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Abstract

We consider Boolean functions represented by decision lists, and study their relationships
to other classes of Boolean functions. It turns out that the elementary class of 1-decision lists
has interesting relationships to independently de8ned classes such as disguised Horn functions,
read-once functions, nested di:erences of concepts, threshold functions, and 2-monotonic func-
tions. In particular, 1-decision lists coincide with fragments of the mentioned classes. We further
investigate the recognition problem for this class, as well as the extension problem in the context
of partially de8ned Boolean functions (pdBfs). We show that 8nding an extension of a given
pdBf in the class of 1-decision lists is possible in linear time. This improves on previous results.
Moreover, we present an algorithm for enumerating all such extensions with polynomial delay.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Decision lists have been proposed in [34] as a speci8cation of Boolean functions
which amounts to a simple strategy for evaluating a Boolean function on a given
assignment. This approach has been become popular in learning theory, since bounded
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decision lists naturally generalize other important classes of Boolean functions. For
example, k-bounded decision lists generalize the classes whose members have a CNF
or DNF expression where each clause or term, respectively, has at most k literals, and,
as a consequence, also those classes whose members have a DNF or CNF containing
at most k terms or clauses, respectively. Another class covered by decision lists is the
one of decision trees [33].
Informally, a decision list can be written as a cascaded conditional statement of the

form

if t1(v) then b1;
elseif t2(v) then b2;
...

elseif td−1(v) then bd−1;
else bd;

where each ti(v) means the evaluation of a term ti, i.e., a conjunction of Boolean
literals, on an assignment v to the x1; : : : ; xn, and each bi is either 0 (false) or 1 (true).
The important result established in [34] is that k-decision lists, i.e., decision lists

where each term ti has at most k literals and k is a constant, are probably approximately
correct (PAC) learnable in Valiant’s model [39]. This has largely extended the classes
of Boolean functions which are known to be learnable. In the sequel, decision lists
have been studied extensively in the learning 8eld, see e.g. [19, 8, 17, 9].
However, while it is known that decision lists generalize some classes of Boolean

functions [34], their relationships to other classes such as Horn functions, read-once
functions, threshold functions, or 2-monotonic functions, which are widely used in
the literature, were only partially known (cf. [5, 3]). It thus is interesting to know
about such relationships, in particular, whether fragments of such classes correspond
to decision lists and how such fragments can be alternatively characterized. This issue
is intriguing, since decision lists are operationally de8ned, while other classes such as
Horn functions or read-once functions are de8ned on a semantical (in terms of models)
or syntactical (in terms of formulas) basis, respectively.
In this paper, we shed light on this issue and study the relationship of decision

lists to the classes mentioned above. We focus on the elementary class of 1-decision
lists (C1-DL), which has received a lot of attention and was the subject of a number
of investigations, e.g. [34, 29, 8, 9]. It turns out that this class relates in an interest-
ing way to several other classes of Boolean functions. In particular, it coincides with
independently de8ned semantical and syntactical such classes, as well as with the in-
tersections of other well-known classes of Boolean functions. We 8nd the following
characterizations of C1-DL. It coincides with
• CRDH, the renaming-closure of the class of functions f such that both f and its
complement Mf are Horn [12] (also called disguised “double” Horn functions);

• CND, the class of nested di:erences of concepts [21], where each concept is described
by a single term;
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• C2M ∩CR-1, the intersection of the classes of 2-monotonic functions [32] and read-
once functions, i.e., functions de8nable by a formula in which each variable occurs
at most once [18, 25, 39, 37];
• CTH ∩CR-1, the intersection of threshold functions (also called linearly separable
functions) [32] and read-once functions; and
• CLR-1, the class of linear read-once functions [12], i.e., functions represented by a
read-once formula such that each binary connective involves at least one literal.
Observe that the inclusion C1-DL⊆CTH ∩CR-1 follows from the result that C1-DL⊆CTH

[5, 3] and the fact that C1-DL⊆CR-1; however, the converse was not known.
The above results give us new insights into the relationships between these classes of

functions. Moreover, they provide us with a semantical and syntactical characterization
of 1-decision lists in terms of (renamed) Horn functions and read-once formulas. On
the other hand, we obtain characterizations of the intersections of well-known classes
of Boolean functions in terms of operationally, semantically, and syntactically de8ned
classes of Boolean functions.
As we show, a natural generalization of the results from 1-decision lists to k-

bounded decision lists fails in almost all cases. The single exception is the coincidence
with nested di:erences of concepts, which holds for an appropriate base class genera-
lizing terms. Thus, our results unveil characteristic properties of 1-decision lists
and, vice versa, of the intersections of classes of Boolean functions to which they
coincide.
Furthermore, we study computational problems on 1-decision lists. We consider

recognition from a formula (also called membership problem [20] and representation
problem [4, 1]) and problems in the context of partially de8ned Boolean functions.
A partially de8ned Boolean function (pdBf) can be viewed as a pair (T; F) of sets T

