane of type (2.1), (2.2) or (2.3) and
then [Eγ , Eαi ]q = cEβ (c ∈ K \ {0}) (see Section 3.2).

As h(γ ) = h(β) − 1 < h(β), one has X ′
γ = λγ Eγ (λγ ∈ K \ {0}), and as Eαi = X ′

αi
, one has:

[
X ′

γ , X ′
αi

]
q = λγ [Eγ , Eαi ]q = λγ cEβ .

By Theorem 3.4.3, Eβ is a linear combination of monomials X ′
δ1

. . . X ′
δs

with αi < δ1 � · · · � δs < γ , δs
not in the same box as γ , δ1 not in the same box as αi and

δ1 + · · · + δs = αi + γ = β. (
)

For all monomials, δs ∈ Ct and δs is ordinary (because β ∈ Ct and β is ordinary). As δs < γ and δs
does not belong to the same box as γ , one has h(δs) > h(γ ). Hence h(δs) � h(β), so that s = 1 and
δ1 = β . This implies Eβ = aX ′

β with a ∈ K \ {0}, and the result is proved.
Let us now assume that β is the exceptional root of Ct . Let γ be the root of Ct which precedes

β in the Lusztig order and let δ = sD(γ ), so that δ + γ = β (see Fig. 1). By Proposition 2.2.12, one
has h′(β) = m + 1

2 with m ∈ N
 and h′(Ct) = �1,2m�. If B is the box in Ct which precedes β , then
h′(B) = h(B) = t + 1. As β is alone in its box, we have γ ∈ B , so that h(γ ) = m + 1. Hence h(δ) = m.
Thus P = Vect(γ , δ) is an admissible plane of type (1.1) or (1.2), and [Eδ, Eγ ]q = cEβ(c �= 0) (see
Section 3.2).

As γ and δ are ordinary roots, we already know that X ′
γ = λγ Eγ and X ′

δ = λδ Eδ with λγ �= 0 and
λδ �= 0. Thus, one has:

[
X ′

δ, X ′
γ

]
q = λγ λδ[Eδ, Eγ ]q = λγ λδcEβ (λγ �= 0, λδ �= 0).

As above, Eβ is a linear combination of monomials X ′
δ1

. . . X ′
δs

with γ < δ1 � · · · � δs < δ, δs not
in the same box as δ and δ1 not in the same box as γ . As β is the only root of Ct which satisfies
γ < β < δ, β is not in the same box as δ and β is not in the same box as γ . Hence s = 1 and δ1 = β .
So that Eβ = aX ′

β with a ∈ K \ {0}. �
From Theorems 3.4.3 and 3.4.6, we deduce the following result.

Corollary 3.4.7. If i and j are two integers such that 1 � i < j � N, one has:

Eβi Eβ j − q−(βi ,β j)Eβ j Eβi =
∑

βi<γ1<···<γp<β j
p�1, ki∈N

C ′
k,γ

Ek1
γ1

. . . E
kp
γp .

The monomials on the left-hand side whose coefficient C ′
k,γ

is not equal to zero satisfies: wt(X ′k1
γ1 . . . X

′kp
γp ) =

βi + β j ; γ1 is not in the same box as βi and γp is not in the same box as β j .
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3.4.3. Link with Jantzen’s construction

Proposition 3.4.8. Let β1 < β2 be two positive roots.

1. If Eβ1 Eβ2 −q−(β1,β2)Eβ2 Eβ1 = kEm
γ (k �= 0, m � 1 and γ ∈ Φ+), then Xβ1 Xβ2 −q+(β1,β2) Xβ2 Xβ1 = k′ Xm

γ

(k′ �= 0).
2. If Eβ1 Eβ2 − q−(β1,β2)Eβ2 Eβ1 = kEγ Eδ (k �= 0, γ , δ ∈ Φ+, γ and δ belonging to the same box), then

Xβ1 Xβ2 − q+(β1,β2) Xβ2 Xβ1 = k′ Xγ Xδ (k′ �= 0).

Proof. Let β ∈ Φ+ . Let us recall (see Section 3.4.1) that Xβ := T w ′
β
(Eαiβ

), X ′
β := T ′

w ′
β

(Eαiβ
), and that

T w ′
β

= τ ◦ T ′
w ′

β

◦ τ . So we have Xβ = τ ◦ T ′
w ′

β

◦ τ (Eαiβ
) = τ (X ′

β). Let us also recall (see Theorem 3.4.6)

that X ′
β = λβ Eβ with λβ ∈ K
 .

Let β1 < β2 be two positive roots.

1. If Eβ1 Eβ2 − q−(β1,β2)Eβ2 Eβ1 = kEm
γ (k �= 0, γ ∈ Φ+), then:

Xβ1 Xβ2 − q+(β1,β2) Xβ2 Xβ1 = τ
(

X ′
β1

)
τ
(

X ′
β2

) − q+(β1,β2)τ (Xβ2)τ (Xβ1)

= τ
(

X ′
β2

X ′
β1

− q+(β1,β2) X ′
β1

X ′
β2

)
= −q+(β1,β2)τ

(
X ′

β1
X ′

β2
− q−(β1,β2) X ′

β2
X ′

β1

)
= −q+(β1,β2)λβ1λβ2τ

(
Eβ1 Eβ2 − q−(β1,β2)Eβ2 Eβ1

)
= −q+(β1,β2)λβ1λβ2τ

(
kEm

γ

)
= −q+(β1,β2)λβ1λβ2k

λγ
τ
((

X ′
γ

)m) = k′ Xm
γ with k′ ∈ K
.

2. If Eβ1 Eβ2 − q−(β1,β2)Eβ2 Eβ1 = kEγ Eδ (k �= 0, γ , δ ∈ Φ+, γ and δ belonging two the same box) so,
by doing the same computations as in 1., we obtain:

Xβ1 Xβ2 − q(β1,β2) Xβ2 Xβ1 = k′τ
(

X ′
γ X ′

δ

) = k′ Xδ Xγ

(
k′ �= 0

)
.

As γ and δ are in the same box, we know (see Proposition 2.2.7) that (δ, γ ) = 0, so that, by
Theorem 3.3.3, we get Xγ Xδ = Xγ Xδ , as desired. �

4. Deleting derivations in U+
q (g)

4.1. U +
q (g) is a CGL extension

In this section, we set A := U +
q (g), Xi := Xβi for 1 � i � N , and λi, j := q−(β j ,βi) for 1 � i, j � N .

We know from Proposition 3.3.3 that, if 1 � i < j � N , then one has:

X j Xi − λ j,i Xi X j = P j,i (1)

with

P j,i =
∑

k=(ki+1,...,k j−1)

ck̄ X
ki+1
i+1 . . . X

k j−1
j−1 , (2)
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where ck̄ ∈ K. Moreover, as U +
q (g) is Φ-gradued, one has

ck̄ �= 0 ⇒ λ
ki+1
l,i+1 . . . λ

k j−1

l, j−1 = λl, jλl,i for all 1 � l � N. (3)

Thus, A satisfies [Cau03a, Hypothesis 6.1.1]. From Theorem 3.3.2, ordered monomials in Xi are a basis
of A, so that we deduce from [Cau03a, Proposition 6.1.1]:

Proposition 4.1.1.

1. A is skew polynomial ring which could be expressed as:

A = K[X1][X2;σ2, δ2] . . . [XN ;σN , δN ],

where the σ j ’s are K-linear automorphisms and the δ j ’s are K-linear σ j -derivations such that, for 1 �
i < j � N, σ j(Xi) = λ j,i Xi and δ j(Xi) = P j,i .

2. If 1 � m � N, then there is a (unique) automorphism hm of the algebra A which satisfies hm(Xi) = λm,i Xi
for 1 � i � N.

Moreover, we deduce from [Cau03a, Proposition 6.1.2] the following result.

Proposition 4.1.2.

1. A satisfies conventions from [Cau03a, Section 3.1], that is to say:
• For all j ∈ �2, N �, σ j is a K-linear automorphism and δ j is a K-linear (left sided) σ j -derivation and

locally nilpotent.
• For all j ∈ �2, N �, one has σ j ◦ δ j = q jδ j ◦ σ j with q j = λ j, j = q−‖β j‖2

, and for all i ∈ �1, j − 1�,
σ j(Xi) = λ j,i Xi .

• None of the q j (2 � j � N) is a root of unity.
2. A satisfies [Cau03a, Hypothesis 4.1.2], that is to say:

The subgroup H of the automorphisms group of A generated by the elements hl satisfies:
• For all h in H, the indeterminates X1, . . . , XN are h-eigenvectors.
• The set {λ ∈ K∗ | (∃h ∈ H) h(X1) = λX1} is infinite.
• If m ∈ �2, N �, there is hm ∈ H such that hm(Xi) = λm,i Xi if 1 � i < m and hm(Xm) = qm Xm.

The previous proposition shows that U +
q (g) is a CGL extension in the sens of [LLR06] and so allows

us to apply the deleting derivation theory [Cau03a]. We describe this theory in the following section.

4.2. The deleting derivation algorithm

It follows from Propositions 4.1.1 and 4.1.2, that A is an integral domain which is Noetherian.
Denote by F its fields of fraction. We define, by induction, the families X (l) = (X (l)

i )1�i�N of elements

of F 
 := F \ {0}, and the algebras A(l) := K〈X (l)
1 , . . . , X (l)

N 〉 when l decreases from N + 1 to 2 as in
[Cau03a, Section 3.2]. So we have for all l ∈ �2, N + 1�:

Lemma 4.2.1. If 1 � i < j � N, one has:

X (l)
j X (l)

i − λ j,i X (l)
i X (l)

j = P (l)
j,i (4)

with
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P (l)
j,i =

{
0 if j � l,∑

k=(ki+1,...,k j−1)
ck̄(X (l)

i+1)
ki+1 . . . (X (l)

j−1)
k j−1 if j < l,

(5)

where ck̄ are the same as in the formula (2), so that we also have the implication (3).

Proof. See [Cau03a, Théorème 3.2.1]. �
Lemma 4.2.2. The ordered monomials on X (l)

1 , . . . , X (l)
N form a basis A(l) as a K-vectorial space.

Proof. See [Cau03a, Théorème 3.2.1]. �
From Lemmas 4.2.1 and 4.2.2 above and from [Cau03a, Proposition 6.1.1], we deduce that:

Lemma 4.2.3.

1. A(l) is an iterated ore extension which can be written:

A(l) = K
[

X (l)
1

][
X (l)

2 ;σ (l)
2 , δ

(l)
2

]
. . .

[
X (l)

N ;σ (l)
N , δ

(l)
N

]
where σ

(l)
j are K-linear automorphisms and δ

(l)
j are K-linear (left sided) σ

(l)
j -derivations such that, for

1 � i < j � N, σ (l)
j (X (l)

i ) = λ j,i X (l)
i and δ

(l)
j (X (l)

i ) = P (l)
j,i .

2. A(l) is the K algebra generated by the elements X (l)
1 , . . . , X (l)

N with relations (4).

