Influence of Ionic Strength on the Actomyosin Reaction Steps in Contracting Skeletal Muscle Fibers

Hiroyuki Iwamoto
Department of Physiology, School of Medicine, Teikyo University, Tokyo, and Experimental Research Division, SPring-8, JASRI, Hyogo 679-5198, Japan

ABSTRACT Muscle contraction occurs as the result of actin-myosin interaction, which is mediated by the intermolecular forces exerted at the actin-myosin interface. To obtain information about the nature of these intermolecular forces, we tested the sensitivity of various contractile parameters of skinned skeletal muscle fibers to ionic strength (IS) at 3–5°C; IS variation is a useful technique for distinguishing between ionic and nonionic (primarily hydrophobic) types of intermolecular forces. The most striking effect of elevated IS was the strong suppression of isometric tension. However, none of the measured parameters suggested a corresponding decrease in the number of force-generating myosin heads on actin. The rate of actin-myosin association seemed to be only modestly IS-sensitive. The following force-generating isomerization was apparently IS-insensitive. The dissociation of the force-generating actomyosin complex was decelerated by elevated IS, contrary to the expectation from the suppressed isometric tension. These results led us to conclude that an IS-sensitive step, responsible for the large suppression of tension, occurs after force-generating isomerization but before dissociation. The present study suggests that the actomyosin interaction is generally nonionic in nature, but there are at least two ionic processes, one at the beginning and the other close to the end of the actomyosin interaction.

INTRODUCTION

Recently solved atomic structure of the subfragment-1 (S1) of skeletal muscle myosin (Rayment et al., 1993b) revealed that an S1 consists of two major domains: the motor domain, which contains the nucleotide- and actin-binding sites, and the long α-helical light chain-binding domain. Using isolated S1 or its truncated forms, a number of studies have shown evidence that the light chain-binding domain swings on the motor domain in a nucleotide-dependent manner (Fisher et al., 1995; Suzuki et al., 1998; Wakabayashi et al., 1992; Xiao et al., 1998). The fluorescent probe studies have shown that this swing also occurs in contracting muscle fibers (Baker et al., 1998; Hopkins et al., 1998; Irving et al., 1995), and some x-ray diffraction studies support this view (Dobbie et al., 1998). These studies have led to a picture that the contractile force is generated by the nucleotide-driven swing of the light chain-binding domain on the motor domain, which is attached to actin in a rather stationary manner.

In contrast, relatively little attention has been paid to the events taking place at the actin-myosin interface. These events should be as important as the structural changes in myosin within itself. First of all, the Mg-ATPase activity of myosin is activated by actin by orders of magnitude. The force generated by myosin is transmitted to actin via the interface. The mechanical conditions under which muscle fibers are placed, such as shortening, stretching, or quick length steps, are transmitted from actin to myosin via the interface and profoundly influence the performance of myosin. It is clear from these considerations that the actin-myosin interface and the intermolecular forces involved in it play more important, dynamic roles than simply holding actin and myosin together.

In fact, there is biochemical evidence that different parts of the interface are implicated in different stages of actomyosin cycle (Mejean et al., 1986; DasGupta and Reisler, 1989; Brenner et al., 1991). In particular, it is postulated from the crystal structure of S1 that the early, nonstereospecific ionic interaction between the negatively charged N terminus of actin and the positively charged loop of myosin is replaced by stereospecific, hydrophobic interactions in rigor (Rayment et al., 1993a). Thermodynamic studies support this idea (Highsmith and Murphy, 1992; Murphy et al., 1996; Zhao and Kawai, 1994). For the understanding of the entire mechanism of contraction, however, systematic studies must be carried out to clarify the nature and role of the intermolecular forces in each step of the actomyosin reaction.

Using skinned skeletal muscle fibers, we approached this issue by examining the effect of ionic strength (IS) on various contractile parameters, which reflect various steps of actomyosin reaction. We tried to cover as many key reaction steps as possible. We adopted the technique of IS variation because of its ability to distinguish between ionic and nonionic forms of intermolecular interactions. (The ionic interaction refers to the association of proteins mediated by electrostatic attraction in aqueous environment, and the nonionic interaction refers to that mediated by hydrophobic attraction. In the latter case, the protein interaction is often strengthened by stereospecific short-range forces that do include some ionic component, but solvent molecules are no longer involved (Ross and Subramanian, 1981).)
The present study is focused on the mechanism responsible for the large effect of IS on isometric tension. To elucidate this, we first test the IS sensitivity of the association/dissociation rate constants of actomyosin in terms of a two-state model (Huxley, 1957). After showing that these parameters do not fully account for the IS effect on tension, we test the IS sensitivity of actomyosin complex formed after association but before force-generating isomerization (specifically, the low-force actomyosin complex; Iwamoto, 1995a). This complex seems to be IS-insensitive. From these results we conclude that some IS-sensitive process must reside in the force-generating actomyosin complex itself. Finally we show in a model calculation that incorporation of a set of force-generating substates, the equilibrium between which is IS-sensitive, would explain the present and previously published results.