and F of true and false vectors v∈{0; 1}n, respectively, where T ∩F = ∅. It naturally
generalizes a Boolean function, by allowing that the range function values on some
input vectors are unknown. This concept has many applications, e.g., in circuit design,
for representation of cause–e:ect relationships [7], or in learning, to mention a few.
A principal issue on pdBfs is the following: Given a pdBf (T; F), determine whether
some f in a particular class of Boolean functions C exists such that T ⊆T (f) and
F ⊆F(f), where T (f) and F(f) denote the sets of true and false vectors of f,
respectively. Any such f is called an extension of (T; F) in C, and 8nding such an f
is known as the extension problem [6, 30]. Since in general, a pdBf may have multiple
extensions, it is sometimes desired to know all extensions, or to compute an extension
of a certain quality (e.g., one described by a shortest formula, or having a smallest set
T (f) ).
The extension problem is closely related to problems in machine learning. A typical

problem there is the following [4]. Suppose there are n Boolean-valued attributes; then,
8nd a hypothesis in terms of a Boolean function f in a class of Boolean functions C,
which is consistent with the actual correlation of the attributes after seeing a sample
of positive and negative examples, where it is known that the actual correlation is a
function g in C. In our terms, a learning algorithm produces an extension of a pdBf.
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However, there is a subtle di:erence between the general extension problem and the
learning problem: in the latter problem, an extension is a priori known to exist, while
in the former, this is unknown. A learning algorithm might take advantage of this
knowledge and 8nd an extension faster. The extension problem itself is known as the
consistency problem [4, 1]; it corresponds to learning from a sample which is possibly
spoiled with inconsistent examples.
In this context, it is also interesting to know whether the pdBf given by a sample

uniquely de8nes a Boolean function in C; if the learner recognizes this fact, she=he has
identi8ed the function g to be learned. This is related to the question whether a pdBf
has a unique extension, which is important in the context of teaching [35, 23, 36, 16].
There, to facilitate quicker learning, the sample is provided by a teacher rather than
randomly drawn, such that identi8cation of the function g is possible from it (see e.g.
[5, 16] for details). Any sample which allows to identify a function in C is called
a teaching sequence (or specifying sample [5]). Thus, the issue of whether a given
set of labeled examples is a teaching sequence amounts to the issue of whether S,
seen as a pdBf, has a unique extension in C. A slight variant is that the sample is
known to be consistent with some function g in C. In this case, the problem amounts
to the unique extension problem knowing that some extension exists; in general, this
additional knowledge could be utilized for faster learning.
Alternative teaching models have been considered, in which the sample given by the

teacher does not precisely describe a single function [17]. However, identi8cation of the
target function is still possible, since the teacher knows how the learner proceeds, and
vice versa, the learner knows how the teacher generates his sample, called a teaching
set in [17]. To prevent “collusion” between the two sides (the target could be simply
encoded in the sample), an adversary is allowed to spoil the teaching set by adding
further examples.
Our main results on the above issues can be summarized as follows:
• Recognizing 1-decision lists from a formula is tractable for a wide class of formulas,
including Horn formulas, 2-CNF and 2-DNF, while unsurprisingly intractable in the
general case.
• We point out that the extension problem for C1-DL is solvable in linear time. This
improves on the previous result that the extension problem for C1-DL is solvable
in polynomial time [34]. As a consequence, a hypothesis consistent with a target
function g in C1-DL on the sample can be generated in linear time. In particular,
learning from a (possibly spoiled) teaching sequence is possible in linear time. We
obtain as a further result an improvement to [17], where it is shown that learning a
function g in C1-DL from a particular teaching set is possible in O(m2n) time, where
m is the length of a shortest 1-decision list for g, n is the number of attributes,
and the input size is assumed to be O(mn). Our algorithm can replace the learning
algorithm in [17], and 8nds the target in O(nm) time, i.e., in linear time. We mention
that [8] presents the result, somewhat related to [17], that 1-decision lists with
k alternations (i.e., changes of the output value) are PAC learnable, where the
algorithm runs in O(n2m) time.
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• We present an algorithm which enumerates all extensions of a pdBf in C1-DL with
polynomial delay. As a corollary, the problems of deciding whether a given set of
any examples is a teaching sequence and whether a consistent sample is a teaching
sequence are both solvable in polynomial time. Moreover, a small number of di:erent
hypotheses (in fact, even up to polynomially many) for the target function can be
produced within polynomial time.
The rest of this paper is organized as follows. The next section provides some

preliminaries and 8xes notation. In Section 3, we study the relationships of 1-decision
lists to other classes of functions. In Section 4, we address the recognition problem
from formulas, and in Section 5, we study the extension problem. Section 6 concludes
the paper.