Let us recall that the automorphisms hm (1 � m � N) of the algebra A defined in Proposition 4.1.1
can be extended (uniquely) in automorphisms, also denoted by hm , of the field F .

Lemma 4.2.4. If 1 � m, i � N, one has hm(X (l)
i ) = λm,i X (l)

i so that hm induces (by restriction) an automor-

phism of the algebra A(l) , denoted by h(l)
m .

Proof. See [Cau03a, Lemme 4.2.1]. �
Convention. Denote by H(l) the subgroup of the automorphism group of A(l) generated by h(l)

m (1 �
m � N).

By [Cau03a, Proposition 6.1.2], one has:

Lemma 4.2.5. The iterated Ore extension A(l) = K[X (l)
1 ][X (l)

2 ;σ (l)
2 , δ

(l)
2 ] . . . [X (l)

N ;σ (l)
N , δ

(l)
N ] satisfies the con-

ventions of [Cau03a, Section 3.1] with, as above, λi, j = q−(βi ,β j) and qi = λi,i = q−‖βi‖2
for 1 � i, j � N. It

also satisfies the Hypothesis 4.1.2 of [Cau03a] with H (l) replacing H.

Corollary 4.2.6. If J is an H(l)-prime ideal of A(l) in the sense of [BG02, II.1.9], then J is completely prime.

Proof. One has:

• A(l) = K[X (l)
1 ][X (l)

2 ;σ (l)
2 , δ

(l)
2 ] . . . [X (l)

N ;σ (l)
N , δ

(l)
N ] is an iterated Ore extension by Lemma 4.2.3.

• X (l)
1 , X (l)

2 , . . . , X (l)
N are H(l)-eigenvectors by Lemma 4.2.4.

• If 1 � i < j � N , then one has h(l)
i (X (l)

j ) = λ j,i X (l)
i = σ

(l)
j (X (l)

i ) and h(l)
j (X (l)

j ) = q j X (l)
j with q j =

λ j, j ∈ K
 is not a root of unity by Lemmas 4.2.3 and 4.2.4.

Hence we deduce from [BG02, Theorem II.5.12] that J is completely prime. �
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From the construction of the deleting algorithm (see [Cau03a, Section 3.2]), one has:

Lemma 4.2.7.

1. X (N+1)
i = Xi for all i ∈ �1, N �.

2. If 2 � l � N and if i ∈ �1, N �, one has

X (l)
i =

⎧⎨
⎩

X (l+1)
i if i � l,∑+∞
n=0[ (1−ql)

−n

[n]!ql
(δ

(l+1)

l )n ◦ (σ
(l+1)

l )−n(X (l+1)
i )](X (l+1)

l )−n if i < l.
(6)

Lemma 4.2.8. Let J be an H(l)-invariant (two sided) ideal of A(l) . Let us consider an integer j ∈ �2, N � and de-

note by B = K[X (l)
1 ][X (l)

2 ;σ (l)
2 , δ

(l)
2 ] . . . [X (l)

j−1;σ (l)
j−1, δ

(l)
j−1] the subalgebra of A(l) generated by X (l)

1 , . . . , X (l)
j−1 .

Then σ
(l)
j (B ∩ J ) = B ∩ J and δ

(l)
j (B ∩ J ) ⊂ B ∩ J .

Proof. By Lemmas 4.2.3 and 4.2.4, one has for 1 � i < j,

σ
(l)
j

(
X (l)

i

) = λ j,i X (l)
i = h(l)

j

(
X (l)

i

)
. (7)

As a result, for all b ∈ B , σ
(l)
j (b) = h(l)

j (b). As J is H(l)-invariant, and as B is σ
(l)
j -invariant, we deduce

that, for all b ∈ B ∩ J , we have σ
(l)
j (b) ∈ B ∩ J . So, σ

(l)
j (B ∩ J ) ⊂ B ∩ J . From the equality (7), we get

that:

(
σ

(l)
j

)−1(
X (l)

i

) = λ−1
j,i X (l)

i = (
h(l)

i

)−1(
X (l)

i

)
. (8)

As above, we deduce that (σ
(l)
j )−1(B ∩ J ) ⊂ B ∩ J , so that σ

(l)
j (B ∩ J ) = B ∩ J .

Finally, if b ∈ B ∩ J , then we have δ
(l)
j (b) = X (l)

j b − σ
(l)
j (b)X (l)

j ∈ B ∩ J . �
If l ∈ �2, N �, then it follows from (6) that X (l)

l = X (l+1)

l . This element is a nonzero element

which belongs to the two algebras A(l) and A(l+1) (recall that none of the X (l)
i is null). So, the set

Sl := {(X (l)
l )p | p ∈ N} is a multiplicative system of regular elements of A(l) and A(l+1) . From [Cau03a,

Theorem 3.2.1], we deduce:

Lemma 4.2.9. Let l ∈ �2, N �. Then Sl is an Ore set in A(l) and also in A(l+1) . Moreover, one has:

A(l)S−1
l = A(l+1)S−1

l .

4.3. Prime spectrum and diagrams

Let us recall that the convention are Xi = Xβi for 1 � i � N . Denote A := A(2) = K〈Tβ1 , . . . , TβN 〉
with Tβi = X (2)

i for all i. By Lemmas 4.2.1 and 4.2.3, A is the quantum affine space generated by Tβi

(1 � i � N) with relations Tβ j Tβi = λ j,i Tβi Tβ j for 1 � i < j � N .

Let us consider an integer l ∈ �2, N � and a prime ideal P ∈ Spec(A(l+1)).

• Assume X (l+1)

l /∈ P . Then, by [Cau03a, Lemmas 4.2.2 and 4.3.1], we have Sl ∩ P = ∅ and Q :=
A(l) ∩ P S−1

l ∈ Spec(A(l)).
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• Assume X (l+1)

l ∈ P . Then, by [Cau03a, Lemma 4.3.2], there is a (unique) surjective algebra homo-
morphism

g : A(l) → A(l+1)

(P (l+1))

which satisfies, for all i, g(X (l)
i ) = X (l+1)

i (:= X (l+1)
i + (P (l+1))), so that Q = g−1( P

(X (l+1)

l )
) ∈

Spec(A(l)).

We define this way a map φl : Spec(A(l+1)) → Spec(A(l)) that maps P to Q and, by composing
these maps, we obtain a map φ = φ2 ◦ · · · ◦ φN : Spec(A) → Spec( Ā). By [Cau03a, Proposition 4.3.1],
one has:

Lemma 4.3.1. Each φl (2 � l � N) is injective, so that φ is injective.

We can now define the notion of diagrams and Cauchon diagrams.

Definition 4.3.2.

1. We call diagram a subset � of the set of positive roots Φ+ , and we note:

Spec�(A) := {
Q ∈ Spec(A)

∣∣ Q ∩ {Tβ1 , . . . , TβN } = {Tβ | β ∈ �}}.
2. A diagram � is a Cauchon diagram if there is P ∈ Spec(A) such that φ(P ) ∈ Spec�(A), that is to

say, if φ(P ) ∩ {Tβ1 , . . . , TβN } = {Tβ | β ∈ �}. In this case, we set

Spec�(A) = {
P ∈ Spec(A)

∣∣ φ(P ) ∈ Spec�(A)
}
.

By [Cau03a, Theorems 5.1.1, 5.5.1 and 5.5.2], we have:

Proposition 4.3.3.

1. If � is a Cauchon diagram, then φ(Spec�(A)) = Spec�(A) and φ induced a bi-increasing homeomor-
phism from Spec�(A) onto Spec�(A).

2. The family Spec�(A) (with � Cauchon diagram) coincide with the Goodearl–Letzter H-stratification of
Spec(A) [BG02].

In the following section, we describe more precisely Cauchon Diagrams. In order to do this, the
criteria in the next proposition will be needed.

Proposition 4.3.4. Let P (m) be an H-prime ideal of A(m) . P (m) ∈ Im(φm) if and only if one of two following
conditions is satisfied.

1. X (m)
m /∈ P (m) .

2. X (m)
m ∈ P (m) and Θ(m)(δ

(m+1)
m (X (m+1)

i )) ∈ P (m) for 1 � i � m − 1 (where δ
(m+1)
m (X (m+1)

i ) =
P (m+1)

m,i (X (m+1)
i+1 , . . . , X (m+1)

m−1 ) (Lemma 4.2.1) and Θ(m) : K〈X (m+1)
1 , . . . , X (m+1)

m−1 〉 → K〈X (m)
1 , . . . , X (m)

m−1〉
is the homomorphism which send X (m+1)

l to X (m)

l ).

Proof. Assume that P (m) ∈ Im(φm), so that P (m) = φm (P (m+1)) with P (m+1) ∈ Spec(A(m+1)), and
assume that condition 1. is not satisfied. This implies that P (m) = ker(g) where g : A(m) →
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A(m+1)/P (m+1) is the homomorphism which sends X (m)
i to x(m+1)

i := X (m+1)
i + P (m+1) . Let 1 �

i � m − 1. Recall that δ
(m+1)
m (X (m+1)

i ) = P (m+1)
m,i (X (m+1)

i+1 , . . . , X (m+1)
m−1 ) and that Θ(m) : k〈X (m+1)

1 , . . . ,

X (m+1)
m−1 〉 → k〈X (m)

1 , . . . , X (m)
m−1〉 is the homomorphism which transforms each X (m+1)

l in X (m)

l . Since

X (m)
m ∈ P (m) , we have X (m+1)

m ∈ P (m+1) [Cau03a, Proposition 4.3.1] and so, δ
(m+1)
m (X (m+1)

i ) ∈ P (m+1) .

Now, we have g(Θ(m)(δ
(m+1)
m (X (m+1)

i ))) = g(Θ(m)(P (m+1)
m,i (X (m+1)

i+1 , . . . , X (m+1)
m−1 ))) = g(P (m+1)

m,i (X (m)
i+1, . . . ,

X (m)
m−1)) = P (m+1)

m,i (x(m+1)
i+1 , . . . , x(m+1)

m−1 ) = P (m+1)
m,i (X (m+1)

i+1 , . . . , X (m+1)
m−1 ) + P (m+1) = 0. This implies that

Θ(m)(δ
(m+1)
m (X (m+1)

i )) ∈ ker(g) = P (m) .
If condition 1. is satisfied, then P (m) ∈ Im(φm) by [Cau03a, Lemma 4.3.1].
Assume that condition 2. is satisfied. Let 1 � i � m − 1. Then we have, as previously, P (m+1)

m,i (X (m)
i+1,

. . . , X (m)
m−1) = Θ(m)(δ

(m+1)
m (X (m+1)

i )) ∈ P (m) . So, in Q (m) = A(m)/P (m) , we have P (m+1)
m,i (x(m)

i+1, . . . , x(m)
m−1) =

0.
Since P (m)

m,i = 0 (see Lemma 4.2.1), we can write x(m)
m x(m)

i − λm,i x
(m)
i x(m)

m = P (m)
m,i (x(m)

i+1, . . . , x(m)
m−1) =

0 = P (m+1)
m,i (x(m)

i+1, . . . , x(m)
m−1).

