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Abstract

We consider Boolean functions represented by decision lists, and study their relationships
to other classes of Boolean functions. It turns out that the elementary class of 1-decision lists
has interesting relationships to independently defined classes such as disguised Horn functions,
read-once functions, nested differences of concepts, threshold functions, and 2-monotonic func-
tions. In particular, 1-decision lists coincide with fragments of the mentioned classes. We further
investigate the recognition problem for this class, as well as the extension problem in the context
of partially defined Boolean functions (pdBfs). We show that finding an extension of a given
pdBf in the class of 1-decision lists is possible in linear time. This improves on previous results.
Moreover, we present an algorithm for enumerating all such extensions with polynomial delay.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Decision lists have been proposed in [34] as a specification of Boolean functions
which amounts to a simple strategy for evaluating a Boolean function on a given
assignment. This approach has been become popular in learning theory, since bounded
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decision lists naturally generalize other important classes of Boolean functions. For
example, k-bounded decision lists generalize the classes whose members have a CNF
or DNF expression where each clause or term, respectively, has at most & literals, and,
as a consequence, also those classes whose members have a DNF or CNF containing
at most k terms or clauses, respectively. Another class covered by decision lists is the
one of decision trees [33].

Informally, a decision list can be written as a cascaded conditional statement of the
form

if tl(U) then b,
elseif #,(v) then b,,

elseif 7;_;(v) then b,;_,
else by,

where each f#;(v) means the evaluation of a term ¢, i.e., a conjunction of Boolean
literals, on an assignment v to the xi,...,x,, and each b; is either 0 (false) or 1 (true).

The important result established in [34] is that k-decision lists, i.e., decision lists
where each term #; has at most & literals and k is a constant, are probably approximately
correct (PAC) learnable in Valiant’s model [39]. This has largely extended the classes
of Boolean functions which are known to be learnable. In the sequel, decision lists
have been studied extensively in the learning field, see e.g. [19,8,17,9].

However, while it is known that decision lists generalize some classes of Boolean
functions [34], their relationships to other classes such as Horn functions, read-once
functions, threshold functions, or 2-monotonic functions, which are widely used in
the literature, were only partially known (cf. [5,3]). It thus is interesting to know
about such relationships, in particular, whether fragments of such classes correspond
to decision lists and how such fragments can be alternatively characterized. This issue
is intriguing, since decision lists are operationally defined, while other classes such as
Horn functions or read-once functions are defined on a semantical (in terms of models)
or syntactical (in terms of formulas) basis, respectively.

In this paper, we shed light on this issue and study the relationship of decision
lists to the classes mentioned above. We focus on the elementary class of 1-decision
lists (%61-pL), which has received a lot of attention and was the subject of a number
of investigations, e.g. [34,29,8,9]. It turns out that this class relates in an interest-
ing way to several other classes of Boolean functions. In particular, it coincides with
independently defined semantical and syntactical such classes, as well as with the in-
tersections of other well-known classes of Boolean functions. We find the following
characterizations of %)-pL. It coincides with
o @Y., the renaming-closure of the class of functions f such that both f and its

complement f are Horn [12] (also called disguised “double” Horn functions);
® %\p, the class of nested differences of concepts [21], where each concept is described

by a single term;
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e %N %r-1, the intersection of the classes of 2-monotonic functions [32] and read-
once functions, i.e., functions definable by a formula in which each variable occurs
at most once [18, 25,39, 37];

® @1y N%r-1, the intersection of threshold functions (also called linearly separable
functions) [32] and read-once functions; and

® @rr-1, the class of linear read-once functions [12], i.e., functions represented by a
read-once formula such that each binary connective involves at least one literal.
Observe that the inclusion %-pr. Céty N %r-1 follows from the result that €-pp. C6tu

[5, 3] and the fact that %,-p, C%r-1; however, the converse was not known.

The above results give us new insights into the relationships between these classes of
functions. Moreover, they provide us with a semantical and syntactical characterization
of 1-decision lists in terms of (renamed) Horn functions and read-once formulas. On
the other hand, we obtain characterizations of the intersections of well-known classes
of Boolean functions in terms of operationally, semantically, and syntactically defined
classes of Boolean functions.

As we show, a natural generalization of the results from 1-decision lists to k-
bounded decision lists fails in almost all cases. The single exception is the coincidence
with nested differences of concepts, which holds for an appropriate base class genera-
lizing terms. Thus, our results unveil characteristic properties of 1-decision lists
and, vice versa, of the intersections of classes of Boolean functions to which they
coincide.

Furthermore, we study computational problems on 1-decision lists. We consider
recognition from a formula (also called membership problem [20] and representation
problem [4,1]) and problems in the context of partially defined Boolean functions.

A partially defined Boolean function (pdBf) can be viewed as a pair (7, F') of sets T
and F of true and false vectors v e {0, 1}", respectively, where 7N F = . It naturally
generalizes a Boolean function, by allowing that the range function values on some
input vectors are unknown. This concept has many applications, e.g., in circuit design,
for representation of cause—effect relationships [7], or in learning, to mention a few.
A principal issue on pdBfs is the following: Given a pdBf (7,F'), determine whether
some f in a particular class of Boolean functions % exists such that T C T(f) and
FCF(f), where T(f) and F(f) denote the sets of true and false vectors of f,
respectively. Any such f is called an extension of (T,F) in %, and finding such an f
is known as the extension problem [6,30]. Since in general, a pdBf may have multiple
extensions, it is sometimes desired to know all extensions, or to compute an extension
of a certain quality (e.g., one described by a shortest formula, or having a smallest set
T()).

The extension problem is closely related to problems in machine learning. A typical
problem there is the following [4]. Suppose there are n Boolean-valued attributes; then,
find a hypothesis in terms of a Boolean function f in a class of Boolean functions %,
which is consistent with the actual correlation of the attributes after seeing a sample
of positive and negative examples, where it is known that the actual correlation is a
function g in %. In our terms, a learning algorithm produces an extension of a pdBf.
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However, there is a subtle difference between the general extension problem and the
learning problem: in the latter problem, an extension is a priori known to exist, while
in the former, this is unknown. A learning algorithm might take advantage of this
knowledge and find an extension faster. The extension problem itself is known as the
consistency problem [4,1]; it corresponds to learning from a sample which is possibly
spoiled with inconsistent examples.

In this context, it is also interesting to know whether the pdBf given by a sample
uniquely defines a Boolean function in % if the learner recognizes this fact, she/he has
identified the function g to be learned. This is related to the question whether a pdBf
has a unique extension, which is important in the context of teaching [35,23, 36, 16].
There, to facilitate quicker learning, the sample is provided by a teacher rather than
randomly drawn, such that identification of the function g is possible from it (see e.g.
[5,16] for details). Any sample which allows to identify a function in % is called
a teaching sequence (or specifying sample [5]). Thus, the issue of whether a given
set of labeled examples is a teaching sequence amounts to the issue of whether S,
seen as a pdBf, has a unique extension in %. A slight variant is that the sample is
known to be consistent with some function g in %. In this case, the problem amounts
to the unique extension problem knowing that some extension exists; in general, this
additional knowledge could be utilized for faster learning.

Alternative teaching models have been considered, in which the sample given by the
teacher does not precisely describe a single function [17]. However, identification of the
target function is still possible, since the teacher knows how the learner proceeds, and
vice versa, the learner knows how the teacher generates his sample, called a teaching
set in [17]. To prevent “collusion” between the two sides (the target could be simply
encoded in the sample), an adversary is allowed to spoil the teaching set by adding
further examples.

Our main results on the above issues can be summarized as follows:

e Recognizing 1-decision lists from a formula is tractable for a wide class of formulas,
including Horn formulas, 2-CNF and 2-DNF, while unsurprisingly intractable in the
general case.

e We point out that the extension problem for %j-pp is solvable in linear time. This
improves on the previous result that the extension problem for %-p_ is solvable
in polynomial time [34]. As a consequence, a hypothesis consistent with a target
function g in %;-p. on the sample can be generated in linear time. In particular,
learning from a (possibly spoiled) teaching sequence is possible in linear time. We
obtain as a further result an improvement to [17], where it is shown that learning a
function ¢ in %;-py from a particular teaching set is possible in O(m?n) time, where
m is the length of a shortest 1-decision list for g, n is the number of attributes,
and the input size is assumed to be O(mn). Our algorithm can replace the learning
algorithm in [17], and finds the target in O(nm) time, i.e., in linear time. We mention
that [8] presents the result, somewhat related to [17], that 1-decision lists with
k alternations (i.e., changes of the output value) are PAC learnable, where the
algorithm runs in O(#?m) time.
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e We present an algorithm which enumerates all extensions of a pdBf in %-p with
polynomial delay. As a corollary, the problems of deciding whether a given set of
any examples is a teaching sequence and whether a consistent sample is a teaching
sequence are both solvable in polynomial time. Moreover, a small number of different
hypotheses (in fact, even up to polynomially many) for the target function can be
produced within polynomial time.

The rest of this paper is organized as follows. The next section provides some
preliminaries and fixes notation. In Section 3, we study the relationships of 1-decision
lists to other classes of functions. In Section 4, we address the recognition problem
from formulas, and in Section 5, we study the extension problem. Section 6 concludes
the paper.

2. Preliminaries

We use x1,x2,...,x, to denote Boolean variables and letters u,v,w to denote vec-
tors in {0,1}". The ith component of a vector v is denoted by v;. Formulas are built
over the variables using the connectives A,V, and —. A literal is a variable x; or
its negation %;. For any literal /, we denote by / its opposite. A term t is a con-
junction A;cpXi A Ny i of Boolean literals such that P(H)NN(t)=0, and a
clause ¢ is defined dually (change A to V); ¢ (resp., ¢) is Horn, if [N(¢)| <1 (resp.,
|P(c)|<1). We use T and L to denote the empty term (truth) and the empty clause
(falsity), respectively. A disjunctive normal form (DNF) ¢ = \/t; is Horn, if all t; are
Horn. Similarly, a conjunctive normal form (CNF) = A, ¢; is Horn, if all ¢; are
Horn.