2. Preliminaries

We use x1; x2; : : : ; xn to denote Boolean variables and letters u; v; w to denote vec-
tors in {0; 1}n. The ith component of a vector v is denoted by vi. Formulas are built
over the variables using the connectives ∧;∨; and ¬. A literal is a variable xi or
its negation Mxi. For any literal ‘, we denote by M‘ its opposite. A term t is a con-
junction

∧
i∈P(t) xi ∧

∧
i∈N (t) Mxi of Boolean literals such that P(t)∩N (t)= ∅, and a

clause c is de8ned dually (change ∧ to ∨); t (resp., c) is Horn, if |N (t)|61 (resp.,
|P(c)|61). We use � and ⊥ to denote the empty term (truth) and the empty clause
(falsity), respectively. A disjunctive normal form (DNF) ’=

∨
i ti is Horn, if all ti are

Horn. Similarly, a conjunctive normal form (CNF)  =
∧

i ci is Horn, if all ci are
Horn.
For example, the term t= x1 Mx2x3x4 has P(t)= {1; 3; 4} and N (t)= {2}, and is Horn,

while the clause c= x1 ∨ x2 ∨ Mx4 has P(c)= {1; 2} and N (c)= {4}, and thus it is not
Horn.
A partially de@ned Boolean function (pdBf) is a mapping g :T ∪F→{0; 1} de8ned

by g(v)= 1 if v∈T and g(v)= 0 if v∈F , where T ⊆{0; 1}n denotes a set of true
vectors (or positive examples), F ⊆{0; 1}n denotes a set of false vectors (or negative
examples), and T ∩F = ∅. For simplicity, we denote a pdBf by (T; F). It can be seen
as a representation for all (total) Boolean functions (Bfs) f : {0; 1}n→{0; 1} such
that T ⊆T (f)= {v |f(v)= 1} and F ⊆F(f)= {v |f(v)= 0}; any such f is called an
extension of (T; F).
We often identify a formula ’ with the Bf which it de8nes. A term t is an impli-

cant of a Bf f, if t6f holds, where 6 is the usual ordering de8ned by f6g ↔
T (f)⊆T (g). Moreover, t is prime if no proper subterm t′ of t is an implicant of f.
A DNF ’=

∨
i ti is prime, if each term ti is a prime implicant of ’ and no term ti is

redundant, i.e., removing ti from ’ changes the function.
A decision list (DL) L is a 8nite sequence of pairs (t1; b1), (t2; b2); : : : ; (td; bd),

d¿1, where for each i=1; : : : ; d− 1, ti is any term, td=�, and bi ∈{0; 1}, for each
i=1; : : : ; d. L de8nes a Bf f : {0; 1}n→{0; 1} by f(v)= bi, where i=min{i | v∈T (ti)}.
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We call a Bf sometimes a decision list, if f is de8nable by some decision list; this
terminology is inherited to restricted decision lists.
A k-decision list (k-DL) is a decision list where each term ti contains at most k

literals; we denote by Ck-DL the class of all (functions represented by) k-decision lists.
In particular, C1-DL is the class of decision lists where each term is either a single
literal or empty. A decision list is monotone [16], if each term t in it is positive, i.e.,
N (t)= ∅. By Cmonk-DL we denote the restriction of Ck-DL to monotone decision lists.
A Bf f is Horn, if F(f)=Cl∧(F(f)), where Cl∧(S) denotes the closure of set

S ⊆{0; 1}n of vectors under component-wise conjunction ∧ of vectors; by CHorn we
denote the class of all Horn functions. It is known that f is Horn if and only if f
is represented by some Horn DNF. If f is also represented by a positive DNF, i.e., a
DNF in which each term is positive, then f is called positive; Cpos denotes the class
of all positive functions.
For any vector w∈{0; 1}n, we de8ne ON (w)= {i |wi=1} and OFF(w)= {i |wi=0},

and for any set of vectors S ⊆{0; 1}n we de8ne ON (S)=
⋂

v∈S ON (v) and simi-
larly OFF(S)=

⋂
v∈S OFF(v). Here we assume that ON (S)=OFF(S)= {1; 2; : : : ; n}

if S = ∅. The renaming of an n-ary Bf f by w, denoted fw, is the Bf f(x ⊕ w), i.e.,
T (fw)= {v | v ⊕ w∈T (f)}, where ⊕ is componentwise addition modulo 2 (XOR).
For any class of Bfs C, we denote by CR the closure of C under renamings. The
renaming of a formula ’ by w, denoted ’w, is the formula resulting from ’ by
replacing each literal involving a variable xi with wi=1 by its opposite. For ex-
ample, let f= x1 Mx2 ∨ x2x3 ∨ Mx1 Mx3 Mx4. Then, the renaming of f by w=(1; 1; 0; 0) is
fw = Mx1x2 ∨ Mx2x3 ∨ x1 Mx3 Mx4.
For any assignment A=(xi1← a1; xi2← a2; : : : ; xik ← ak) for values ai ∈{0; 1} to the

variables xij , we denote by fA=f(xi1←a1 ; xi2←a2 ;:::; xik←ak ) the function of (n−k) variables
obtained by 8xing variables xi1 ; xi2 ; : : : ; xik as speci8ed by A; Similarly, ’A denotes the
formula obtained from ’ by simultaneously substituting aj for xij , for j=1; 2; : : : ; k.