If 1 � i � j − 1 with j �= m, it follows from Lemma 4.2.1 that:

x(m)
j x(m)

i − λ j,i x
(m)
i x(m)

j = P (m)
j,i

(
x(m)

i+1, . . . , x(m)
j−1

) = P (m+1)
j,i

(
x(m)

i+1, . . . , x(m)
j−1

)
.

So, by the universal property of algebras defined by generators and relations, there exists a (unique)
homomorphism ε : A(m+1) → Q (m) which sends X (m+1)

l to x(m)

l for all l. This homomorphism is sur-

jective, and its kernel ker(ε) = P (m+1) is a prime ideal of A(m+1) . We observe that, since X (m)
m ∈ P (m) ,

we have X (m+1)
m ∈ P (m+1) , and that ε induces an automorphism

ε : A(m+1)/P (m+1) → Q (m) = A(m)/P (m)

which sends x(m+1)

l to x(m)

l for all l. Recall that fm : A(m) → A(m)/P (m) denotes the canonical homo-

morphism. So, g = (ε)−1 ◦ fm : A(m) → A(m+1)/P (m+1) is the homomorphism which sends X (m)

l to

x(m+1)

l for all l. As ker(g) = ker( fm) = P (m) , we conclude that P (m) = φm(P (m+1)), as desired. �
5. Cauchon diagrams in U+

q (g)

In [Cau03b], Cauchon uses a combinatorial tool to describe “admissible diagrams” (which are called
“Cauchon diagrams” here) for the algebra O q(Mn(k)) of quantum matrices. Thanks to Lusztig admis-
sible planes theory (see Section 3.2), results from Section 3.3 and the deleting derivation theory, we
describe those diagrams for U +

q (g) (where g is a simple Lie algebra of finite dimension over C). The
goal of this section is to prove the following statement:

Theorem. A diagram � ⊂ Φ+ satisfies all the implications from admissible planes (to be defined) if and only
if � is a Cauchon diagram (in the sense of Definition 4.3.2).

5.1. Implications in a diagram

Lemma 5.1.1. Let j ∈ �1, N �, l ∈ �2, N �, P (l+1) be a prime ideal of A(l+1) and P (l) := ϕl(P (l+1)).

1. If X (l+1)
j ∈ P (l+1) , then X (l)

j ∈ P (l) .

2. If X (l+1)
j = X (l)

j (this is in particular the case if j � l), then one has: X (l+1)
j ∈ P (l+1) if and only if X (l)

j ∈ P (l) .

Proof. The second point can be shown as in [Cau03a, Lemma 4.3.4]. Let us show the first point when
j < l.
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1st case: The pivot (in reference to Gaussian elimination) � := X (l+1)

l belongs to P (l+1) . Recall (see
Section 4.2) that there is a surjective homomorphism of algebra

g : A(l) → A(l+1)

(P (l+1))

which satisfies g(X (l)
i ) = X (l+1)

i (:= X (l+1)
i + (P (l+1))) for all i ∈ �1, N �. As X (l+1)

j ∈ P (l+1) ,

one has g(X (l)
j ) ∈ P (l+1)

(X (l+1)

l )
, so that X (l)

j ∈ g−1( P (l+1)

(X (l+1)

l )
) =: P (l) .

2nd case: The pivot � = X (l+1)

l does not belongs to P (l+1) . Set Sl := {� n | n ∈ N}. Recall (see Sec-

tion 4.2) that we have P (l) = A(l) ∩ (P (l+1) S−1
l ).

Set J := ⋂
h∈H(l+1) h(P (l+1)) and observe that J is an H(l+1)-invariant two-sided ideal by

construction. As A(l+1) [Cau03a, Hypothesis 4.1.2] by Lemma 4.2.5, X (l+1)
j is an H(l+1)-

eigenvector. Thus, since X (l+1)
j belongs to P (l+1) , it also belongs to J .

From Lemma 4.2.8, we deduce that (δ
(l+1)

l )n ◦ (σ
(l+1)

l )−n(X (l+1)
j ) ∈ J ⊂ P (l+1) for all n ∈ N.

As a result, we get:

X (l)
j =

+∞∑
n=0

[
(1 − ql)

−n

[n]!ql

(
δ
(l+1)

l

)n ◦ (
σ

(l+1)

l

)−n(
X (l+1)

j

)](
X (l+1)

l

)−n ∈ P (l+1)S−1
l .

Thus, X (l)
j ∈ A(l) ∩ (P (l+1) S−1

l ) = P (l) . �
Lemma 5.1.2. Let l ∈ �2, N � and P (l+1) be a prime ideal of A(l+1) . Consider an integer j with 2 � j < l and
set P ( j) = ϕ j ◦ · · · ◦ ϕl(P (l+1)).

1. Assume that β j is in the same box as βl or in the box before βl ’s one. Then

• X ( j+1)

j = X ( j+2)

j = · · · = X (l+1)
j ,

• (X ( j+1)

j ∈ P ( j+1)) ⇒ (X ( j+2)

j ∈ P ( j+2)) ⇒ ·· · ⇒ (X (l+1)
j ∈ P (l+1)).

2. Assume that the boxes B and B ′ of β j and βl (respectively) are separated by a box B ′′ containing a unique

element βe such that X (e+1)
e ∈ P (e+1) . Then (X ( j+1)

j ∈ P ( j+1)) ⇒ (X (l+1)
j ∈ P (l+1)).

Proof.

1. Let k ∈ � j + 1, l� so that βk is, in the same box as β j , or in the same box as βl . As these
boxes are consecutive or equal, one has Xk X j = q−〈βk,β j〉 X j Xk , so that by Lemma 4.2.1, we have

X (k+1)

k X (k+1)
j = q−〈βk,β j〉 X (k+1)

j X (k+1)

k . So one has δ
(k+1)

k (X (k+1)
j ) = 0 and, by [Cau03a, Section 3.2],

we get:

X (k)
j =

+∞∑
s=0

λs
(
δ
(k+1)

k

)s ◦ (
σ

(k+1)

k

)−s(
X (k+1)

j

)(
X (k+1)

k

)−s

=
+∞∑
s=0

λ′
s

(
δ
(k+1)

k

)s(
X (k+1)

j

)(
X (k+1)

k

)−s = X (k+1)
j (λs, λ

′
s ∈ K).

This shows the first point. The second point follows from Lemma 5.1.1.
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2. As B and B ′′ are consecutive, 1. implies that X ( j+1)

j = · · · = X (e+1)
j and that (X ( j+1)

j ∈ P ( j+1)) ⇒
·· · ⇒ (X (e+1)

j ∈ P (e+1)). It just remains to show that X (k)
j ∈ P (k) ⇒ X (k+1)

j ∈ P (k+1) for e+1 � k � l.
We do that by induction on k. As in the previous point, we have

X (k)
j = X (k+1)

j +
+∞∑
s=1

λs
(
δ
(k+1)

k

)s ◦ (
σ

(k+1)

k

)−s(
X (k+1)

j

)(
X (k+1)

k

)−s
(λs ∈ K).

• If δ
(k+1)

k (X (k+1)
j ) = 0, then one has X (k)

j = X (k+1)
j and we conclude thanks to Lemma 5.1.1.

• Otherwise, one has δ
(k+1)

k (X (k+1)
j ) = λ(X (k+1)

e )m (m ∈ N
, λ ∈ K
) by Lemma 4.2.1 and, as B ′ and
B ′′ are consecutive,

δ
(k+1)

k

(
X (k+1)

e
) = 0 ⇒ (

δ
(k+1)

k

)s
(X (k+1)

j ) = λ
(
δ
(k+1)

k

)s−1(
(X (k+1)

e )m) = 0 for s > 1

⇒ X (k)
j = X (k+1)

j + λ′(X (k+1)
e

)m(
X (k+1)

k

)−1
with λ′ ∈ K
.

•• If Xk+1
k ∈ P (k+1) , then consider the homomorphism g : A(k) → A(k+1)

(P (k+1))
which satisfies

g(X (k)
i ) = X (k+1)

i (:= X (k+1)
i + (P (k+1))) for i ∈ �1, N � (see Section 4.2). By definition of

φk (see [Cau03a, Notation 4.3.1.]), one has P (k) = g−1( P (k+1)

(X (k+1)
k )

). So X (k)
j ∈ P (k) ⇒ g(X (k)

j ) =
X (k+1)

j ∈ P (k+1)

(X (k+1)

k )
⇒ X (k+1)

j ∈ P (k+1) .

•• By 1., one has X (e+1)
e = · · · = X (k)

e = X (k+1)
e and (X (e+1)

e ∈ P (e+1)) ⇒ ·· · ⇒ (X (k)
e ∈ P (k)) ⇒

(X (k+1)
e ∈ P (k+1)). Set, as in [Cau03a, Theorem 3.2.1], Sk := {(X (k+1)

k )n | n ∈ N} so that

P (k+1) = A(k+1) ∩ (P (k) S−1
k ) by definition of ϕk [Cau03a, Notation 4.3.1.]. Then one has

X (k+1)
j = X (k)

j − λ′(X (k+1)
e )m(X (k+1)

k )−1 = X (k)
j − λ′(X (k)

e )m(X (k+1)

k )−1 ∈ P (k) S−1
k . As X (k+1)

j is

also in A(k+1) , one has X (k+1)
j ∈ P (k+1) , as claimed. �

We use [Cau03a, Proposition 5.2.1] to determine the shape of Cauchon diagrams. Let us rewrite
this proposition in our notation:

Proposition 5.1.3. Let � be a Cauchon diagram and let P ∈ Spec(A). The ideal P belongs to Spec�(A) if and
only if it satisfies the following criteria:

(∀l ∈ �1, N �
) (

X (l+1)

l ∈ P (l+1) ⇔ βl ∈ �
)
.

We can now prove the following proposition.

Proposition 5.1.4. Let � be a Cauchon diagram and βl ∈ � (1 � l � N). Assume there is an integer k ∈
�1, l − 1� such that Xβl Xβk − q−(βl,βk) Xβk Xβl = c Xβi1

. . . Xβis
with c ∈ K
, s � 1 and k < i1 � · · · � is < l.

Then one of the βir (1 � r � s) belongs to �.

Proof. Let P ∈ Spec�(A). By Lemma 4.2.1, one has:

X (l+1)

l X (l+1)

k − q−(βl,βk) X (l+1)

k X (l+1)

l = c X (l+1)
βi1

. . . X (l+1)
βis

:= M.

By Proposition 5.1.3, one has X (l+1)

l ∈ P (l+1) so that M ∈ P (l+1) . As P (l+1) is a prime ideal of A(l+1) ,
we know by [BG02, II.6.9] that P (l+1) is completely prime, so that there exists r ∈ �1, s� such that
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X (l+1)
βir

∈ P (l+1) . By Lemma 5.1.1, we deduce that X (ir+1)
ir

∈ P (ir+1) and, by Proposition 5.1.3, we obtain
βir ∈ �. �
Convention. We say that a diagram � satisfies the implication

1. β j0 → β j1 if (β j0 ∈ �) ⇒ (β j1 ∈ �).