For example, the term ¢ =x1%,x3x4 has P(¢)={1,3,4} and N(¢)={2}, and is Horn,
while the clause ¢ =x; Vx; Vx4 has P(c)={1,2} and N(c)={4}, and thus it is not
Horn.

A partially defined Boolean function (pdBf) is a mapping ¢g: T UF — {0, 1} defined
by g(v)=1if ve€T and g(v)=0 if v€F, where T C{0,1}" denotes a set of true
vectors (or positive examples), F' C {0, 1}" denotes a set of false vectors (or negative
examples), and TN F = (. For simplicity, we denote a pdBf by (7,F). It can be seen
as a representation for all (total) Boolean functions (Bfs) f:{0,1}"—{0,1} such
that TCT(f)={v| f(v)=1} and F CF(f)={v| f(v)=0}; any such f is called an
extension of (T,F).

We often identify a formula ¢ with the Bf which it defines. A term ¢ is an impli-
cant of a Bf f, if t< f holds, where < is the usual ordering defined by f<g <
T(f)C T(g). Moreover, ¢ is prime if no proper subterm ¢’ of ¢ is an implicant of f.
A DNF ¢ = \/,t; is prime, if each term ¢ is a prime implicant of ¢ and no term ¢ is
redundant, i.e., removing ¢; from ¢ changes the function.

A decision list (DL) L is a finite sequence of pairs (t1,01), (t2,b2),...,(ts,b4),
d>1, where for each i=1,...,d — 1, #; is any term, #z; =T, and b; € {0, 1}, for each
i=1,...,d. L defines a Bf f:{0,1}"— {0,1} by f(v)=b;, where i =min{i|ve T ()}
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We call a Bf sometimes a decision list, if f is definable by some decision list; this
terminology is inherited to restricted decision lists.

A k-decision list (k-DL) is a decision list where each term #; contains at most k
literals; we denote by %;-pL the class of all (functions represented by) k-decision lists.
In particular, % -p. is the class of decision lists where each term is either a single
literal or empty. A decision list is monotone [16], if each term ¢ in it is positive, i.e.,
N(t)=0. By %23 we denote the restriction of %;-pr. to monotone decision lists.

A Bf f is Horn, if F(f)=CIA(F(f)), where CI5(S) denotes the closure of set
S C{0,1}" of vectors under component-wise conjunction A of vectors; by @pom we
denote the class of all Horn functions. It is known that f is Horn if and only if f
is represented by some Horn DNF. If f is also represented by a positive DNF, i.e., a
DNF in which each term is positive, then f is called positive; 65 denotes the class
of all positive functions.

For any vector w € {0, 1}", we define ON(w)={i|w; =1} and OFF(w)={i|w; =0},
and for any set of vectors SC{0,1}" we define ON(S)= (),cs ON(v) and simi-
larly OFF(S)= (,cg OFF(v). Here we assume that ON(S)= OFF(S)={1,2,...,n}
if S=0. The renaming of an n-ary Bf f by w, denoted f", is the Bf f(x @ w), i.e.,
T(f")={vlv®weT(f)}, where @ is componentwise addition modulo 2 (XOR).
For any class of Bfs &, we denote by R the closure of ¥ under renamings. The
renaming of a formula ¢ by w, denoted ¢, is the formula resulting from ¢ by
replacing each literal involving a variable x; with w;=1 by its opposite. For ex-
ample, let f =x1X, Vxox3VX1x3%4. Then, the renaming of f by w=(1,1,0,0) is
fW Z)El.)CQ \/)EQX3 \/)C])E3)E4.

For any assignment 4 = (x;, < a1,X;, < aa,...,x; < a;) for values a; € {0,1} to the
obtained by fixing variables x;,,x;,,...,x; as specified by 4; Similarly, ¢, denotes the
formula obtained from ¢ by simultaneously substituting a; for x;, for j=1,2,....k.

3. Characterizations of 1-decision lists

3.1. Main result of this section

Let k-1, GLr-1, %};H, %D, ETH, and % denote the classes of read-once functions,
linear read-once functions, disguised double Horn functions, nested difference functions,
threshold functions, and 2-monotonic functions, respectively (formal definitions of all
these classes are given below). We prove the following result.

Theorem 3.1. %-pL. = b1r-1 = (g]l){H =%xp = G1H N Gr-1 = Com N Cr-1.
Proof. Immediate from Theorem 3.4, Proposition 3.6 and Theorem 3.7. [J

Read-once functions: A function f is called read-once, if it can be represented
by read-once formula, i.e., a formula without repetition of variables. The class 6-; of
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read-once functions has been extensively studied in the literature, cf.
[37,26,39,31,22,18, 25, 11].

Definition 3.1. Define the class Zgr-; of linear read-once formulas by the following

recursive form:

(1) T, L € %r-1, and x;,X; € FLr-1 for every variable x;;

(2) if o€ Z1r-1\{T,L} and x; is a variable not occurring in ¢, then x; V ¢, X;V ¢,
Xi N, Xi N @ E FLr-1.

Call a Bf [ linear read-once [12], if it can be represented by a formula in Z1g-1,
and let @ r-; denote the class of all such functions. For example, x1x(Xs V X3 V Xx5X¢)
is linear read-once, while xpx3 Vx4V ¥1Xs is not. Note that two read-once formulas
without occurrence of T, L are equivalent if and only if they can be transformed
through associativity and commutativity into each other [22]. Hence, the latter formula
does not represent a linear read-once function.

The following is now easy to see (cf. also [15, p. 11]):

Pl‘OpOSitiOll 3.2. (gLR-l = (gl-DL-

Note that any ¢ € #1r-; is convertible into an equivalent 1-decision list in linear
time and vice versa.

Horn functions: We next give a characterization in terms of Horn functions. A Bf
f is called double Horn [14], if T(f)=CI(T(f)) and F(f)=CIA(F(f)). The class
of these functions is denoted by épy. Note that f is double Horn if and only if f and
f are Horn. For example,

f =X Vxox3%4 V XpX3X5X6X7

is double Horn, because

f = Jﬂ(fz \/)E3 \/X4)(fz \/)E_O, \/)E5 \/fé \/X7)
= X1X2 VX1X3 V X1X4X5 V X1X4X¢ V X1X4X7

is Horn. Alternatively, a Bf f is double Horn if and only if it has both a Horn DNF
and a Horn CNF representation. In the previous example, this is easily seen to be the
case. The class of double Horn functions has been considered in [14, 12] for giving
T(f) and F(f) a more balanced role in the process of finding a Horn extension.

We can show the somewhat unexpected result that the classes %SH and % r-; coin-
cide (and hence %SH =®%Lr-1 = %61-pL)- This gives a precise syntactical characterization
of the semantically defined class %X;;, and, by the previous result, a semantical char-
acterization of % _pL.

The proof of this result is based on the following lemma, which can be found in
[14,12]. Let ¥ ={1,2,...,n} and n:V — V¥ be any permutation of V. Then, let I
be the set of Horn terms Iy = {Xx(1) - - - Xn(i)Xn(i+1) | 0<i <n} U {xr(1) - - - Xnm) }5 €.8., for
V'={1,2} and n(1)=2, n(2)=1, we have I; = {&;,x%1,x2x }
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Lemma 3.3 (Eiter et al. [14]). Let f be a Bf on variables x;, i€ V. Then, [ € %pu
holds if and only if f can be represented by a DNF ¢ = \/,cgt for some permutation
nof Vand SCI,.!

Denote by @5y = { f(1""1| f € %pu} the class of all reversed double Horn functions.
Theorem 3.4. 65 = %1r-1 = G1-pL and G5y =Cm%.

Proof. Let ¢ be a DNF for a function f € %py as in Lemma 3.3. By algebraic trans-
formations, ¢ can be rewritten to a formula \y € #1g-; of the form

X1IX12 « o X1y (21 V X2 V- o+ V Xy

V(x31x32 .. .X3n3(...(fd1 VXpp Ve \/)Ednd)))) if d is even,
X1IX12 e Xy (K21 V X2 V- o+ V Xy

\/(X31X32 .. .X3n3(. .. (xdlxdz .. .xd,,d)))) if d is Odd,

b= (3.1)

where d >0, n; 20, n;>1 for i=2,3,...,d, and the variables x;1,x2,...,X4,, are all
different.

For example, the formula @ =x,%; V x,x;, where S = {x,%1, xox;} for V and © as
above, can be rewritten as follows: xyX; Vxox; =xp(%; Vx1)=x, AT =x,; the for-
mula ¥ =x1x2X3 V X1x2X3X4%5 V X1X0x3X4x5% for V ={xi,...,x¢} and m=1identity can
be rewritten as

X|X2)E3 V X1.X'2.X'3X4)E5 \Y x1x2x3x4x5336 = X]xz(f:; \Y X4)E5 \Y x4x5f6)

=x1x2(¥3 V x4(X5 V X))

Therefore, we have (ggﬁ C %1r-1- Moreover, since every formula ¢ € #1r-; can be
transformed to form (3.1) by changing the polarities of variables, %‘}H D %Lr-1 holds;
hence %SH = %Lr-1. This together with Proposition 3.2 shows the first statement of this
theorem.

The second statement easily follows from the above argument. [

Thus, there exists an interesting relationship between 1-decision lists, read-once for-
mulas, and (disguised) Horn functions. By means of the relationship in Theorem 3.4,
we are able to precisely characterize the prime DNFs of functions in %%y. This is an
immediate consequence of the next theorem.