3. Characterizations of 1-decision lists

3.1. Main result of this section

Let CR-1; CLR-1; CRDH; CND; CTH, and C2M denote the classes of read-once functions,
linear read-once functions, disguised double Horn functions, nested di:erence functions,
threshold functions, and 2-monotonic functions, respectively (formal de8nitions of all
these classes are given below). We prove the following result.

Theorem 3.1. C1-DL =CLR-1 =CRDH =CND =CTH ∩CR-1 =C2M ∩CR-1.

Proof. Immediate from Theorem 3.4, Proposition 3.6 and Theorem 3.7.

Read-once functions: A function f is called read-once, if it can be represented
by read-once formula, i.e., a formula without repetition of variables. The class CR-1 of
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read-once functions has been extensively studied in the literature, cf.
[37, 26, 39, 31, 22, 18, 25, 11].

De�nition 3.1. De8ne the class FLR-1 of linear read-once formulas by the following
recursive form:
(1) �, ⊥ ∈FLR-1, and xi; Mxi ∈FLR-1 for every variable xi;
(2) if ’∈FLR-1\{�;⊥} and xi is a variable not occurring in ’, then xi ∨’, Mxi ∨’,

xi ∧ ’, Mxi ∧ ’∈FLR-1.

Call a Bf f linear read-once [12], if it can be represented by a formula in FLR-1,
and let CLR-1 denote the class of all such functions. For example, x1x2( Mx4 ∨ x3 ∨ x5 Mx6)
is linear read-once, while x2x3 ∨ x4 ∨ Mx1 Mx5 is not. Note that two read-once formulas
without occurrence of �;⊥ are equivalent if and only if they can be transformed
through associativity and commutativity into each other [22]. Hence, the latter formula
does not represent a linear read-once function.
The following is now easy to see (cf. also [15, p. 11]):

Proposition 3.2. CLR-1 = C1-DL.

Note that any ’∈FLR-1 is convertible into an equivalent 1-decision list in linear
time and vice versa.
Horn functions: We next give a characterization in terms of Horn functions. A Bf

f is called double Horn [14], if T (f)=Cl∧(T (f)) and F(f)=Cl∧(F(f)). The class
of these functions is denoted by CDH. Note that f is double Horn if and only if f and
Mf are Horn. For example,

f = Mx1 ∨ x2x3 Mx4 ∨ x2x3x5x6 Mx7

is double Horn, because

Mf = x1( Mx2 ∨ Mx3 ∨ x4)( Mx2 ∨ Mx3 ∨ Mx5 ∨ Mx6 ∨ x7)

= x1 Mx2 ∨ x1 Mx3 ∨ x1x4 Mx5 ∨ x1x4 Mx6 ∨ x1x4x7

is Horn. Alternatively, a Bf f is double Horn if and only if it has both a Horn DNF
and a Horn CNF representation. In the previous example, this is easily seen to be the
case. The class of double Horn functions has been considered in [14, 12] for giving
T (f) and F(f) a more balanced role in the process of 8nding a Horn extension.
We can show the somewhat unexpected result that the classes CRDH and CLR-1 coin-

cide (and hence CRDH =CLR-1 =C1-DL). This gives a precise syntactical characterization
of the semantically de8ned class CRDH, and, by the previous result, a semantical char-
acterization of C1-DL.
The proof of this result is based on the following lemma, which can be found in

[14, 12]. Let V = {1; 2; : : : ; n} and " :V →V be any permutation of V . Then, let #"
be the set of Horn terms #"= {x"(1) · · · x"(i) Mx"(i+1) | 06i¡n}∪ {x"(1) · · · x"(n)}; e.g., for
V = {1; 2} and "(1)= 2, "(2)= 1, we have #"= { Mx2; x2 Mx1; x2x1}.
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Lemma 3.3 (Eiter et al. [14]). Let f be a Bf on variables xi; i∈V . Then; f∈CDH
holds if and only if f can be represented by a DNF ’=

∨
t∈S t for some permutation

" of V and S ⊆#". 1

Denote by CrevDH = {f(11···1) |f∈CDH} the class of all reversed double Horn functions.

Theorem 3.4. CRDH =CLR-1 =C1-DL and CrevDH =Cmon1-DL.

