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1. Introduction

Let g be a finite-dimensional complex simple Lie algebra of rank n, K a commutative field and q a
nonzero element of K which is not a root of unity. We follow the notation and convention of [Jan96]
for the quantum group U (g). In particular, to each choice of a reduced decomposition of the longest
Weyl word wq of the Weyl group W corresponds a generating system (Xg)geq+ Of the positive part
L{; (g) of Uy(g) (see Section 3), where @7 denotes the set of positive roots associated to g.

The natural action of an n-dimensional torus on L{q+ () induces a stratification of the prime spec-
trum Spec(Z/thr (g)) of Z/{q+ (g) via the so-called Stratification Theorem (see [GLOO)). In this stratification,
the primitive ideals are easily identified: they are the primes of Z/IqJr (g) that are maximal in their
strata. This stratification was recently used in [AD08,Lau07b,Lau07a] in order to describe the auto-
morphism group of Z/{q+(g) in the case where g is of type A, and B,.

As L{; (9) can be presented as a skew-polynomial algebra, this stratification can also be described
via the deleting-derivations theory of Cauchon [Cau03a]. In particular, in this theory, the strata are in
a natural bijection with certain combinatorial objects, called Cauchon diagrams, and their geometry
is completely described by the associated diagram. In fact, in the above situation, Cauchon diagrams
are distinguished subsets of the set of positive roots @+, (For this reason, we often refer to subsets of
@+ as diagrams.) Note that to each reduced decomposition of wq corresponds a PBW basis of Z/Iq+ (9)
and so a notion of Cauchon diagrams.

The main aim of this paper is to give an algorithmic description of Cauchon diagrams in the case
where the reduced decomposition of wq corresponds to a good order of @+ (in the sense of [Lus90]).
Moreover, in each type, we exhibit a reduced decomposition of wg for which we are able to describe
explicitly the corresponding Cauchon diagrams.

Our first ingredient in order to obtain an algorithmic description of Cauchon diagrams is the com-
mutation relation between two generators Xg and Xg given by Levendorskii and Soibelman [LS91].
These formulas are not explicitly known, so that one cannot easily use them in order to perform
the deleting-derivations algorithm. As a consequence, the description of Cauchon diagrams does not
seem accessible in the general case. For this reason, we will limit ourselves to the case where the
reduced decomposition of wg corresponds to a good order on @+ (see [Lus90]). We recall this no-
tion in Section 2. Although we still do not know explicitly all the commutation relations between
the generators of L{; (g), the situation is better as we control enough commutation relations. More
precisely, in this case, the commutation relation between two variables Xg, Xg is known when g and
B’ span a so-called admissible plane [Lus90] (see Section 3.4). Those relations allow the (algorithmic)
construction of a set of necessary conditions, called implications, for a diagram A to be a Cauchon
diagram (see Section 5.1). In Section 5.2, we prove that these conditions are necessary and sufficient
(see Theorem 5.3.1), so that we get an algorithmic description of Cauchon diagrams.

In Section 6, we use this theorem to give an explicit description of these implications and these
diagrams for special choices of the reduced decomposition of wg. More precisely, in each type, we
exhibit a reduced decomposition of wq for which we explicitly describe the corresponding Cauchon
diagrams. As a corollary, we prove that in each type the number of diagrams is equal to the size |W|
of the Weyl group. As the strata do not depend on the choice of the reduced decomposition of wg,
this implies that the number of strata is always equal to |W|. This result was first proved by Gorelik
[Gor00] by using different methods, but with the additional assumption that q is transcendental.

In [CMO08], we use the results of this paper in order to show that Cauchon diagrams A are in
one-to-one correspondence with positive sub-expressions w” of wg as defined by Marsh and Rietsch
[MRO4]. More precisely, assume wq has a reduced expression of the form wg =Sy, o --- 0 Sy and
that this decomposition corresponds to a good order on @ 7. For all i € {1,..., N}, we set i =S4, 0
<+ 0Sg_, (ai), so that @ ={By < --- < Bn}. For each diagram A = {B;, <--- < B;,} S T, we set
wh = S, 0" O Say - Then we have the following results (see [CMO08]).

e If A is a Cauchon diagram, the above decomposition of w2 is reduced.
e The map A — w2 is a bijection from the set D of Cauchon diagrams to W.
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2. Root systems
2.1. Classical results on root systems

Let g be a simple complex Lie algebra. Let follow the notations of [Jan96, Chapter 4]. We denote
by @ a root system and E = Vect(®) (dimE =n). When IT := {a,...,a,} is a basis of &, one has
a decomposition @ = @ L ®~, where T (resp. @) is the set of positive (resp. negative) roots.
Denote by W the Weyl group associated to the root system @; it is generated by the reflections
Sq; (:=si), 1 <i<n. The longest Weyl word in W is written wo. A root system @ is reducible if
& = @1 U P, where @1 and @, are two orthogonal root systems. Otherwise @ is called irreducible.

Let us recall that there is a one-to-one correspondence between the irreducible root systems and
the simple complex Lie algebras of finite dimension. We say that g is of a given type if the associated
root system is of the same type. The following definitions and results are taken from [Lus90].

Definition 2.1.1. Let /T = {aq, a2, ..., o} be a basis of @ and je [1,n] (:={1,2,...,n}).

1. The column j is the set Cj:={8 € @T | B=kio1 +---+kjaj, ki €N, kj #0}.

2. Aroot B =kjay +---+kjaj € Cj is called ordinary if kj =1; it is called exceptional if k; = 2.

3. A column C; is called ordinary if each root g of C; is ordinary; this column is called exceptional
if every root B of C; is ordinary except a unique one (fex) which is exceptional.

Definition 2.1.2. A numbering IT = {1, 2, ..., an} is good if all columns C; are ordinary or excep-
tional.

Example 2.1.3 (The G, case). The root system pf type G, has rank 2, there are two simple roots
a1 and o3 such that [loz| = «/3lla1ll. T = {1, o2} is a base for this roots system. The numbering
IT = {1, o} is good in this case because Ci = {«1} is ordinary and C, = {oy, a1 + a2, 2a1 + €,
301 + o2, 31 + 202} is exceptional.

On the contrary, the numbering IT = {o, «v1} is not good. For this numbering, C; = {a} is ordi-
nary but C; = {a1, ay + a1, @y + 201, o0 + 3aeq, 2a2 + 31} is neither ordinary nor exceptional.

Proposition 2.1.4. Les g be a simple Lie algebra of finite dimension. The following numberings of the associated
root system IT are examples of good numberings.

e Ifgis of type A, with Dynkin diagram: a1 — oy — -+ — 0tp—1 — Oy, OT
e if g is of type By, with Dynkin diagram: oty < op — -+ - — Qp—1 — Oy, OT
e if g is of type Cy, with Dynkin diagram: a1 = a3 — -+ - — &ty—1 — Qtp, OT
o
AN
e if gis of type Dy, with Dynkin diagram: a3 — o4 — - — g1 — on, then
/
o
T ={oq,02,...,0n0-1, 0y} is a good numbering.

e Ifgis of type G, with Dynkin diagram: o1 < o, then IT = {a1, oz} is a good numbering.
e If g is of type F4, with Dynkin diagram: oy — a2 = a3 — a4, then IT = {a4, o3, a2, 1} is a good num-

bering.

2]
e If g is of type Eg, with Dynkin diagram: [ , then IT = {a, a5, a4, a3, 001, g}
o1 — 03 — 04 — 05 — Op
is a good numbering.
)
e Ifgis of type E7, with Dynkin diagram: | , then
o] — 03 — 04 — 05 — Og — 7
IT = {ay, a5, 0g, 03, A1, g, 007} 1S a good numbering.



A. Mériaux / Journal of Algebra 323 (2010) 1060-1097 1063

[0
e If g is of type Es, with Dynkin diagram: \ , then IT = {ay, a5, 04,
o] — 03 — Q4 — 05 — g — Q7 — Qg
3,01, g, A7, g} is a good numbering.

The corresponding columns with these numberings are given explicitly in Section 3 and one could
verify that each column is ordinary or exceptional. In the following, the chosen numbering on IT is always
a good one. From Section 6, we use the numbering from the previous proposition.

2.2. Lusztig order

Definition 2.2.1. (See [Lus90, Section 4.3].) For a root 8 =kja1 +--- +kjoj € Cj, the height of B is the
positive integer h(B) := ki + --- +kj; the Lusztig height of 8 is the rational number h'(8) := k]—jh(ﬁ). If

t € W'(Cj), then the set Bit:={(B¢e Cj | h(B) =t} is called the box of height t in the column C;.
This definition gives the following disjoint union Cj =] |y« BJ:t,

Definition 2.2.2 (Lusztig order on @+ ). We define a partial order on @ as follows. Let 81 and S, be
two positive roots, if g1 € Cj, and f € Cj, with ji < jo, then B1 < fo; if B1 and B, are in the same
column C; and if h'(8) < h’'(B1), then g1 < B.

One can refine the previous partial order in a total one by choosing arbitrarily an order inside the
boxes. Such a total order on @7 is called “a” Lusztig order.

Observations. The simple root «; is the greatest root in C; for any Lusztig order. The positive roots
of a box are consecutive for any Lusztig order, that is, B/"* = {Bp, Bp+1, ..., Bp+i}. Any Lusztig order
induces an order on boxes. For example, the box before B/ in the column C; is BJ*t+1.

Proposition 2.2.3. Let j € {2, ...,n}. Assume C; is an exceptional column, we denote by By its exceptional
root. Then:

1. Bex L(CU---LCjy).
2. If D = (Bex) and if sp is the orthogonal against D, then:

° sD(Cj)zcj and for any B € C; \ {Bex}, we have B + sp(B) = Bex- . .

o Let BJt be a box different from the box which contain Bex. Then sp transforms Bi:t into Bi-h(Bed—t,

Proof.

1. Let e CqiU---UCj_q. If B is not orthogonal to Bex, then sg(Bex) = Bex + kB (k € Z\ {0}) is a
root of C; whose coordinate on «; is equal to 2. This is a contradiction with the unicity of the
exceptional root.

2. We observe that sp = —sg,,, so that sp(®) = .

e Let B be an ordinary root of Cj. We can decompose this root g =aja; +--- +aj_1aj_1 +
%ﬂex (a; € Q). From 1. we deduce that sp(8) = —araq ... —aj_1aj_1 + %ﬁex = Bex — B. This is
a root from the previous observation. This root is clearly in C; since 8 is in C; \ {Bex}.

e By the previous assertion, sp transforms two element from B/l into two roots of the same
height. We deduce from this fact (and from the fact that sp is an involution) that sp(BJ-!) is a
box denoted by BJ-*. The formula t 4+ s = h(Bex) is a consequence of the previous assertion. O

Definition 2.2.4. The support of a root 8 =aja1 + --- +aja; € Cj is the set Supp(B) = {o; € IT |
a; # 0}. In particular, for g € Cj, we have Supp(8) C {1, ..., j}.

We are now ready to prove that the box containing the exceptional root of an exceptional column
is reduced to the exceptional root.
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Proposition 2.2.5. Let j € {2,...,n}. Assume C; is an exceptional column and denote by By its exceptional
root. Then ' (Bex) ¢ N, so that Bey is alone in its box.

Proof. Denote ITj = {a1, ..., } and @; = @ NVect(/1;). Then @; is a root system with basis IT; and
@ = @F N Vect(IT)).
Let us consider the case where @; irreducible. Then we have

Observation 1. If g is a root of <1)j+ of maximal height then g8 € C;.

Proof of Observation 1. Assume that g € C; with i < j. In the Dynkin diagram of @; which is convex
as @; is irreducible, we can construct a path from «; to «j. Denote this path by P = (¢, ..., o),
where i1 =i and i; = j. We know that «; € Supp(8) and that «; ¢ Supp(B). So there is a smallest
index I such that o; € Supp(B) and «;,, ¢ Supp(B). Thus, for all « € Supp(B), we have (o, ;) <0
and, since o, and o, are two consecutive elements from P, we have (a;, o, ,) < 0. We deduce
that, (8, «,,) <O thus g+, € (b;r which contradicts the maximality of the height of 8. O

Observation 2. B¢ is the largest root of @;.

Proof of Observation 2. Let 8 be a largest root in ®;. We assume that S # Bex. By the previous
observation, we know that 8 € C; and, by Proposition 2.2.3, Bex = + sp(f) is a sum of two positive
roots, thus its height is greater than the height of 8. So 8 is equal to Bex.

We note that the existence of an exceptional root implies that @; is not of type A;. So @; is of
type Bj,C;j,Dj, Eg, E7, Eg, F4 or G2 and, we deduce from [Bou68] that the height of the largest root
is odd. Hence it follows from Observation 2. that the height of Bey is odd, so that h’'(Bex) ¢ N.

Let us now assume that @; is reducible. Denote by I'; the Dynkin diagram whose vertices are
ai,...,oj, and whose edges come from the Dynkin diagram of &. We note I1’ the connected com-
ponent of «; in I}, i.e. IT' := {a; € I1; | there exists a path contained in I'; connecting ¢; to «j}. We
note @’ = & NVect(IT'). It is a root system, with basis 7/, and we have ®'T = &+ NVect(IT'). O

Observation 3. C; C ¢'*.

Proof of Observation 3. Otherwise, there is a root in C;\ @'". If B is such a root, there is a simple
root in its support which is also in the set /7; \ IT’. As the support of 8 contains c; € [T’ too, we can
write § =u+ v with u = aj, +- -+, whose support is a subset of I7;\ [T’ and v =0+,
whose support is a subset of I7’. Let us choose B such that the integer | is minimal.

o If I=1, then B =, + V. As o, ¢ IT', there is no link between «;, and the element of Supp(v).
Then s;, (B) = —a, + v € @, which is impossible because the coordinates of this root in the basis
IT do not have the same sign.

e S0 1>2.As (u,u) > 0, there exists a root in Supp(u), for example «;;, such that (u,a;) > 0. As
above:

(vai)=0 = (Bay)>0 = B =p—aeC;j\d'",

which is a contradiction with the minimality of L.