2.

β j1

β j0

.

.

.

β js
if (β j0 ∈ �) ⇒ (β j1 ∈ �) or . . . or (β j1 ∈ �).

Proposition 5.1.4 can be rewritten as follows:

Proposition 5.1.5. Let � be a Cauchon diagram and βl ∈ � (1 � l � N). Assume that there exists an integer
k ∈ �1, l − 1� such that Xβl Xβk − q−(βl,βk) Xβk Xβl = c Xm1

βi1
. . . Xms

βis
with c ∈ K
 , s � 1, k < i1 < · · · < is < l

and m1, . . . ,ms ∈ N
 .

1. If s = 1, then the solid arrow βl → βi1 is an implication.

2. If s � 2, then the system

βi1

βl

.

.

.

βis
of dashed arrows is an implication.

In the three following propositions, denotes by � a Cauchon diagram.

Proposition 5.1.6. Let 1 � l � n and β ∈ Cl . If there exists i ∈ �1, l − 1� such that β + αi = mβ ′ with m ∈ N


and β ′ ∈ Φ+ , then β → β ′ is an implication.

Proof. We know (see Proposition 3.2.5 when Φ is of type G2, Corollary 3.2.7 when Φ is not of
type G2) that we have in this case a commutation relation of the type Eβ Eαi − q(β,αi)Eαi Eβ = kEm

β ′
with k �= 0 (where Eγ are defined in Section 3.2).

Then, it follows from Proposition 3.4.8 that Xβ Xαi − q−(β,αi) Xαi Xβ = k′ Xm
β ′ with k′ �= 0. So we

deduce from Proposition 5.1.5 that β → β ′ is an implication. �
Proposition 5.1.7. Let Cl (1 � l � n) be an exceptional column. If β ∈ Cl is in the box following the box of the
exceptional root βex, then β → βex is an implication.

Proof. Suppose first that Φ is of type G2. With the notation of Proposition 3.2.5, one has l = 2,
βex = β4, β = β5 and one has a commutation formula of the type Eβ5 Eβ3 −q(β3,β5)Eβ3 Eβ5 = kEβ4 with
k ∈ K
 . It implies, by Proposition 5.1.5 that β = β5 → βex = β4 is an implication.

Suppose now that Φ is not of type G2. We know (see Proposition 2.2.12) that h′(βex) = t + 1
2

(t ∈ N
), so that h′(β) = h(β) = t . We also know (see Proposition 2.2.3) that if D = Vect(βex), one has
β ′ = sD(β) = βex − β ∈ Cl , so that h′(β ′) = h(β ′) = h(βex) − h(β) = t + 1. As a result, P = Vect(β,β ′) is
an admissible plane of type (1.1) or (1.2). So, by Proposition 3.2.6, we have a commutation relation of
the type Eβ Eβ ′ − q(β,β ′)Eβ ′ Eβ = kEβex with k �= 0. As in Proposition 5.1.6, this implies that β → βex is
an implication. �
Proposition 5.1.8. Let Cl (1 � l � n) be an exceptional column and βex be its exceptional root. Assume that
there exists i ∈ �1, l� such that βex + αi = β ′

i1
+ β ′

i2
with β ′

i1
�= β ′

i2
in the box which precedes βex. Then the

system

β ′
i1

βex

β ′ of dashed arrows is an implication.

i2
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Proof. As, by hypothesis, β ′
i1

�= β ′
i2

are in the box preceding the box of βex , the root system is not of
type G2 (see Proposition 3.2.5).

As in the proof of Proposition 5.1.6, it is enough to prove that: [Eβex , Eαi ]q := Eβex Eαi −
q(βex,αi)Eαi Eβex = λEβ ′

i1
Eβ ′

i2
with λ ∈ K
 . Recall from Proposition 2.2.3 that βex⊥αi , so that:

(
αi, β

′
i1

+ β ′
i2

) = (αi, βex + αi) = ‖αi‖2 ⇒ (
αi, β

′
i1

)
> 0 or

(
αi, β

′
i2

)
> 0.

We can assume, without loss of generality, that (αi, β
′
i2
) > 0, so that (Corollary 3.2.7) [Eβ ′

i2
, Eαi ]q = 0.

As in the proof of the previous proposition, one has:

• h′(βex) = t + 1
2 (t ∈ N
) and h′(β ′

i1
) = h′(β ′

i1
) = t + 1,

• βi1 = sD(β ′
i1
) and βi2 = sD(β ′

i2
) belong to Cl and satisfy h′(βi1 ) = h′(βi1 ) = t ,

• Eβi2
Eβ ′

i2
− q

(βi2 ,β ′
i2

)
Eβ ′

i2
Eβi2

= kEβex with k �= 0. (
)

By definition of βi2 , one has βex = βi2 +β ′
i2

, so that β ′
i1

+β ′
i2

= βex +αi = βi2 +β ′
i2

+αi ⇒ β ′
i1

= βi2 +αi .
Thus, by Corollary 3.2.7, we have [Eβi2

, Eαi ]q := hEβ ′
i1

(h �= 0). We know that U +
q (g) is ZΦ-graded. So

there is a (unique) automorphism σ of U +
q (g) such that for all u ∈ U +

q (g), homogeneous in degree β ,

σ(u) = q(β,αi)u.
Denote by δ the interior right-sided σ -derivation associated to Eαi , so that δ(u) = uEαi − Eαi σ(u)

(∀u ∈ U +
q (g)). If β ∈ Cl , one has δ(Eβ) = Eβ Eαi −q(β,αi)Eαi Eβ = [Eβ, Eαi ]q and, this implies δ(Eβ ′

i2
) = 0

and δ(Eβi2
) = hEβ ′

i1
. We can show with (
) that:

k[Eβex , Eαi ]q = kδ(βex) = δ(Eβi2
Eβ ′

i2
) − q

(βi2 ,β ′
i2

)
δ(Eβ ′

i2
Eβi2

)

= Eβi2
δ(Eβ ′

i2
) + δ(Eβi2

)σ (Eβ ′
i2
) − q

(βi2 ,β ′
i2

)(
Eβ ′

i2
δ(Eβi2

) + δ(Eβ ′
i2
)σ (Eβi2

)
)

= h
[
q
(β ′

i2
,αi)Eβ ′

i1
Eβ ′

i2
− q

(βi2 ,β ′
i2

)
Eβ ′

i2
Eβ ′

i1

]
.

As β ′
i2

and β ′
i1

are in the same box, we know (Corollary 3.4.7) that Eβ ′
i1

Eβ ′
i2

= Eβ ′
i2

Eβ ′
i1

, so that

k[Eβex , Eαi ]q = h(q
(β ′

i2
,αi) − q

(βi2 ,β ′
i2

)
)Eβ ′

i1
Eβ ′

i2
. Since βi2 + β ′

i2
= βex , P = Vect(βi2 , β

′
i2
) is an admissi-

ble plane of type (1.1) or (1.2) (see Remark 2.2.14) with {βi2 , β
′
i2
} = {β,β ′}, so that (βi2 , β

′
i2
) � 0.

As we have assumed that (αi, β
′
i2
) > 0, this implies that [Eβex , Eαi ]q := Eβex Eαi − q(βex,αi)Eαi Eβex =

λEβ ′
i1

Eβ ′
i2

with λ �= 0. �
5.2. Implications from an admissible plane

We define the notion of implications coming from an admissible plane P , and we verify that
all Cauchon diagrams satisfy all implications from admissible planes. Let us begin by showing some
precise results on the exceptional root and near boxes behaviour. First, let us recall some notation
introduced in Sections 2 and 3.

Notation. C1, . . . , Cn denote the columns of Φ+ (relative to the chosen Lusztig order). In the following,
we consider a diagram �, that is, � a subset of Φ+ . For any integer j ∈ �1,n�, we set � j := �∩ C j =
{βu1 , . . . , βul } ⊂ C j = {βk, . . . , βr}. If the column C j is exceptional, βex denotes the exceptional root
and Bex := {βex} is its box. Then B1 denote the box of C j which precedes Bex and B ′

1 the one which
follows Bex in the Lusztig order; so that sD(B1) = B ′

1.
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In Propositions 5.1.6, 5.1.7 and 5.1.8, we proved the existence of implications thanks to admissible
planes. We formalise this fact in the following definition of “implications coming from an admissible
plane”:

Definition 5.2.1. Let β ∈ C j with h′(β) = l and, P be an admissible plane.

1. If Φ+
P = {β,β + αi,αi} with i < j type (2.1), then the implication coming from P is β → β + αi .

2. Φ+
P = {β,β + αi, β + 2αi,αi} with i < j type (2.3), then the implications coming from P are

β → β + αi and β + αi → β + 2αi .
3. Φ+

P = {β,β + β ′, β} with i < j, β ′ ∈ C j and h(β ′) = h(β) + 1 type (1.1), then the implication
coming from P is β → β + β ′ .

4. Φ+
P = {αi,αi + β,αi + 2β,β} with i < j, h′(αi + 2β) = 2l+1

2 and h(β) = l type (1.2) or type (2.2),
then the implications coming from P are β → αi + β , β → αi + 2β and αi + 2β → αi + β .

5. Φ+
P = {β,αi} with i < j, αi⊥β and there are β1 and β2 in C j such that β +αi = β1 +β2 type (2.4),

then the implications coming from P are

β1

βex

β2
.

6. Φ+
P = Φ+ = {β1, . . . , β6} is the positive part of a roots system of type G2 (see Proposition 3.2.5),

then the implications coming from P are β6 → β5, β5 → β4, β5 → β3, β4 → β3, β3 → β2.

Lemma 5.2.2. Let β ∈ C j .

1. If β belongs to a box which follows {βex}, then β → βex is an implication from an admissible plane.
2. If there is i < j such that γ = β + αi ∈ Φ+ then β → γ is an implication from an admissible plane.

Proof. The results holds in the case where Φ is of type G2. From now on, we assume that Φ is not
of type G2.

1. Let P = 〈β,βex〉. It is an admissible plane of type 3 or 4 in the previous definition and in each
case, β → βex is an implication coming from P .

2. Let P = 〈β,αi〉. It is an admissible plane of type 1,2 or 4 in the previous definition and in each
case, β → γ is an implication coming from P . �

Proposition 5.2.3. Let � be a Cauchon diagram. Then � satisfies all the implication coming from admissible
planes containing elements of �.

Proof. Let β ∈ � and P be an admissible plane containing β . Recall (see Definition 5.2.1) that Φ+
P =

Φ+ ∩ P .

1. If Φ+
P = {β,β + αi,αi} with i < j, then it follows from Proposition 5.1.6 that � satisfies the

implication β → β + αi .
2. If Φ+

P = {β,β + αi, β + 2αi,αi} with i < j, then applying Proposition 5.1.6 to β and β + αi , we
get that � satisfies the implications β → β + αi and β + αi → β + 2αi .