Proof. Let ’ be a DNF for a function f∈CDH as in Lemma 3.3. By algebraic trans-
formations, ’ can be rewritten to a formula  ∈FLR-1 of the form

 =




x11x12 : : : x1n1 ( Mx21 ∨ Mx22 ∨ · · · ∨ Mx2n2
∨(x31x32 : : : x3n3 (: : : ( Mxd1 ∨ Mxd2 ∨ · · · ∨ Mxdnd)))) if d is even;

x11x12 : : : x1n1 ( Mx21 ∨ Mx22 ∨ · · · ∨ Mx2n2
∨(x31x32 : : : x3n3 (: : : (xd1xd2 : : : xdnd)))) if d is odd;

(3.1)

where d¿0; n1¿0; ni¿1 for i=2; 3; : : : ; d, and the variables x11; x12; : : : ; xdnd are all
di:erent.
For example, the formula ’= x2 Mx1 ∨ x2x1, where S = {x2 Mx1; x2x1} for V and " as

above, can be rewritten as follows: x2 Mx1 ∨ x2x1 = x2( Mx1 ∨ x1)= x2 ∧�= x2; the for-
mula  = x1x2 Mx3 ∨ x1x2x3x4 Mx5 ∨ x1x2x3x4x5 Mx6 for V = {x1; : : : ; x6} and "= identity can
be rewritten as

x1x2 Mx3 ∨ x1x2x3x4 Mx5 ∨ x1x2x3x4x5 Mx6 = x1x2( Mx3 ∨ x4 Mx5 ∨ x4x5 Mx6)

= x1x2( Mx3 ∨ x4( Mx5 ∨ Mx6)):
Therefore, we have CRDH⊆CLR-1. Moreover, since every formula ’∈FLR-1 can be
transformed to form (3.1) by changing the polarities of variables, CRDH⊇CLR-1 holds;
hence CRDH =CLR-1. This together with Proposition 3.2 shows the 8rst statement of this
theorem.
The second statement easily follows from the above argument.

Thus, there exists an interesting relationship between 1-decision lists, read-once for-
mulas, and (disguised) Horn functions. By means of the relationship in Theorem 3.4,
we are able to precisely characterize the prime DNFs of functions in CRDH. This is an
immediate consequence of the next theorem.

Theorem 3.5. Every f∈CRDH (equivalently; f∈C1-DL; f∈CLR-1) has a renaming w
such that fw is positive and represented by the unique prime DNF

’ =
m∨
i=1

t1 · · · tix‘i ; (3.2)

1 This lemma can also be derived from a related result on 8nite distributive lattices, see [28].
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where {ti; x‘i | i=1; : : : ; m} is a set of pairwise disjoint positive terms and each ti; i=
1; 2; : : : ; m may be empty. 2 In particular; (3:1) implies ’=⊥ if m=0. Conversely;
every such ’ of (3:2) represents an f∈CRDH (equivalently; an f∈C1-DL; f∈CLR-1).

Proof. Lemma 3.3 implies that f∈CRDH can be renamed to a function g represented
by a linear read-once formula (3.1) (cf. proof of Theorem 3.4); expanding this form
into DNF (apply distributivity) and subsequent renaming of negative variables yields
form (3.2). The latter form is clearly a prime DNF, and it is unique since every
positive function has a unique prime DNF. Conversely, ’ in (3.2) can be rewritten
by factorization to a linear read-once formula t1(x‘1 ∨ t2(x‘2 ∨ t3(x‘3 ∨ · · · tnx‘n))), where
empty terms ti are simply omitted. The result thus follows from Theorem 3.4.

Nested diEerences of concepts: In [21], learning issues for concept classes have been
studied which satisfy certain properties. In particular, learning of concepts expressed as
the nested di:erence c1\(c2\(· · · (ck−1\ck)) of concepts c1; : : : ; ck has been considered,
where the ci are from a concept class which is closed under intersection. Here, a
concept can be viewed as a Bf f, a concept class C as a class of Bfs CC , and the
intersection property amounts to closedness of CC under conjunction, i.e., f1; f2 ∈CC

implies f=f1 ∧ f2 ∈CC . Clearly, the class of Bfs f de8nable by a single (possible
empty) term t enjoys this property. Let CND denote the class of nested di:erences
where each ci is a single term. Then, the following holds.

Proposition 3.6. C1-DL =CND.

The proof of this proposition is omitted, since we shall prove a more general result
at the end of this section in Theorem 3.4, where we also give a characterization of
Cmon1-DL. Thus, the general learning results in [21] apply in particular, to the class of
1-decision lists, and thus also to disguised double Horn functions and linear read-once
functions.
Threshold and 2-monotonic functions: Let us denote by CTH the class of threshold

functions and by C2M the class of 2-monotonic functions.
A function f on variables x1; : : : ; xn is threshold (or, linearly separable) if there are

weights wi, i=1; 2; : : : ; n, and a threshold w0 from the reals such that f(x1; : : : ; xn)= 1
if and only if

∑n
i= 1 wixi¿w0.