So we can conclude that C; € @'*. Hence C; is an exceptional column of @’ which is irreducible by
construction. The proof above also shows that the exceptional root By satisfies h'(Bex) ¢ N. O

We can now prove that any Lusztig order is a convex order.

Proposition 2.2.6. “ <" is a convex order over @+,
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Proof. Let B1 < B, be two positives roots such that g1 + f, € 7.

e If the two roots 81 and B, do not belong to the same column, then g1 4+ 8, is in the same
column as B;. In this case, neither B, nor B + B are exceptional and h'(81 + B2) = h(B1 + B2) =
h(B1) +h(B2) > h(B2) = h'(B2). Hence we have: p1 < f1 + f2 < 2.

o If the two roots 81 and B, belong to the same column, then 8 4+ B, is an exceptional root. We
deduce from Proposition 2.2.3 that h'(81 + B2) = w Proposition 2.2.5 excludes the case
where h'(B1 + B2) = h'(B1) = h'(B2) because the exceptional root is alone in its box. So we get
W (B1) > W' (B1+ P2) > h'(B2), so that B1 < 1+ B2 < 2. O

Consider a reduced decomposition of wg =s;, 0sj, o---os;, of the longest Weyl word wy. For all
je[1,N], we set Bj:=sj, 08,0 osi;_,(ai;). Then it is well known (cf., for example, [BGO2, 1.5.1])
that {B1,..., B} = @ 7. For each integer j € [1, N], we say that aj; is the simple root associated to the
positive root f;.

We define an order on @* by setting g; < 8; when i < j. We say that “<” is the order associated
to the reduced decomposition wg =s;, oSj, o--- o sj, of wq.

In [Pap94, Theorem and remark p. 662], it is shown that this is a convex order and that this leads
to a one-to-one correspondence between reduced decompositions of wg and convex orders on @ .

Hence, as the Lusztig order “<" is convex, there is a unique reduced decomposition wg = Sif 0S5 0+ 0Sjr.
of wo whose associated order is “<”. In this article, we always choose such a decomposition for wy.

The following proposition of Lusztig [Lus90, Section 4.3] explains the behaviour of the positive
roots inside (non-exceptional) boxes.

Proposition 2.2.7. Inside each ordinary box (box which does not contain the exceptional root), roots are pair-
wise orthogonal. Moreover, simple roots associated to the positive roots of a given box are pairwise orthogonal.

Proof. For the type G, explicit computations leads to the result. We now assume that g is a finite-
dimensional simple Lie algebra which is not of type G,. Recall that the positive roots of a box are
consectutives. Let g1 and B, be two consecutive roots of a box B in the column C;. We note «;; and
«aj, the associated simple roots.

Suppose that «;, is not orthogonal to «;,, hence A = —(aivl,a,-z) =1 or 2 (recall that g is not of
type G2). So we can write B2 = w o s, (aj,) = w(hai, + o,) = AB1 + w(a,).As w(ay,) € @, we must
have A =2, otherwise h(w(«a,)) =h(82) —h(B1) =0, which is absurd.

In this case, y = —w(aj,) =21 — B2 € Cj and h(y) = 2h(B1) — h(B2) =h(B1). As B and B, are
distinct roots, so they are not collinear. So the set @ = & N Vect(B1, B2) is a root system of rank 2
which contains B1, B2, ¥ and their opposites. The equality 287 = y + B2 allows to state that @’ is of
type B and that the situation is the following one:

B2 5 Y

N

So y — p1 € @, with h(y — B1) =h(y) —h(B1) =0. This is impossible, and so o;, La;,.

Then we get (B, B2) = (w(wi,), w(si, (@iy))) = (o, Si; (eti,)) = (o, , ai,) = 0, as desired. This fin-
ishes the case where the two roots are consecutive. One concludes using an induction on the “dis-
tance” between the two roots 81 and 8;. O

Convention. For j € [1,n], denote §; the smallest root of C;. Let us recall that «; is the largest root
of Cj.
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Proposition 2.2.8. §; and «; are alone in their boxes.

Proof. The root «; is alone in its box because it is the only roots of C; whose height is equal to 1.
To prove that §; is alone in its box, we need the following result which can be shown easily by
induction on L.

Lemma 2.2.9. Let 1 <I< Nand 1 <m < n. Set Iy, := {oy, ..., o} If By =si, ...si_, () is in the col-
umn Cp, then a;; € Il for j € [1.1.

Back to the proof of Proposition 2.2.8. There is an integer 1 <I< N such that §; = g =5, osj, o
-- o058, (o). As above, B = oy, +n_qaj_, + - +may, (ne € Z) with «;,, ..., a5 , in ITj_1 since
Bi—1 € Cj_1. As By € Cj, it implies that o, = ;.

If §; (=) is not alone in its box, then ;¢ is also in this box and one has (Proposition 2.2.7)
aj Lo, . By the previous lemma, it implies that o, € ITj\ {oj} = [Tj—q and Bi41 =Sj; 0Sj 0+ 0
Si;_; 0 Siy (i) = Si; 0Si 0 -+~ 08 (@ip,,) =y, +1_ 0, + - +nja;; (ng € Z), which contradicts
the hypothesis g1 €C;. O

Let us recall the following result (see, for example, [Hum78, Lemma 9.4]).

Lemma 2.2.10. Let B and § be two distinct roots of @ such that (8,8) #0.1f (8,8) > 0, then 8 —§ € @. If
(B,8) <0, then B+ 6 € .

Proposition 2.2.11. Let 8 be an ordinary root of a column C ;. Denote (as in the proof of Proposition 2.2.5) by
I'j the diagram whose vertices are a1, . .., aj, and whose edges are the edges from the Dynkin diagram of @.
Denote by £2; the connected component of «j in I'j.

1. If B # «j then there exists € € {o1, ..., aj_1} such that B — € € Cj.
2. Supp B C £2j.
3. If B # §; then there exists € € {«1, ..., aj_1} such that 4+ € € C;j.

The proof of this result is technical and can be found in the ArXiv version of this article [Mér08].
Proposition 2.2.12. Let j € [1,n].

1. If C; is ordinary, then h'(C;) is an interval of the form [1,t].
2. If Cj is exceptional, then h'(C; \ {Bex}) is an interval of the form [1, 2t] (t € N*).

Moreover we have h'(Bex) =t + 1.

Proof. The fact that h'(C;) in the ordinary case (resp. h'(C; \ {Bex}) in the exceptional case) is an
interval of integers comes from Proposition 2.2.11. It contains 1 = h(cj), and so the first case is
proved.

Let us assume that C; is exceptional. Denote by Bi,..., B; the boxes which contain the roots
smaller than Bey for the Lusztig order. For these boxes, we have h'(B;) > h’'(Bex). But the relation
h(B;) + h(B}) = h(Bex), for the image B} of B; by sp, implies h’(B;) > h’(Bex) > h’(B}). So we have
exactly t boxes appearing after Bex and the interval h'(C; \ {Bex}) is of the form [1, 2t] (t € N*).

Moreover h(Bex) =h(oj + sp(aj)) =142t and finally h'(Bex) =t + % O

We now recall the notion of admissible planes introduced by Lusztig in [Lus90, Section 6.1].
Definition 2.2.13. We call admissible plane P := (8, 8’) a plane spanned by two positive roots 8 and

B’ such that: g belongs to an exceptional column C; and g’ =sp(B) is such that |h'(8") —h'(B)|=1.
(In this case B+ B’ = Bex and ' (Bex) =t & %.)
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Or g is an ordinary root in any column C; and g’ = o; with i < j. We set ®p :=® N P and
o=t NP.

Remark 2.2.14. If ®p is of type G, then @ = G, (due to the lengths of the roots).
If @ is not of type Gy then the first condition leads to two different type of admissible planes,
@} is of one of the following types:

Type (1.1) Type (1.2)

B/ Bez Qi ﬁ/ Bez
B B

Ar B>

B> Bex>f B> Bex> B >0

The second condition leads to four types of admissible planes, <I>,f is of one of the following types:

Type (2.1) Type (2.2) Type (2.3) Type (2.4)
. (&%) /8/ ﬁez E
a; Ba B B2 Bs 3
\L; (%]
B1 B o
Ay B> with long «; By with short «; A1 x Aq
B1> P2 > B> Pex > B’ >« B1> P2 > B3 >0q; B >ai

We note that types (1.2) and (2.2) are the same.

3. The quantized enveloping algebra 144 (g)

Let K be a field of characteristic not equal to 2 and 3, and g an element K* which is not a root
of unity. Firstly, we recall definitions about U (g) and qu+ (g) using notations from [Jan96, Chapter 4].
We recall then the Poincaré-Birkhoff-Witt bases of U;(g) construction using Lusztig automorphisms.
There are several ways to construct the so called Lusztig automorphisms, we recall here three different
methods. The Lusztig's one follows [Lus90, Section 3], Jantzen’s one, which is the same as De Concini,
Kac and Procesi, is explained in [Jan96, Section 8.14] and [DCKP95, Section 2.1] and a third one is
necessary to established a link between the two others. We will explain each method and then see
the links between the obtained bases.

3.1. Recalls on Uy (g)

For all a and n integers such that a >n > 0, we set [n]g = i ’q} ) [n]q [nlgln — 1q ... [21q[1]g,

. G e
[n]q ] . Moreover for all w € IT, we set g, =q " 2 .
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Definition 3.1.1.

e The quantized enveloping algebra {f;(g) is the K-algebra with generators Ey, Fy, Ky and Kf;l
(for all @ in IT) and relations (for all o, B € IT):
oo KoKyl=1=K;'Ky, 1<a1<,3 =KgKo, KeEgKy' =q@PEg, Ko FgK ' =q~@P Fg.

Ko — K

oo EyFg —FgEy =64 wp T , where 844 is the Kronecker symbol.

And (for o # B), set aaﬁ = Z(a B)/ (o, ):
1—anp 1—agp
2 W’ [ K ] Eu " EpE} =0, 2y [ W } Fa ' FyF;, =0,
qu qu
. Z/{;'(g) (resp. Uy (g)) is the subalgebra of Uy (g) generated by all Eq (resp. Fy) with o € IT.
Let us recall two important results proven for example in [BG02, Section 1.6].

Theorem 3.1.2. Z/lq+ (g) is Noetherian domain and is graded by Z.& with wt(Ey) = o, Wt(Fy) = —a and
wt(KE1) =0.

3.2. Lusztig’s construction

Definition 3.2.1 (Lusztig’s automorphisms). For all i € [1,n] there is a unique automorphism Ty, of the
algebra Uy (g) such that:

(jelln]) ToEoq=-FuKa, TaFo=-Kg'Eqp  ToKa;=KaKe "
(] # l) TO(,' E()(j — Z ( 1)r 7d,SE(r) Eq] E(S), TO[,' FO[j — Z ( l)rqd,sF(s) FO[j Fé’;)
r+s=—a;j r+s=—ajj

(m . En _ (@j.a) 0‘1)
where Eg, := T and d; =
d;

We now a fix a Lusztig order so that we can use the notations of columns and boxes as in the
Section 2. The following result is given by Lusztig in [Lus90, Section 4.3]:

Proposition 3.2.2. There is a unique map from @ to [1, n], sending g to ig such that the following properties
are satisfied:

1. Sig, and Siz, COmmuite in W whenever 1 and B, are in the same box. Hence, for a box B, the product of
all si, with g € B is a well-defined element s(B) in W, independent of the order of the factors.

2. ig; = j for j € [1,n].

3. IfpeCjandif By, ..., B are the boxes in C; whose elements are strictly greater than f for the Lusztig
order then s(B1)s(B>) .. .s(Bk)(ot,-ﬂ) =B.

We then set wg :=s(B1)s(B2) ...s(By).
We now recall the construction of a PBW basis of Z/{q+ (g) due to Lusztig [Lus90, Theorem 3.2].
Theorem 3.2.3. Let w € W and s;, ...si, be a reduced decomposition of w. Then the automorphism Ty, :=

To,,.] ...T% depends only on w and not on the choice of reduced expression for it. Hence the T, define a
homomorphism of the braid group of W in the group of automorphisms of the algebra U (g).
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Proposition 3.2.4. For all positive roots B, we define Eg := Ty, (Ei,) € @, These elements form a Poincaré-
Birkhoff-Witt basis of Z/{q+ (g) (see [Lus90, Proposition 4.2]).

Notation. If > #/, then we set [Eg, Eg/lg = EgEg — qPP)Eg Ep.

Our aim in the remaining of this paragraph is to exhibit the form of the commutation relation
between two generators E,, and E,/, when y and y’ belong to the same admissible plane P.

We first consider the case where @p(= @ N P) is of type G». In this case, @ is also of type G, and
the commutation relations have been computed in [Lus90, Section 5.2]. This leads us to the following
result.

Proposition 3.2.5. Assume that @ is of type G,. Denote by a1 the short simple root and by o the long
simple root. This is a good numbering of the set of simple roots (see Example 2.1.3). The corresponding reduced
decomposition of wq is 515251525152 (Si = S;) and, describing the roots in the associated convex order, one
has:

@t ={B1 =01, fo =301 + a2, B3 =201 + a2, Ba =31 + 2002, fs = @01 + 2, P = A2}

The first column Cq is reduced to {1}, the second column Cy = {8, B3, Ba, Bs, Be} is exceptional with
Bex = Ba. One has:

[Epy, Eg;lg = AEp, with A # 0, [Eg,, Eg 1l = AE/233 with A # 0, [Egs, Eg 1 = AEg, with A # 0,
[Eﬁs’ Eﬁ1]q = )\.EﬁS with A #0, [Eﬁ3, Eﬁ1]q =)\,Eﬁ2 with A #£ 0 and [EﬂSf Elg3]q =)»Eﬁ4 with A #£ 0.

If @ is not of type G, the commutation relations between the Lusztig’s generators corresponding
to two roots which are in the same admissible plane are known in several cases [Lus90, Section 5.2].
In particular, we have the following relations.