3. If Φ+
P = {β,β + β ′, β} with i < j, β ′ ∈ C j and h(β ′) = h(β) + 1 then it follows from Proposi-

tion 5.1.7 that � satisfies the implication β → β + β ′ .
4. If Φ+

P = {αi,αi + β,αi + 2β,β} with i < j and h′(αi + 2β) = 2l+1
2 , then it follows from Propo-

sitions 5.1.6, 5.1.7 and 5.1.8 that � satisfies the implications β → αi + β , β → αi + 2β and
αi + 2β → αi + β .
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5. If Φ+
P = {β,αi} with i < j, αi⊥β and there exist β1 and β2 in C j such that β +αi = β1 +β2, then

it follows from Proposition 5.1.8 that � satisfies the implication

β1

βex

β2
.

6. If Φ+
P = Φ+ is of type G2, Proposition 5.1.6 implies that � satisfies the implications β6 → β5,

β5 → β3, β4 → β3, β3 → β2. Moreover Proposition 5.1.7 implies that � satisfies the implication
β5 → β4. �

5.3. The converse

The goal of this section is to prove the converse of Proposition 5.2.3, that is:

Theorem 5.3.1. If � is a diagram which satisfies all the implications coming from admissible planes, then � is
a Cauchon diagram.

Let β ∈ Φ+ be a positive root of the column C j . We denote by B0 the box which contains β , by
B1 the box which precedes B0 in the column C j (if it exists) and by B2 the box which precedes B1
in C j (if it exists).

Set Φ+
β = {αi | i < j} ∪ {γ < β | γ is in the box of β} ∪ B1 ∪ (B2 if B1 = {βex}). If γ ∈ Φ+ , then

there exists k ∈ �1, N � such that γ = βk and recall (see Section 4.1) that Xγ = Xk .
Set Dβ := K〈Xγ | γ < β〉.

Lemma 5.3.2. Dβ = K〈Xγ | γ ∈ Φ+
β 〉.

Proof. Set D ′
β := K < Xγ | γ ∈ Φ+

β >⊂ Dβ . Let us start by showing that, for i < j, we have {Xγ ,

γ ∈ Ci} ⊂ D ′
β . If Φ is of type G2, {Xγ ,γ ∈ Ci} is the empty set or it only contains Xα1 ∈ D ′

β . If Φ si
not of type G2, then we prove this result by induction on h(γ ).

If h(γ ) = 1, then γ = αi and Xγ ∈ D ′
β by definition of Φ+

β .
If h(γ ) > 1 and γ ordinary, then by Proposition 2.2.11, there exists l < i such that γ ′ = γ − αl ∈ Φ+ ,

so that, by Corollary 3.2.7 and Proposition 3.4.8, one has Xγ ∈ K < Xγ ′ , Xαl >⊂ D ′
β (by

induction hypothesis).
If h(γ ) > 1 and γ exceptional, then we know (see Proposition 2.2.3) that in this case, there are two

ordinary roots of Ci , denoted η1 and η2, such that η1 + η2 = γ and h(η2) = h(η1) + 1. This
implies by Corollary 3.2.7 and Proposition 3.4.8 that Xγ ∈ K〈Xη1 , Xη2 〉 ⊂ D ′

β (Xη1 and Xη2

are in D ′
β because η1 and η2 are exceptional).

It just remains to show that {Xγ | γ ∈ C j, γ < β} ⊂ D ′
β .

If h(γ ) = h(β) with γ < β , then γ ∈ Φ+
β . So Xγ ∈ D ′

β .
One uses again an induction to show that for each ordinary box B of C j such that B < B0 (i.e. all

roots β of B are strictly less than all roots of B0), one has {Xγ | γ ∈ B} ⊂ D ′
β .

Assume that B1 ordinary. The result is true for the box B1 since B1 ⊂ Φ+
β .

Let B be an ordinary root of C j such that h(B) > h(B1) and γ ∈ B . By Proposition 2.2.11,
there is αl ∈ Π (l < j) such that γ − αl ∈ Φ+ . Then γ ′ := γ − αl is in an ordinary box B ′ of
C j such that h(B) = h(B ′) + 1 > h(B ′) � h(B1) > h(B0) and one has Xγ ′ ∈ D ′

β by induction
hypothesis.
If Φ is not of type G2, then we deduce from Corollary 3.2.7 and Proposition 3.4.8 that
[Xγ ′ , Xαl ]q = kXγ with k ∈ K
 . As Xαl ∈ D ′

β , this implies that Xγ ∈ D ′
β .

If Φ is of type G2, then we deduce from Propositions 3.2.5 and 3.4.8 that [Xγ ′ , Xαl ]q = kXγ

with k ∈ K
 . As Xαl ∈ D ′
β , this implies that Xγ ∈ D ′

β .
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Assume that B1 exceptional. The results is true for B2 since, in this case, B2 ⊂ Φ+
β . This is the same

proof as above with B1 replaced by B2.

It remains to prove that if B = {βex} is an exceptional box of C j such that B < B0, then one has
Xβex ∈ D ′

β .

If B = B1, then one has B ⊂ Φ+
β , and the result is proved.

Assume that B < B1. As above, one has βex = η1 + η2 with η1 and η2 two exceptional roots of C j

such that h(η2) = h(η1) + 1. The boxes of η1 and η2 are ordinary, on each side of B , so less than or
equal to B1, so strictly less than B0. As the result holds for ordinary boxes, Xη1 ∈ D ′

β and Xη2 ∈ D ′
β .

If Φ is not of type G2, then we deduce (as above) from Corollary 3.2.7 and Proposition 3.4.8 that
Xβex ∈ D ′

β .
If Φ is of type G2, we deduce (as above) from Propositions 3.2.5 and 3.4.8 that Xβex ∈ D ′

β .
So we can conclude that Dβ = D ′

β . �
Let us recall that A = U +

q (g) = K〈Xβi | i ∈ �1, N �〉 := K〈Xi | i ∈ �1, N �〉. Let βr and βr+1 (1 � r �
N − 1) be two consecutive roots of Φ+ (βr < βr+1). Recall that A(r+1) = K〈X (r+1)

i 〉 and A(r) = K〈X (r)
i 〉

(1 < r < N) are the algebras deduced from A by the deleting derivation algorithm of Section 4.

Lemma 5.3.3. Let βr ∈ Φ+ be a positive root of the column C j and D(r+1)
βr

:= K < X (r+1)
γ | γ 〈βr〉. Then

D(r+1)
βr

= K〈X (r+1)
γ | γ ∈ Φ+

βr
〉.

Proof. By Lemma 4.2.1, the commutation relations between the X (r+1)
γ with γ � βr are the same as

the commutation relations between the Xγ with γ � βr . So the proof is the same as the proof of

Lemma 5.3.2 but with Xγ replaced by X (r+1)
γ . �

Denote, as in Section 4, ϕ : Spec A ↪→ Spec(A) (A = A(2)) the canonical injection, that is, the composition
of canonical injections ϕr : Spec(A(r+1)) ↪→ Spec(A(r)) for r ∈ �2, N �. Recall that a subset � of Φ+ is a
Cauchon diagram if and only if (∃P ∈ Spec(A)) (ϕ(P ) = 〈Tγ | γ ∈ �〉).

Proof of Theorem 5.3.1. Let � ⊂ Φ+ be a diagram satisfying the implications coming from the admis-
sible planes. Set Q := 〈Tγ |γ ∈ �〉. By [Cau03a, Section 5.5], this is an H(2)-prime ideal, so completely
prime, of A(2) = A and, if β ∈ Φ+ \ �, then Tβ is regular modulo Q . So, Q ∩ Φ+ = {Tγ | γ ∈ �}.
Let us show by induction, that for each r ∈ �2, N + 1�, there exists P (r) ∈ Spec(A(r)) such that
Q = ϕ2 ◦ · · · ◦ ϕr−1(P (r)).

If r = 2, then in this case, one has ϕ2 ◦ · · · ◦ ϕr−1 = IdSpec(A) and P (2) = Q .

Consider an integer r ∈ �2, N �, assume that there exists P (r) ∈ Spec(A(r)) such that ϕ2 ◦ · · · ◦ϕr−1(P (r)) =
Q and let us show there is P (r+1) ∈ Spec(A(r+1)) such that ϕr(P (r+1)) = P (r) (so that ϕ2 ◦ · · · ◦ϕr(P (r+1)) =
Q ).

• If X (r)
r /∈ P (r) , then this follows from Proposition 4.3.4.

• Assume now that X (r)
r ∈ P (r) . From the second point of Proposition 4.3.4, it is enough to show

that Θ(r)(δ
(r+1)
r (X (r+1)

i )) ∈ P (r) for 1 � i � r − 1.

Observation. It is enough to prove that Θ(r)(δ
(r+1)
r (X (r+1)

i )) ∈ P (r) for i ∈ �1, r − 1� such that βi ∈ Φ+
βr

.

Proof of the observation. Let i ∈ �1, r − 1�. It follows from Corollary 5.3.3 that X (r+1)
i =∑

j ,..., j ∈Γ mi,r+1 X (r+1)
j . . . X (r+1)

j where Γ := { j ∈ �1, r − 1� | β j ∈ Φ+
β }. Thus
1 s 1 s r
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δ
(r+1)
r

(
X (r+1)

i

) =
∑

mi,r+1δ
(r+1)
r

(
X (r+1)

j1
. . . X (r+1)

js

)
=

∑
mi,r+1

[
δ
(r+1)
r

(
X (r+1)

j1

)
X (r+1)

j2
. . . X (r+1)

js

+ σ
(r+1)
r

(
X (r+1)

j1

)
δ
(r+1)
r

(
X (r+1)

j2

)
. . . X (r+1)

js

+ · · · + σ
(r+1)
r

(
X (r+1)

j1
. . . X (r+1)

js−1

)
δ
(r+1)
r

(
X (r+1)

js

)]
=

∑
mi,r+1

[
δ
(r+1)
r

(
X (r+1)

j1

)
X (r+1)

j2
. . . X (r+1)

js
+ λr, j1 X (r+1)

j1
δ
(r+1)
r

(
X (r+1)

j2

)
. . . X (r+1)

js

+ · · · + λr, j1 . . . λr, js−1 X (r+1)
j1

. . . X (r+1)
js−1

δ
(r+1)
r

(
X (r+1)

js

)]
.

Then, Θ(r)(δ
(r+1)
r (X (r+1)

i )) = ∑
m j1,..., js [Θ(r)(δ

(r+1)
r (X (r+1)

j1
))X (r)

j2
. . . X (r)

js
+ λr, j1 X (r)

j1
Θ(r)(δ

(r+1)
r (X (r+1)

j2
))

. . . X (r)
js

+ · · · + λr, j1 . . . λr, js−1 X (r)
j1

. . . X (r)
js−1

Θ(r)(δ
(r+1)
r (X (r+1)

js
))]. As each Θ(r)(δ

(r+1)
r (X (r+1)

jl
)) ∈ P (r) by

hypothesis, one has Θ(r)(δ
(r+1)
r (X (r+1)

i )) ∈ P (r) . �
Back to the proof of Theorem 5.3.1. For each s ∈ �2, r − 1�, set P (s) = ϕs ◦ . . . ϕr−1(P (r)).