Theorem 3.5. Every f € %Yy (equivalently, f € 6i-pL, f € 6Lr-1) has a renaming w
such that v is positive and represented by the unique prime DNF

m

o=\t txs, (3.2)

i=1

! This lemma can also be derived from a related result on finite distributive lattices, see [28].
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where {t;,x; |i=1,...,m} is a set of pairwise disjoint positive terms and each t;, i =
1,2,...,m may be empty.? In particular, (3.1) implies ¢ = 1 if m=0. Conversely,
every such ¢ of (3.2) represents an f € 65 (equivalently, an f € 6i-pL, f € Gir-1)-

Proof. Lemma 3.3 implies that /' € %}, can be renamed to a function g represented
by a linear read-once formula (3.1) (cf. proof of Theorem 3.4); expanding this form
into DNF (apply distributivity) and subsequent renaming of negative variables yields
form (3.2). The latter form is clearly a prime DNF, and it is unique since every
positive function has a unique prime DNF. Conversely, ¢ in (3.2) can be rewritten
by factorization to a linear read-once formula #;(x, V ta(xs, V t3(xs V - - - t2X4,))), Where
empty terms ¢ are simply omitted. The result thus follows from Theorem 3.4. [J

Nested differences of concepts: In [21], learning issues for concept classes have been
studied which satisfy certain properties. In particular, learning of concepts expressed as
the nested difference ¢;\(c2\(- - - (cx—1\cx)) of concepts cy,...,c; has been considered,
where the ¢; are from a concept class which is closed under intersection. Here, a
concept can be viewed as a Bf f, a concept class C as a class of Bfs %, and the
intersection property amounts to closedness of @ under conjunction, i.e., f1, > € 6c
implies = fi A f> € éc. Clearly, the class of Bfs f definable by a single (possible
empty) term ¢ enjoys this property. Let %xp denote the class of nested differences
where each ¢; is a single term. Then, the following holds.

Proposition 3.6. %-p. = énp.

The proof of this proposition is omitted, since we shall prove a more general result
at the end of this section in Theorem 3.4, where we also give a characterization of
%"01. Thus, the general learning results in [21] apply in particular, to the class of
1-decision lists, and thus also to disguised double Horn functions and linear read-once
functions.

Threshold and 2-monotonic functions: Let us denote by %ty the class of threshold
functions and by %5y the class of 2-monotonic functions.

A function f on variables xi,...,x, is threshold (or, linearly separable) if there are
weights w;, i=1,2,...,n, and a threshold wy from the reals such that f(xj,...,x,)=1
if and only if Y7 | wax; =wy.

A function is 2-monotonic, if for each assignment A of size at most 2, either f; < f;
or fi= f; holds, where A denotes the opposite assignment to 4 [32].

The property of 2-monotonicity and related concepts have been studied under various
names in the fields of threshold logic, hypergraph theory and game theory. This property
can be seen as an algebraic generalization of the thresholdness. Note that €%, =%y
and €3, =%>m. We have the following unexpected result.

2 Note that the variables x4, are viewed as terms here.
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Theorem 3.7. (gI-DL = (gTH n (gR—l = (gZM N (gR-L

Proof. It is well known that €ty C €2m [32], where C is proper inclusion; moreover,
also %1-pL C %ru has been shown [5,3]. (Notice that in [12], the inclusion 65 C GTn
was independently shown, using form (3.2) and proceeding similar as in [3]; the idea
is to give all the variables in 4 the same weight, decreasing by index j, and to assign
x; a weight so that every term ¢t =1¢#...4x; in ¢ has same weight; the threshold wy
is simply the weight of a term ¢.)
Thus, by the results from above, it remains to show that @ N %r-; C 6i-pL holds.
Recall that a function g on xy,xs,...,x, is regular [32], if and only if g(v)=g(w)
holds for all v,w € {0,1}" with stk v = ngk w;, for k=1,2,...,n; denote by @y,
the class of regular functions. The following facts are known (cf. [32]):
(a) Every regular function is positive and 2-monotonic;
(b) every 2-monotonic function becomes regular after permuting and renaming argu-
ments.
(c) @reg 1s closed under arbitrary assignments 4 (i.e., fy € @ holds for every f € g
and assignment A).
From (a)—(c), it remains to show that @reg N Gr-1 € GLr-1 (= %1-pL).
We claim that any function f € %, N%r-1 can be written either as

(1) f:xil \/x,-z \/-~-\/xik \/f/ or (11) f:xi,xiz...xikf’,

where f” is a regular read-once function not depending on any x;, 1 <j<k. An easy
induction using Theorem 3.4 gives then the desired result and completes the proof.

Since [ is read-once, it can be decomposed according to one of the following two
cases:

Case 1: f=fiV faV ---V fi, where the f; depend on disjoint sets of variables B;
and no f; can be decomposed similarly. We show that |B;|>2 holds for at most one
i, which means that f has form

(i) For this, assume on the contrary that, without loss of generality, |Bi|,|B2|>2.
By considering an assignment A4 that kills all f3, fi,..., fx, it follows that the function
g= f1V f2 is regular. Observe that any prime implicant of g is a prime implicant
of f1 or f,, and that each of them has length >2 (since f is read-once and by the
assumption on the decomposition). Let / be the smallest index in B; UB, i.e., £/ <k for
all k € B UB,, and assume without loss of generality, that /€ B;. Let ¢ be any prime
implicant of f> and v satisfy ON(v)=P(t). Let w=v + ) — e, where h € ON(v)
and e® is the unit vector with ¢’ =1 and e =0, for all i #k. Note that / </ and
[ € OFF(v) by definition. Then g(w)=0 holds. Indeed, ON(w) 2 P(t,) for every
prime implicant #, of f3, since ON(w)NB, C P(t), and also ON(w) 2 P(¢;) for every
prime implicant # of fj, since |ON(w)NB;|=1. Consequently, the vectors v and w
with 37wy =37, v forall k=1,2,...,n satisfy g(v)=1 and g(w)=0. Thus g is
not regular, which is a contradiction. This proves our claim.

Case 2: f= fi1f2... fx, where the f; depend on disjoint sets of variables B; and no
f; can be decomposed similarly. Then, the dual function f“ has the form in case I.
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(Recall that a formula representing the dual of f, f¢= f(%), is obtained from any
formula representing f by interchanging V (resp., 0) and A (resp., 1).) Since the dual
of a regular function is also regular [32], it follows that £ has the form (i), which
implies that f has form (ii). [J

3.2. Possible generalizations

A generalization of Theorem 3.1 is an interesting issue. In particular, whether for
k-decision lists and read-k functions, where k£ is a constant, similar relationships hold.
It appears that this is not the case.

By using a counting argument, one can show that for every k>1, %-p. contains
some function which is not expressible by a read-tk formula. In fact, a stronger result
can be obtained.

Let for any integer function F(n) denote ér(F(n)) the class of Bfs f(xy,...,x,),
n =0, which are definable by formulas in which each variable occurs at most F(n)>1
times. For any class of integer functions F, define éRr(F)= UF(n)eF @r(F(n)). Denote
by (gf)‘es and (gpf,é‘ the classes of positive Bfs f such that all prime implicants of f
have size k (resp., at most k), where k is a constant.

Lemma 3.8. For every k>1, for all but finitely many n>k there exists an n-ary
fEGF  such that f ¢ Gr(n*~"/kk!logn).

pos

Proof. Since all prime implicants of a positive function are positive, ‘6{)‘05 contains

2 (k) (3.3)

functions on #n variables. On the other hand, the number of positive functions in
@r(F(n)) is bounded by

3. 21 (2’" -1 ) ’ (3.4)

m

where m=F(n) - n. Indeed, without loss of generality, a formula ¢ defining some
positive function does not contain negation. Assuming that all variables occur F(n)
times, the formula tree has m leaves (atoms) and m — 1 inner nodes (connectives).
Written in a post-order traversal, it is a string of 2m — 1 characters, of which m denote
atoms and the others connectives. There are

(2ml>
m!
m

ways to place the atoms in the string, if they were all different (this simplification
will suffice), times 2! combinations of connectives. If we allow the single use of
a binary connective r(x, y), which evaluates to the right argument y, we may assume
w.l.o.g. that ¢ contains exactly F(n) occurrences of each variable. Thus, (3.4) is an
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upper bound on positive read-F(n) functions in n variables. (Clearly, T and L are
implicitly accounted since multiple trees for e.g. f =x; are counted.)
Now, let us compare (3.3) with (3.4). Clearly, (3.4) is bounded by

3.2"72(2m)", (3.5)

since
2m — 1
m! < " > =C2m-1)2m—-2)---2m —m) < 2m™.
Take the logarithm of (3.3) and (3.5) for base 2, and consider the inequality
<Z) > log3 +m — 2+ m(logm + 1). (3.6)

Since (})=n(n—1)---(n—k + 1)/k!, this amounts to
nk k! > m(logm +2) + p(n), (3.7)

where p(n) is a polynomial of degree k — 1. For F(n)=n*""/kk!logn, we obtain
m=n*/kk!logn and thus

k k

n n
n* log(kk!logn) — 2
=—(1- .
! ( klogn >+p(”)

It is easily seen that for large enough n, this inequality holds. This proves the lemma.
U]

Let O(n*~!/kk!logn) be the class of functions F(n) such that F(n)<n*~!/kk!logn
holds for infinitely many n.

Theorem 3.9. €<k & Gr(G(n*~! /kk! logn)) for every k> 1.

pos

It is easy to see that every function in ‘gpﬁf is in %r(n*~'). Hence, k — 1 is the

lowest polynomial degree k' =k’(k) such that €5k C Gr(n*).
Corollary 3.10. ™% & Gr(O(n*~!/kk!logn)) and G-pr & Gr(U(n ! /kk!logn)) for
every k>1.

Consequently, any generalization of the parts in Theorem 3.1 involving read-once
functions to a characterization of k-decision lists in terms of read-k functions fails; this
remains true even if we allow a polynomial number of repetitive variable uses, where
the degree of the polynomial is smaller than & — 1.

Let us now consider a possible generalization of the characterization in terms of
Horn functions. Since %-p. contains all functions with a k-CNF (in particular, also
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the parity function on & variables), it is hard to see any interesting relationships between
%-p.. and combinations or restrictions of Horn functions.

For nested differences of concepts, however, there is a natural generalization of the
result in Theorem 3.1. Let $np(%) denote the class of all functions definable as nested
differences of Bfs in %, and let similarly denote %pL (%) the class of functions definable
by a %-decision list, i.e., a decision list in which each term #; except the last (¢;,=T)
is replaced by some f € %. Then, the following holds.

Theorem 3.11. Let € be any class of Bfs. Then, €p (€)= (" U{T}), where
G*={f|f €%} contains the complements of the functions in f.

Proof. We show by induction on d >1 that every f represented by a é-decision list
of length <d is in Gxp(€* U{T}), and that each nested difference f1\(f2\(- - (fa—1
\ f2))) where all f; are from €*U{T}, is in €pL(%).