Proposition 3.2.6 (@ not of type G»).

e If P = (B, B’) is an admissible plane of type (1.1), then (bf; ={B, Bex =B + B', B’} and the relations are:
[EIS’ Eﬁ/]q = AEﬂex Wlth A 7é O’ [E/S’ E/sex]q = [E,Bex’ Eﬁ/]q = O

e If P = (B, B') is an admissible plane of type (1.2), then @3 = (B, Bex = B + B, B/, @i} and the relations
are: [Eg, Eg'lq = AEg,, with A #0, [Eg,,, Eq;1q = )\’Eé, with ) #£0, [Eg, Eq;1q = A" Ep with 1" 0,
[Eps Epexlg = [Epes Eprlg =[Ep, Eq;lqg = 0.

e If P = (B, ;) is an admissible plane of type (2.1), then QD; ={B1,B2=p1 + i, o} (B=p1orBy)and
the relations are: [Eg, , Eq;1g = AEg, With A #0, [Eg,, Eg,lg =[Eg,, Ea;1g =0.

e If P = (B, «j) is an admissible plane of type (2.2), then we have the same relations as in type (1.2).

e If P =Vect(B, ;) is an admissible plane of type (2.3), then df);f ={p1, P2 = P1 +ai, B3 = P1 + 204, @j}
(B = B1, B2 or B3) and the relations are: [Eg,, Eq;1qg = AEg, With A #0, [Eg,, Eg,1q = )»'Efgz with 3/ 0,
(Egys Eq;lg = )‘,/Eﬂz with 1" #0, (Eg,: Eg,)g =1[Ep,, Epslg = [Eps, Eq;1g =0.

o If P = (B, «;) is an admissible plane of type (2.4), then @; = {B, a;} with B_La; and, if B is ordinary,
then [Eg, Eq;1g =0.

Corollary 3.2.7. Assume @ is not of type G». Let i, | be two integers such that 1 <i <l<nandn € (:

1. If (n, o) > 0, then [Ey, Ey;]q = 0.

2. Ifn+ai=my withy € & and m € N*, then [Ey, Eq,1g = AET, with 1 € K*.

3. If n =n1 + n2 with n1 and 0y in C; such that h(n1) +1=h(ny) then [Ey,, Ey,1q = AEy, with A € K*.
Proof. P = Vect(n, «;) is an admissible plane of type (2.1), (2.2), (2.3) or (2.4) by definition.

1. P is not of type (2.4) because (1, ;) # 0. We distinguish between three remaining cases.
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e If P is of type (2.1), then with the notations of Remark 2.2.14, we have n = §;, and so the
result follows from Proposition 3.2.6.
o If P is of type (2.2), then we have 1 = g/, and so the result follows from Proposition 3.2.6.
e If P is of type (2.3), then we have n = B3, and so the result follows from Proposition 3.2.6.
2. Since m#0, we have y e PN @ T = qﬁl;", so P is not of type (2.4). We distinguish between three
remaining cases.
e If P is of type (2.1), then we deduce that m=1, n = 8 and y = B, and so the result follows
from Proposition 3.2.6.
o If P is of type (2.2), then there are two possibilities: (n=1, =4 and y = g’) or (m =2,
1= Bex and y = B’). In both cases, the result follows from Proposition 3.2.6.
o If P is of type (2.3), then we have m =1, n = 81 (resp. n = 2) and y = B, (resp. y = f83), and
so the result follows from Proposition 3.2.6.
3. Let us consider the plane P := (11, 12). It is an admissible plane (see Definition 2.2.13) and oF =
{n1,n,n2} (if P is of type 1.1) or {n1,n,n2,a;} with i <[ (if P is of type 1.2). The previous
proposition implies that [Ey, , Ey,1q = AEy, with A € K* in both cases. O

3.3. Jantzen'’s construction

In [Jan96, Section 8.14], a different construction of a PBW basis is explained which also uses the
automorphisms T, (o € 7). For a given reduced decomposition of wo =s;, ...s;,, we know that, for
all B € @7, there exists ig € [1, N] such that 8 =s;, oo Sig—1(ip)-

Definition 3.3.1. Let 8 € &, we set st =i, ...Siz—1 and define Xp:= TW%(Eaiﬂ), Yg:= Tw/ﬂ (F%).
The following result follows from [Jan96, Theorems 4.21 and 8.24].

Theorem 3.3.2.

o Ifa €I, then Xy, = Ey (see [Jan96, Proposition 8.20]).
o The products XE . XEZ (ki € N) form a basis on/{qu(g).
k I nyl l nyl IN yk k !
o The products X\ ...xgg‘,KoT; A Yg ... Yp, (resp. Kol .. Ky Y ...yﬁNngl1 X resp. Y ..
Yfg’jv Kol Ko Xf;] XZ’,VV ), (ki,li € N, m; € Z) form a basis of Uy (g).

The following theorem was proved by Levendorskii and Soibelman [LS91, Proposition 5.5.2] in
a slightly different case. One can find other formulations in the literature (several containing small
mistakes). That is why we give a proof of this result in [Mér08, Section 3.3]. We make this proof
essentially by rewriting the one from [LS91, Proposition 5.5.2].

Theorem 3.3.3 (of Levendorskii and Soibelman). If i and j are two integers such that 1 <i < j < N, then we
have

B N . k k
Xp Xp, —q PP Xg Xp = > ey Xy Xphs
Bi<y1<--<Vp<Bj
p=>1, k,‘EN

) k
where Cky e Kand Cky ;zéOonlylfwt(Xl;,} ...Xy‘;) =k X144 kp X ¥p = Bi + Bj.

3.4. Commutation relations between X,, in admissible planes

The goal of this section is to show that the X, satisfy analogous relations to the E, (see Sec-
tion 3.2). In order to achieve this aim, we start by introducing an intermediate generating system.
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3.4.1. Construction of a third generating system
Let us recall the following well-known result:

Lemma 3.4.1. (See [Jan96, Section 4.6].)

1. There is a unique automorphism w of Uy (g) such that w(Eq) = Fg, @(Fy) = Eq and w(Ky) = K(f. One
has w? =1.

2. There is a unique anti-automorphism t of Uy (g) such that T(Ey) = Eg, T(Fy) = Fo and T(Ky) = Kojl.
One has T2 =1.

Convention.

e Let i be an integer of [1,n]. And set Ty, := 7 o Ty, o T. This is an automorphism of U4 (g) which
satisfies the following conditions:

Ty Eqy =Ko Fo ThFoy = —EaKay. ThKa; =KaKe,” (j€[1.0])

and for j#i:

ThEay= . (~1DqWEQEES) and T, Fuy= > (—=1)'q %Fy FyFS).

r+s=—a;j r4s=—a;j

e If wp € W has a reduced decomposition given by wp =s;, ...s;,, then we set T",\,p =ToTy,oT.
We have T, = T[)(ll "'T&i,,-
e If e, then we set wg =sj, ...5;,—1 and we define X} := T’Wﬁ (Eafﬁ) and Yé, i=Tw, (Fa,.ﬂ).

One has X, = E4 and Y, = F, for o € I1.

The theorem of Levendorskii and Soibelman can be rewritten as below. The proof can be found in
[Mér08, Section 3.4]:

Proposition 3.4.2. If i and j are two integers such that 1 <i < j < N then we have
—(Bi,Bi) ’ 1k ’kp
X, Xp, —q~ PP X Xfy = > Cp X Xy,

12!
Bi<yvi<--<yp<Bj
p=>1, kieN

1

WlthckyeKandcky;éOonlylfwt(X/kl.. ,yp)_l<1><)/1+ ~+kp x yp=Bi+ Bj.

3.4.2. Relations between Eg and X//S

As in previous sections, @1 is provided with a given Lusztig order associated to a reduced decom-
position of wo =s;, ...s;,. In this case, we can improve the theorem of Levendorskil and Soibelman.

Theorem 3.4.3. If i and j are two integers such that 1 <i < j < N, then one has:

1oyt —BiB) Y v 1k /kp
Xﬁixﬂj q ! Xﬂjxﬁi - Z Ck yXV1] : X
Bi<y1<-<yp<Bj

!
The monomials on the left-hand side whose coefficient Ck — is not equal to zero satisfies: wt(X/k‘ .. /(") =

Bi + Bj; y1 is not in the same box as B; and ) is not in the same box as B;.
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The proof of this theorem is essentially based on the following result:

Lemma 3.44. Let B ={By, ..., Bp1} be a box and o, ..., i, be the corresponding simple roots. Then
Vk € [0, 1], we have:

! / /
T apiger tepperr T Yipy

(ED[,' )

/
=T, .
p p+k

T, ...T. (Ea: ) =Egy
Qip iyt iptk ip

+k
Proof. We already know that if oy and o are two simple orthogonal roots, then Ty, (Ey,) = Eq, =
T(Eg,), hence T(’),1 (Eqy) =Eq,. As iy, ..., o, are orthogonal to each others by Proposition 2.2.7, the
formulas above are proved. O

Proof of Theorem 3.4.3. The first point is provided by Proposition 3.4.2. If in the reduced decomposi-
tion of wg, we change the order of the reflexions associated to the simple roots coming from a single
box B, we find a new reduced decomposition of wq. The positive roots of B constructed with this
new decomposition of wg are permuted as the simple roots are but the other roots are not moved.
By the previous lemma, the X/, B € B, are also permuted in the same way but are not modified, and
the X;,, y ¢ B, are not modified. Thus, without lost of generality, we can assume that §; is maximal
in its box and that g; is minimal in its box. As a result, if §; < y1 <--- < yp < Bj, then y; is not in
the same box as g; and y, is not in the same box as ;. O

Remark 3.4.5. The proof of the previous theorem can be rewritten with the elements Xg(8 € @) so
that we also apply Theorem 3.4.3 to those elements.

)

We can now establish a link between the Xj's and the Eg’s.

Theorem 3.4.6.
VBed™, Ing €K\ {0} suchthat Xj=xgEp.

Proof. Let B and B’ be two positive roots such that 8 > B'. Set [X/, X:g,]q = X//SX%, —q(ﬂ"s/)X’,X"g.
Let us deal first with the case where @ is of type G,. We keep the conventions of Proposition 3.2.5.

It is Il]<r10wr1 (Conventions 3.4.1) that, since 1 and Sg are simple, one has X/’31 =Eg, and X"% = Epg;s.
Thus

(X X ]y = (B EpJg = AEpy with i €

By Theorem 3.4.3, one also has [X%G, X%l]q = ngs with u € K and, then, X}g = Ags Egs with Ags € K*.

It implies that [X}_, Xj lg = Ags[Egs, Ep g = VEg, with v € K*. We deduce as above that X} =
ApsEp, with Apy € KX

Using the same method and considering [X}_, X lg = Ap;[Ep;, Ep, 1q, one proves that Xj =g, Eg,
with 1g, € K*.

At last, one has [Xj , Xj lg = Apshp;[Eps, Epylg = vEg, with v € K*, so it implies that X =
)\ﬁ4Eﬁ4 with )»54 e K*.

Suppose now that @ is of type G, and consider a column C; (t € [1,n]). We just prove the
theorem for all the roots of C;.

We first study the case of ordinary roots.

Let 8 € C; be an ordinary root. Let us prove the result by induction on h(g).

If h(B) =1, then B = oy and as above X;, = Eq,.

Assume h(B) > 1 and the result proved for all § € C; an ordinary root such that h(8) < h(B8). By
Proposition 2.2.11, there is a simple root «; (i <t) such that 8 — a; =y € C;. Moreover, y is ordinary
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because, if it is not the case 8 =y + «; would be exceptional which contradicts the uniqueness of an
exceptional root in a column. So P := {(«;, 8) is an admissible plane of type (2.1), (2.2) or (2.3) and
then [E,, Eq;]qg =CcEp (c € K\ {0}) (see Section 3.2).

As h(y) =h(B) — 1 < h(B), one has X;, =iyEy (A € K\ {0}), and as Ey; = X[Xi, one has:

[X}. X, ], =y [Ey. Ea;lq = Ay cEg.

By Theorem 3.4.3, Eg is a linear combination of monomials Xgl ...ng with o <81 <--- <8 <y, &
not in the same box as y, §; not in the same box as «; and

Si4 -4 =ai+y =5 (%)

For all monomials, §s € C; and & is ordinary (because B8 € C; and B is ordinary). As §s < ¥ and &
does not belong to the same box as y, one has h(d;) > h(y). Hence h(§s) > h(B), so that s=1 and
81 = B. This implies Eg = aX}} with a € K\ {0}, and the result is proved.

Let us now assume that g is the exceptional root of C;. Let y be the root of C; which precedes
B in the Lusztig order and let § =sp(y), so that § + y = B (see Fig. 1). By Proposition 2.2.12, one
has h'(B) =m + % with m € N* and h'(C;) = [1,2m]. If B is the box in C; which precedes g, then
h’'(B) =h(B) =t + 1. As B is alone in its box, we have y € B, so that h(y) =m + 1. Hence h(§) =m.
Thus P = Vect(y,d) is an admissible plane of type (1.1) or (1.2), and [Es, E)]q = cEg(c # 0) (see
Section 3.2).

As y and § are ordinary roots, we already know that X;, =XyEy, and X§=2xsEs with A, # 0 and
As # 0. Thus, one has:

[X5, x;]q =AyAs[Es, Eylqg=AyAsCEg (Ay # 0,15 #0).

As above, Eg is a linear combination of monomials Xél ...X(’Ss with y <81 <--- <& <4, § not
in the same box as § and §; not in the same box as y. As g is the only root of C; which satisfies
y < B <34, B is not in the same box as § and B is not in the same box as y. Hence s=1 and §; = 8.
So that Eg :aX/’3 with a e K\ {0}. O

From Theorems 3.4.3 and 3.4.6, we deduce the following result.

Corollary 3.4.7.If i and j are two integers such that 1 <i < j < N, one has:

—\Pi,Pj e k k
EgEp —q PrPVEg Eg = > CoyEn - Eyp-
Bi<vi<-<yp<p;
p>1, kieN

kp

The monomials on the left-hand side whose coefficient C;_( 5 is not equal to zero satisfies: wt(X;,':' Xy )=

Bi + Bj; 1 is not in the same box as B; and ) is not in the same box as ;.
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3.4.3. Link with Jantzen’s construction

Proposition 3.4.8. Let 81 < 2 be two positive roots.