A function is 2-monotonic, if for each assignment A of size at most 2, either fA6fMA
or fA¿fMA holds, where MA denotes the opposite assignment to A [32].
The property of 2-monotonicity and related concepts have been studied under various

names in the 8elds of threshold logic, hypergraph theory and game theory. This property
can be seen as an algebraic generalization of the thresholdness. Note that CRTH =CTH
and CR2M =C2M. We have the following unexpected result.

2 Note that the variables x‘i are viewed as terms here.
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Theorem 3.7. C1-DL =CTH ∩CR-1 =C2M ∩CR-1.

Proof. It is well known that CTH⊂C2M [32], where ⊂ is proper inclusion; moreover,
also C1-DL⊆CTH has been shown [5, 3]. (Notice that in [12], the inclusion CRDH⊆CTH
was independently shown, using form (3.2) and proceeding similar as in [3]; the idea
is to give all the variables in tj the same weight, decreasing by index j, and to assign
xi a weight so that every term t= t1t2 : : : tixi in ’ has same weight; the threshold w0
is simply the weight of a term t.)
Thus, by the results from above, it remains to show that C2M ∩CR-1⊆C1-DL holds.
Recall that a function g on x1; x2; : : : ; xn is regular [32], if and only if g(v)¿g(w)

holds for all v; w∈{0; 1}n with ∑
j6k vj¿

∑
j6k wj, for k =1; 2; : : : ; n; denote by Creg

the class of regular functions. The following facts are known (cf. [32]):
(a) Every regular function is positive and 2-monotonic;
(b) every 2-monotonic function becomes regular after permuting and renaming argu-

ments.
(c) Creg is closed under arbitrary assignments A (i.e., fA ∈Creg holds for every f∈Creg

and assignment A).
From (a)–(c), it remains to show that Creg ∩CR-1⊆CLR-1 (=C1-DL).
We claim that any function f∈Creg ∩CR-1 can be written either as

(i) f= xi1 ∨ xi2 ∨ · · · ∨ xik ∨ f′ or (ii) f= xi1xi2 : : : xikf
′;

where f′ is a regular read-once function not depending on any xij , 16j6k. An easy
induction using Theorem 3.4 gives then the desired result and completes the proof.
Since f is read-once, it can be decomposed according to one of the following two

cases:
Case 1: f=f1 ∨f2 ∨ · · · ∨fk , where the fi depend on disjoint sets of variables Bi

and no fi can be decomposed similarly. We show that |Bi|¿2 holds for at most one
i, which means that f has form
(i) For this, assume on the contrary that, without loss of generality, |B1|; |B2|¿2.

By considering an assignment A that kills all f3; f4; : : : ; fk , it follows that the function
g=f1 ∨f2 is regular. Observe that any prime implicant of g is a prime implicant
of f1 or f2, and that each of them has length ¿2 (since f is read-once and by the
assumption on the decomposition). Let ‘ be the smallest index in B1 ∪B2 i.e., ‘6k for
all k ∈B1 ∪B2, and assume without loss of generality, that ‘∈B1. Let t be any prime
implicant of f2 and v satisfy ON (v)=P(t). Let w= v + e(‘) − e(h), where h∈ON (v)
and e(k) is the unit vector with e(k)k =1 and e(i) = 0, for all i �= k. Note that l¡h and
l∈OFF(v) by de8nition. Then g(w)= 0 holds. Indeed, ON (w) + P(t2) for every
prime implicant t2 of f2, since ON (w)∩B2⊂P(t), and also ON (w)+ P(t1) for every
prime implicant t1 of f1, since |ON (w)∩B1|=1. Consequently, the vectors v and w
with

∑
j6k wj¿

∑
j6k vj for all k =1; 2; : : : ; n satisfy g(v)= 1 and g(w)= 0. Thus g is

not regular, which is a contradiction. This proves our claim.
Case 2: f=f1f2 : : : fk , where the fi depend on disjoint sets of variables Bi and no

fi can be decomposed similarly. Then, the dual function fd has the form in case 1.
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(Recall that a formula representing the dual of f, fd= Mf( Mx), is obtained from any
formula representing f by interchanging ∨ (resp., 0) and ∧ (resp., 1).) Since the dual
of a regular function is also regular [32], it follows that fd has the form (i), which
implies that f has form (ii).

3.2. Possible generalizations

A generalization of Theorem 3.1 is an interesting issue. In particular, whether for
k-decision lists and read-k functions, where k is a constant, similar relationships hold.
It appears that this is not the case.
By using a counting argument, one can show that for every k¿1, Ck-DL contains

some function which is not expressible by a read-k formula. In fact, a stronger result
can be obtained.
Let for any integer function F(n) denote CR(F(n)) the class of Bfs f(x1; : : : ; xn),

n¿0, which are de8nable by formulas in which each variable occurs at most F(n)¿1
times. For any class of integer functions F, de8ne CR(F)=

⋃
F(n)∈F CR(F(n)). Denote

by Ck
pos and C6k

pos the classes of positive Bfs f such that all prime implicants of f
have size k (resp., at most k), where k is a constant.