The present results revealed a complex interplay of ionic and nonionic interactions throughout the course of contraction. Roles of various intermolecular forces in the actomyosin complex are discussed in light of published knowledge about protein interactions in general. Preliminary results of this study have appeared elsewhere (Iwamoto, 1998a).

MATERIALS AND METHODS

Fiber preparations

Skinned muscle fibers (single fibers or thin bundles of two or three fibers) were isolated from thicker rabbit psoas fiber bundles that had been treated with 0.5% Triton X-100 and stored in a 50% mixture of glycerol and relaxing solution (Iwamoto, 1995a). The fibers were mounted on the experimental apparatus equipped with a force transducer (AE801; Sensonor, Horten, Norway) and a servo motor (G120D; General Scanning, Waterton, MA). Sarcomere lengths were adjusted to 2.5 μm by He-Ne laser diffraction.

Experiments on fibers activated by solution exchange

The solutions were basically the same as those of Iwamoto (1998b): the standard relaxing solution contained 80 mM K-propionate, 20 mM imidazole, 10 mM EGTA, 5 mM MgCl2, 20 mM phosphocreatine (Sigma, St. Louis, MO), 125 U/ml creatine phosphokinase (Sigma), 1 mM glucose, and 40 U/ml hexokinase (Sigma). Other components were the same as in the relaxing solution. The relaxing and preactivating solutions were identical to those described (Iwamoto, 1995a). The digital servo-control circuits for solution exchange experiments were carried out at 3–5°C.

Experiments on rigor fibers

The rigor solutions lacked ATP, the ATP-regenerating system, and divalent cations, but contained 5 mM EDTA and 5 mM EGTA. Other components were the same as in the relaxing solution (see above). The ADP solution contained 1 mM ADP, 2 mM MgCl2, 225 μM diadenosine pentaphosphate (Sigma), 1 mM glucose, and 40 U/ml hexokinase (Sigma).

To establish the rigor condition, the fibers were transferred from the relaxing solution to the rigor solution containing 20 mM butanedione monoxime (BDM) (Sigma). In this procedure, the rigor condition was established without rigor tension development or sarcomeric disorder (Higuchi et al., 1995). The following experiments were carried out in the absence of BDM.

The stiffness of the rigor fibers was measured by a series of step length increases (Somaseundaram et al., 1989). The command for these steps was supplied from the arbitrary waveform generator (HP 33120A).

Caged calcium experiments

The caged Ca2+ solution contained 1.5 mM CaCl2, 2 mM nitrophenyl EGTA (Molecular Probes, Eugene, OR), and 10 mM glutathione and lacked EGTA. Other components were the same as in the relaxing solution. The relaxing and preactivating solutions were identical to those described above. After placing the fibers in the preactivating solution for 2 min, the fibers were equilibrated in the caged Ca2+ solution in a photolysis chamber (volume, 10 μl) for an additional 2 min before the photolysis. The photolysis was carried out using a Nd-YAG pulse laser (DCR-3; Spectra-Physics, Mountain View, CA) at λ = 355 nm. The laser beams were line-focused onto the fiber with a cylindrical convex lens. Other equipment used was the same as that for solution exchange experiments. Unless otherwise stated, the fibers were activated with saturating [Ca2+], as judged from the comparison with tension at known [Ca2+]. Experiments were done at 3–5°C. The rise of tension after flash (and after shortening of fibers activated by solution exchange) was fitted to a double-exponential association process (Iwamoto, 1998b). The rate constant for the faster component (kobs) is regarded as physiologically relevant (Szczesna et al., 1996; Wahr and Rall, 1997).

Statistical analysis

Data are expressed as mean ± SD. The difference between experimental and control values were subjected to a paired t-test. p values less than 0.05 were considered significant.

RESULTS

Isometric tension, the rate constant for the rise of tension, fiber stiffness, and velocity of shortening

The first event of actomyosin interaction is the productive encounter between actin and myosin, which creates a pre-
cursor for all of the following reaction intermediates. This process is generally believed to be an ionic process, mediated by the negatively charged N terminus of actin and the positively charged loop of myosin. Because the ions in solution reduce the attraction between charged groups, elevating IS is expected to adversely affect the encounter, reducing the rate of tension generation and the amount of isometric tension. To examine how the contractile parameters are affected by IS, the IS values of the bathing solutions were varied between 120 and 520 mM. The fibers were activated either by caged Ca2+ photolysis (Fig. 1) or by conventional solution exchange (Fig. 2). Static and dynamic parameters are also summarized in Figs. 1 and 2.