1. IfEg Epy —q~ PPV Eg, Ep =KE] (k#0,m>1andy € &%), then Xg, Xp, —qtF1-P2) X g, X5, =K' X}

(K" #0).
2. If Eg Ep, — q~P1-PYEg Ep = KE Es (k #0,y,8 € @,y and § belonging to the same box), then
Xp, Xp, —qTPrPI Xy Xg =K Xy X5 (K #0).

Proof. Let 8 € @7. Let us recall (see Section 3.4.1) that Xg :=T,, (Eaiﬂ) X’ = T/ , (Ea,. ), and that
Tw L =To T W, oT.So we have Xg=7oT/ W) o ‘L'(Eal )= ‘r(X ). Let us also recall (see Theorem 3.4.6)

that X —AﬂEﬁ with g € K*.
Let /31 < B2 be two positive roots.

1. If Eg Ep, —q~PrFPIEg Eg =KE) (k#0,y € ®%), then:

X Xy =0 X5 X = (X ) (Xp) = 0T8T 08
= 7'—(X;fz Xl/gl - q+(ﬁ1’ﬁ2)xl/‘31 X//92)
— —q+(’31'ﬁ2)f(xf31 X,/sz — q_(ﬂl’ﬂZ)ng X;/‘h)
— —q+(51’ﬁ2))»ﬁ1)~5275(5/31 Eg, — q*(ﬁ1,ﬂ2)5ﬂ2 Eﬂl)
=—q" PP g 0p,T(KEY)

—gtBrB) ), 2ak
= PR (X)) =KX withK e K",
P v 7

2. If Eg Eg, —q 1P Eg Ep =KE,Es (k#0,y,8 € ®*,y and § belonging two the same box) so
by doing the same computations as in 1., we obtain:

Xp, Xp, —q PP Xp, X, =K T(X), X5) =K' X5X, (K #0).

As y and § are in the same box, we know (see Proposition 2.2.7) that (8, y) =0, so that, by
Theorem 3.3.3, we get X, Xs = Xy X5, as desired. O

4. Deleting derivations in 2/ (g)

4.1. Uy (g) is a CGL extension

In this section, we set A :=U(g), X := Xp, for 1 <i <N, and % j :=q ¥i-A) for 1<i, j<N
We know from Proposition 3.3.3 that if1<i<j<N, then one has:

XiXi—21jiXiXj=Pj; (1)
with
kj 1

kiy1 -
Pj,i = Z Clle‘-l‘r] "'Xj—l B (2)
k=(kit1,....kj—1)
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where c;, € K. Moreover, as Z/{q+ (g) is @-gradued, one has

GAO = A LA =gy forall1<ISN. 3)

Thus, A satisfies [Cau03a, Hypothesis 6.1.1]. From Theorem 3.3.2, ordered monomials in X; are a basis
of A, so that we deduce from [Cau03a, Proposition 6.1.1]:

Proposition 4.1.1.

1. Ais skew polynomial ring which could be expressed as:

A =K[X11[X2; 02,82]...[XN; ON, ON],

where the o's are K-linear automorphisms and the §;’s are K-linear o’j-derivations such that, for 1 <
i<j<N,0j(X;)=ArjiX;and 6;(X;) =Pj;.

2. If1 <m < N, then there is a (unique) automorphism hy, of the algebra A which satisfies hy (Xi) = Am.i Xi
for1 <i<N.

Moreover, we deduce from [Cau03a, Proposition 6.1.2] the following result.

Proposition 4.1.2.

1. A satisfies conventions from [Cau03a, Section 3.1], that is to say:
e Forall j € [2,N], o} is a K-linear automorphism and §; is a K-linear (left sided) o j-derivation and
locally nilpotent.
e Forall j € [2,N], one has oj o 8; = q;8; o oj with q; = Aj.j = q~ "8I, and for all i € [1, j — 1],
oj(Xi) = AjiXi.
e Noneof the q; (2 < j < N)is a root of unity.
2. A satisfies [Cau03a, Hypothesis 4.1.2], that is to say:
The subgroup H of the automorphisms group of A generated by the elements h; satisfies:
e Forall hin H, the indeterminates X1, ..., Xy are h-eigenvectors.
o The set {) € K* | (3h € H) h(X1) = A X4} is infinite.
e Ifm € [[2, N, there is hyy € H such that hp(X;) = Am,i Xi if 1 <i <mand hyp(Xm) = gmXm.

The previous proposition shows that L[cjr (g) is a CGL extension in the sens of [LLRO6] and so allows
us to apply the deleting derivation theory [Cau03a]. We describe this theory in the following section.

4.2. The deleting derivation algorithm

It follows from Propositions 4.1.1 and 4.1.2, that A is an integral domain which is Noetherian.
Denote by F its fields of fraction. We define, by induction, the families X® = (Xi(l))lgig N of elements
of F*:=F\ {0}, and the algebras A® := K(Xg'),..‘,XI(\?) when | decreases from N + 1 to 2 as in
[Cau03a, Section 3.2]. So we have for all I € [2, N + 1]:

Lemma4.2.1.If1 <i < j < N, one has:
[OFVI0] ) 5D 0]
Xj X;" = AjiX; Xj _Pj,i (4)

with
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0 ifji=l
P = { (5)

1 ; 1 : .
foz(kiﬂ ,,,,, kj—1) C]_((X,(+)1 )kH’l s (X;zl)kkl ifj<l,
where cj, are the same as in the formula (2), so that we also have the implication (3).

Proof. See [Cau03a, Théoréme 3.2.1]. O

0}
10

Lemma 4.2.2. The ordered monomials on X . X,(\g) form a basis A as a K-vectorial space.

Proof. See [Cau03a, Théoréme 3.2.1]. O
From Lemmas 4.2.1 and 4.2.2 above and from [Cau03a, Proposition 6.1.1], we deduce that:
Lemma 4.2.3.
1. AD is an iterated ore extension which can be written:
40 KXY 0,60 . [X: 00

where aj(') are K-linear automorphisms and 8;') are K-linear (left sided) aj(l)—derivations such that, for
. 1), { 1)yl !
1<i<j<N, aj()(Xi()) =2;iX" and 5})(xf>) =P

2. AD is the K algebra generated by the elements X(l), ey Xﬁ) with relations (4).

Let us recall that the automorphisms h;, (1 <m < N) of the algebra A defined in Proposition 4.1.1
can be extended (uniquely) in automorphisms, also denoted by hy,, of the field F.

Lemma 4.24.1f1 <m,i <N, one has hy, (X,.a)) = )\m,iX,.(l) so that hy, induces (by restriction) an automor-
phism of the algebra A®, denoted by h').

Proof. See [Cau03a, Lemme 4.2.1]. O

Convention. Denote by H? the subgroup of the automorphism group of A® generated by h{’ (1 <
m < N).

By [Cau03a, Proposition 6.1.2], one has:

Lemma 4.2.5. The iterated Ore extension A? = K[x§’)][x§’); 02('), 6;1)] XV U,f,l), 8,(\5)] satisfies the con-
ventions of [Cau03a, Section 3.1] with, as above, A; j = q~ %A1 and q; = A; ; = g8 for1<i, j < N.It
also satisfies the Hypothesis 4.1.2 of [Cau03a] with H® replacing H.

Corollary 4.2.6. If ] is an HO -prime ideal of AY in the sense of [BG02, 111.9], then J is completely prime.

Proof. One has:

o AD = K[Xgl)][Xg); 02(1), 8;1)] ... [X,(V'); G,(V'), 8,(\5)] is an iterated Ore extension by Lemma 4.2.3.
o X%l), X;'), s X,(\? are H"-eigenvectors by Lemma 4.2.4.
; ; By®Dy _ 5y _ Dy D) By _ oD s L
e If 1<i< j<N, then one has h; (Xj ) =AjiX; =0; (X;”) and hj (Xj )_q]Xj with q; =
Aj j € K* is not a root of unity by Lemmas 4.2.3 and 4.2.4.

Hence we deduce from [BG02, Theorem I1.5.12] that J is completely prime. O
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From the construction of the deleting algorithm (see [Cau03a, Section 3.2]), one has:

Lemma 4.2.7.

1 X,.(N“) = X; forallie [1,N].
2. If2<I< Nandifie [1, N], one has

i(l+1) ifi >1,

1—q) " o(+1 I+1), — I+1 I4+1)y — o
Ao TR 6 o (e T TN i <L

X = (6)

Lemma 4.2.8. Let | be an H"-invariant (two sided) ideal of A?. Let us consider an integer j € [2, N] and de-
note by B = K[X%l)][x(’); 02(1)7 (Sg)] ... [Xj.’il; oj(’_>1, 8}111] the subalgebra of AY generated by Xgl), o X;IL.

Then oj(’)(B NJ)=BnNJand 5;”(3 NJycBNJ.
Proof. By Lemmas 4.2.3 and 4.2.4, one has for 1 <i < j,
OOy _y . O _ OO
o (X)) =2jiX;” =h (X;7). (7)

As a result, for all b € B, a;l) (b) = h;’) (b). As J is H®-invariant, and as B is 0;1)-invariant, we deduce

that, for all b€ BN J, we have o/’ (b) € BN J. So, 0{" (BN J) C BN J. From the equality (7), we get
that:

Hy—1 1 — I Hy—1 )
@) () =2 1X0 = (0%) 7 (X0). Q

As above, we deduce that (oj(l))‘1 (BN J)c BN J, so that aja)(B NJy=BnN].
Finally, if b € BN J, then we have 8](.1) (b) = X;l)b — O'j(l) (b)X;l) eBNJ. O

If 1 €[2,N], then it follows from (6) that Xl(l) = X,(’+1). This element is a nonzero element
which belongs to the two algebras AQ and AUV (recall that none of the Xl.(l) is null). So, the set

Spi= {(X,(l))l’ | p € N} is a multiplicative system of regular elements of A and A%V, From [Cau03a,
Theorem 3.2.1], we deduce:

Lemma 4.2.9. Let | € [2, N]. Then S; is an Ore set in A® and also in A®+1), Moreover, one has:
ADSTT = AG+D 5T
4.3. Prime spectrum and diagrams

Let us recall that the convention are X; = Xg, for 1 <i < N. Denote A :=A® =K(Tg,,..., Tgy)

with Tg, = Xi(z) for all i. By Lemmas 4.2.1 and 4.2.3, A is the quantum affine space generated by Tg;
(1 <i< N) with relations Tp;Tp =2;iTpTg; for 1<i< j<N.
Let us consider an integer | € [2, N] and a prime ideal P € Spec(AU+D),

e Assume X,(I‘H) ¢ P. Then, by [Cau03a, Lemmas 4.2.2 and 4.3.1], we have SN P =@ and Q :=
AD N PS! e Spec(AD).
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e Assume XI(IH) € P. Then, by [Cau03a, Lemma 4.3.2], there is a (unique) surjective algebra homo-
morphism

which satisfies, for all i, g(Xi(l)) = Xi(l’q) (:= Xi(l’q) + (PHD)), so that Q = gq(ﬁ) €
1

Spec(AD).
We define this way a map ¢; : Spec(A“tD) — Spec(A?®) that maps P to Q and, by composing

these maps, we obtain a map ¢ = ¢, o --- o ¢n: Spec(A) — Spec(A). By [Cau03a, Proposition 4.3.1],
one has:

Lemma 4.3.1. Each ¢; (2 <1< N)is injective, so that ¢ is injective.
We can now define the notion of diagrams and Cauchon diagrams.
Definition 4.3.2.
1. We call diagram a subset A of the set of positive roots @*, and we note:
Specy (A) :={Q eSpec(A) | Q N{Ty,, ..., Tgy} ={Tp | B € A}}.

2. A diagram A is a Cauchon diagram if there is P e Spec(A) such that ¢ (P) e Spec, (A), that is to
say, if (P)N{Tg,,...,Tgy} ={Tg | B € A}. In this case, we set

Specy (A) = {P € Spec(A) | ¢(P) € Spec, (A)}.
By [Cau03a, Theorems 5.1.1, 5.5.1 and 5.5.2], we have:

Proposition 4.3.3.

1. If A is a Cauchon diagram, then ¢ (Spec, (A)) = Spec, (A) and ¢ induced a bi-increasing homeomor-
phism from Spec (A) onto Spec, (A).

2. The family Specp (A) (with A Cauchon diagram) coincide with the Goodearl-Letzter H-stratification of
Spec(A) [BG02].

In the following section, we describe more precisely Cauchon Diagrams. In order to do this, the
criteria in the next proposition will be needed.

Proposition 4.3.4. Let P'™ be an H-prime ideal of A™. P(™ e Im(¢p,) if and only if one of two following
conditions is satisfied.

(m) (m)
1 X9 ¢ pom,
2. X" € P™ and @™ @XM ) € PM for 1< i <m — 1 (where 557V (x™) =
POED (XD L XSMD) (Lemma 4.21) and @™ KXY xIMD) 5 k™LX
is the homomorphism which send Xl(m“) to X,(m) ).

Proof. Assume that P e Im(¢m), so that PM™ = ¢, (P™tD) with PM+D ¢ Spec(A™M+D), and
assume that condition 1. is not satisfied. This implies that P™ = ker(g) where g : A™ —
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AMED/pm+D) s the homomorphism which sends X™ to x™*V .= x4 pmh et 1 <
i <m— 1. Recall that 8"V (x™ ) = P<"‘+”(x<m+”, ..,x;ﬁﬁ”) and that @™ : k(x™D
Xf:lﬁ”) — k(X%m),...,Xr(nm_)l) is the homomorphism which transforms each X,(mﬂ) in X,(m). Since
XM e pm e have XD ¢ pm+1 [Cau03a, Proposition 4.3.1] and so, S(m“)(Xme)) e pmt),
Now, we have g(@™ (5" (X[™*))) = g(@™ (P (x(T V. ... X\ D)) = g(PUV(x(T. L
X0y = PO D XYy = PO (Y XYY 4 p@+D = 0, This implies that
@ m (simt ”(x,.(”1+ ”)) € ker(g) = P,
If condition 1. is satisfied, then P™ & Im(¢pn) by [Cau03a, Lemma 4.3.1].