Lemma 3.8. For every k¿1; for all but @nitely many n¿k there exists an n-ary
f∈Ck

pos such that f =∈CR(nk−1=kk! log n).

Proof. Since all prime implicants of a positive function are positive, Ck
pos contains

2
( n
k

)
(3.3)

functions on n variables. On the other hand, the number of positive functions in
CR(F(n)) is bounded by

3 · 2m−2m!
(
2m− 1

m

)
; (3.4)

where m=F(n) · n. Indeed, without loss of generality, a formula ’ de8ning some
positive function does not contain negation. Assuming that all variables occur F(n)
times, the formula tree has m leaves (atoms) and m − 1 inner nodes (connectives).
Written in a post-order traversal, it is a string of 2m−1 characters, of which m denote
atoms and the others connectives. There are

m!
(
2m− 1

m

)

ways to place the atoms in the string, if they were all di:erent (this simpli8cation
will suQce), times 2m−1 combinations of connectives. If we allow the single use of
a binary connective r(x; y), which evaluates to the right argument y, we may assume
w.l.o.g. that ’ contains exactly F(n) occurrences of each variable. Thus, (3.4) is an
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upper bound on positive read-F(n) functions in n variables. (Clearly, � and ⊥ are
implicitly accounted since multiple trees for e.g. f= x1 are counted.)
Now, let us compare (3.3) with (3.4). Clearly, (3.4) is bounded by

3 · 2m−2(2m)m; (3.5)

since

m!
(
2m− 1

m

)
= (2m− 1)(2m− 2) · · · (2m− m)¡ 2mm:

Take the logarithm of (3.3) and (3.5) for base 2, and consider the inequality(
n
k

)
¿ log 3 + m− 2 + m(logm+ 1): (3.6)

Since ( nk )= n(n− 1) · · · (n− k + 1)=k!, this amounts to

nk=k!¿ m(logm+ 2) + p(n); (3.7)

where p(n) is a polynomial of degree k − 1. For F(n)= nk−1=kk! log n, we obtain
m= nk=kk! log n and thus

nk

k!
¿

nk

kk! log n
(k log n− log(kk! log n) + 2) + p(n)

=
nk

k!

(
1− log(kk! log n)− 2

k log n

)
+ p(n):

It is easily seen that for large enough n, this inequality holds. This proves the lemma.

Let f(nk−1=kk! log n) be the class of functions F(n) such that F(n)6nk−1=kk! log n
holds for in8nitely many n.

Theorem 3.9. C6k
pos *CR(f(nk−1=kk! log n)) for every k¿1.

It is easy to see that every function in C6k
pos is in CR(nk−1). Hence, k − 1 is the

lowest polynomial degree k ′= k ′(k) such that C6k
pos ⊆CR(nk′).

Corollary 3.10. Cmonk-DL*CR(f(nk−1=kk! log n)) and Ck-DL*CR(f(nk−1=kk! log n)) for
every k¿1.

Consequently, any generalization of the parts in Theorem 3.1 involving read-once
functions to a characterization of k-decision lists in terms of read-k functions fails; this
remains true even if we allow a polynomial number of repetitive variable uses, where
the degree of the polynomial is smaller than k − 1.
Let us now consider a possible generalization of the characterization in terms of

Horn functions. Since Ck-DL contains all functions with a k-CNF (in particular, also
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the parity function on k variables), it is hard to see any interesting relationships between
Ck-DL and combinations or restrictions of Horn functions.
For nested di:erences of concepts, however, there is a natural generalization of the

result in Theorem 3.1. Let CND(C) denote the class of all functions de8nable as nested
di:erences of Bfs in C, and let similarly denote CDL(C) the class of functions de8nable
by a C-decision list, i.e., a decision list in which each term ti except the last (td=�)
is replaced by some f∈C. Then, the following holds.

Theorem 3.11. Let C be any class of Bfs. Then; CDL(C)=CND(C∗ ∪{�}); where
C∗= { Mf |f∈C} contains the complements of the functions in f.

Proof. We show by induction on d¿1 that every f represented by a C-decision list
of length 6d is in CND(C∗ ∪{�}), and that each nested di:erence f1\(f2\(· · · (fd−1
\fd))) where all fi are from C∗ ∪{�}, is in CDL(C).
(Basis). For d=1, there are two C-decision lists: (�; 0) and (�; 1) respectively. They

are represented by the nested di:erence �\� and �, respectively. Conversely, (�; 1)
represents �, and for any function f∈C∗, the decision list ( Mf; 0); (�; 1) obviously
represents f; observe that Mf∈C holds.
(Induction). Suppose the statement holds for d, and consider the case d + 1. First,

consider a C-decision list L=(f1; b1); : : : ; (fd+1; bd+1), where without loss of gener-
ality f1 �≡�. By the induction hypothesis, the tail L′=(t2; b2); : : : ; (td+1; bd+1) of L
can be represented by a nested di:erence D′= c′1\(· · · (c′m\c′m+1) · · ·), de8ning a Bf
f′ ∈CND(C). If b1 = 1, then L de8nes the function f=f1 ∨f′, which can be repre-
sented by the nested di:erence �\( Mf1\f′); replacing f′ by D′, this is a nested di:er-
ence of functions in C∗ ∪{�}. Hence, f∈CND(C∗ ∪{�}) holds. On the other hand,
if bi=0, then L represents the function f= Mf1 ∧f′, which is equivalent to ¬(f1 ∨ Mf′);
since the complement of any function g is represented by the nested di:erence �\g,
we obtain from the already discussed scheme for disjunction that f is represented by
the nested di:erence