In agreement with the expectation that elevating IS adversely affects the actin-myosin encounter, the isometric tension was strongly suppressed at high IS values (Figs. 1 and 2). At IS = 520 mM, the isometric tension was 27% and

FIGURE 1 Effect of ionic strength (IS) on the contraction of skinned rabbit psoas fibers activated by the photolysis of caged Ca2+. (A) Time course of rise of isometric tension after photolysis. All records were normalized to the final level of tension reached after photolysis at normal IS (IS = 200 mM, gray line; three traces are superimposed). The black traces were obtained at IS values of 120, 360, and 520 mM from above. Three sets of paired records (at normal and high or low IS values) from three different specimens are shown. (B) Summary of effects of ionic strength on isometric tension, stiffness, and the rate constant for the rise of tension (k_{dev}) of the fibers activated by caged Ca2+ photolysis. All of the values were normalized to the values at normal IS (IS = 200 mM). The columns denoted by 0, 1, 2, and 3 represent the IS values of 120, 200, 360, and 520 mM, respectively. Mean ± SD (n = 4–6). Asterisks mark levels of statistical significance of the difference from control values: *p < 0.05; **p < 0.01. The absolute value of k_{dev} at IS = 200 mM is 7.2 s-1.

FIGURE 2 Effect of IS on the contraction of skinned rabbit psoas fibers activated by solution exchange. (A) Lightly loaded shortening and subsequent redevelopment of isometric tension. The traces above are length records (scale bar, 0.5% fiber length). The fibers were made to shorten under a constant load of 5% isometric tension for 60 ms and then were held isometric. Tension records were normalized to the level of tension immediately before shortening at normal IS (IS = 200 mM). Gray lines, records obtained at normal IS; black lines, records for higher IS values. In tension records, the traces are on the order of 360 and 520 mM from above. In length records, the traces are on the order of 360 and 520 mM from below. All traces were recorded from the same specimen. (B and C) Summary of effects of ionic strength on the static and dynamic parameters of fibers activated by solution exchange. (B) From the left, prerelease levels of isometric tension and stiffness, k_{dev} recorded after lightly loaded shortening (LL, records shown in A) and after no-load shortening (NL) (the rate of rise of tension was measured after the fiber was made slack by imposing a large quick release; records not shown) and the velocity of lightly loaded shortening (records shown in A). (C) Data obtained in the presence of 20 mM Pi. From the left, prerelease levels of isometric tension and stiffness, and k_{dev} recorded after lightly loaded shortening (LL, records not shown). All of the values were normalized to the values at normal IS (IS = 200 mM). The columns denoted by 1, 2, and 3 represent the IS values of 200, 360, and 520 mM, respectively. Mean ± SD (n = 5–8). Asterisks mark levels of statistical significance of the difference from control values: *p < 0.05; **p < 0.01. The absolute values of k_{dev} at IS = 200 mM are 8.3 and 14.2 s-1, respectively, in the absence and presence of 20 mM Pi. The shortening velocity in the absence of Pi is 0.33 fiber length/s.
35% of that of control (IS = 200 mM) for fibers activated by caged Ca\(^{2+}\) photolysis and solution exchange, respectively.

The rate of initial actin-myosin encounter can directly affect the number of force-generating cross-bridges if the encounter limits the rate of tension development, i.e., the rate constant for the force-generating isomerization is greater than that of the encounter. In this situation, the whole actomyosin reaction cycle can be simplified to a two-state scheme, ruled by the association (\(f\)) and dissociation (\(g\)) rate constants (Huxley, 1957). (In the absence of \(P_i\), \(f\) and \(g\) roughly correspond to \(k_{+2}\) and \(k_{-6}\) in the scheme in Fig. 8.) Here, the rate constant for the rise of tension (\(k_{\text{dev}}\)) is the sum of \(f\) and \(g\). Therefore, if the reduced rate of actin-myosin encounter (i.e., \(f\)) is fully responsible for the large decrease in isometric tension, \(k_{\text{dev}}\) should exhibit a similar sensitivity to IS unless \(g\) is unrealistically large (see the Discussion for a more quantitative account).