Assume that condition 2. is satisfied. Let 1 <i <m — 1. Then we have, as previously, anmf 1)(Xi(fi,

LX) =Mt (x{MY)) e PM. So, in Q<m> =AM /P we have PIHV (T, ... X)) =
O

Since P(m) =0 (see Lemma 4.2.1), we can write x#f)x(m) Am.iX (m) XM = P(m) (xfT;,... (m) D=
0= P(’"“)(xf’"{,..., X y).

If 1 <i<j—1 with j#m, it follows from Lemma 4.2.1 that:

(m),,(m) (m) (m) (m) (m) (m) _ pm+1) ( (m) (m)
Xi X = X sz(mv-“ - 1)—Pj,i (Xi+1""’xjf1)'

So, by the universal property of algebras defined by generators and relations, there exists a (unique)
homomorphism € : A™+D — Q M which sends X,(mH) to Xl(m> for all I. This homomorphism is sur-

jective, and its kernel ker(e) = P+ is a prime ideal of AM+D. We observe that, since X\™ e pm,
we have X"V ¢ pm+1) and that € induces an automorphism

€: A(m+1)/p(m+1) — Q(m) — A(m)/p(m)

which sends x™ ™ to x™ for all I. Recall that fm : A™ — A /P(™ denotes the canonical homo-
morphism. So, g = (€)1 o f : A — AM+D /pMm+D) j5 the homomorphism which sends Xl(m) to
xl(mH) for all I. As ker(g) = ker(fi;) = P™, we conclude that P = ¢, (PM™*D), as desired. O

5. Cauchon diagrams in U (g)

In [Cau03b], Cauchon uses a combinatorial tool to describe “admissible diagrams” (which are called
“Cauchon diagrams” here) for the algebra 04(My(k)) of quantum matrices. Thanks to Lusztig admis-
sible planes theory (see Section 3.2), results from Section 3.3 and the deleting derivation theory, we
describe those diagrams for Z/l(;r(g) (where g is a simple Lie algebra of finite dimension over C). The
goal of this section is to prove the following statement:

Theorem. A diagram A C @7 satisfies all the implications from admissible planes (to be defined) if and only
if A is a Cauchon diagram (in the sense of Definition 4.3.2).

5.1. Implications in a diagram
Lemma 5.1.1. Let j € [1, N], [ € [2, N], P“D be a prime ideal of AV and PO := g (P4+D),

1. IfX(’H) e PUD then X“) e pO,
2. IfX(IH) X(l) (this lsmpartlcular the caseif j > 1), then one has: X;Hl) e P™D ifand only ifX;.') e PO,

Proof. The second point can be shown as in [Cau03a, Lemma 4.3.4]. Let us show the first point when
i<l
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1st case: The pivot (in reference to Gaussian elimination) @ := X,(IH) belongs to P¢+D, Recall (see
Section 4.2) that there is a surjective homomorphism of algebra

AU+D

- AD
g:A _)(’P(’H))

which satisfies g(X{") = X" (:= X[V + (PH+D)) for all i e [1,N]. As X{* e pt+D),

) pl+1) pl+1) . pQ)
one has g(x") e , =: PY.
8( j ) (XIUH)) (XI““)))

2nd case: The pivot @ = XI(IH) does not belongs to PU*D, Set S;:= {zw" | n € N}. Recall (see Sec-
tion 4.2) that we have PO = AO 0 (PG5 T,
Set J := Mpeyesn h(PHD) and observe that J is an H**V-invariant two-sided ideal by
construction. As AUtD [Cau03a, Hypothesis 4.1.2] by Lemma 4.2.5, X;lﬂ) is an HHD-
eigenvector. Thus, since X;m) belongs to PU*+D it also belongs to J.
From Lemma 4.2.8, we deduce that (él(lﬂ))” o (UI(IH))*”(X;'H)) e JcP®D forall neN.
As a result, we get:

so that Xj.’) egI(

) Xra—gp™ (1)1 (41— [ (1+1) (+1)\—n
_ - + +1)\— + +1)\— (+1) 1
X = 2| e O o ol J k) e P

Thus, X" € AO N (PHDS ) = PO, [

Lemma 5.1.2. Let | € [2, N] and PV be a prime ideal of AV, Consider an integer j with 2 < j <l and
set PO =gjo---og(PHD).

1. Assume that g; is in the same box as fj or in the box before f;’s one. Then
o XUV Z XU L x4,

. (X;j'H) c p(j+l)) = (X](,j+2) c p(f+2)) == (X](,1+l) c p(l+1))_
2. Assume that the boxes B and B’ of Bj and pj (respectively) are separated by a box B” containing a unique
element Be such that XV € P©+D_ Then (X;”]) e pUtD) = (X;.l“) e pl+h),

Proof.

1. Let k € [j + 1,1] so that B is, in the same box as fj, or in the same box as B;. As these
boxes are consecutive or equal, one has X X;j = g~ %8 XXy, so that by Lemma 4.2.1, we have

X,ﬁkﬂ)xj.k“) :q—<ﬂk,ﬁj>x§k+l)xlg"+l). So one has 8,£’<+1)(X;."+1)) =0 and, by [Cau03a, Section 3.2],
we get:

+00
X =3 a8 ) o () (X ()
s=0

+00
_ Zk;(8;k+l))s(X;-kJrl))(X,EkJrl))_s _ X;k+]) (hs, )\.; e K).
s=0

This shows the first point. The second point follows from Lemma 5.1.1.



A. Mériaux / Journal of Algebra 323 (2010) 1060-1097 1081

2. As B and B” are consecutive, 1. implies that X}Hl) —- = X;,e“) and that (x}(jﬂ) e pU+Dy =

= (X;.H]) € P@*+D) 1t just remains to show that Xj.k) e p® = X}"H) e P®D fore+1 <k <.
We do that by induction on k. As in the previous point, we have

+0o0
X = X001 3 a6 0 () () () (s e,
s=1

o If 8,£"+1)(X;k+1)) =0, then one has X¥ = XEk“) and we conclude thanks to Lemma 5.1.1.

e Otherwise, one has 8,5k+1)(X§.k+”) = 2X*ym (m e N*, » € K*) by Lemma 4.2.1 and, as B’ and
B” are consecutive,

8’(</<+1)(Xék+1)) -0 = ((Slgk+1))s(x§k+1)) _ A(slgkﬂ))sq ((Xél<+1))m) —0 fors=1
= X0 =xE L (xE)T ()T with 2 e K

Ak+1)
(p(k+1>)

oo If X,'EH € P®*D | then consider the homomorphism g: A® — which satisfies

Ry _ yk+1) okt D) k+1 i i iti
g(X) = X; (=X + (P*+1Dy) for i € [1,N] (see Section 4.2). By definition of

& (see [Cau03a, Notation 4.3.1.]), one has P® = g_l((i((’,:l;))- So X;k) epP® = g(X}lo) =
k
W pk+1) (k+1) (k+1)
Xj o, = X e P
ee By 1, one has X"V =... = X = x¥*V and (xETV e PeD) = o (P € PW) >

(X&) e pltD) set, as in [Cau03a, Theorem 3.2.1], S := {(X"")" | n e N} so that
P+ = Ak+D n (p®s 1) by definition of ¢ [Cau03a, Notation 4.3.1]. Then one has
X§k+]) — X;k) _ )\'/(Xf(flc+l))m(xl(<lc+l))71 _ X;-k) _ A/(X(gk))m(xlgk+l))71 c P(k)sk_l. As X;k+1) is

also in A®*+D one has Xj.kﬂ) e P*+D | 35 claimed. O

We use [Cau03a, Proposition 5.2.1] to determine the shape of Cauchon diagrams. Let us rewrite
this proposition in our notation:

Proposition 5.1.3. Let A be a Cauchon diagram and let P € Spec(A). The ideal P belongs to Specy (A) if and
only if it satisfies the following criteria:

(Ve [1,N]) (X"VeP®V & gen).
We can now prove the following proposition.
Proposition 5.1.4. Let A be a Cauchon diagram and B; € A (1 <1< N). Assume there is an integer k €

[1.1—1] such that X5 Xg, —q~ PP Xp X5 = cXp, ... Xp, withc e K*,s>Tandk <iy <--- <is <.
Then one of the B;, (1 <r < s) belongs to A.

Proof. Let P € Spec, (A). By Lemma 4.2.1, one has:

(1) oD _ (B B) 3 (D) o (1) _ 5 (1) +1) . _
X TUX T =g PO X X =Xy X =M.

By Proposition 5.1.3, one has XI(IH) e PUtD 5o that M € PTD. As pU+D js a prime ideal of AHD,
we know by [BG02, 11.6.9] that PU+D is completely prime, so that there exists r € [1,s] such that
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Xgiﬂ) e P+, By Lemma 5.1.1, we deduce that Xl.(:rﬂ) e P+ and, by Proposition 5.1.3, we obtain
Bi.€eA. O

Convention. We say that a diagram A satisfies the implication

1. Bj, — Bjy if (Bj, € A) = (Bj, € A).

/BJI

’

g, if (Bjy € A) = (Bj; € A) or ... or (Bj; € A).
Proposition 5.1.4 can be rewritten as follows:

Proposition 5.1.5. Let A be a Cauchon diagram and B; € A (1 <1< N). Assume that there exists an integer

ke [1,1—1] such that X X, —q~ PO Xg Xg = cXg! ... X" withc e K, s> 1,k <iy <-- <is <l
1‘1 s
andmq,...,ms € N*.

1. If s =1, then the solid arrow g — pB;, is an implication.

2. If s > 2, then the system T~ Bi of dashed arrows is an implication.
In the three following propositions, denotes by A a Cauchon diagram.

Proposition 5.1.6. Let 1 <! <nand B € C,. If there exists i € [1,1 — 1] such that 8 + o; = mp’ withm € N*
and B’ € @+, then B — B’ is an implication.

Proof. We know (see Proposition 3.2.5 when & is of type G;, Corollary 3.2.7 when & is not of
type G) that we have in this case a commutation relation of the type EgEq, — g%V Ey Eg = kEF,
with k # 0 (where E,, are defined in Section 3.2).

Then, it follows from Proposition 3.4.8 that XsXo, —q~ %)X, Xp = K'X}, with k' # 0. So we
deduce from Proposition 5.1.5 that 8 — g’ is an implication. O

Proposition 5.1.7. Let C; (1 <[ < n) be an exceptional column. If B € C; is in the box following the box of the
exceptional root Bey, then B — Bex is an implication.

Proof. Suppose first that @ is of type G,. With the notation of Proposition 3.2.5, one has [ = 2,
Bex = Ba, B = B5 and one has a commutation formula of the type Ep Eg, —q'$3-f5)Eg, Eg. = kEp, with
k € K*. It implies, by Proposition 5.1.5 that 8 = 85 — Bex = B4 is an implication.

Suppose now that @ is not of type G,. We know (see Proposition 2.2.12) that h'(Bex) =t + %
(t e N*), so that h’(8) = h(B) =t. We also know (see Proposition 2.2.3) that if D = Vect(Bex), one has
B =5p(B) = Bex — B € (y, so that W' (B") =h(B') =h(Bex) —h(B) =t + 1. As a result, P = Vect(B, B') is
an admissible plane of type (1.1) or (1.2). So, by Proposition 3.2.6, we have a commutation relation of
the type EgEg —q#F)Eg Eg =kEg,, with k0. As in Proposition 5.1.6, this implies that  — ey is
an implication. O

Proposition 5.1.8. Let C; (1 <1< n) be an exceptional column and Bex be its exceptional root. Assume that
there exists i € [1,I[ such that ex + i = B{ + B, with B;, # B;, in the box which precedes Bex. Then the

/
_ B,
-

Bex <
system T~ B of dashed arrows is an implication.
b}
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Proof. As, by hypothesis, /Si’l *+ ﬂi’z are in the box preceding the box of By, the root system is not of
type G, (see Proposition 3.2.5).

As in the proof of Proposition 5.1.6, it is enough to prove that: [Eg,, Eqlq := EgyEa; —
qUex®DEy Ep = )‘Eﬂf’l Eﬂi/z with A € K*. Recall from Proposition 2.2.3 that fexLo;, so that:

(cvis B, + Bi,) = (@i, fex + i) = lli|* = (e, Bf,) > O or (e, B7,) > 0.

We can assume, without loss of generality, that («;, ,31./2) > 0, so that (Corollary 3.2.7) [Eg , Eq;1g = 0.
2
As in the proof of the previous proposition, one has:

o W(Bex)=t+% (teN*)and (B ) =h(B])=t+1,
e Bi, =sp(B]) and Bj, =sp(B;,) belong to C; and satisfy h'(B;,) =h'(Bi,) =t,
bz F1y) Epy Ep, =KEg With k£0. ()

By definition of f;,, one has fex = Bi, + B;,, so that f] + B}, = Bex+i = Bi, + B, +oti = B, = pi, +ti.
Thus, by Corollary 3.2.7, we have [E,g;i2 s Eqjlg:=hEg (h#0). We know that Z/{;(g) is Z®-graded. So
B

there is a (unique) automorphism o of Z/{q+ (g) such that for all u € Z/lq+(g), homogeneous in degree 8,
o (u) =gy,

Denote by § the interior right-sided o -derivation associated to Eg;, so that 6(u) =uEy, — Eq;0 (1)
(Yu €U (9)). If B € G, one has §(Eg) = EgEq; —q'P*VEgEg = [Ep, Eq;lq and, this implies §(Eg ) =0

i
and 8(Eﬂ,.2) =hEg . We can show with (x) that:
n

KLE pex Ealq = ké(Bex) = 8(Ep;, Egy ) — g2 5(E : Ep,)
= By BBy )+ 5B 0By ) — 0 (B 5(Ep, )+ 3(E 10 (Eg,)
=h[a" ey By " ey By ]

As /3{2 and ﬁ{l are in the same box, we know (Corollary 3.4.7) that E B, E B, = E #, E R so that

K(Eg,, Ea;1qg = h(q(ﬂ'{Z’a") - (ﬂ’l Fiy) VEg Eﬁ Since B, + ﬂ{z = Bex, P = Vect(ﬂiz,ﬂ,-/z) is an admissi-
ble plane of type (1.1) or (1.2) (see Remark 2.2.14) with {/3,-2,;3{2} = {B,B'}, so that (ﬂiz,ﬂi’z) <0

As we have assumed that (e, B;,) > 0, this implies that [Eg,,, Eq;lq := EpeEa; — qPex 4 E, Ep =
1 2

5.2. Implications from an admissible plane

We define the notion of implications coming from an admissible plane P, and we verify that
all Cauchon diagrams satisfy all implications from admissible planes. Let us begin by showing some
precise results on the exceptional root and near boxes behaviour. First, let us recall some notation
introduced in Sections 2 and 3.