(Basis). For d =1, there are two %-decision lists: (T,0) and (T, 1) respectively. They
are represented by the nested difference T\T and T, respectively. Conversely, (T,1)
represents T, and for any function f € %*, the decision list (f,0),(T,1) obviously
represents f; observe that f € % holds.

(Induction). Suppose the statement holds for d, and consider the case d + 1. First,
consider a %-decision list L=(f1,b1),...,(fi+1,ba+1), Where without loss of gener-
ality f1 £ T. By the induction hypothesis, the tail L' =(t,b5),...,(ts+1,b411) of L
can be represented by a nested difference D' =c{\(---(c),\¢,,.)---), defining a Bf
f'€bp(€). If by =1, then L defines the function /= f;V f’, which can be repre-
sented by the nested difference T\(f;\f'); replacing f’ by IV, this is a nested differ-
ence of functions in €*U{T}. Hence, f € %np(%* U{T}) holds. On the other hand,
if b; =0, then L represents the function f = f; A ', which is equivalent to —(fi V f);
since the complement of any function g is represented by the nested difference T\g,
we obtain from the already discussed scheme for disjunction that f is represented by
the nested difference

TN\ NT\),

replacing f/ with D’, we obtain a nested difference of functions in €* U {T}, hence
fE€BD(ETU{T}).

Second, let D= fi\(/2\(: - (f4\fa+1))) be any nested difference of functions in
&* U{T}. By the induction hypothesis, D' = (f2\(- - - (fz\ fa+1))) represents a function
f' € 6pL(%); thus, D represents the function f'= fj A—f".

It is easy to see that for any %, éprL(%¥) is closed under complementation [34]
(replace in a decision list each b; by 1 — b; to obtain a decision list for the comple-
ment function). Hence, f is represented by some %-decision list L'. Now, if f; =T,
then L’ represents f; otherwise, the decision list L =( f_l,O), L' represents f. Hence,
S €GpL(?).

Consequently, the induction statement holds for d + 1. This concludes the proof of
the result. [
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Proposition 3.6 is an immediate corollary of this result. Moreover, we get the fol-
lowing result. Let % denote the class of functions definable by a single clause with
at most & literals, plus T.

Corollary 3.12. %;-pL = Gnp(Gi-c1), GpL(Gr-DNF) = ENp(Cr-onF) for k=1,

Thus, énp (k-1 ) characterizes 6;-prL. However, - is not closed under conjunction,
and thus, strictly speaking, not an instance of the schema in [21]. A characterization
by such an instance is nonetheless possible. Call a subclass €’ C % a disjunctive base
of a class %, if every f €% can be expressed as a disjunction f=f1V foV -V f,
of functions f; in €.

Lemma 3.13. If €' is a disjunctive base for €, then 6pL(%')=CpL(E).

Proof. Suppose an item (f,b) occurs in a %-decision list L. By hypothesis, /= f1 V
...V fm, where each f; € €’. Replace the item by k items ( f1,b),...,(fm,b). Then, the
resulting decision list is equivalent to L. Hence, each %-decision list can be converted
into an equivalent ¢’-decision list. [J

Theorem 3.14. (gk-DL = (gDL((gk—DNF) = (gND((gk-CNF) for k >1.
Proof. By Corollary 3.12 and Lemma 3.13. [

Thus, nested differences of k-CNF functions are equivalent to k-decision lists. Ob-
serve that from the proof of this result, linear time mappings between nested differences
and equivalent k-decision do exist. A similar equivalence %;-pL = Gnp(Gk-pnr) does
not hold. The reason is that the class of single-term functions is not a base for éj-cnr,
which makes it impossible to rewrite a %j-cnp-decision list to a k-decision list in
general.

The classes of bounded monotone decision lists can be characterized in a similar
way. Let €0\ and %, <cxp be the subclasses of %i-pnr and %-cne Whose members
have a positive DNF and a negative CNF (i.e., no positive literal occurs), respectively.

Theorem 3.15. G™% = G (675 ) = Cun (BB for k=1,

Thus, in particular, if %;;,- denotes the class of negative literals plus T, then we
obtain the following.

Corollary 3.16. G5% =60 = Gap(Grir- ) = Gan (6] Enp)-

4. Recognition from a formula

Recall that the membership problem [20] (also representation problem [4,1]) for
a class € of Boolean functions is deciding whether a given formula ¢ represents a
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function in %. This problem is also known as the recognition problem, and we call
any algorithm solving it a recognition algorithm (for the class %).

A 1-decision list, and thus also its relatives, can be recognized in polynomial time
from formulas of certain classes, which include Horn formulas. The basis for our
recognition algorithm is the following lemma:

Lemma 4.1. 4 Bf f is in %-py if and only if either (ia) ¥; < f, (ib) )Ej<f_, (ic)x;<f
or (id) x,<f holds for some j, and (ii) f(,—1)€ @-pL (resp., f(,—o) € G1-pL) holds
for all j satisfying (ia) or (ib) (resp., (ic) or (id)).

Given a formula ¢, the recognition algorithm proceeds as follows. It picks an index
J such that one of (ia)—(id) holds, and then recursively proceeds with ¢4 as in
(ii). The important point here is that (ii) implies that a greedy choice of any variable x;
satisfying one of the conditions in (i) is enough, and that no backtracking is needed.
The details of the algorithm, which implements this greedy choice strategy, can be
found in [12]. For its time complexity, we obtain the following result. For a formula
@, let |¢| denote its length, i.e., the number of symbols in ¢.

Theorem 4.2. Let & be a class of formulas closed under assignments (i.e., ¢4 € F
holds for every @ € F and assignment A) such that checking equivalence of ¢ to T
and L, respectively, can be done in O(t(n,|p|)) time for any ¢ € F.3 Then, deciding
whether a given ¢ € F represents an f € 6i-pL can be done in O(n*t(n,|ol|)) time.

Proof. Immediate from the fact that the recursion depth is bounded by #» and that at
each level O(n) tests (ia)—(id) are made. [

Hence, the algorithm is polynomial for many classes of formulas, including Horn
formulas and quadratic (2-CNF) formulas. Since testing whether ¢ =T and ¢ = L for
a Hom DNF ¢ and a quadratic formula is possible in O(|¢|) time (cf. [10, 15]), we
obtain the following.

Corollary 4.3. Deciding whether a given Horn DNF or 2-CNF ¢ represents an f €
-pL can be done in O(n?|@|) time.

Theorem 4.2 has yet another interesting corollary.

Corollary 4.4. Deciding if an arbitrary positive (i.e., negation-free) formula ¢ rep-
resents an f € 6 r-1 can be done in polynomial time.

In fact, deciding whether a positive formula ¢ represents a read-once function is
co-NP-complete [22, 11]. It turns out that the class of %1 r-; is a maximal subclass

3 That is, & is syntactically closed under projection. Formulas such as Horn DNFs must be slightly
generalized by allowing occurrences of constants for this property. As usual, #(n, |@|) is monotonic in both
arguments.
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of %r-1 w.r.t. an inductive (i.e., context-free) bound on the size of disjunctions and
conjunctions in a read-once formula such that deciding f € %r-; from a positive formula
¢ is polynomial. Let the class Z r-1 of 2-linear read-once formulas be the (smallest)
class of formulas such that

(1) T,LeFyr-1, and x;,X; € Fyr-1 for every variable x;;
(2) if o € Zo1r-1\{T, L} and ¢ is a read-once formula that contains at most 2 literals
and shares no variables with ¢, then YV ¢, Y A @ € Fy1r-1.

Note that %, r-1 generalizes & g-1 by increasing in clause (2) the number of literals
in  from one to two; this is the least possible increase.

Let %, r-1 denote the class of all Bfs which can be represented by some for-
mula from % r-;. Clearly, % r-1 C €21r-1, and the inclusion is strict. For example,
J =x1x3 V x3x4 is a function in €1 r-1\%Lr-1. From results in [11, 22], we easily derive
the following result.

Proposition 4.5. Deciding if an arbitrary positive (i.e., negation-free) formula ¢ rep-
resents a function f € €, r-1 is co-NP-hard.

Proof. Based on a construction in [22], it was shown in [11, Theorem 5.7] that deciding
whether a given positive formula ¢ represents any function f € %r-; is co-NP-hard.
The proof there establishes that this problem is co-NP-hard, even if it is asserted
that the only possible such f is of the form f =xx;Vx3x4V -+ Vx,_1x2,. Since
f € @ar-1 € Gr-1, the result follows. [

In general, the recognition problem for %ig-; is unsurprisingly intractable.

Theorem 4.6. Deciding whether a given formula ¢ represents a function f € 6 -pL is
co-NP-complete.

Proof. The recognition problem for %éz-; is in co-NP [2], and it is easy to see that
it also in co-NP for @,v. Since co-NP is closed under conjunction, membership in
co-NP follows from Theorem 3.1. The hardness part is easy: any class % having the
projection property, i.e., € is closed under assignments, contains f =1 for each arity,
and does not contain all Bfs, is co-NP-hard [20]; obviously, % -pL enjoys this property.

O]

As for k-decision lists, it turns out that the recognition problem is not harder than for
1-decision lists. In fact, membership in co-NP follows from the result that k-decision
lists are exact learnable with equivalence queries in polynomial time (proved by Nick
Littlestone, unpublished; this also derivable from results in [21] and Theorem 3.14),
and the result [2] that for classes which are exact learnable in polynomial time with
equivalence and membership queries (under minor constraints), the recognition problem
is in co-NP. Hardness holds by the same argument as in the proof of Theorem 4.6.
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We conclude this section with some remarks concerning the equivalence and the
implication problem. The problems are, given k-decision lists L; and L, representing
functions f; and f5, respectively, decide whether f; = f, (equivalence) and f; < f>
(implication) holds, respectively. Both problems are obviously in co-NP, and they are
complete for any fixed k>3, since they subsume deciding whether a k-DNF formula
is a tautology. On the other hand, for £ =1, both problems are polynomial, and in fact
solvable in linear time. For the remaining case k =2, it can be seen that the problem
is also polynomial; the underlying reason is that the satisfiability problem for 2-CNF
formulas is polynomial.