Observation. βr ∈ �.

Indeed, as X (r)
r ∈ P (r) , Lemma 5.1.1 implies successively that X (r−1)

r ∈ P (r−1), . . . , X (2)
r ∈ P (2) = Q .

Hence Tβr = X (2)
r ∈ Q and so βr ∈ �.

Recall that, if βr ∈ C j , then Φ+
βr

= {αi | i < j} ∪ {γ < βr | γ ∈ B0} ∪ B1 ∪ (B2 if B1 = {βex}) (B0 is the
box containing βr , B1 is the box preceding B0 if C j if exists and B2 is the box preceding B1 in C j if
exists).

Let i ∈ �1, r − 1� such that βi ∈ Φ+
βr

.

• If βi ∈ B0 ∪ B1, then Theorem 3.4.3 implies that δ
(r+1)
r (X (r+1)

i ) = 0. Hence Θ(r)(δ
(r+1)
r (X (r+1)

i )) =
0 ∈ P (r) .

• Let us assume that B1 = {βex} with βex = βe (e < r), and that βi ∈ B2.
By Theorem 3.4.3, δ

(r+1)
r (X (r+1)

i ) = P (r+1)
r,i is homogeneous of weight βr + βi and the variables

X (r+1)

l which appear in P (r+1)
r,i are such that βl ∈ B1 = {βe}. So P (r+1)

r,i is equal to zero or is of the
form λXm

e with λ ∈ K
 and mβex = βr + βi , so that (by comparing the coefficient on α j) one has
m = 1.
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If P (r+1)
r,i = 0, then one has Θ(r)(δ

(r+1)
r (X (r+1)

i )) = 0 ∈ P (r) .

Otherwise, assume that P (r+1)
r,i = λXm

e . As � satisfies the implications from admissible planes,
Lemma 5.2.2 implies that � satisfies the implication βr → βex and, as βr ∈ �, one has βex ∈ �.
Then X (2)

e ∈ Q = P (2) and by Lemma 5.1.1, X (e+1)
e ∈ P (e+1) . As βe and βr are in consecutive

boxes by construction, Lemma 5.1.2 shows that X (e+1)
e ∈ P (e+1) ⇒ X (r)

e ∈ P (r) . So, we deduce that
Θ(r)(δ

(r+1)
r (X (r+1)

i )) = Θ(r)(λX (r+1)
e ) = λX (r)

e ∈ P (r) .

• Consider now the case where βi = αk with k < j. If δ
(r+1)
r (X (r+1)

i ) = 0, then one has

Θ(r)(δ
(r+1)
r (X (r+1)

i )) = 0 ∈ P (r) . Assume that δ
(r+1)
r (X (r+1)

i ) �= 0. From Theorem 3.4.3, we get

that δ
(r+1)
r (X (r+1)

i ) = ∑
i< j1�···� js<r c j1,..., js X (r+1)

j1
. . . X (r+1)

js
(c j1,..., js ∈ K). Thus c j1,..., js ∈ K∗ ⇒

(β j1 + · · · + β js = βr + αk and β j1 , . . . , β js /∈ B0). This implies that Θ(r)(δ
(r+1)
r (X (r+1)

i )) =∑
i< j1�···� js<r c j1,..., js X (r)

j1
. . . X (r)

js
and that is enough to show that, if c j1,..., js ∈ K∗ , then one has

X (r)
j1

. . . X (r)
js

∈ P (r) .
So, take ( j1, . . . js) such that i < j1 � · · · � js < r and let us assume that c j1,..., js �= 0. Considering
the coefficient of α j in the following equality

β j1 + · · · + β js = βr + αk, (9)

we deduce that β js ∈ C j . As β js /∈ B0 and js < r, the box B1 exists. The proof splits into three
cases.
•• B0 and B1 are ordinaries. As js < r and β js /∈ B0, one has h(βr) < h(β js ). By (9), h(β js ) �

h(βr + αk) = h(βr) + 1. As a result, s = 1 and β js ∈ B1. That is why, on has (Lemma 5.2.2) the

implication βr → β js . Since βr ∈ �, one has β js ∈ � and, as above, X ( js+1)

js
∈ P ( js+1) , so that

X (r)
js

∈ P (r) . Hence the considered monomial whose coefficient c j1,..., js �= 0 is in P (r) .
•• B0 is ordinary and B1 is exceptional so that B2 exists. As in the previous case, one checks

that s = 1 and β js ∈ B2. So from Lemma 5.2.2, there exists an implication βr → β js . Also,
from Lemma 5.2.2, one has the implication βr → βe . Since βr ∈ �, one has βe, β js ∈ �, so that

X (e+1)
e ∈ P (e+1) and X ( js+1)

js
∈ P ( js+1) . By the second point of Lemma 5.1.2, one deduces that

X (r)
js

∈ P (r) . Thus the considered monomial is in P (r) .
•• B0 is exceptional. Since β js /∈ B0, β js is ordinary in C j . By the equality (9), one has s � 2

and β js−1 is also ordinary in C j . Set h(βr) := 2l + 1 (l � 1). We knows that h(β js−1 ) � l + 1,
h(β js ) � l + 1 and h(βr + αk) = 2l + 2. This implies that s = 2 and β js−1 , β js ∈ B1. The equality
(9) can be then written as βr + αk = β js−1 + β js .
• • • Assume β js−1 �= β js , so that β js−1 and β js are in the same box B1, so they are orthogonal.

As a result, Φ is not of the type G2 (in the G2 case, the boxes contain only one element).
Set P := 〈β js , β js−1 〉 the plane spanned by β js , β js−1 , and assume Φ+

P �= {β js−1 , β js }. So,
since ΦP is not of type G2, ΦP is of type A2 or B2. As β js−1 and β js are orthogonal, ΦP

is of type B2 and there exists β ∈ Φ+ such that βr + αk = β js−1 + β js = mβ with m = 1
or 2.
If m = 1, then β and βr are two distinct exceptional roots of C j , which is impossible.
Hence m = 2 and so βr +αk = β js−1 +β js = 2β . This implies that h(β) = l+1, so that β is
an element of B1 too, different from β js−1 and β js . As a result, β,β js−1 , β js are pairwise
orthogonal, which is a contradiction with the equality β js−1 + β js = 2β .

So one has Φ+
P = {β js−1 , β js } and so we have the implication

β js−1

βr

β js
. Hence one

of the two roots β js , β js−1 is in �. If, for example, β js ∈ �, one has, as in the first case,

X ( js+1)

j ∈ P ( js+1) and X (r)
j ∈ P (r) . The considered monomial is in P (r) as claimed.
s s
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• • • If β js−1 = β js , then the equality (9) becomes βr + αk = 2β js . Set β = sD(β js ) = βr − β js ∈
Φ+ and substract β js to each part of the previous equality, to obtain β+αk = β js . Denote
by P the plane spanned by βr and β js .
Assume that Φ is of type G2. Then one has βr = β4, αk = β1 and β js = β3. By Defini-
tion 5.2.1, we have the implication βr → β js .
Assume that Φ is not of type G2. The equality βr + αk = 2β js implies that ΦP is of
type B2, so that Φ+

P = {αk,αk + β = β js ,αk + 2β = βr, β} with h(β) = h(βr) − h(β js ) =
2l + 1 − (l + 1) = l. So P is an admissible plane of type 4 in the sense of Definition 5.2.1.
So we have again the implication βr → β js .

Thus, in all cases, one has β js ∈ �. So we have, as in the first case, X ( js+1)

js
∈ P ( js+1) and

X (r)
js

∈ P (r) . The considered monomial is again in P (r) , as desired. �
6. Cauchon diagrams for a particular decomposition of w0

In this section, we give an explicit description of Cauchon diagrams for a chosen decomposition of
w0 in each type of simple Lie algebra of finite dimension. Denote by D the set of Cauchon diagrams.
For all β ∈ Φ+ , we give the list of implications of the type β → β ′ with β ′ ∈ Φ+ .

Definition 6.0.4. Let β ∈ Φ+ . An implication from the root β is an implication from an admissible

plane of the type β → β ′ or

β ′
1

β
.
.
.

β ′
s

(Definition 5.2.1).

Observation. The implications from all admissible planes coincide with the implications from all the
positive roots.

Lemma 6.0.5. Suppose that Φ is a root system which is not of type G2 .

1. Let Cl be an ordinary column. If β ∈ Cl , then the implications from β are β → β ′ with β ′ ∈ Cl , β ′ = β +αi

(i < l).
2. Let Cl be an exceptional column and β ∈ Cl .

(a) If β �= βex and if β is not in B, the box after {βex}, then the implications from β are β → β ′ with
β ′ ∈ Cl , β ′ = β + αi (i < l).

(b) If β ∈ B, the box after {βex}, then the implications from β are β → β ′ with β ′ ∈ Cl , β ′ = β +αi (i < l)
and β → βex.

3. Let Cl be an exceptional column with exceptional root βex and B1 the box before {βex}. Then the implica-
tions from β are:
• βex → β ′ with β ′ ∈ B1 such that P = 〈βex, β

′〉 is an admissible plan of type 2.2 (i.e. Φ+
P = {β,βex =

εi + 2β,β ′ = εi + β,εi} with i < l and β ∈ B the box after {βex}).

•

β ′
1

βex

β ′
2

with β ′
1 , β ′

2 ∈ B1 , β ′
1 + β ′

2 = βex + εi (i < l) and P = 〈βex, εi〉 is an admissible plane of

type 2.4 (i.e. Φ+
P = {βex, εi}).

Proof.

1. Let β ′ ∈ Cl with β ′ = β + αi and i < l. From Lemma 5.2.2, β → β ′ is an implication from an
admissible plane. So this is an implication from β .
Conversely, consider an implication β → β ′ from β , so that β ′ ∈ Cl (Lemma 5.2.2). As Cl is ordi-
nary, β and β ′ are ordinary roots and, by Lemma 5.2.2, one has β ′ = β + εi with i < l.
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2. (a) Let β ′ ∈ Cl with β ′ = β + αi and i < l. From Lemma 5.2.2, β → β ′ is an implication from an
admissible plane. So this is an implication from β .
Conversely, consider an implication β → β ′ from β , so that β ′ �= β , P = 〈β,β ′〉 is an admissi-
ble plane and β → β ′ is an implication from P . From Lemma 5.2.2, we know that β ′ ∈ Cl .
Suppose that β ′ = βex , so that the type of P is in the following list:
• type 1.1 with Φ+

P = {β1, βex = β1 + β2, β2}, β1 > βex > β2.
• type 1.2 with Φ+

P = {β1, βex = 2β1 + αi, β2 = β1 + αi,αi} (i < l), and β1 > βex > β2 > εi .
As β → βex = β ′ is an implication, we deduce from Definition 5.2.1 that β = β1. Then Defini-
tion 2.2.13 permits to claim that β is in the box after βex , which contradict the hypothesis. So
β ′ �= βex . Moreover β �= βex , it comes from Lemma 5.2.2 that β ′ = β + αi with i < l.