Notation. Cq, ..., C; denote the columns of @™ (relative to the chosen Lusztig order). In the following,
we consider a diagram A, that is, A a subset of @*. For any integer j € [1,n], we set Aj:== ANCj=
{Buys--s By} CCj={Bk, ..., Br}. If the column C; is exceptional, B, denotes the exceptional root
and By := {Bex} is its box. Then By denote the box of C; which precedes Bex and B/ the one which
follows Bey in the Lusztig order; so that sp(B1) = B
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In Propositions 5.1.6, 5.1.7 and 5.1.8, we proved the existence of implications thanks to admissible
planes. We formalise this fact in the following definition of “implications coming from an admissible
plane”:

Definition 5.2.1. Let 8 € C; with h’(8) =1 and, P be an admissible plane.

1 If <1>f§ ={B, B + i, a;} with i < j type (2.1), then the implication coming from P is 8 — B8 + «;.

2. ‘DT; ={B,B + i, B + 2, i} with i < j type (2.3), then the implications coming from P are
B— B+a;and B+a; — B+ 20a;.

3. @,T ={B, B+ 8,8} withi<j, B/eCj and h(g’) =h(B) + 1 type (1.1), then the implication
coming from P is 8 — B8+ 8.

4, <I>; ={aj, i + B, a;i + 28, B} with i < j, W (a; +2B) = Z'T“ and h(B8) =1 type (1.2) or type (2.2),
then the implications coming from P are 8 — «; + 8, 8 — «; + 28 and «; + 28 — o + B.

5. <15§ ={B,a;} withi < j, @; LB and there are g1 and B in C; such that f+a; = p1 + B2 type (2.4),

B
P _

then the implications coming from P are ~p, -

6. <fo =@t ={B,..., B} is the positive part of a roots system of type G, (see Proposition 3.2.5),
then the implications coming from P are Bg — Bs, S5 — Ba, Bs — B3, Ba — B3, B3 — Ba.

Lemma 5.2.2. Let B € C;.

1. If B belongs to a box which follows {Bex}, then 8 — Bex is an implication from an admissible plane.
2. Ifthereisi < jsuchthaty = B +a; € @ then B — y is an implication from an admissible plane.

Proof. The results holds in the case where @ is of type G,. From now on, we assume that & is not
of type G».

1. Let P = (B, Bex). It is an admissible plane of type 3 or 4 in the previous definition and in each
case, B — Bex is an implication coming from P.

2. Let P = (B, ;). It is an admissible plane of type 1,2 or 4 in the previous definition and in each
case, B — y is an implication coming from P. O

Proposition 5.2.3. Let A be a Cauchon diagram. Then A satisfies all the implication coming from admissible
planes containing elements of A.

Proof. Let 8 € A and P be an admissible plane containing 8. Recall (see Definition 5.2.1) that qﬁf; =
o+t NPp.

1 If @],L ={B,B + «aj,a;} with i < j, then it follows from Proposition 5.1.6 that A satisfies the
implication 8 — 8 + «;.

2. If <D§ ={B, B + «i, B + 2, a;} with i < j, then applying Proposition 5.1.6 to 8 and B + «;, we
get that A satisfies the implications 8 — 8+ «; and 8+ a; — 8 + 2¢;.

3.1f &F ={B,B+ B, B} with i < j, B/ € Cj and h(B) = h(B) + 1 then it follows from Proposi-
tion 5.1.7 that A satisfies the implication 8 — 8 + B'.

4. If qﬁ;f ={aj, i + B, a; + 28,8} with i < j and W (¢; +28) = ZIT“, then it follows from Propo-
sitions 5.1.6, 5.1.7 and 5.1.8 that A satisfies the implications 8 — a; + 8, 8 — «; + 28 and
o +28—oi+ 8.
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5. If fD,’,L ={B,a;} with i < j, @; LB and there exist 81 and B, in C; such that 84 «; = B1 + 2, then
B
Bex

it follows from Proposition 5.1.8 that A satisfies the implication = >, -

6. If qﬁlf = &1 is of type G, Proposition 5.1.6 implies that A satisfies the implications Bg — Bs,
Bs — B3, Ba — B3, f3 — Bo. Moreover Proposition 5.1.7 implies that A satisfies the implication

Bs — Ba. O
5.3. The converse

The goal of this section is to prove the converse of Proposition 5.2.3, that is:

Theorem 5.3.1. If A is a diagram which satisfies all the implications coming from admissible planes, then A is
a Cauchon diagram.

Let B € @ be a positive root of the column C;j. We denote by Bg the box which contains j, by
By the box which precedes Bg in the column Cj (if it exists) and by B, the box which precedes B,
in C; (if it exists).

Set ¢; ={aj|i<jlU{y <B |y isin the box of B} U By U (B3 if B1 = {Bex}). If y € @7, then
there exists k € [1, N] such that y = gy and recall (see Section 4.1) that X, = X;.

Set Dg :=K(X, |y <B).

Lemma5.3.2. Dy =K(X, |y € q>;>.

Proof. Set D}j =K<X,|ye q); >C Dg. Let us start by showing that, for i < j, we have {X,,
y eC}cC D;S. If @ is of type Gz,. {Xy,y € C,-.} is thp empty set or it only contains Xy, € D},. If @ si
not of type G, then we prove this result by induction on h(y).

Ifh(y) =1, then y =«; and X, € D} by definition of de;.

Ifh(y) > 1 and y ordinary, then by Proposition 2.2.11, there exists [ <i such that y' =y —o e &,
so that, by Corollary 3.2.7 and Proposition 3.4.8, one has X, € K < X/, Xoy >C D;3 (by
induction hypothesis).

Ifh(y) > 1 and y exceptional, then we know (see Proposition 2.2.3) that in this case, there are two
ordinary roots of C;, denoted 17 and 7, such that ny + 7, =y and h(n2) =h(n1) + 1. This
implies by Corollary 3.2.7 and Proposition 3.4.8 that X, € K(Xy,, X;,) C D;s (Xy, and Xp,
are in D;S because 17 and 7, are exceptional).

It just remains to show that {X,, |y €Cj, ¥y <B} C D’ﬂ.

If h(y) =h(B) with y < B, then y € @} So X, € Dj,.

One uses again an induction to show that for each ordinary box B of C; such that B < By (i.e. all
roots B of B are strictly less than all roots of Bo), one has {X, |y € B} C D}}.

Assume that By ordinary. The result is true for the box By since B; C <1§;.
Let B be an ordinary root of C; such that h(B) > h(B1) and y € B. By Proposition 2.2.11,
there is ) € IT (I < j) such that ¥y — g € ®T. Then y’ :=y — q is in an ordinary box B’ of
C; such that h(B) =h(B") + 1 > h(B’) > h(B1) > h(Bo) and one has X, € D;g by induction
hypothesis.
If @ is not of type G,, then we deduce from Corollary 3.2.7 and Proposition 3.4.8 that
Xy, Xolqg =kX, with ke K*. As Xy, € D%, this implies that X, € D/j.
If & is of type Gy, then we deduce from Propositions 3.2.5 and 3.4.8 that [X,,/, X¢ 1q = kX,
with k e K*. As Xy, € D;g, this implies that X, € D;S.
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Assume that By exceptional. The results is true for B; since, in this case, By C cbg. This is the same
proof as above with B; replaced by B,.

It remains to prove that if B = {fex} is an exceptional box of C; such that B < Bo, then one has
Xﬁex € D;S'

If B= Bq, then one has B C @;, and the result is proved.

Assume that B < Bq. As above, one has fex = 171 + 12 with 11 and 7, two exceptional roots of C;
such that h(ny) =h(n1) + 1. The boxes of 11 and 7, are ordinary, on each side of B, so less than or
equal to By, so strictly less than Bg. As the result holds for ordinary boxes, X;, € D;S and X, € D;g.

If @ is not of type G, then we deduce (as above) from Corollary 3.2.7 and Proposition 3.4.8 that

Xﬁ S D/ .
ex B
If @ is of type G, we deduce (as above) from Propositions 3.2.5 and 3.4.8 that Xg,, € D;S.

So we can conclude that Dg = Dj. O

Let us recall that A = U (g) = K(Xp, |i € [1,N]) :=K(X; | i € [1,N]). Let By and Br1 (1 <1<

—1) be two consecutive roots of @t (B; < Br4+1). Recall that AT+D = K(X(r+1)) and A = K(X(r))
(1 <1 < N) are the algebras deduced from A by the deleting derivation algorithm of Section 4.

Lemma 5.3.3. Let 8- € @t be a positive root of the column C; and D(H]) =K< X(rH) | ¥{Br). Then
D(r+1) K(x(r+1> | ye ¢+)

Proof. By Lemma 4.2.1, the commutation relations between the X,(,r 1 with y < By are the same as
the commutation relations between the X, with y < ;. So the proof is the same as the proof of

Lemma 5.3.2 but with X, replaced by X}(,r‘H). a

Denote, as in Section 4, ¢ : Spec A — Spec(A) (A = A@) the canonical injection, that is, the composition
of canonical injections @, : Spec(A"+D) < Spec(A®) for r € [2, N]. Recall that a subset A of &7 is a
Cauchon diagram if and only if (3P € Spec(A)) (¢(P) =(Ty | y € A)).

Proof of Theorem 5.3.1. Let A C @+ be a diagram satisfying the implications coming from the admis-
sible planes. Set Q := (T, |y € A). By [Cau03a, Section 5.5], this is an H®-prime ideal, so completely
prime, of A® =4 and, if B € @* \ A, then Tg is regular modulo Q. So, Q N &+ ={T, | y € A}.
Let us show by induction, that for each r € [2,N 4+ 1], there exists P e Spec(A®) such that
Q=@0---0@_1(PD).

If r =2, then in this case, one has ¢z o--- 0 @r_1 =Idg 3 and P@=qQ.

Consider an integer r € [2, NJ|, assume that there exists P® e Spec(AM) such that gz 0---0@r_1(PM) =
Q and let us show there is P7+D e Spec(AT*+D) such that ¢, (PT+V) = PO (so that gy 0 - - - 0 @, (PTHD) =
Q).

o If X" ¢ PO, then this follows from Proposition 4.3.4.
e Assume now that X" e P®. From the second point of Proposition 4.3.4, it is enough to show
that o<f>(5<’“>(x(r+1>)) eP®for1<i<r—1.

Observation. It is enough to prove that (»«)(r)(SfrH)(Xi(rH))) € PO for i € [1,r—1] such that g; € qﬁg.

Proof of the observation. Let i € [1,r — 1]. It follows from Corollary 5.3.3 that X,.(r“) =

X(r+1) .Xgm where I":={j e [1.r—1] | Bj € #} }. Thus
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(r+1) (r+1) (r+1) (r+1) (r+1)
ST =Y Tmipas V(XY LX)

(T+]) r+1) (r+1) (r+1)
= mir [5G XX

(r+1) (5o (r+1)y o (r+1) (5, (r+1) (r+1)
+or (X)X X
(r+1) ( (r+1) (r+1)\ g (r+1) (5, (r+1)
oo T (XGTY L XT)e T (X))
(r+1) (3 (r+1)Y 3 (r+1) (r+1) (r+1) o (r+1) (4, (r+1) (r+1)
= mippa &V (XTI XY XY g g, XU (XYY X

(r+1) (r+1) o (r+1) [y (r+1)
+---+ )\r,j1 s )‘r-js—l X}] e st—l o (X]S )]

1 1 1 1 1 1
Then, @0 ¢V (X)) = Ymj, 100G XITINXD XD 4, XD OO 6D (XID))
..x](.? . ...,\r,js_lx}?.4.xj.:{](a(f)(sﬁ””(xg“)))]. As each (a(f)(sﬁr“’(x;;“’)) € PM py
hypothesis, one has @(r)(8£r+1)(xl§r+l))) eP®. o

Back to the proof of Theorem 5.3.1. For each s € [2,r — 1], set P® =g@so0...0r_1(PM).
Observation. 3, € A.

Indeed, as X € P®, Lemma 5.1.1 implies successively that XD e PC-D . x? ¢ p@ = q.
Hence Ty, = Xﬁz) € Q and so Br € A.

Recall that, if g, € Cj, then d>+ {oi i< jYU{y <Br|y € Bo}UB1U(By if B1 ={Bex}) (Bo is the
box containing B;, By is the box precedmg Bg if C; if exists and B; is the box preceding By in C; if
exists).