5. Extension problems

The extension problem for %;-p. has already been studied to prove the PAC-
learnability of this class. It is known [34] that it is solvable in polynomial time. We
point out that the result in [34] can be further improved, by showing that the extension
problem for %j_p. can be solved in linear time. This can be regarded as a positive
result, since the extension problem for the renaming closures of classes that contain
%-pL is mostly intractable, e.g., for Gfj,m,» Cposs Goe) = Gr-1, €op = Gam [7,6], or no
linear time algorithms are known.

We describe here an algorithm EXTENSION (see Fig. 1), which outputs a 1-decision
list for an extension of a given pdBf (7, F'). It uses Lemma 4.1 for the equivalent class
@Lr-1 for a recursive extension test. The algorithm is similar to the more general
algorithm described in [34], and also a relative of the algorithm “total recall” in [21].
Informally, it examines the vectors of 7" and F, respectively, to see whether a decom-
position of form LA ¢ or LV ¢ is possible, where L is a literal on a variable x;; if
so, then it discards the vectors from 7 and F which are covered or excluded by this
decomposition, and recursively looks for an extension at the projection of (7, F') to the
remaining variables. Cascaded decompositions L; A (L A (L3 A(---))) etc., are handled
simultaneously.

To find an extension of a given pdBf (7, F'), the algorithm is called with /={1,...,n}.
Observe that it could equally well consider J* UJ~ before It UI~, when going into
the recursive calls. In particular, if an index i is in the intersection of these sets, then
both decompositions x; A g and x; V g are equally good. Note that the execution of steps
2 and 3 alternates in the recursion. Moreover, the algorithm remains correct if only
a subset SCITUI™ (resp., SCJTUJ ) is chosen, which may lead to a different
extension.

Proposition 5.1. Given a pdBf (T,F), where T,F C{0,1}", algorithm EXTENSION
correctly finds an extension f € 6 -pL in O(n*(|T| + |F|)) time.

Note that algorithm EXTENSION is easily modified such that it outputs an equiva-
lent formula ¢ € % g-; instead of L. Alternatively, L may be converted into a nested
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Algorithm EXTENSION

Input: A pdBf (T, F), T, F C {0,1}"and aset I C {1,2,...,n} of indices.

Output: A 1-decision list L on variables z;, i € I, if (T'[I], F[I]) has an cxtension f € Ci-py, where T'[I] and
F[I] arc the projections of T" and F to I, respectively; otherwise, “No”.

Step 1. if T[I] = () then return L := (T, 0) (exit) (* no true vectors, return L *)
elseif F[I] = w then L := (T, 1) (exit); (* no false vectors, return T *)
Step 2. It := ﬂveq-[l]()N(v) and [~ := ﬂveT[I]OFF('U); *teyzi(-+),Ti(-+ )i €It jel™ %)
if It U I~ = () then go to Step 3 (* no extension x;(-+ +), T;(+ + +) possible *)
else begin (* go into recursion *)

F':=F\{wé€F|OFF(w)NI*#0orON(w) NI~ #0};
T :=T;I':=I\(ItUuI"),
L' := EXTENSION(T", F', I');
if L' = “No” then return “No” (exit) (* no decomposition = no extension *)
else (* I't = {i1,...,ix}s I™ = {j1,.. ., Je} ¥
return L = (%;,,0), ..., (Ti, 0), (%5,,0),. .., (2;,,0), L (cxit)

end{if};

Step 3. J* := NyerON (w) and I~ = Nye pnOF F(w); Kty @iV, TV i €JT,j €07 %)
if J* U J~ = () then return “No” (exit) (* no decomposition = no extension *)
else begin (* go into recursion *)

T :=T\{veT|OFFw)NJt £PorON(@)NJ~ #0};
F=FT:=I\(JtUuJ);
L' := EXTENSION(T", F', I');
if ' = “No” then return “No” (exit)
else (¥ J* = {i1,...,ix}s J~ = {j1,.. ., e}
return L = (xi1 ) 1)’ EERE} (xim 1)1 (—x-jli 1)1 ceny (Eju l)a r (exit)
end{if}. 0

Fig. 1. Algorithm for computing an 1-DL representing an extension in %j-pr..

difference of concepts xi,...,x, in linear time using the rewriting scheme from the
proof of Theorem 3.11. Furthermore, integer weights w; and a threshold wy for the
function represented by L can be easily computed from ¢ with O(|¢|) many additions,
i.e., in linear time (see [12]). Thus, variants of algorithm EXTENSION may generate
these alternative representations for an extension of (7,F) in %-p. within the same
time bounds.

It is possible to speed up algorithm EXTENSION by using proper data structures so
that it runs in linear time.

Theorem 5.2. The extension problem for €\-pL (equivalently, for €rr-1, 6ty N Gr-1,
and Gnp) is solvable in time O(n(|T| + |F))), ie., in linear time.

Proof (Sketch). This result can be obtained by using appropriate data structures, in
particular doubly linked lists and cross-reference pointers. The data structures assure
that the same bit of the input is looked up only few times. We merely sketch the
main ideas here; the technical details and an implementation-level description of the
algorithm can be found in [12].
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Fig. 2. Data structures for (7,F) where T ={(010),(001)} and F = {(000)}.

The set of true vectors, T, is stored as follows (cf. Fig. 2). For each i=1,2,...,n
and j =0, 1, there is a doubly linked list LT; ; of all the vectors v in T such that v has at
component i value j; at each component i of v, a link to the entry of v in the respective
list LT;; exists. A counter #I;; records how many vectors are contained in LT; ;. The
counters #7; ; are placed via pointers in buckets BT[0],...,BT[n], which are organized
as doubly linked lists, such that the counter #7; ; is in BT[#T; ;]. A further counter #7T
records the number of vectors in 7'; note that #7'= >, ;#T; ;/n. The set of false vectors
is stored using completely analogous data structures LF; ;,#F;;, BF[0],...,BF[n], and
#F (see Fig. 2).

Notice that these data structures can be built from (7,F) in time O(n(|T| + |F])).
Step 2 of algorithm EXTENSION is then modified as follows. The bucket BT[#T']
contains those counters #7;; and #7; o such that ic/ * and j eI, respectively. The
sets F/ and T’ result by removing from F all vectors v in the lists LF;; and LFj;
using the cross-references, occurrences of v in the other lists LFys ; are removed as
well. Step 3 is analogous.

Like above, the 1-decision list L computed by EXTENSION can be converted to an
equivalent formula ¢ € #1r-;, a threshold function given by integer weights w; and a
threshold wy, or a nested difference of concepts xi,...,x, in linear time. [J

Thus, in the learning context we obtain the following result.

Corollary 5.3. Learning a Bf f € €\-pL from an arbitrary (possibly spoiled) teaching
sequence for f is possible in linear time in the size of the input.

It turns out that our algorithm can be used as a substitute for the learner in the
teacher/learner model for %)-pp. described in [17]. That algorithm is based on the idea
to build a decision list by moving an item (¢, b), where / is a literal and b an output
value, from the beginning of a decision list towards the end if it is recognized that some
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example is misclassified by this item. Initially, all possible items are at the beginning,
and the procedure loops until no misclassification occurs (see [17] for details); it takes
O(m?n) many steps if the input has size O(mn), where m is the length of the shortest
decision list for the target.

The method in [17] is somewhat dual to ours, and it is easily seen that the items
which remain at the beginning of the list are those whose literals are selectable for
decomposition in our algorithm. Thus, by the greedy nature of our algorithm, it con-
structs from the (possibly spoiled) teaching set as in [17] exactly the target function.
This shows that %j-p. is an efficiently learnable class; since the teaching set is con-
structible from the target in linear time, we have that %|_py is a nontrivial class of
optimal order, i.e., linear time for both teaching and learning.

5.1. Generating all extensions

A standard generalization of finding one solution to a combinatorial problem is to find
all solutions, with particular emphasis on algorithms that enumerate all the solutions
one by one (and without repetitions of the same solution), see e.g. [24, 27, 38].

Enumerating all extensions of a pdBf in %j-pp is a combinatorial problem of interest.
It is clear that in general, a pdBf may have an exponential number of extensions in
%\ -pL, and thus not all extensions can be computed in polynomial time. However, a pro-
cedure which produces the extensions one by one such that the time until the next out-
put occurs is bounded by a polynomial allows one to generate a polynomial number of
extensions in polynomial time; in particular, if only polynomially many extensions exist,
all of them can be generated in polynomial time. In an application, an extension may be
chosen after seeing a polynomial number of possible candidates which can be produced
efficiently. In this way, a good extension on a certain criterion can be generated with
polynomial time effort, where it is intractable to find the best extension. The enumer-
ation procedure serves here to efficiently generate the search space of all extensions.

For example, finding a shortest extension (in terms of a 1-decision list) of a given
pdBf is unsurprisingly NP-hard, as follows from results in [12, 14]. As a simple ap-
proximation, the shortest decision list out of a polynomial number of decision lists
generated in polynomial time may be chosen.

Ideally, the next extension is generated in time bounded by a polynomial p(-) in
the original input size, i.e., in time p(n(|T|+ |F|)) where n(|T| + |F|) is the size of
a pdBf (7,F). Thus, regardless of how many (possibly already exponentially many)
extensions have already been generated, the next extension will be found within the
same time, or it will be recognized that no further extension exists. Such an algorithm
is called a polynomial delay algorithm in [24].

In this section, we present an algorithm for enumerating all extensions of a pdBf in
%1-pL, with polynomial delay, such that each extension is output only once and that
no auxiliary memory is used for storing the extensions already output. Informally, the
algorithm is a backtracking procedure similar to EXTENSION that recursively outputs
extensions with common prefix in their syntactical representation as 1-DLs. However,
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a simple realization is prevented by ambiguous representation of the same function
through different 1-DLs. There are two sources of ambiguity:
(I) The commutativity of logical connectives. For example, the 1-DLs (x1,1),(x2, 1),
(T,0) and (x2,1),(x1,1),(T,0) both represent the function f =x; V x,.
(I) In every 1-DL, there exist two equivalent choices for the two innermost nodes of
the 1-DL. For example, (x,1),(x2,1),(T,0) and (x1,1),(x2,0),(T,1) both repre-
sent the function f =x; Vx;.