Although the results showed that \(k_{\text{dev}}\) was sensitive to IS, its IS sensitivity was much smaller than that of isometric tension (Fig. 1 B). The values of \(k_{\text{dev}}\) at IS = 520 mM was 58% of control (versus 27% for tension). The IS sensitivity of \(k_{\text{dev}}\) was even smaller after shortening (Fig. 2 B). At 520 mM, \(k_{\text{dev}}\) was 92% of control after shortening under a constant load of 0.05 \(\times\) \(P_o\) and 77% of control after unloaded shortening (Fig. 2 B). These values of IS sensitivity of \(k_{\text{dev}}\) are too small if the IS sensitivity of \(f\) is responsible for the strong suppression of isometric tension. (The relatively IS-insensitive \(k_{\text{dev}}\) may be alternatively due to the IS-dependent increase of \(g\). As will be shown below, however, several lines of evidence suggest that this is unlikely.) It is therefore concluded that the rate constant for the initial complex formation is not sensitive enough to explain the large IS sensitivity of tension, and the amount of actomyosin complex formed at high IS should be greater than expected from the amount of tension generated.

In support of this idea, the fiber stiffness (an index for the number of myosin heads attached to actin) was also less sensitive to IS than the isometric tension (Figs. 1 B and 2 B; Seow and Ford, 1993). The stiffness at IS = 520 mM was 55% of control (versus 35% for tension). The stiffness at high IS values was greater than that of submaximally activated fibers generating a comparable amount of tension at normal IS (Fig. 3). This means that the difference in the IS sensitivity between tension and stiffness is not due entirely to the compliance outside the cross-bridges (see Goldman and Huxley, 1994), but reflects the real reduction of the averaged force per cross-bridge.

The velocity of lightly loaded shortening, which is considered to reflect the rate of actomyosin dissociation, is summarized in the rightmost set of columns in Fig. 2 B. The velocity tended to decrease at high IS values (~20% decrease at IS = 520 mM), although previous studies report little effect (Gulati and Podolsky, 1981; Julian and Moss, 1981; Seow and Ford, 1993). The result is not in favor of the idea that the actomyosin dissociation (\(g\)) is accelerated by increased IS.

The effects of IS on tension, stiffness, and \(k_{\text{dev}}\) were also determined in the presence of 20 mM \(P_i\) (Fig. 2 C). The sensitivity of tension or stiffness to IS was increased by the addition of \(P_i\) (for tension, 20% versus 35% of control at IS = 520 mM). The IS-dependent decrease in \(k_{\text{dev}}\) is no longer obvious, as expected from the contribution of the \(P_i\)-induced reversal of the force-generating isomerization to \(k_{\text{dev}}\).

To summarize, the reduced interaction between the charged groups of actin and myosin at elevated IS accounts for only a part of the large suppression of isometric tension. Therefore a step (steps) later than the initial encounter should be responsible for the rest of the IS-induced tension suppression.

Kinetics of low-force actomyosin complex

After the initial encounter between actin and myosin, evidence is accumulating that a low-force actomyosin complex is formed before the force-generating complex. The low-force complex contributes to fiber stiffness (Brozovich et al., 1988; Iwamoto, 1995; Regnier et al., 1995) and has slow dissociation kinetics (Iwamoto, 1995a), and its population is increased in the presence of \(P_i\) (Brozovich et al., 1988; Iwamoto, 1995a) during shortening (Iwamoto, 1995b) and probably during the rise of tension (Iwamoto et al., 1995).

The transition from the low-force to force-generating complexes (force-generating isomerization) is a good candidate for the step to be inhibited by elevated IS. If this is
the case, elevated IS should cause the accumulation of the actomyosin in the form of low-force complex. We attempted to determine whether elevated IS increases the population of the low-force complex.

Our protocol for detecting the low-force complex utilizes its unique nonlinear response to stretch: when the low-force complex is strained more than \(~4\) nm \((\sim 0.3\% \text{ of fiber length})\), its stiffness suddenly increases (Iwamoto, 1995a,b). As a result, the stretch amplitude-response curve shows a characteristic flexion at \(\sim 0.3\% \text{ of fiber length}\).

Fig. 4 shows the records of an experiment in which fibers were stretched by various amplitudes at the isometric plateau at IS = 360 mM, in either the presence or absence of 20 mM P\(_i\). In the absence of P\(_i\), the magnitude of the tension response was almost proportional to the stretch amplitude, showing little sign of increased low-force cross-bridge population (Fig. 4A). On the other hand, the addition of 20 mM P\(_i\) made the tension response highly nonlinear (Fig. 4B), indicating that the low-force cross-bridge population was increased just as in normal IS (Iwamoto, 1995a,b). This situation is clear in the stretch amplitude-response curves, as shown in Fig. 4C, in which the characteristic flexion of the curve is observed only in the presence of 20 mM P\(_i\).