Bs

B,

/Br BO

@
Column C}
Let i € [1,r — 1] such that g; € &4

o If B; € Bo U By, then Theorem 3.4.3 implies that 8/ " (X"*") = 0. Hence @® 5"V (x"* 1)) =
0eP®,

e Let us assume that By = {Bex} With Bex = Be (e <), and that B; € B.
By Theorem 3.4.3, 8"V (Xx*") = PV is homogeneous of weight B + f; and the variables

X(rH) which appear in P(rH) are such that g € By = {Be}. So P<r+1) is equal to zero or is of the

form AXT' with A € K* and mpBex = Br + Bi, so that (by comparmg the coefficient on «/;) one has
=1.
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If P{";"" =0, then one has @ sV (x{"*V)) =0 P®.
Otherwise, assume that P(H]) AXJ'. As A satisfies the implications from admissible planes,
Lemma 5.2.2 implies that A satisfies the implication By — Bex and, as fr € A, one has Sex € A.
Then X € Q = P@® and by Lemma 5.1, X" e Pe+D_ As B, and B are in consecutive
boxes by construction, Lemma 5.1.2 shows that X" e pe+D) = x ¢ p(_ S0, we deduce that
O E V(X ) =00 ox ) =ax{" e PO,
Consider now the case where B; = o with k < j. If Sﬁrﬂ)(xi(r“)) = 0, then one has
O E™ V(X)) =0e PO, Assume that 5" (X""") # 0. From Theorem 3.4.3, we get
(r+1) +1) +1) +1)

that 8"V X™) = ¥ cocoar G i XITV L XTEY (e K). Thus cj, .
Bj, + -+ Bj, = Br + ax and Bj,,...,Bj, ¢ Bo). This implies that (~)<’>(5§'+”(x§’+”)) =
Y ici <ot St jsxj.? . ..X;:) and that is enough to show that, if c¢j, ;€ K*, then one has
X{P . x{ep®,

1 s
So, take (j1,...js) such thati < j; <--- < js <r and let us assume that cj,
the coefficient of «; in the following equality

.js # 0. Considering

Bjy + -+ Bjs = Br + o, 9)

we deduce that 8j; € Cj. As Bj, ¢ Bo and js <r, the box By exists. The proof splits into three

cases.

ee Bo and B; are ordinaries. As j; <r and Bj ¢ Bog, one has h(8;) < h(Bj,). By (9), h(8j,) <
h(Br 4+ ) =h(Br) + 1. As a result, s=1 and j; € By. That is why, on has (Lemma 5.2.2) the

implication B — Bj,. Since f}r € A, one has 8, € A and, as above, X”SH) € PUstD 50 that

,,,,,

oo Bo is ordmary and Bj is exceptional so that B, exists. As in the previous case, one checks
that s =1 and Bj; € B2. So from Lemma 5.2.2, there exists an implication g, — Bj,. Also,
from Lemma 5.2.2, one has the implication g — fe. Since B € A, one has Be, 8j; € A, so that

XED ¢ p+D and ngﬂ) € PUstD, By the second point of Lemma 5.1.2, one deduces that

X;Z) € PO, Thus the considered monomial is in P,
ee By is exceptional. Since Bj ¢ Bo, Bj, is ordinary in C;. By the equality (9), one has s > 2
and ﬂjH is also ordinary in C;. Set h(8;) :=2l+1 (I > 1). We knows that h(B;,_,) >1+1,
h(Bj) >1+1 and h(B + o) = 21+ 2. This implies that s =2 and g;,_,, Bj, € B1. The equality
(9) can be then written as gy + o, = Bj,_; + Bj,-
e e e Assume S, # Bj,, so that §;_, and Bj, are in the same box B1, so they are orthogonal.
As a result, @ is not of the type G, (in the G; case, the boxes contain only one element).
Set P :=(Bj,, Bj,_,) the plane spanned by Bj, Bj,_,, and assume q),f #{Bj,_1» Bjs}- So,
since @p is not of type G, ®@p is of type A or By. As Bj,_, and Bj, are orthogonal, ®p
is of type By and there exists 8 € @% such that B + oy = gj,_, + Bj, =mB with m=1
or 2.
If m=1, then g and g, are two distinct exceptional roots of C;, which is impossible.
Hence m =2 and so B +ay = Bj,_, +Bj, = 2B. This implies that h(8) =1+1, so that g is
an element of B too, different from Bj,_, and B;.. As a result, B, 8j,_,, Bj, are pairwise
orthogonal, which is a contradiction with the equality 8j,_, + Bj, =28.
e Bis-s
B
So one has @} = {Bj,_,.Bj,} and so we have the implication \‘ﬁj Hence one
of the two roots Bj,, Bj,_, is in A. If, for example, Bj, € A, one has, as in the first case,

XX“L]) € pUstD and Xg) € P™_ The considered monomial is in P™ as claimed.
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eee If B, = Bj,, then the equality (9) becomes B, + oy = 28j,. Set B =sp(Bj,) = Br — Bj, €
@™ and substract Bj, to each part of the previous equality, to obtain 8+ ay = gj,. Denote
by P the plane spanned by g, and g;j,.
Assume that @ is of type G,. Then one has B; = B4, o = 1 and B, = B3. By Defini-
tion 5.2.1, we have the implication g, — B;j,.
Assume that @ is not of type G;. The equality B, + ay = 28, implies that @p is of
type B, so that @ = {a, i + B = B, otk + 2 = fr, B} with h(B) = h(By) — h(Bj) =
2l+1—({+1) =1L So P is an admissible plane of type 4 in the sense of Definition 5.2.1.
So we have again the implication g, — Bj..

Thus, in all cases, one has gj; € A. So we have, as in the first case, X;i”” € PUs*D and

X;? € PO The considered monomial is again in P(", as desired. O

6. Cauchon diagrams for a particular decomposition of w

In this section, we give an explicit description of Cauchon diagrams for a chosen decomposition of
wp in each type of simple Lie algebra of finite dimension. Denote by D the set of Cauchon diagrams.
For all B € @*, we give the list of implications of the type 8 — B’ with g’ e &+,

Definition 6.0.4. Let 8 € ®*. An implication from the root 8 is an implication from an admissible
/’ﬁ{
B~

plane of the type 8 — B’ or T~ Bl (Definition 5.2.1).

Observation. The implications from all admissible planes coincide with the implications from all the
positive roots.

Lemma 6.0.5. Suppose that @ is a root system which is not of type G».

1. Let C; be an ordinary column. If B € Cj, then the implications from 8 are 8 — B’ with B’ € C;, B’ = B+«
@i<).
2. Let C be an exceptional column and 8 € C,.
(a) If B # Bex and if B is not in B, the box after {Bex}, then the implications from 8 are B — B’ with
B eC,p =p+al<D.
(b) If B € B, the box after {Bex}, then the implications from B are B — B’ with ' € C,, B/ =B +a; (i <)
and B — Bex-
3. Let C; be an exceptional column with exceptional root Bex and By the box before {B¢x}. Then the implica-
tions from B are:
o Bex — B/ with B’ € By such that P = (Bex, B’) is an admissible plan of type 2.2 (i.e. @,}L ={B, Bex =
€ + 28,8 =€+ B, €} withi <l and B € B the box after {Bex}).

= 1
-
-

Bex

. \‘ﬁg with B, B, € B1, By + By = Bex + €; (i < 1) and P = (Bex, €;) is an admissible plane of
type 2.4 (i.e. @5 = {Bex. €i}).

Proof.

1. Let B’ € C; with B/ =B + «; and i <I. From Lemma 5.2.2, 8 — B’ is an implication from an
admissible plane. So this is an implication from S.
Conversely, consider an implication 8 — B8’ from B, so that 8’ € C; (Lemma 5.2.2). As C; is ordi-
nary, 8 and B’ are ordinary roots and, by Lemma 5.2.2, one has 8/ =8 +¢; with i <.
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2. (a) Let B’ € C; with B’ =B +«; and i <I. From Lemma 5.2.2, 8 — B’ is an implication from an

admissible plane. So this is an implication from .
Conversely, consider an implication 8 — B’ from 8, so that 8’ # 8, P = (B8, B’) is an admissi-
ble plane and B — B’ is an implication from P. From Lemma 5.2.2, we know that 8’ € C;.
Suppose that B’ = Bey, so that the type of P is in the following list:
o type 11 with @7 = {B1, Bex = B1 + B2, B2}, B1 > Bex > f2.
e type 1.2 with @5 = {B1, Bex =21 + @i, B2 = 1 + ati, i} (i <), and By > Bex > P2 > €i.
As B — Bex = B’ is an implication, we deduce from Definition 5.2.1 that 8 = 81. Then Defini-
tion 2.2.13 permits to claim that g is in the box after Bex, which contradict the hypothesis. So
B’ # Bex. Moreover B # Bex, it comes from Lemma 5.2.2 that 8’ = 8 +«; with i <.

(b) As B € B, the implication B — Bex comes from Lemma 5.2.2. If 8’ = B + «; is a root, the
implication 8 — B’ also comes from Lemma 5.2.2.
Conversely, let 8 — B’ an implication from 8. By Lemma 5.2.2, we know that 8’ € C.
If B’ = Bex, there is nothing to prove. Otherwise, as 8 # Bex, one has 8’ = B + «; with i <[ by
Lemma 5.2.2.

3. If B/ € By satisfies the hypothesis, Definition 5.2.1 permits to claim that Bex — B’ is an implication
from P. If |, B} belong to By and satisfy the hypothesis, Definition 5.2.1 permits to claim that
B
P _
~p is an implication from P.

Moreover, Definition 5.2.1 permits to claim that all implications from Bex come from an admissible

plane P of type 1.2 or 2.4.

e If P is of type 1.2, one has dif,r ={B,Bex=2B+0a1,B =B+aj,a;} (i<l)and B > Bex > B > ;.
In this case, the only implication from By and from P, is Bex — B’ With (Bex, 8’) = P admissible
plane of type 1.2.

e If P is of type 2.4, one has P = (Bex, o;) and cb;r = {Bex, @i} (i <I). Definition 5.2.1 permits to

B
Bor_
claim that all the implication from P are of the shape Spy where 8] and ) belong to
B1 and satisfy B] 4 B) = Bex+ . O
6.1. Infinite series
6.1.1. Type Ap,n > 1
Convention. The numbering of simple roots in the Dynkin diagram is as follow: oty —otg —+ -+ —p_1 —

on. We know (see for example [Lit98, Section 5]) that Sg; o (Say © Sey) -+ © (S, © Sap_; ©* - © Sery) IS @
reduced decomposition of wg which induces the following order on positive roots. (We have arranged
the roots in columns.)

Cq @) Cn
Bi=o1 | fa=a1+ax || BN-nt1 =1+ -+ 01+
B3 =2
BN =y
This is a Lusztig order and none of the columns Cq,...,C, is exceptional. Moreover, if two roots

B > B’ are in the same column C; then: 8/ =8+ «; (i<l) < B’ and B are consecutive.
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Proposition 6.1.1. Let A be a diagram, A is a Cauchon diagram if and only if it satisfies all the implications
Bj+1 — Bj where B and Bj1 are two consecutive roots of the same column C;.

Convention. If C; = {Bs, Bs+1,-..,Br = o} is the column | with 1 <1< n, the truncated columns
contained in C; are the following subsets {Bs, Bs+1, .-, Bt}, t € [s,].

Proposition 6.1.1 permits to claim that the Cauchon diagrams are the diagrams A which are unions
of truncated columns. In the following picture a positive roots 8, belonging to the diagram A, is
represented by a black box in the location of 8 in the previous tabular of the order induced by the
choosen reduced decomposition of wg. This convention will be used in the rest of this article.

€D ¢ D
Remark 6.1.2. The set of Cauchon diagrams D has the same cardinality as the Weyl group W.

Proof. As D is the set of all diagrams A which are unions of truncated columns, one has |D| =
n+D!'=|W]|.

6.1.2. Type Bp,n > 2

Convention. The numbering of simple roots in the Dynkin diagram is as follow oy < a2 —- - —ap—1—
oy We know (see for example [Lit98, Section 6]) that sy, o (Sw, ©Sa; ©Say) - © (Say O Say_; © - 0 Sy ©
Say OSay O+ 0Sg,) is a reduced decomposition of wg which induces the following order on positive
roots.

| Br=¢€1 | fpp=2€1+¢€ ﬁ(n—l)2+1 =261+ + 261+ &
B3=e1+e :
Ba=¢6 :
BN-n=261+€+ - +€—1+6n
BN—nt1=€1+---+ €1+ &

BN-ny2 =€+ -+ €1+6€

BN = é€n

This is a Lusztig order and none of the columns Cq,..., C, is exceptional. Moreover, if two roots
B > B’ are in the same column C; then: B’ =8+ «a; (i <l) <& B’ and B are consecutive.

Proposition 6.1.3. Let A be a diagram, A is a Cauchon diagram if and only if it satisfies all the implications
Bj+1 — Bj where B and Bj1 are two consecutive roots of the same column C;.
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Convention. If C; = {fs, Bs+1,-..,Br = o} is the column | with 1 <1 < n, the truncated columns
contained in C; are the following subsets {8s, Bs+1, ..., Bt}, t € [, 7].

Proposition 6.1.3 permits to claim that the Cauchon diagrams are the diagrams A which are unions
of truncated columns.

Remark 6.1.4. The set of Cauchon diagrams D has the same cardinality as the Weyl group W.

Proof. As D is the set of all diagrams A which are unions of truncated columns, one has |D| =
2+ D= W O

6.1.3. Type Ch,n >3
Convention. The numbering of simple roots in the Dynkin diagram is a1 = ap — -+ — op—1 — . We

know (see for example [Lit98, Section 6]) that Sg; o (Su, © Sa; © Say) =+ © (S © Say_q © *** O Sery © Sry ©
Say O+ 0Sg,) is a reduced decomposition of wo which induces the following order on positive roots.

| B1 =€ Br=€1+ € ﬂ(n,])2+1 =€1+26+ - +26-1+6
/33 = €1 +2€2 :
Ba=¢€ :
BN-n=€1+ &+ +e1+€
BN—n+1 =€1+2€2+ -+ 2€5-1 + 2¢,

BN-ni2=€+ - +€1+6€

BN =é€n

This is a Lusztig order and all the columns C», ..., C, are exceptional, the first one C; is ordinary.
We obtain the same result as for By, the proof is a bit more technical due to the exceptional columns
and is left to the reader.

Proposition 6.1.5. Let A be a diagram, A is a Cauchon diagram if and only if it satisfies all the implications
Bj+1 — Bj where Bj and Bj1 are two consecutive roots of the same column C;.

Proposition 6.1.5 permits to claim that the Cauchon diagrams are the diagrams A which are unions
of truncated columns.

Remark 6.1.6. The set of Cauchon diagrams D has the same cardinality as the Weyl group W.