In combination, these two sources generate further ambiguity: also (x,, 1)(¥1,0),(T, 1)
represents f =x; V x;. Thus, even if any prefix of this 1-DL is different from any prefix
of the 1-DL (x1,1),(x2,0),(T, 1), they both represent the same function. To avoid such
ambiguity, our enumeration algorithm uses the following canonical form of 1-DLs:

1. (T,0) and (T, 1) are canonical, representing /=0 and f =1, respectively;

2. any 1-DL (4,0),(T,1) is canonical; and

3. a 1-DL (4,b1),...,(£4,bq) where d >3 is canonical, if no variable occurs more
than once in it and its tail is either (£;_2,1),(4z—1,1),(T,0) or (£4—2,0),(Z4—-1,0),

(T,1).

For example, f =x; Vx; is represented by the canonical 1-DL (xi, 1), (x3,1),(T,0).

It is easy to see that the canonical form amounts to the requirement that in the
form (3.1) of equivalent (renamed) linear read-once formulas, the innermost level has
at least two literals, and that a canonical 1-DL is thus unique up to permutations of
neighbored elements (4, b;), (441, bi+1) that have the same output value, i.c., b; =b;, .
Our enumeration algorithm handles this ambiguity by excluding any literal /, once it
has been chosen for a level i of the (renamed) form (3.1), for further selection at the
same level.

We need some preparatory definition. The variable of a literal / is denoted by V(7).
The literal is called A -selectable (resp., V -selectable) for a set of vectors S, if either
¢/ =x; and j € ON(S) (resp., j € OFF(S)), or / =X; and j € OFF(S) (resp., j € ON(S)).
The set of all A-selectable (resp., V-selectable) literals for S is denoted by Sel-Lit,(S)
(resp., by Sel-Lit\(S)).

Our algorithm, ALL-EXTENSIONS, is described in Fig. 3. It builds an 1-DL L step
by step from scratch. The expansion of the current list by an element (£,0) (resp.,
(4,1)) is called a conjunction step (resp., a disjunction step). For efficiency reasons,
the algorithm calls functions POSS-A((T’,F"),I’, Lit,) and POSS-V((T',F"),I’, Lit,,),
respectively, which are generic functions for pruning the search space by eliminating
branches of the computation which will for sure not lead to a new extension. They are
supposed to report “Yes” whenever the current partial 1-DL L =(¢1,by),...,(¢, b;) for
(T,F), where i>1, can be completed to a canonical 1-DL such that:

(i) at least one further element (4 ,b;11) where 41 # T must be appended, and
(i1) all elements (£}, b;) where b; =0 (resp., b; =1) that are appended before the next
disjunction step (resp., conjunction step) must be from Lit (resp., Lit{,).

Clearly, any pruning functions POSS-A and POSS-V which satisfy this property are
sound, i.e., they do not prune the search space including a new extension. We note the
following result.
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Algorithm ALL-EXTENSIONS
Input: A pdBf (T, F), where T, F C {0,1}™.
Output: 1-DLs Ly, Ly, . .., Ly, for all extensions of (T, F) in Ci-py,.

Step 1. if T = ¢} then output “(T,0)” (continue); (* special treatment of extension L %)
if F = () then output “(T, 1)” (continue); (* special trcatment of extension T *)
it T # 0 and F # () and EXTENSION(T', F)= “No” then halt, (* no non-trivial cxtensions *)

Stcp 2. L:=nil, I:= {1, 2,..., n}; (* L is empty, I has all var-indices *)
Litp = Sel-Lita (T'); Lity := Sel-Lity (F);

ALL-AUX((T, F), L, I, Lita, Lity). ]
Procedure ALL-AUX

Input: A pdBf (T, F'), partial 1-DL L, sct I of available variablc indiccs and sets of literals Lit, Lity allowed for
decomposition,

Output: 1-DLs for all extensions f € Ci-py, of (T, F) having prefix L, and the literal plus operator after L is
according to Lita, Lity.

Step 1. (* Expand L by a conjunction step *)
while there is a literal £ € Lita do begin

I' =17 \ V(£); (* variable of £, V/(£), is no longer available *)
Litp = Lita \ {e}, (* exclude literal £ for further decomposition *)
Lit), := Lita \ {Z}, (* € = complementary literal of £ *)

T':=T,F:={veF|veT®)}
if (L = nil or L = “L’, (¢/,0)”) and I’ = {) then output the extension “L, (£, 0), (T, 1)”;
it POSS-A((T", F'), I', Lit}) = “Yes”
then begin  (* expand L by “(2,0)” *)
Lit), = Sel-Lity (F'[I"));
ALL-AUX((T", F'),“L, (£,0)", I', Lit},Lit.,);
end{then}
end{whilc}.

Step 2. (* Expand L by a disjunction step *)
while there is a literal £ € Lity do begin

I'=1I \ V(f), (* variable of £, V/(£), is no longer available *)
Lity = Lity \ {g}, (* exclude literal £ for further decomposition *)
Lit(/ = Lity \ {l}; (* € = complementary literal of £ *)

T':={veT|v¢T)}, F =F,;
it L= L', (¢,1)” and T' = () then output the extension “L, (£,1), (T,0)”;
it POSS-V((T", F"), I', Lit!,) = “Yes”
then begin (* expand L by “(£,1)” *)
Lit, = Sel-Litn(T'[I']);
ALL-AUX((T", F'), “L, (¢,1)", I', Lit, Lit.,);
end{then}
end{while}. m}

Fig. 3. Enumeration algorithm for 1-DLs for all extensions in %j-pr.

Proposition 5.4. Suppose POSS-A((T',F"),I',Lit}) and POSS-V((T',F"),I',Lit),) are
sound pruning functions. Then, algorithm ALL-EXTENSIONS correctly enumerates
1-DLs for all extensions f € 6-pL of (T,F), i.e., 1-DLs Ly,L,,...,L, such that each
extension [ € 6-pL is represented by some L; and different L;s represent different
extensions.
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Function POSS2-A
Input: A pdBf (T'[I], F[I}), where T', F C {0,1}*, I C {1,...,n}, aset Lits of A-selectable literals for T'[I].
Output: Boolean (“Yes” or “No”).

Step 1. if |T[I]| = 2! or |F[I]| = 21" then return “No”
elseif Lit contains opposite literals then return “Yes”; /% In this case, T = @) */
for each subset A C Lita such that |A| > |LitA| — 1 do begin
Iy:=I\{V()| e A};
Fyp:={weF|weT()foreveryl € A};
if Sely(Fa[Ia]) # 0 then return “Yes”
end{for};
return “No”. O

Fig. 4. Pruning function POSS2-A.

Proof. The proof by induction on |/| is straightforward. It is easy to see that the
asserted soundness condition on POSS-A and POSS-V guarantees that the algorithm
outputs each extension in %-pr: every completion of a partial 1-DL L to some canonical
1-DL that has not been output so far is found. Furthermore, the exclusion of literals
from Lit, in the while loop of Step 1 (resp., Lity, in the while loop of Step 2) eliminates
ambiguity (I), i.e., commutativity of logical connectives. Since only canonical 1-DL are
output by the condition on the outputs, different outputs represent different extensions.

U

A trivial implementation of POSS-A and POSS-V simply returns “Yes”, independent
of the input (call this POSS1). However, the resulting algorithm is not polynomial de-
lay. For example, consider (7,F) where T={(1---1)}, F={ve{0,1}" ||OFF(v)|=1}.
This pdBf has a unique extension in %j-p, which amounts to f =xx;---x,. Us-
ing POSSI1, algorithm ALL-EXTENSIONS has exponentially many computation paths
which drive to no solution: each subset of {xi,...,x,} will be considered as initial
conjunctive prefix for an extension in %)-pr, but only one of them succeeds.

We consider here the pruning functions POSS2-A and POSS2-V, where POSS2-A
is shown in Fig. 4. The function POSS2-V is completely symmetric. The following
lemma is easily established. In what follows, let for any set of literals 4 and set of
vectors S denote V(A)={V(/)|/ €A} and S1={veS|ve T(/) for all £/ € A}, where
V (/) denotes the variable of /.

Lemma 5.5. POSS2-A is a sound pruning function, which is executable in
O(I1*||F11]]) time.

Proof. Suppose that the current partial 1-DL can be completed to a canonical 1-DL as
in items (i) and (ii) before Proposition 5.4, i.e., POSS2-A is supposed to return “Yes”.
Then there exists a 1-DL L=(41,by),...,(¢k, br),(T,br1) representing an extension
f# L, T such that {4 |1<i<j} CLit, holds for the maximal prefix (¢,0),...,(£;,0)
of L with output 0. As f# L, T, the first if-statement is correct; hence the else-
if statement is also correct. For what is left, we consider the case in which Lit,
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does not contain opposite literals. If j=k (ie., L=(4,0),...,(£,0), (T,1)), then
/; is V-selectable for Fy[I,] with 4= Lit,\{/;}. This means that POSS2-A correctly
returns “Yes”. On the other hand, if j<k, then /., is V-selectable for Fy[l4] with
A=Lita\\{¢;11}. POSS2-A correctly returns “Yes” also in this case. This proves the
soundness of POSS2-A.

As for the time bound, using counters for |F|, |T| and the number of opposite
literal pairs in Lits (which can be efficiently maintained), the first if statement and the
elseif statement can be executed in constant time; note that |[F[I]|=|F|, |T[{]|=|T]
as in calls of POSS2-A all vectors in F,T coincide on {1,2,...,n}\I. The remainder
is clearly executable in O(|/|*|F|) time. [

We remark that considering only 4 = Lit, in POSS2-A (instead of all 4 with |4]|>
|Litn]| — 1) would be incorrect, as some literal on a variable in Lit, may be needed for
an V-selectable literal. For example, consider (7, F) where 7= {(1111)}, F={(1101),
(1110),(0100)} and assume [ ={1,2,3,4} and Litn = {x;,x2}. Then, the modified test
would report “No”, which incorrectly prunes the canonical 1-DL (x;,0),(x2, 1), (x3,0),
(%4,0),(T, 1) representing f =x;(x V x3x4).