The population of the low-force cross-bridges is also expected to increase during the rise of tension after calcium activation (see Iwamoto et al., 1995). The stretch amplitude-response curves were also obtained during the rise of tension after caged Ca\(^{2+}\) photolysis (stretched 150 ms after flash, when \(\sim 30\% \text{ of the steady-state force had developed}\) at normal and high IS values. As in the presence of P\(_i\), the response to stretch was nonlinear regardless of IS (Fig. 5, A and C), indicating that the low-force cross-bridges are equally well populated at both IS values. The stretch amplitude-response curves have a flexion at \(\sim 0.3\%\), and the curves for the two IS values are superimposable (Fig. 5E). When the fibers were stretched at the plateau (stretched 3 s after flash), most of the nonlinearity had disappeared regardless of IS (Fig. 5, B and D), and again the curves for the two IS values are superimposable (Fig. 5F).

To summarize, the population of the low-force cross-bridges responded to experimental perturbations in a uniform manner regardless of IS. The results therefore suggest that the force-generating isomerization and its P\(_i\)-induced reversal are unaffected by elevated IS.

Kinetics of force-generating cross-bridges

It is known that the ATPase activity of the fiber is suppressed less than isometric tension at elevated IS (Kawai et al., 1990; Godt et al., 1993). In the model in which a single turnover of ATPase reaction is tightly coupled to a cross-bridge dissociation from actin (Huxley, 1957), the relative insensitivity of the fiber ATPase activity would be explained if the dissociation rate constant were to increase at high IS values. This would also partly explain the relative insensitivity of \(k\) to IS, because \(k\) is the sum of the association (\(j\)) and dissociation (\(g\)) rate constants in terms of Huxley’s (1957) two-state model. However, we have shown that this possibility is not supported by the observation that elevated IS failed to increase the shortening velocity (Fig. 2). Here we show more direct evidence that the dissociation rate constant is not accelerated by elevated IS.

At physiological ATP concentrations, the rate of the dissociation of force-generating cross-bridges is probably limited by the dissociation of ADP from myosin (Dantzig et al., 1991). Under isometric conditions it is difficult to extract the dissociation rate constant because of its slowness. However, the dissociation rate constant is more easily measured after a quick reduction in length (quick release) because it is expected to be remarkably increased by the release and to become dominant over the association rate constant.
In the experiment shown in Fig. 6, the dissociation rate constant was determined from the rate of decay of stiffness \(k_{\text{decay}}\) after a quick release. After the release (amplitude, 0.8% fiber length; complete in 1 ms), the tension quickly recovered (phase 2 of Huxley and Simmons, 1971) and then stayed constant for a while (phase 3) before the final ap-

![FIGURE 6 Measurement of the rate constant for the decay of stiffness \(k_{\text{decay}}\) after a quick release. Most of the decay occurs during the plateau period (phase 3; see Huxley and Simmons, 1971) of tension transient. (A) Tension response to a quick release (0.8% fiber length, complete in 1 ms, trace above; scale bar, 0.5% fiber length). (B) Accompanying changes of stiffness (squares) measured with sinusoidal oscillation (0.2% fiber length in peak-to-peak amplitude, 1 kHz). Records were normalized to their prerelease levels at normal IS (gray line and squares). Solid records are obtained at 520 mM. Traces were recorded from the same specimen. (C) Summary of the IS effect on \(k_{\text{decay}}\), normalized to the value at IS = 200 mM. For the meaning of numbers and asterisks by the columns see Fig. 1. Mean ± SD \((n = 6)\). The absolute value for \(k_{\text{decay}}\) at IS = 200 mM is 160 s\(^{-1}\).]
The fiber stiffness continued to decay in an exponential manner. The fitted rate constant for the stiffness decay (k_{decay}) decreased with increasing IS (59% of control at IS = 520 mM; Fig. 6C). In summary, the result did not support the hypothesis that the tension suppression at high IS is due to the accelerated dissociation of the force-generating cross-bridges.

Rigor stiffness

The final stage of actomyosin complex before the ATP-induced dissociation is rigor, although this rigor complex should exist only transiently at physiological ATP concentrations. To determine whether the fiber stiffness is sensitive to IS in rigor, the fiber was subjected to a series of step stretches in a protocol similar to that of Somasundaram et al. (1989) (Fig. 7A). The fiber stiffness, or the increment of tension at each step, tended to saturate as the total amount of stretch increased, but a complete saturation was not obtained. Therefore the highest values of stiffness obtained were compared for different experimental conditions. The stiffness was remarkably insensitive to IS (Fig. 7B), and the traces of tension for different IS values were almost perfectly superimposable.