(b) As β ∈ B , the implication β → βex comes from Lemma 5.2.2. If β ′ = β + αi is a root, the
implication β → β ′ also comes from Lemma 5.2.2.
Conversely, let β → β ′ an implication from β . By Lemma 5.2.2, we know that β ′ ∈ Cl .
If β ′ = βex , there is nothing to prove. Otherwise, as β �= βex , one has β ′ = β + αi with i < l by
Lemma 5.2.2.

3. If β ′ ∈ B1 satisfies the hypothesis, Definition 5.2.1 permits to claim that βex → β ′ is an implication
from P . If β ′

1, β ′
2 belong to B1 and satisfy the hypothesis, Definition 5.2.1 permits to claim that

β ′
1

βex

β ′
2

is an implication from P .

Moreover, Definition 5.2.1 permits to claim that all implications from βex come from an admissible
plane P of type 1.2 or 2.4.
• If P is of type 1.2, one has Φ+

P = {β,βex = 2β +α1, β
′ = β +αi,αi} (i < l) and β > βex > β ′ > αi .

In this case, the only implication from βex and from P , is βex → β ′ with 〈βex, β
′〉 = P admissible

plane of type 1.2.
• If P is of type 2.4, one has P = 〈βex,αi〉 and Φ+

P = {βex,αi} (i < l). Definition 5.2.1 permits to

claim that all the implication from P are of the shape

β ′
1

βex

β ′
2

, where β ′
1 and β ′

2 belong to

B1 and satisfy β ′
1 + β ′

2 = βex + αi . �
6.1. Infinite series

6.1.1. Type An, n � 1

Convention. The numbering of simple roots in the Dynkin diagram is as follow: α1 −α2 −· · ·−αn−1 −
αn . We know (see for example [Lit98, Section 5]) that sα1 ◦ (sα2 ◦ sα1 ) · · · ◦ (sαn ◦ sαn−1 ◦ · · · ◦ sα1 ) is a
reduced decomposition of w0 which induces the following order on positive roots. (We have arranged
the roots in columns.)

C1 C2 Cn

β1 = α1 β2 = α1 + α2 · · · βN−n+1 = α1 + · · · + αn−1 + αn

β3 = α2 · · · ...

. . .
...

βN = αn

This is a Lusztig order and none of the columns C1, . . . , Cn is exceptional. Moreover, if two roots
β > β ′ are in the same column Cl then: β ′ = β + αi (i < l) ⇔ β ′ and β are consecutive.
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Proposition 6.1.1. Let � be a diagram, � is a Cauchon diagram if and only if it satisfies all the implications
β j+1 → β j where β j and β j+1 are two consecutive roots of the same column Cl.

Convention. If Cl = {βs, βs+1, . . . , βr = αl} is the column l with 1 � l � n, the truncated columns
contained in Cl are the following subsets {βs, βs+1, . . . , βt}, t ∈ �s, r�.

Proposition 6.1.1 permits to claim that the Cauchon diagrams are the diagrams � which are unions
of truncated columns. In the following picture a positive roots β , belonging to the diagram �, is
represented by a black box in the location of β in the previous tabular of the order induced by the
choosen reduced decomposition of w0. This convention will be used in the rest of this article.

Remark 6.1.2. The set of Cauchon diagrams D has the same cardinality as the Weyl group W .

Proof. As D is the set of all diagrams � which are unions of truncated columns, one has |D| =
(n + 1)! = |W |.

6.1.2. Type Bn, n � 2

Convention. The numbering of simple roots in the Dynkin diagram is as follow α1 ⇐ α2 −· · ·−αn−1 −
αn . We know (see for example [Lit98, Section 6]) that sα1 ◦ (sα2 ◦ sα1 ◦ sα2) · · · ◦ (sαn ◦ sαn−1 ◦ · · · ◦ sα2 ◦
sα1 ◦ sα2 ◦ · · · ◦ sαn ) is a reduced decomposition of w0 which induces the following order on positive
roots.

β1 = ε1 β2 = 2ε1 + ε2 β(n−1)2+1 = 2ε1 + · · · + 2εn−1 + εn

β3 = ε1 + ε2
.
.
.

β4 = ε2
.
.
.

βN−n = 2ε1 + ε2 + · · · + εn−1 + εn

βN−n+1 = ε1 + · · · + εn−1 + εn

βN−n+2 = ε2 + · · · + εn−1 + εn

.

.

.

βN = εn

This is a Lusztig order and none of the columns C1, . . . , Cn is exceptional. Moreover, if two roots
β > β ′ are in the same column Cl then: β ′ = β + αi (i < l) ⇔ β ′ and β are consecutive.

Proposition 6.1.3. Let � be a diagram, � is a Cauchon diagram if and only if it satisfies all the implications
β j+1 → β j where β j and β j+1 are two consecutive roots of the same column Cl.
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Convention. If Cl = {βs, βs+1, . . . , βr = αl} is the column l with 1 � l � n, the truncated columns
contained in Cl are the following subsets {βs, βs+1, . . . , βt}, t ∈ �s, r�.

Proposition 6.1.3 permits to claim that the Cauchon diagrams are the diagrams � which are unions
of truncated columns.

Remark 6.1.4. The set of Cauchon diagrams D has the same cardinality as the Weyl group W .

Proof. As D is the set of all diagrams � which are unions of truncated columns, one has |D| =
2n+1(n + 1)! = |W |. �
6.1.3. Type Cn, n � 3

Convention. The numbering of simple roots in the Dynkin diagram is α1 ⇒ α2 − · · · − αn−1 − αn . We
know (see for example [Lit98, Section 6]) that sα1 ◦ (sα2 ◦ sα1 ◦ sα2) · · · ◦ (sαn ◦ sαn−1 ◦ · · · ◦ sα2 ◦ sα1 ◦
sα2 ◦ · · · ◦ sαn ) is a reduced decomposition of w0 which induces the following order on positive roots.

β1 = ε1 β2 = ε1 + ε2 β(n−1)2+1 = ε1 + 2ε2 + · · · + 2εn−1 + εn

β3 = ε1 + 2ε2
.
.
.

β4 = ε2
.
.
.

βN−n = ε1 + ε2 + · · · + εn−1 + εn

βN−n+1 = ε1 + 2ε2 + · · · + 2εn−1 + 2εn

βN−n+2 = ε2 + · · · + εn−1 + εn

.

.

.

βN = εn

This is a Lusztig order and all the columns C2, . . . , Cn are exceptional, the first one C1 is ordinary.
We obtain the same result as for Bn , the proof is a bit more technical due to the exceptional columns
and is left to the reader.

Proposition 6.1.5. Let � be a diagram, � is a Cauchon diagram if and only if it satisfies all the implications
β j+1 → β j where β j and β j+1 are two consecutive roots of the same column Cl.

Proposition 6.1.5 permits to claim that the Cauchon diagrams are the diagrams � which are unions
of truncated columns.

Remark 6.1.6. The set of Cauchon diagrams D has the same cardinality as the Weyl group W .

Proof. As D is the set of all diagrams � which are unions of truncated columns, one has |D| =
2n+1(n + 1)! = |W |. �
6.1.4. Type Dn, n � 4

Convention. The numbering of simple roots in the Dynkin diagram is

α1
�

α3 — α4 — · · · — αn−1 — αn

�

α2

.

We know (see for example [Lit98, Section 6]) that sα1 ◦ sα2 ◦ (sα3 ◦ sα1 ◦ sα2 ◦ sα3) · · · ◦ (sαn ◦ sαn−1 ◦ · · · ◦
sα3 ◦ sα1 ◦ sα2 ◦ sα3 ◦ · · · ◦ sαn ) is a reduced decomposition of w0 which induces the following order on
positive roots.



A. Mériaux / Journal of Algebra 323 (2010) 1060–1097 1093
β1 = ε1 β2 = ε2 β3 = ε1 + ε2 + ε3 · · · βN−2n+1 = ε1 + ε2 + 2ε3 · · · + 2εn−1 + εn

β4 = ε2 + ε3
.
.
.

β5 = ε1 + ε3
.
.
.

β6 = ε3 βN−n−1 = ε1 + ε2 + ε3 · · · + εn−1 + εn

βN−n = ε1 or
 ε2 + ε3 · · · + εn−1 + εn

βN−n+1 = ε2 or
 ε1 + ε3 · · · + εn−1 + εn


: depends on columns’ parity βN−n+2 = ε3 + · · · + εn−1 + εn

.

.

.

βN = εn

This is a Lusztig order and all the columns are ordinary.

Observation. Let l � 3.

• The column Cl has an even number of roots, so that there is s ∈ N (s = l − 1) such that Cl =
{βu1 < · · · < βus < βus+1 < · · · < βu2s }.

• Let β an element of Cl different from βu1 .
•• If β = βus+2 , there is exactly 2 roots in Cl of the shape β ′ = β + αi (i < l), namely βus and

βus+1 .
•• If β �= βus+2 , there is only one root in Cl of the shape β ′ = β +αi (i < l), namely β ′ is the root

before β if β �= βus+1 or β ′ = βus−1 if β = βus+1 .

As there is no exceptional column, we deduce from Theorem 5.3.1 and Lemma 6.0.5(1.),

Proposition 6.1.7. Let � be a diagram, � is a Cauchon diagram if and only if it satisfies all the implications
below, for all integers l ∈ �3, �, denote Cl = {βu1 , . . . , βus , βus+1 , . . . , βu2s } (with s = l − 1):

βus

βu2s βu2s−1 . . . βus+2 βus−1 . . . βu2 βu1

βus+1

Proposition 6.1.7 permits to claim that Cauchon diagrams are the sets � = ⊔
l∈�1,n� �l , where

�1 is a truncated column from C1, �2 is a truncated column from C2 and, for l ∈ �3,n�, denote Cl =
{βu1 < · · · < βus < βus+1 < · · · < βu2s } (s = l − 1), �l is a truncated column {βu1 < · · · < βu j−1 < βu j }
from Cl , or the set {βu1 < · · · < βus−1 < βus+1} ⊂ Cl .

Proposition 6.1.8. The set D of Cauchon diagrams has the same cardinality as the Weyl group W .

Proof. �1 can be two sets (∅ or C1) as �2 (∅ or C2). If l ∈ �3,n�, one has |C3| = 2l − 2. One can
then extract 2l − 1 truncated columns from Cl so that there is 2l possibilities for �l . As a result
|D| = 2 × 2 × 6 × · · · × 2n = 4 × 6 × 8 × · · · × 2n = 2n−1(n!) = |W |. �
6.2. Exceptional cases

6.2.1. Type G2

Convention. The numbering of simple roots in the Dynkin diagram is: α1 � α2. We know that sα1 ◦
sα2 ◦ sα1 ◦ sα2 ◦ sα1 ◦ sα2 is a reduced decomposition of w0 which induces the following order on
positive roots: β1 = α1, β2 = 3α1 + α2, β3 = 2α1 + α2, β4 = 3α1 + 2α2, β5 = α1 + α2, β6 = α2.