For POSS-V, we obtain a symmetric result.

Lemma 5.6. POSS2-V is a sound pruning function, which can be executed in calls of
ALL-EXTENSIONS in O(|I|*||T[1]]) time.

An example of ALL-EXTENSIONS is given in the appendix. We now show that
this algorithm, using POSS2, is polynomial delay in a suitable implementation.

Theorem 5.7. Suppose that ALL-EXTENSIONS uses POSS2-A and POSS2-V, and
that, if possible, a literal ¢ € Lity (vesp., ¢ € Lity) is selected in the while loop of
Step 1 (resp., Step 2) in ALL-AUX such that / € Lity (resp., / € Lity). Then, it
enumerates 1-DLs for all extensions f € 6i-pr of (T,F) with O(n®(|T|* +|F|*)) delay.

Proof. The correctness of the algorithm follows from Proposition 5.4 and Lemmas 5.5
and 5.6. We prove the polynomial delay property by analyzing the tree 7 of partial
1-DLs generated by ALL-AUX.

Each nonterminal node N in 7 is labeled with the parameters of the corresponding
call of ALL-AUX, which we refer to by N-T, N - F, etc., and has (ordered) children
as follows. For each literal /€ N - Litp (resp., £/ € N -Lity) an A-node N/, (resp.,
V-node N,Y) is generated. The arc from N to N/ (resp., N,Y) is labeled with (Z,0)
(resp., (£,1)). The node N/* (resp., N,Y) is terminal, if the call of POSS2-A (resp.,
POSS2-V) for / returns “No”; otherwise, it is labeled with the parameters of the
subsequent call of ALL-AUX. The root of 7, root(7 ), is generated in Step 2 of
ALL-EXTENSIONS; note that it is nonterminal. A node N in . is an output node,
if ALL-AUX has output before issuing the call of POSS2-A (resp., POSS2-V) for N.
A node is productive, if the subtree rooted at N, denoted Jy, contains some output
node N'.



T. Eiter et al. | Theoretical Computer Science 270 (2002) 493-524 517

We show that the size of Jy is polynomially bounded, if N is not productive;
since the bodies of the while loops in ALL-AUX run in polynomial time, this will
establish that processing an unproductive subtree takes only polynomial time. Since
the number of children of each node and the recursion depth are O(n), this implies the
polynomial delay property. Note that the root of 7 is productive if it is nonterminal.
More precisely, we prove the following lemma.

Lemma 5.8. Suppose either N or all its children are not productive. Then if N is the
root or an A-node, the size of Iy is O(|I|*|F|?). Similarly, if N is an V-node, the
size of Iy is O(|I*|T]?).

Proof (of Lemma 5.8). Let N be either r00t(7 ) or an A-node N in the tree 7,
and suppose that N’ is the first nonterminal V-child of N (if one is generated). We
claim that N/ is productive. To see this, note that POSS2-V(T',F’,I’,Lit,,) returns
“Yes”, where T"=N'"-T, F'=N'-F,I'"=N'-1, and Lit{, = N'- Lit\; this implies that
|I/|>1 and that F'[I'], T’[{'] do not contain all possible vectors on I’. We show
that (T'[I'],F'[I']) has an extension f# T, L in %-pp, which proves the claim. If
T’ =0, then let f describe any vector not in F'[I']; similarly, if F’ =, then let f’s
complement describe a vector not in T'[I']. Otherwise, the existence of f is concluded
from Lemma 4.1. (We note in passing that if N - F # (), then every nonterminal V-child
of N is productive.)

As a consequence, if N is not productive, then all V-children of N are terminal. For
simplicity, le¢ T=N-T, F=N -F, Litx =N - Lit, and Lit, = N - Lity, and consider the
A-children of N and their A-descendants. We consider two cases.

Case (1): Lit, does not contain a pair of opposite literals. Consider any unproductive
nonterminal A-node N’ #N in the tree Jy such that N’ is reached from N on a
A-path, i.e., a path through A-nodes. As already shown above, N’ has no V-children.
We observe that N’ - Lity # () must hold (otherwise, N’ is not generated), and in fact
[N’ Lit\,| =1 must hold (otherwise, N’ is productive).

We now show that the number of different such nodes N’ is bounded by |I||F]|.

Let A" = {/_| literal # occurs on the path from N to N’} C Lita, let I* =V (Lit,), and
let /' be the (unique) literal in N’ Lity,. We call any vector w € F[I*] an evidence
for N, if we F4'[I*] and w e F(/) (i.e., w falsifies /), for every literal / € Lit\\(4’ U
{/'}). As easily seen, such an evidence must exist for N’.

Consider now two unproductive nonterminal nodes N',N” #£N reached from N on
A-paths, such that N/ and N”" have common evidence w'=w". Let /' and /" be the
unique literals in N’ - Lit, and N” - Lit,,, respectively. Then we have //,/” € Lit,. To
verify this, suppose towards a contradiction that /¢ Lit,. This implies that A” = A’ U
{/"}, where A’ and A" are the sets of opposite literals occurring in the path from
N to N’ (resp., N to N"). Now the pdBf (T[[],F[I]) has extensions represented by
1-DLs N’ -L,(/",0),(T,1) and N" - L,(/’,0),(/",0),(T,1). Consequently, it also has an
extension N'-L,(¢’,1),(¢",1),(T,0). Since this extension is canonical, N’ is produc-
tive, a contradiction. The proof for // ¢ Lit, is analogous; we thus have //,/” € Lit .
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It follows that 4’ U{/"} =A4" U{/"} C Lit,. Obviously, at most |I*| — 1(< |I| — 1)
sets 4" different from A’ are possible. Thus, at most |/| different nodes have the same
evidence. Since each N’ must have some evidence, the number of different N’ is
bounded by |I||F]|.

This proves the above statement that the number of all nodes in subtrees rooted
at unproductive A-children of N is O(|/[*|F|). We can conclude that the same bound
holds on the number of all nodes in Jy if either N or all its children are not productive.

Cuase (2): Lit, contains a pair of opposite literals. This implies 7 =), and thus every
nonterminal node N’ in Jy satisfies N'- T ={). Suppose N’'(#N) is an unproductive
nonterminal A-node reached from N on a A-path, and let 4’ be as above the set of
opposite literals in this path. Note that F° A/#(Z) holds (otherwise, N’ would be produc-
tive). There are two cases: (i) N’-Litn contains opposite literals and (ii) it contains
no opposite literals. In case of (i), the asserted literal selection strategy of ALL-AUX
implies that A’ must be from Lt :={/ € Lit\ |/,/ € Lit,}. By a simple inductive ar-
gument, we have at most 2!/ *| such nodes N’ , where 1% = V(Liti). In case of (ii),
N’ Lity, ={/'} must hold. Similar as in Case (1) above, we can define an evidence of
N’ and at most (|| — |7%])2/ “I different nodes may have the same evidence vector.
Thus, the number of different nodes N’ is bounded by 2 * [7]|F).

The number of unproductive nodes N’ in cases (i) and (ii) is then bounded by
211 4 2‘1i‘\1||F|:O(Z"i‘|l||F|). Since the first nonterminal A-child of N is not
productive, we must have |F| > 2/ “I. Thus, the number of unproductive nodes N’
in (i) and (ii) is bounded by O(|/||F|?). In particular, if N or all its children are
unproductive, then the tree Jy has O(|/|?|F|?) many nodes.

This closes our analysis of Jy where N is an A-node or the root of 7. For an
V-node N, we obtain symmetric results in analogous manner. That is, Jy has
O(|I)?|T|?) many nodes if N or all its children are not productive. This proves the
lemma. [

We now complete the proof of the theorem. By Lemma 5.5 (resp., Lemma 5.6), each
call of POSS2-A (resp., POSS2-V) in ALL-AUX takes O(n*(|F|)) (resp., O(n?|T|))
time. The other statements in the bodies of the loops in Steps 1 and 2 take O(n|T|)
and O(n|F|) time, respectively. Thus, the next node in 7 is always generated within
O(n(|T| + n|F|)) (resp., O(n(|F| + n|T|)) time.

Consider now two output nodes N and N’ in 7 corresponding to subsequent outputs
of ALL-AUX. Let

f(,T,F)=n*(|T]* + |F|*).

Then, if N’ is in Jy, by Lemma 5.8 the number of nodes generated between N and
N’ is O(n- f(n,T,F)) since the recursion depth is at most n. If N’ is not in Jy,
then Iy contains O( f(n, T, F)) many nodes. Backtracking in .7 to the least common
ancestor N of N and N’ generates by Lemma 5.8 O(n? - f(n, T, F)) many nodes, and
between N and N’ again O(n- f(n,T,F)) many nodes are generated. Thus, in total
O(»*- f(n,T,F)) many nodes are generated between N and N’. The time between
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subsequent outputs of ALL-AUX is thus bounded by
O(|T| + |F|)(n + Dyn* f(n. T.F)) = O(*(|T|* + [F[*)).

The same bound also applies on the time until the first output of ALL-AUX and until
termination after the last output. The bound on the output delay of ALL-EXTENSIONS
now follows easily. [

We remark that in [13], involved sound and complete pruning functions REST-EXT-
A and REST-EXT-V are described, which can be evaluated in O(n(|T| + n?|F|*))
and O(n(|F| + n?|T|*)) time, respectively. Using them, ALL-EXTENSIONS runs with
O ([T + |FI*)) delay.

Improvements to ALL-EXTENSIONS can be made by using appropriate data struc-
tures and reuse of intermediate results. It remains to see whether an algorithm with
linear time delay is feasible. Note that like algorithm EXTENSION, also algorithm
ALL-EXTENSIONS can be easily modified to enumerate equivalent representations of
the % -pL-extensions of the pdBf (7, F) in terms of linear read-once formulas, sets of
threshold weights, or nested difference of concepts xi,...,x,.

Theorem 5.7 has important corollaries.

Corollary 5.9. There is a polynomial delay algorithm for enumerating the (unique)
prime DNFs for all extensions of a pdBf (T,F) in 6 -pL (resp., in € r-1, xp, and
o).