DISCUSSION

Relationship to earlier studies

A large number of papers have been published on the effect of ionic strength (IS) on the properties of muscle fibers or contractile proteins. Many of the studies were conducted in the range of IS lower than the physiological value, where a significant fraction of weakly binding actomyosin complex exists in its attached form (see Brenner, 1987, for a review). In contrast, relatively few papers (including the present paper) put their focus on the range of IS higher than the physiological value.

In physicochemical terms, the action of IS in the low-IS range is distinguished from that in the high IS, as discussed below in detail, and the border may be drawn at 100 mM. At IS values far below 100 mM, long-range interactions between charged molecules would be the major events. In the range above 100 mM, such interactions are no longer possible- and, if significant IS effects are found, different mechanisms must be sought.

A number of papers described the properties of contracting muscle fibers in this high-IS region (Godt et al., 1993; Kawai et al., 1990; Seow and Ford, 1993). All of these studies reported a significant reduction of isometric tension at high IS values. The first two reported that the fiber ATPase activity is relatively insensitive to IS. Both studies reported parallel decreases in tension and stiffness and ascribed the relative insensitivity of ATPase to an increase in the dissociation rate constant. On the other hand, Seow and Ford (1993) reported a higher stiffness/tension ratio at elevated IS values as we report here and ascribed the effect to the detention of the cross-bridges to one of the A-M-ADP-P_i states.

The steps affected by ionic strength in the sequence of actomyosin reaction

In the present study, we examined the effect of elevating IS on the steps of actomyosin reaction, to obtain information about the physicochemical nature of intermolecular contacts made in the process of muscle contraction. We followed the sequence of reaction steps in the ATPase cycle, starting with the initial encounter between actin and myosin.

The first encounter generates the collision complex of actin and myosin. The step immediately after this is likely to be a first-order reaction with respect to the concentration of the collision complex, which is determined by the affinity of myosin for actin. This step is in turn expected to affect the rate of later reaction steps for tension development. Present results showed that IS variation has only a modest effect on the rate constant for tension development (k_{dev}), while it has a profound effect on isometric tension.

In terms of a two-state model (Huxley, 1957), the only explanation for the much smaller IS sensitivity of k_{dev} than that of tension is that the dissociation rate constant (g) is comparable to or greater than the association rate constant (f). This implies that only a small fraction of myosin heads are attached to actin at a time, and that the ATPase activity is relatively high. For the rise of tension after unloaded shortening, for example, the expected ratio of $f: g$ at normal
IS is ~3.7 (i.e., only 30% of total myosin is attached to actin), and ATPase is ~1.9 s\(^{-1}\). (In the two-state model, the tension is proportional to \(f/(f + g)\), and the ATPase rate is \(fg/(f + g)\). The \(k_{\text{dec}}\), is expressed as \(f + g\) and was 9.16 s\(^{-1}\) in this particular experiment.) However, the measured ATPase activity of fiber at normal IS is ~1.1 s\(^{-1}\) at 10°C (Iwamoto, 1998c) and should be lower at the temperature we used here. From these considerations, it is clear that the large IS sensitivity of isometric tension is not explained by the IS dependence of the rate of the initial encounter alone.

Next we attempted to determine whether the IS sensitivity of the force-generating isomerization is responsible for the large suppression of isometric tension. However, this possibility was eliminated by the observation that the population of the low-force complex is hardly affected by IS variation (Figs. 4 and 5). Therefore, the IS-dependent step should come after the force-generating isomerization. Because of its remarkable insensitivity to IS, the low-force actomyosin complex is clearly distinguished from the weakly binding complex. Seow and Ford (1993) postulated that the elevated IS detains the actomyosin complex in a weakly binding complex. Seow and Ford (1993) postulated that the IS increases the sensitivity of tension to Pi (Fig. 1 C) supports the idea that the IS effect is kinetic (see below).

The simplest explanation for the IS effect to be kinetic would be that there are two substates of force-generating actomyosin complex, and that the transition between them is sensitive to IS. They generate different amounts of tension, and the one generating the lower force is favored at higher IS values. This feature is incorporated into the proposed scheme of actomyosin reaction (Fig. 8), which is an expansion of the previously published scheme (Iwamoto, 1995b). The two force-generating A-M-ADP substates (A-M-ADP(1) and A-M-ADP(2)) are in rapid equilibrium, and the reverse rate

![Actomyosin reaction scheme](Image)