Proof. As D is the set of all diagrams A which are unions of truncated columns, one has |D| =
2+ DI=|W|. O

6.14. Type D,,n> 4

aq

AN
Convention. The numbering of simple roots in the Dynkin diagram is A3 — 0g — -+ — Op_] — O

a3
We know (see for example [Lit98, Section 6]) that Sy, 0S¢, © (Sa; 0 Sa; ©Say ©Sas) *++ 0 (Say ©Sery_; © <+ ©
Sz ©Say ©Say O S © -+ 0Sy,) is a reduced decomposition of wg which induces the following order on
positive roots.



A. Mériaux / Journal of Algebra 323 (2010) 1060-1097 1093

| Bi=e1 | Bo=€ | B3=€c1+e+e3 | - | Bn-myi=€1+€2+263--+26_1+ 6
Pa=€r+€3
Bs =€1+¢€3 :
Bs = €3 BN-n-1=€1+€+€3---+€1+6

BN-n=¢€1 0" € +€3---+ €1+ 6
BN-nt1 =€ 0" € +€3---+ €1+
*: depends on columns’ parity BN-nt2=€3+ -+ €1+ €

BN = é€n

This is a Lusztig order and all the columns are ordinary.
Observation. Let [ > 3.

e The column C; has an even number of roots, so that there is se N (s =1 — 1) such that C; =

{Buy < -+ < Bu <,3u5+1 <o < Buy )
e Let B an element of C; different from By, .
ee If B =Py _,, there is exactly 2 roots in C; of the shape g’ =g + «; (i <I), namely B, and

ﬂusﬂ .
ee If B £ By, there is only one root in C; of the shape 8’ =B +«; (i < 1), namely g’ is the root

before B if B # Bu,,, or B’ = Bu,_, if B =PBu,,.
As there is no exceptional column, we deduce from Theorem 5.3.1 and Lemma 6.0.5(1.),

Proposition 6.1.7. Let A be a diagram, A is a Cauchon diagram if and only if it satisfies all the implications
below, for all integers | € 3, ], denote C; = {Buy,, ..., Bus Busr1» - - -» Bups} (Withs =1—1):

Bus
N
Buzs = Buzs 1 —--- = Busiy Busy — ... — Bu, — Bu,

~ 7

Us+1

Proposition 6.1.7 permits to claim that Cauchon diagrams are the sets A = |_|le[[1’n]] A;, where

A1 is a truncated column from Cq, A is a truncated column from C, and, for I € [3,n], denote C; =
{Buy <+ < Bus <Bugys <+ <Puy} (s=1—-1), Ay is a truncated column {By, <--- < By;_; < Bu;}
from Cj, or the set {8y, <--- < Bu,_; < Pu,1} C QL.

Proposition 6.1.8. The set D of Cauchon diagrams has the same cardinality as the Weyl group W.

Proof. A can be two sets (@ or C1) as Ay (¥ or Cy). If | € [3,n], one has |C3| = 2] — 2. One can
then extract 2] — 1 truncated columns from C; so that there is 2l possibilities for A;. As a result
DI=2%x2X6X---x21=4x6x8x---x2n=2""1n)=|W|. O

6.2. Exceptional cases
6.2.1. Type G,
Convention. The numbering of simple roots in the Dynkin diagram is: o1 <& a. We know that sg, o

Say © Sy © Say © Say O Sa, IS a reduced decomposition of wo which induces the following order on
positive roots: 1 = a1, B2 =31 + &2, B3 =201 + 02, Ba =31 + 2002, fs = a1 + 2, B = 2.
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Lemma 6.2.1. One has the following implications: Be Bs Ba B B

Proof. To prove this implications, we apply Propositions 5.1.6, 5.1.7 and 5.1.8 with the following
equalities (B4 is an exceptional root): Bg+a1 = Bs, h'(Bs)+1= B4, Ba+a1 =2p3, B3+a1=pH. O

Convention. D is the set of Cauchon diagrams, they satisfy implications from Lemma 6.2.1.
Remark 6.2.2. The set of Cauchon diagrams D has the same cardinality as the Weyl group W.
6.2.2. Type F4

Convention. The numbering of simple roots in the Dynkin diagram is: o1 — ay = a3 — aq. We
choose the following reduced decomposition of Wq: $45354525354525352515253545253515251535452535251.
This decomposition induces the following order on positive roots:

Column 1: 1(0,0,0,1)

Column 2:  $(0,0,1,1), 83(0,0,1,0)

Column 3:  f4(0,1,2,2),85(0,1,2,1),85(0,1,1,1), 87(0, 1, 2,0), Bs(0, 1,1, 0), B9(0, 1, 0, 0)
Column 4:  B10(1,3,4,2), 11(1,2,4,2), 12(1,2,3,2), 13(1, 2,3, 1), f14(1, 2,2, 2), B15(1, 2,2, 1),

B16(1,1,2,2), f17(2,3,4,2), B18(1,2,2,0), B19(1,1,2,1), B20(1,1,1, 1), B21(1, 1, 2,0),
B22(1,1,1,0), B23(1, 1,0, 0), B24(1, 0,0, 0)

One checks that each column is ordinary or exceptional and then computes h’(8;) for all roots
to verify that the order is a Lusztig one. We already know the form of diagrams for the two first
columns. Thanks to commutation relations, Propositions 5.1.6, 5.1.7 and 5.1.8, we obtain the following
result:

Proposition 6.2.3. Let A be a diagram, A is a Cauchon diagram if and only if it satisfies the following impli-
cations:

0->19—>16-> 14

9—8 54, 242322 / / 121110
3—>2, \ / /7 \
7 o8 113"

This permits to claim that the Cauchon diagrams are the sets A =| |icf; 47 A1 Where Aq is a
truncated column from Ci, Ay is a truncated column from Cy, Az are A4 subsets of C3 and Cg4
respectively which satisfy the implication from Proposition 6.2.3. By counting the possibilities, one
obtains:

Proposition 6.2.4. The set D of Cauchon diagrams has same cardinality as the Weyl group W.

6.2.3. Type Eg

o
Convention. The numbering of simple roots in the Dynkin diagram is: \ .
o1 — 03 — 0Oy — 05 — Op
To describe the chosen reduced decomposition of wg, we remark that the roots o1 to as span
a roots system of Ds. Denote by 7, the longest Weyl word used for Ds then the decomposition
TS56555452535154535554565255545351 is a reduced decomposition of wg which induces the following or-
der on positive roots, the first five columns are the same as in D5 and the sixth is:
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B21=(1,2,2,3,2,1), pf=(1,1,2,3,2,1), p3=(1,1,2,2,2,1), pu=(1,1,2,2,1,1),
Ps=(1,1,1,2,2,1), fs=1(0,1,1,2,2,1), f7=(1,1,1,2,1,1), p2g=(0,1,1,2,1,1),
Po=(1,1,1,1,1,1), f30=(0,1,1,1,1,1), f31=(1,0,1,1,1,1), f32=(0,1,0,1,1,1),

B33=(0,0,1,1,1,1), p34=(0,0,0,1,1,1), p35=(0,0,0,0,1,1), B36=1(0,0,0,0,0,1).
We obtain, by Lemma 6.0.5(1.) and Theorem 5.3.1,

Proposition 6.2.5. Let A be a diagram, A is a Cauchon diagram if and only if it satisfies all the implications
from Proposition 6.1.7 for the five first columns and the following implications for the last one:

33—>31—>29—27—24
Ve N
36—>35—34 \ \ 23—22—21
~N e
32—>30—>28—>26—25

Proposition 6.2.6. The set D of Cauchon diagrams has same cardinality as the Weyl group W.

6.2.4. Type E7

Convention. The numbering of simple roots in the Dynkin diagram is:

o2
|

o1 — 03 — 0g — 05 — Og — U7

As the roots 1 to g span a roots system of type Eg, denote by o the longest Weyl word used for
the type Eg. The decomposition 0 575655545253515453555456525557545653555154525354555657 is a reduced
decomposition of wg which induces the following order on positive roots (only the last column is
given). We already know the form of diagrams for the first six columns. Proposition 5.1.6 permits to
find the implications in the last columns of type E7.

Bi h (1) Bi h (Bi) 63
£37(2,2,3,4,3,2,1) 17 Bs51(0,1,1,2,2,2,1) 9 i
B3s(1,2,3,4,3,2,1) 16 B52(1,1,1,2,1,1,1) 8 A
B39(1,2,2,4,3,2,1) 15 B53(0,1,1,2,2,1,1) 8 5" s
Ba0(1,2,2,3,3,2,1) 14 Bsa(1,1,1,1,1,1,1) 7 o >
Ba1(1,1,2,3,3,2,1) 13 Bs5(0,1,1,2,1,1,1) 7 s};j.{s
B42(1,2,2,3,2,2,1) 13 Bs6(1,0,1,1,1,1,1) 6 N
B43(1,2,2,3,2,1,1) 12 B57(0,1,1,1,1,1,1) 6 a9 50 5
Bas(1,1,2,3,2,2,1) 12 B58(0,1,0,1,1,1,1) 5 7.8
Bs5(1,1,2,3,2,1,1) 11 B59(0,0,1,1,1,1,1) 5 P
Bas(1,1,2,2,2,2,1) 11 B60(0,0,0,1,1,1,1) 4 j‘;/j:
B47(1,1,2,2,2,1,1) 10 B61(0,0,0,0,1,1,1) 3 o
Bag(1,1,1,2,2,2,1) 10 B62(0,0,0,0,0,1,1) 2 KA
Bao(1,1,2,2,1,1,1) 9 B63(0,0,0,0,0,0,1) 1 3
Bs0(1,1,1,2,2,1,1) 9 >

Proposition 6.2.7. The set D of Cauchon diagrams has same cardinality as the Weyl group W.
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6.2.5. Type Eg
Convention. The numbering of simple roots in the Dynkin diagram is:

o
|

o1 — 3 — 04 — 05 — Og — 07 — O3

{oq,..., a7} span a roots system of type E;. Denote by o7, the longest Weyl word used for type E7.
The decomposition 075857565554525351545355545652555754565853555751545653525554555253565154575355S8
$4565255575456535551545253545556575s is a reduced decomposition of wy which induces the following
order on positive roots of the last column.

1%0
119
b [ B [ s
Bea(2,3,4,6,5,4,3,1) 28 B93(1,1,2,3,2,2,2,1) 14 1%7
Bes(2.3.4.6,5.4.2,1) 27 Boa(1.1.2.33.2.1,1) 14 e
Bo5(2.3.4,6,5.3,2.1) 26 Pos(1,2,2,3,2,2,1,1) 14 Ay
2,3,4,6,4,3,2,1) 25 Pos(1.1.2,2,2,2.2.1) 13 ' !
Be7(2, 24,3,2,1) B97(1,2,2,3,2,1,1,1) 13 m2
Bes(2,3.4,5.4,3,2,1) 24 Bos(1,1,2,3,2,2,1,1) 13 BN’
B69(2.2,4,5,4,3,2,1) 23 Boo(1,1,1,2,2,2,2,1) 12 BN
B70(2,3,3,5,4,3,2,1) 23 B100(1,1,2,3,2,1,1,1) 12 / N/ N\
p71(1,3,3,5,4,3,2,1) 22 B101(1,1,2,2,2,2,1,1) 12 105 106 107
] ] |
B12(2.2.3.5.4,3.2,1) 22 0.1,1,2.2.22,1) 11 N
$102(0,1,1,2,2,2,2,1) P "
B73(1,2,3,5,4,3,2,1) 21 B103(1,1,2,2,2,1,1,1) 11 100 101\99
Br4(2.2.3.4,4,3,2.1) 21 roa(1.1.1.2.2.2.1.1) 11 I
97 98 96
Br5(1,2,3,4,4,3,2,1) 20 Bros(1,1,2,2,1,1,1,1) 10 [ N
£76(2.2,3,4,3,3,2,1) 20 Bios(1,1,1,2,2,1,1,1) 10 PR AT
$7(1,2,2,4,4,3,2,1) 19 F7(0.1,1,2,2.2.1,1) 10 | ,912%‘
Br8(1.2.3.4,3,3,2,1) 19 Bros(1.1,1,2,1,1,1,1) 9 77 N80 s
$79(2.2.3,4,3,2,2,1) 19 Bios(0.1,1,2,2,1,1,1) 9 AN
Bs0(1,2,2,4,3,3,2,1) 18 f10(1,1,1,1,1,1,1,1) 8 NN
Bs1(1,2,3,4,3,2,2,1) 18 f11(0,1,1,2,1,1,1,1) 8 I
Bs2(2,2,3,4,3,2,1,1) 18 f112(1,0,1,1,1,1,1,1) 7 8‘2/811/8‘0
Bs3(1,2,2,3,3,3,2,1) 17 f113(0,1,1,1,1,1,1,1) 7 " BT 7
Bsa(1,2,2,4,3,2,2,1) 17 Ba@.1.011.11.1) 6 NN S
Bs5(1,2,3,4,3,2,1,1) 17 B115(0,0,1,1,1,1,1,1) 6 7‘4/713
5868%33;%}; }g P116(0.0,0.1.1. 1, 1. 1) > 7‘2/72
871, 4,4,3,5,4, 4,
Bes(1,2.2,4,3,2.1,1) 16 £17(0.0.0.0.1,1.1.1) 4 b >0
Bso(1,1,2,3,3,2,2,1) 15 A1s(0.0.0,0,0.1.1.1) 3 e
Bo0(1,2,2,3,2,2,2,1) 15 $115(0,0,0,0,0,0,1.1) 2 !
£o1(1,2,2,3,3,2,1,1) 15 $120(0,0,0,0,0,0,0,1) 1 7
£92(2,3,4,6,5,4,3,2) 29/2 ®

We already know the shape of diagrams from the first seven columns. Thanks to Propositions 5.1.6,
5.1.7 and 5.1.8, one obtains the implications for the last column.
In particular, we obtain implications such as (i=j or k):

(92=910r90) and (92=900r89) and (92 = 91 or 89).

Proposition 6.2.8. The set D of Cauchon diagrams has same cardinality as the Weyl group W.
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