Proof. By Theorem 3.5, the prime DNF for a linear read-once formula ¢ can be
obtained from ¢ in O(n?) time. [J

Denote by %(n) the class of all Bf of n variables in 4. Then, if we apply the
algorithm on (T,F), where T=F =() for given n, then we obtain all members of
%Lr-1(n). Hence,

Corollary 5.10. There is a polynomial delay algorithm for enumerating the (unique)
prime DNFs of all f € % -pL(n) (resp., in Gir-1(n), Gxp(n), and €8, (n)).

Transferred to the learning context, we obtain:

Corollary 5.11. Algorithm ALL-EXTENSIONS outputs all hypotheses f € 6-pL
which are consistent with a given sample S with polynomial delay. Similar algorithms
exist for 6Lr-1, énp, and %SH.

As a consequence, if the sample almost identifies the target function, i.e., there are
only few (up to polynomially many) different hypotheses consistent with the sample
S, then they can all be output in polynomial time in the size of S.

As another corollary to Theorem 5.7, checking whether a pdBf (7, F') uniquely iden-
tifies one function from the class % -p., is tractable.
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Corollary 5.12. Given a pdBf (T,F), deciding whether it has a unique extension
f €%-pL (equivalently, f € ir-1, € %xp, and f €6Yy) is possible in polynomial
time.

For learning, this gives us the following result.

Corollary 5.13. Deciding whether a given sample S is a teaching sequence for % -pL
(equivalently, for € r-1 and Gxp) is possible in polynomial time.

Example 5.1. Consider the pdBf (7, F), where T ={(011),(101)}, F ={(110),(001)}.
The algorithm ALL-EXTENSIONS outputs the single 1-DL (x3,0), (x1, 1), (x2,1),(T,0),
which represents the extension ¥ =x3(x; Vxy). In fact,  is the unique extension of
(T,F) in % -pL. Observe that only extensions f € % r-; of form x3 A ¢ are possible, as
x3 is the only A-resp. V-selectable literal; since no term x3¥; can be an implicant of an
extension and 7' contains two vectors, it follows that x3(x; Vx;) is the only extension
of (T,F) in 6 r-; and thus in 6j-p.. [

6. Conclusion

In this paper, we have considered the relation between decision lists and other classes
of Boolean functions. We found that there are a number of interesting and unex-
pected relations between 1-decision lists, Horn functions, and intersections of classes
with read-once functions. These results provide us with syntactical and semantical
characterizations of an operationally defined class of Boolean functions, and vice versa
with an operational and syntactical characterization of intersections of well-known
classes of Boolean functions. Moreover, they allow us to transfer results obtained for
one of these particular classes, the corresponding others. In this way, the characteriza-
tions may be useful for deriving future results.

On the computational side, we have shown that some problems for 1-decision lists
and their relatives are solvable in polynomial time; in particular, finding an extension
of a partially defined Boolean function (in terms of learning, a hypothesis consistent
with a sample) in this class is feasible in linear time, and enumeration of all extensions
of a pdBf in this class (in terms of learning, all hypotheses consistent with sample)
is possible with polynomial delay. Furthermore, the unique extension problem, i.e.,
recognition of a teaching sequence, is polynomial.

Several issues remain for further research. As we have shown, a simple generaliza-
tion of the characterizations of 1-decision lists in terms of other classes of Boolean
functions is not possible except in a single case. It would be thus interesting to see
under which conditions such a generalization could be possible. Observe that the in-
clusion %-pL € €u(k) is known [3], where @1y (k) denotes the functions definable as
a linearly separable function where variables are replaced by terms of size at most k.
A precise, elegant description of the %-p. fragment within (k) would be appreci-
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ated; as we have shown, intersection with read-k functions is not apt for this. Moreover,
further classes of Boolean functions and fragments of well-known such classes which
characterize k-decision lists would be interesting to know.

Other issues concern computational problems. One is a possible extension of the
polynomial-time delay enumeration for 1-decision list extensions to k-decision lists for
k>1. While finding a single extension is possible in polynomial time [34], avoiding
multiple output of the same extension is rather difficult, and a straightforward general-
ization of our algorithm is not at hand. Intuitively, for terms of size k> 1, consensus
plays a role and makes checking whether items of a decision list are redundant in-
tractable in general. We may thus expect that in general, no such generalization of our
algorithm for k£ >1 is possible.

Acknowledgements

The authors thank Martin Anthony for pointing out the equivalence of %ég-; and
%-pL. Moreover, we are indebted to the anonymous reviewers of the present paper as
well as the preliminary abstract presented at STACS ’98. Their constructive comments
helped in improving the paper a lot. In particular, the consideration of sound but incom-
plete pruning functions for algorithm ALL-EXTENSIONS has been proposed by one of
them. Furthermore, we thank Leonid Libkin for pointing out an alternative derivation
of Lemma 3.3 and sending papers, and we thank Nick Littlestone for clarifying the
source of the exact learnability result for %;-p.. The authors gratefully acknowledge
the partial support of the Scientific Grant in Aid by the Ministry of Education, Science
and Culture of Japan. Part of this research was conducted while the first author visited
Kyoto University in 1995 and 1998, by the support of the Scientific Grant in Aid by
the Ministry of Education, Science and Culture of Japan (Grant 06044112).

Appendix Example for ALL-EXTENSIONS

Example. Consider the pdBf (7, F) where 7 ={(001),(010)}, F ={(000)}. We apply
ALL-EXTENSIONS.

Step 1: No output.
Step 2: L:=nil; I:={1,2,3}; Litn ={%}; Lity ={x1,x2,%3}.
Call ALL-AUX for (T[I],F[I]), I, L, Litn, Lity.

(ALL-AUX (1)) Step 1. L=%: I':={2,3}, Lity :=0; Lit, :=0;
T':={(001),(010)}; F':={(000)}; No output in the “if”.

Call POSS2-A for T'[I'],F'[I']), I'={2,3}, and Lit, =0; it answers “Yes”
(x, is V-selectable in F'O[I']).

Expand L by “(x;,0)”: Lit\, := {x3,x3}; Call ALL-AUX for (T'[I'],F'[I']), I,
L' =(x1,0), Lity, Lit|,;
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(ALL-AUX (2)) Step 1. void, as Lit, ={).
Step 2: L=xy: I':={3}; Lity:={x3}; Lit,:={x3}; T':={(001)};
F' = {(000)}.
No output in the “if”.
Call POSS2-v for I'’={3}; Lit|,={x3}; it answers “Yes” (x3 is A-
selectable in T7°[I]).
Expand y by “(xp, 1) Lit):={x3}; Call ALL-AUX for (T'[I'],F[I']),
I', L' =(x1,0), (x2,1), Lit, Lit,,.
(ALL-AUX (3)) Step 1. L=x3: I' :=0; Lity :=0; Lit\ :=0; T :=
{(001)}; F":=0;
No output in the “if”.
The call of POSS2-A for I’ =0, Litx =0 answers “No”.
Step 2: L=x3: I' :=0; Lity, :=0; Lit,, :=0; T":=0; F":={(000)};
Output L; = (x1,0)(x2, 1), (x3, 1),(T,0);
The call of POSS2-V for I’ =0, Lit, = answers “No”.
(end of ALL-AUX (3))
(ALL-AUX (2) continued) Step 2. L=xy: I' :={2}; Lit,, :=0; Lit), .=
0; 77:={(010)}; F':={(000)};
Call POSS2-V for I' ={2}, Lit, answers “Yes” (x, is V-selectable in
T'°[I']). This branch does not drive to a solution.
Expand L by “(x3, 1) Lit) :={x,}; Call ALL-AUX for (T'[I'],F'[I']),
I', L' =(x1,0)(x3, 1), Lity, Litl,;
(ALL-AUX (3)) Step 1. L=xy: I':=0; Lity:=0; Lit) :=0; T':=
{(010)}; F/:=0;
No output in the “if”.
The call of POSS2-A for I’ =0, Litn =) answers “No”.
Step 2: void, as Lity =0. (end of ALL-AUX (3))
(end of ALL-AUX (2))
(ALL-AUX (1) continued) Step 2. L=x:I' :=={2,3}; Lity :={x2,x3}; Lit,, :=
{x2,x3}; T':={(001),(010)}; F’:={(000)}; No output in the “if”.
The call of POSS2-Vv for I'={2,3}, Lit,,={xz,x3}, answers “Yes” (xz A-
selectable in 7'%[1']).
Expand L by “(xy,1)”: Lity :=0; Call ALL-AUX for (T'[I',F'[I']), I', L' =
(x1, 1), Lity, Litl;
(ALL-AUX (2)) Step 1. void, as Lity = 0.
Step 2: L=x,: I':={3}; Lity:={x3}; Lit|,:={x3}; T':={(001),};
F':={(000)}.
No output in the “if”.
Call POSS2-Vv for I'={3}; Lit\, ={x3}; it answers “Yes” (x3 is A-
selectable in T7[I]).
Expand y by “(x,1)”: Lit) :={x3}; Call ALL-AUX for (T'[I'],F[I']),
I', L' = (x1, 1)(xa, 1), Lit,, Litl,.
(ALL-AUX (3)) Step 1. L=xs: ...



T. Eiter et al. | Theoretical Computer Science 270 (2002) 493-524 523

Output L, = (x1,1)(x2,1) (x3,1)(T,0);...
(end of ALL-AUX (3))
(Step 2: of ALL-AUX (2)) L=x3: ... (end of ALL-AUX (2))
(ALL-AUX (1) Step 2. continued). L=x,: ...
Olltpllt L3 = (XZ, 1)()61, 0)()_63, 0) (T, 1); .
... Output Ly =(xp,1)(x3,1) (T,0);...
(ALL-AUX (1) Step 2. continued). L=x3: ...
Output L5 = (x3,1)(x1,0)(x2,0) (T,1);...
(end of ALL-AUX (1))
(end of ALL-EXTENSIONS)
Thus, the algorithm outputs canonical 1-DLs for the five extensions Y =x;(x; V x3),
Yo=x1 VX2 VX3, Y3=xVXix3, Yg=x; Vx3, and Y5 =x3 V X1x3.
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