FIGURE 8 Actomyosin reaction scheme proposed to explain the present results. The scheme has three force-generating A-M-ADP substates (denoted by 1 and 2), the latter bearing higher force. Three rate constants (\(k_{-4}, k_{-5}\), and \(k_{-6}\), denoted by §) are assumed to be IS-dependent (\(k_{-4}\) is decreased, and \(k_{-5}\) and \(k_{-6}\) are increased by increasing IS). The release of ADP and the dissociation of A-M-ADP are assumed to be irreversible. Following the low-force A-M-ADP, (denoted by L), a force-generating A-M-ADP, intermediate (denoted by F) is incorporated in the light of a two-step Pi, release process (Dantzig et al., 1992; Kawai and Halvarson, 1991). This intermediate, assumed to support the same amount of tension as A-M-ADP (1), does not exist in a significant amount in the absence of Pi, (A) The whole scheme of ATPase reaction in which all intermediates are aligned in series. The right end of the scheme continues to the left end. (B) A part of the scheme in A, but with a branch pathway allowing the A-M-ADP(1) to release ADP (gray arrow and primed rate constant). (C) A part of the scheme in A, but with a second branch pathway allowing the direct formation of A-M-ADP(2) from A-M-ADP-P(F) (gray arrow and primed rate constant) along with the branch pathway in B.

Biophysical Journal 78(6) 3138–3149
constant (k_{-3}) is assumed to be IS-sensitive. Fig. 8 shows three possible ways of having these substates in the scheme, and the IS dependence of the contractile parameters was calculated for each case in Fig. 9. In the scheme in Fig. 8 A, all of the intermediates are in series. This variation reproduces the increased IS sensitivity of tension in the presence of Pi (Fig. 9, A and B), but the ATPase activity is also very sensitive to IS. This is clearly at odds with the observation (Godt et al., 1993; Kawai et al., 1990). The variation in Fig. 8 B incorporates a branch pathway that allows the lower force A·M·ADP(1) to release ADP and form a rigor complex. In this variation, the Pi-induced sensitization to IS is retained, while the ATPase rate is relatively IS-insensitive (Fig. 9, C and D). The variation in Fig. 8 C has a second branch pathway that permits the formation of A·M·ADP(2) from the force-generating A·M·ADP·Pi intermediate. The detailed-balance considerations require that this step also be IS-sensitive. In Fig. 8 C, $k_{-4'}$ is assumed to have the same IS sensitivity as k_{-5}. The results of the model calculation for this variation (not shown) were almost identical to those in Fig. 9, C and D.

Therefore, the present consideration cannot distinguish between the second and third variations. However, the conclusion still holds that both A·M·ADP substates should be able to release ADP.

The difference in the amounts of force supported by the two A·M·ADP substates can be quite large. In fact, the calculation in Fig. 9 assumes that A·M·ADP(1) produces only 20% of force produced by A·M·ADP(2). The difference in this magnitude is needed to reproduce the observed IS sensitivity of tension.

A feature common to the three variations of scheme in Fig. 8 is that the ATPase activity is very sensitive to Pi. However, it has been shown that the ATPase activity is less sensitive to Pi than is tension (Ebus et al., 1994; Kawai et al., 1987). To solve this paradox, one may use a logic similar to that used to explain the relative insensitivity of ATPase activity to IS: one may assume a third branch pathway that allows the force-generating A·M·ADP·Pi complex (A·M·ADP·Pi(F) in Fig. 8; see Dantzig et al., 1992; Kawai and Halvorson, 1991) to release its hydrolysis products all at once. With the set of rate constants given (Fig. 9), this intermediate is significantly populated only in the presence of Pi.

Whether the two proposed A·M·ADP substates correspond to the two configurations assumed in the Huxley and Simmons model (1971) is not clarified in the present study. To test this, one should at least quickly change the IS and measure the rate of the resulting tension transient. The IS effect on tension becomes smaller at higher temperature (data not shown), suggesting that the transition between the two A·M·ADP substates is also sensitive to temperature. There is a suggestion that the tension transient after a temperature jump corresponds to that after a quick release (Davis, 1999). If this is true, it is possible that the two A·M·ADP substates are related to the configurations assumed in the Huxley-Simmons model.
Intermolecular Forces in Actomyosin

In terms of intermolecular forces, the present results may be summarized as follows: in the actomyosin ATPase pathway, there are at least two ionic processes. One is the initial formation of the actomyosin complex, and the other is a force-augmenting step that comes after the force-generating isomerization. Other processes are generally insensitive to IS and are therefore considered nonionic in nature.