1094 A. Mériaux / Journal of Algebra 323 (2010) 1060–1097
Lemma 6.2.1. One has the following implications: β6 β5 β4 β3 β2
.

Proof. To prove this implications, we apply Propositions 5.1.6, 5.1.7 and 5.1.8 with the following
equalities (β4 is an exceptional root): β6 +α1 = β5, h′(β5)+1 = β4, β4 +α1 = 2β3, β3 +α1 = β2. �
Convention. D is the set of Cauchon diagrams, they satisfy implications from Lemma 6.2.1.

Remark 6.2.2. The set of Cauchon diagrams D has the same cardinality as the Weyl group W .

6.2.2. Type F4

Convention. The numbering of simple roots in the Dynkin diagram is: α1 — α2 ⇒ α3 — α4. We
choose the following reduced decomposition of w0: s4s3s4s2s3s4s2s3s2s1s2s3s4s2s3s1s2s1s3s4s2s3s2s1.
This decomposition induces the following order on positive roots:

Column 1: β1(0,0,0,1)

Column 2: β2(0,0,1,1), β3(0,0,1,0)

Column 3: β4(0,1,2,2), β5(0,1,2,1), β6(0,1,1,1), β7(0,1,2,0), β8(0,1,1,0), β9(0,1,0,0)

Column 4: β10(1,3,4,2), β11(1,2,4,2), β12(1,2,3,2), β13(1,2,3,1), β14(1,2,2,2), β15(1,2,2,1),
β16(1,1,2,2), β17(2,3,4,2), β18(1,2,2,0), β19(1,1,2,1), β20(1,1,1,1), β21(1,1,2,0),
β22(1,1,1,0), β23(1,1,0,0), β24(1,0,0,0)

One checks that each column is ordinary or exceptional and then computes h′(βi) for all roots
to verify that the order is a Lusztig one. We already know the form of diagrams for the two first
columns. Thanks to commutation relations, Propositions 5.1.6, 5.1.7 and 5.1.8, we obtain the following
result:

Proposition 6.2.3. Let � be a diagram, � is a Cauchon diagram if and only if it satisfies the following impli-
cations:

3 → 2,

6

9 8 5 4,

7

20 19 16 14

24 23 22 17 12 11 10

21 18 15 13

This permits to claim that the Cauchon diagrams are the sets � = ⊔
l∈�1,4� �l where �1 is a

truncated column from C1, �2 is a truncated column from C2, �3 are �4 subsets of C3 and C4
respectively which satisfy the implication from Proposition 6.2.3. By counting the possibilities, one
obtains:

Proposition 6.2.4. The set D of Cauchon diagrams has same cardinality as the Weyl group W .

6.2.3. Type E6

Convention. The numbering of simple roots in the Dynkin diagram is:
α2
|

α1 — α3 — α4 — α5 — α6

.

To describe the chosen reduced decomposition of w0, we remark that the roots α1 to α5 span
a roots system of D5. Denote by τ , the longest Weyl word used for D5 then the decomposition
τ s6s5s4s2s3s1s4s3s5s4s6s2s5s4s3s1 is a reduced decomposition of w0 which induces the following or-
der on positive roots, the first five columns are the same as in D5 and the sixth is:
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β21 = (1,2,2,3,2,1), β22 = (1,1,2,3,2,1), β23 = (1,1,2,2,2,1), β24 = (1,1,2,2,1,1),

β25 = (1,1,1,2,2,1), β26 = (0,1,1,2,2,1), β27 = (1,1,1,2,1,1), β28 = (0,1,1,2,1,1),

β29 = (1,1,1,1,1,1), β30 = (0,1,1,1,1,1), β31 = (1,0,1,1,1,1), β32 = (0,1,0,1,1,1),

β33 = (0,0,1,1,1,1), β34 = (0,0,0,1,1,1), β35 = (0,0,0,0,1,1), β36 = (0,0,0,0,0,1).

We obtain, by Lemma 6.0.5(1.) and Theorem 5.3.1,

Proposition 6.2.5. Let � be a diagram, � is a Cauchon diagram if and only if it satisfies all the implications
from Proposition 6.1.7 for the five first columns and the following implications for the last one:

33 31 29 27 24

36 35 34 23 22 21

32 30 28 26 25

Proposition 6.2.6. The set D of Cauchon diagrams has same cardinality as the Weyl group W .

6.2.4. Type E7

Convention. The numbering of simple roots in the Dynkin diagram is:

α2
|

α1 — α3 — α4 — α5 — α6 — α7

As the roots α1 to α6 span a roots system of type E6, denote by σ the longest Weyl word used for
the type E6. The decomposition σ s7s6s5s4s2s3s1s4s3s5s4s6s2s5s7s4s6s3s5s1s4s2s3s4s5s6s7 is a reduced
decomposition of w0 which induces the following order on positive roots (only the last column is
given). We already know the form of diagrams for the first six columns. Proposition 5.1.6 permits to
find the implications in the last columns of type E7.

βi h′(βi)

β37(2,2,3,4,3,2,1) 17
β38(1,2,3,4,3,2,1) 16
β39(1,2,2,4,3,2,1) 15
β40(1,2,2,3,3,2,1) 14
β41(1,1,2,3,3,2,1) 13
β42(1,2,2,3,2,2,1) 13
β43(1,2,2,3,2,1,1) 12
β44(1,1,2,3,2,2,1) 12
β45(1,1,2,3,2,1,1) 11
β46(1,1,2,2,2,2,1) 11
β47(1,1,2,2,2,1,1) 10
β48(1,1,1,2,2,2,1) 10
β49(1,1,2,2,1,1,1) 9
β50(1,1,1,2,2,1,1) 9

βi h′(βi)

β51(0,1,1,2,2,2,1) 9
β52(1,1,1,2,1,1,1) 8
β53(0,1,1,2,2,1,1) 8
β54(1,1,1,1,1,1,1) 7
β55(0,1,1,2,1,1,1) 7
β56(1,0,1,1,1,1,1) 6
β57(0,1,1,1,1,1,1) 6
β58(0,1,0,1,1,1,1) 5
β59(0,0,1,1,1,1,1) 5
β60(0,0,0,1,1,1,1) 4
β61(0,0,0,0,1,1,1) 3
β62(0,0,0,0,0,1,1) 2
β63(0,0,0,0,0,0,1) 1

63

62

61

60

59 58

56 57

54 55

52 53

49 50 51

47 48

45 46

43 44

42 41

40

39

38

37

Proposition 6.2.7. The set D of Cauchon diagrams has same cardinality as the Weyl group W .
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6.2.5. Type E8

Convention. The numbering of simple roots in the Dynkin diagram is:

α2
|

α1 — α3 — α4 — α5 — α6 — α7 — α8

{α1, . . . ,α7} span a roots system of type E7. Denote by σ7, the longest Weyl word used for type E7.
The decomposition σ7s8s7s6s5s4s2s3s1s4s3s5s4s6s2s5s7s4s6s8s3s5s7s1s4s6s3s2s5s4s5s2s3s6s1s4s7s3s5s8
s4s6s2s5s7s4s6s3s5s1s4s2s3s4s5s6s7s8 is a reduced decomposition of w0 which induces the following
order on positive roots of the last column.

βi h′(βi)

β64(2,3,4,6,5,4,3,1) 28

β65(2,3,4,6,5,4,2,1) 27

β66(2,3,4,6,5,3,2,1) 26

β67(2,3,4,6,4,3,2,1) 25

β68(2,3,4,5,4,3,2,1) 24

β69(2,2,4,5,4,3,2,1) 23
β70(2,3,3,5,4,3,2,1) 23

β71(1,3,3,5,4,3,2,1) 22
β72(2,2,3,5,4,3,2,1) 22

β73(1,2,3,5,4,3,2,1) 21
β74(2,2,3,4,4,3,2,1) 21

β75(1,2,3,4,4,3,2,1) 20
β76(2,2,3,4,3,3,2,1) 20

β77(1,2,2,4,4,3,2,1) 19
β78(1,2,3,4,3,3,2,1) 19
β79(2,2,3,4,3,2,2,1) 19

β80(1,2,2,4,3,3,2,1) 18
β81(1,2,3,4,3,2,2,1) 18
β82(2,2,3,4,3,2,1,1) 18

β83(1,2,2,3,3,3,2,1) 17
β84(1,2,2,4,3,2,2,1) 17
β85(1,2,3,4,3,2,1,1) 17

β86(1,1,2,3,3,3,2,1) 16
β87(1,2,2,3,3,2,2,1) 16
β88(1,2,2,4,3,2,1,1) 16

β89(1,1,2,3,3,2,2,1) 15
β90(1,2,2,3,2,2,2,1) 15
β91(1,2,2,3,3,2,1,1) 15

β92(2,3,4,6,5,4,3,2) 29/2

βi h′(βi)

β93(1,1,2,3,2,2,2,1) 14
β94(1,1,2,3,3,2,1,1) 14
β95(1,2,2,3,2,2,1,1) 14

β96(1,1,2,2,2,2,2,1) 13
β97(1,2,2,3,2,1,1,1) 13
β98(1,1,2,3,2,2,1,1) 13

β99(1,1,1,2,2,2,2,1) 12
β100(1,1,2,3,2,1,1,1) 12
β101(1,1,2,2,2,2,1,1) 12

β102(0,1,1,2,2,2,2,1) 11
β103(1,1,2,2,2,1,1,1) 11
β104(1,1,1,2,2,2,1,1) 11

β105(1,1,2,2,1,1,1,1) 10
β106(1,1,1,2,2,1,1,1) 10
β107(0,1,1,2,2,2,1,1) 10

β108(1,1,1,2,1,1,1,1) 9
β109(0,1,1,2,2,1,1,1) 9

β110(1,1,1,1,1,1,1,1) 8
β111(0,1,1,2,1,1,1,1) 8

β112(1,0,1,1,1,1,1,1) 7
β113(0,1,1,1,1,1,1,1) 7

β114(0,1,0,1,1,1,1,1) 6
β115(0,0,1,1,1,1,1,1) 6

β116(0,0,0,1,1,1,1,1) 5

β117(0,0,0,0,1,1,1,1) 4

β118(0,0,0,0,0,1,1,1) 3

β119(0,0,0,0,0,0,1,1) 2

β120(0,0,0,0,0,0,0,1) 1

120

119

118

117

116

115 114

112 113

110 111

108 109

105 106 107

103 104 102

100 101 99

97 98 96

95 94 93

92

91 90 89

88 87 86

85 84 83

82 81 80

79 78 77

76 75

74 73

72 71

69 70

68

67

66

65

64

We already know the shape of diagrams from the first seven columns. Thanks to Propositions 5.1.6,
5.1.7 and 5.1.8, one obtains the implications for the last column.

In particular, we obtain implications such as (i ⇒ j or k):

(92 ⇒ 91 or 90) and (92 ⇒ 90 or 89) and (92 ⇒ 91 or 89).

Proposition 6.2.8. The set D of Cauchon diagrams has same cardinality as the Weyl group W .
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