The contribution of ionic force to the initial encounter between actin and myosin is smaller than previously thought, and this is even more true for the tension redevelopment after lightly loaded or unloaded shortening. The long-range electrostatic attraction between protein and freely diffusible charged molecules diminishes as the screening effects of counterions increase. At an IS of 100 mM, the Debye-Hückel theory dictates that the space constant for the decay of electrostatic attraction has fallen to ~1 nm (see Cantor and Schimmel, 1980). The hydrophobic attraction has a comparable space constant but decays exponentially over a distance of 10 nm (Israelachvili and Pashley, 1982). At IS values higher than 100 mM, the hydrophobic attraction would be the only long-range force exerted between dissociated protein molecules. The ionic interaction between the N terminus of actin and the lysine-rich loop of myosin, therefore, should play only a limited role in the initial complex formation in this high-IS range. (However, it has been reported that the genetic alteration of the charge of the N terminus of actin or the loop in myosin affects motility in vitro or the ATPase activity (Furch et al., 1998; Sutoh et al., 1991). This may imply that the charged residues at the N terminus may play roles in enzymatic activity in later stages.)

It would be natural to assume that hydrophobic attraction plays a more important role in bringing actin and myosin together at this high IS range. There are several reasons for this: 1) At physiological IS values or higher, actin and myosin are dissociated in the absence of Ca$$^{2+}$$, while the N terminus of actin and the lysine-rich loop are exposed to the medium. 2) Upon Ca$$^{2+}$$ activation, tropomyosin shifts its position to expose the myosin-binding site of actin, which is composed of a cluster of hydrophobic residues (Lehman et al., 1995), and this is complementary to the cluster of hydrophobic residues on myosin (Rayment et al., 1993a). 3) The hydrophobic attraction, an entropic force derived from the destructuring of water, is by nature a long-range force (Israelachvili and Pashley, 1982) that acts rather nonspecifically between hydrophobic surfaces (Chothia and Janin, 1975). Because of this long range of action, the clusters of hydrophobic residues on neighboring actin monomers may be assumed to form a semicontinuous hydrophobic track along which myosin can move while remaining attracted. This may explain why $$k_{dev}$$ after shortening is even less sensitive to IS than $$k_{dev}$$ after photolysis of caged Ca$$^{2+}$$, and the intensity ratio of equatorial x-ray reflections (an index for the shift of mass between thick and thin filaments) does not approach its resting value until the shortening velocity is close to $$V_{max}$$ (Podolsky et al., 1976; Huxley et al., 1988). The stereospecific interactions between protein surfaces involve short-range forces such as van der Waals contacts and hydrogen bonds. Hydrophobic attraction stabilizes the structure formed by these forces (Chothia and Janin, 1975). The first vestige of such stereospecific interactions may appear in the low-force A-M-ADP-P, complex. This complex has a slow dissociation constant (Iwamoto, 1995a) and contributes to fiber stiffness (Brozovich et al., 1988; Iwamoto, 1995a) but shows a high rate of stress relaxation (Iwamoto, 1995a), implying that the stereospecific interactions are not yet intensive.

The stereospecific interactions are likely to be strengthened as the actomyosin reaction proceeds toward the end of the cycle and contractile force is generated (see Highsmith and Murphy, 1992). At one stage in this flow of events, there is an ionic process, i.e., the transition between the two A-M-ADP substrates, as we postulated. Because of its IS sensitivity exhibited at the high IS range, it is expected that some salt-bridge formation is involved in this process, and this structure is to some extent still accessible to solvent. Unlike the long-range electrostatic attraction, higher salt concentrations would be needed to disrupt salt bridges (e.g., thick filament backbone, which is stabilized by complementary pairs of charged amino acid residues; McLachlan and Karr, 1982). Such salt bridges may be formed at the second actin-myosin binding sites (Rayment et al., 1993a). Alternatively, salt bridges may be formed within the myosin head. Although intramolecular salt bridges are relatively rare (Schulz and Schirmer, 1979), a number of salt bridges have been reported for the crystal structure of myosin heads from different sources (Rayment et al., 1993b; Fisher et al., 1995; Dominguez et al., 1998). In particular, those formed between the “converter” and “relay loop” regions (Dominguez et al., 1998) may constitute a part of the power stroke.

The last stage of the actomyosin reaction is the formation of the rigor complex, which is very resistant to high IS (Fig. 7). The rigor complex may involve extensive stereospecific interactions stabilized by hydrophobic forces, a configuration similar to other tightly associated oligomeric proteins, such as αβ-oxyhemoglobin dimers (Chothia and Janin, 1975). This dimer is stable in up to 1 M NaCl (Gryczynski et al., 1997).

We thank Prof. H. Sugi and Dr. N. Yagi for their support and encouragement. The Nd-YAG laser is the equipment of the Central Laboratory of Analytical Biochemistry of Teikyo University.

This study was supported by the Salt Science Research Foundation.

Biophysical Journal 78(6) 3138–3149
REFERENCES