�\(�\( Mf1\(�\f′)));
replacing f′ with D′, we obtain a nested di:erence of functions in C∗ ∪{�}, hence
f∈CND(C∗ ∪{�}).
Second, let D=f1\(f2\(· · · (fd\fd+1))) be any nested di:erence of functions in

C∗ ∪{�}. By the induction hypothesis, D′=(f2\(· · · (fd\fd+1))) represents a function
f′ ∈CDL(C); thus, D represents the function f=f1 ∧¬f′.
It is easy to see that for any C, CDL(C) is closed under complementation [34]

(replace in a decision list each bi by 1 − bi to obtain a decision list for the comple-
ment function). Hence, Mf′ is represented by some C-decision list L′. Now, if f1 =�,
then L′ represents f; otherwise, the decision list L=( Mf1; 0); L

′ represents f. Hence,
f∈CDL(C).
Consequently, the induction statement holds for d+ 1. This concludes the proof of

the result.



506 T. Eiter et al. / Theoretical Computer Science 270 (2002) 493–524

Proposition 3.6 is an immediate corollary of this result. Moreover, we get the fol-
lowing result. Let Ck-cl denote the class of functions de8nable by a single clause with
at most k literals, plus �.

Corollary 3.12. Ck-DL =CND(Ck-cl); CDL(Ck-DNF)=CND(Ck-CNF) for k¿1.

Thus, CND(Ck-cl) characterizes Ck-DL. However, Ck-cl is not closed under conjunction,
and thus, strictly speaking, not an instance of the schema in [21]. A characterization
by such an instance is nonetheless possible. Call a subclass C′⊆C a disjunctive base
of a class C, if every f∈C can be expressed as a disjunction f=f1 ∨f2 ∨ · · · ∨fm

of functions fi in C′.

Lemma 3.13. If C′ is a disjunctive base for C; then CDL(C′)=CDL(C).

Proof. Suppose an item (f; b) occurs in a C-decision list L. By hypothesis, f=f1 ∨
: : : ∨fm, where each fi ∈C′. Replace the item by k items (f1; b); : : : ; (fm; b). Then, the
resulting decision list is equivalent to L. Hence, each C-decision list can be converted
into an equivalent C′-decision list.

Theorem 3.14. Ck-DL =CDL(Ck-DNF)=CND(Ck-CNF) for k¿1.

Proof. By Corollary 3.12 and Lemma 3.13.

Thus, nested di:erences of k-CNF functions are equivalent to k-decision lists. Ob-
serve that from the proof of this result, linear time mappings between nested di:erences
and equivalent k-decision do exist. A similar equivalence Ck-DL =CND(Ck-DNF) does
not hold. The reason is that the class of single-term functions is not a base for Ck-CNF,
which makes it impossible to rewrite a Ck-CNF-decision list to a k-decision list in
general.
The classes of bounded monotone decision lists can be characterized in a similar

way. Let Cposk-DNF and C
neg
k-CNF be the subclasses of Ck-DNF and Ck-CNF whose members

have a positive DNF and a negative CNF (i.e., no positive literal occurs), respectively.

Theorem 3.15. Cmonk-DL =CDL(C
pos
k-DNF)=CND(C

neg
k-CNF) for k¿1.

Thus, in particular, if CLit− denotes the class of negative literals plus �, then we
obtain the following.

Corollary 3.16. CrevDH =Cmon1-DL =CND(CLit−)=CND(C
neg
1-CNF).

4. Recognition from a formula

Recall that the membership problem [20] (also representation problem [4, 1]) for
a class C of Boolean functions is deciding whether a given formula ’ represents a
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function in C. This problem is also known as the recognition problem, and we call
any algorithm solving it a recognition algorithm (for the class C).
A 1-decision list, and thus also its relatives, can be recognized in polynomial time

from formulas of certain classes, which include Horn formulas. The basis for our
recognition algorithm is the following lemma:

Lemma 4.1. A Bf f is in C1-DL if and only if either (ia) Mxj6f; (ib) Mxj6 Mf; (ic) xj6f
or (id) xj6 Mf holds for some j; and (ii) f(xj←1) ∈C1-DL (resp.; f(xj←0) ∈C1-DL) holds
for all j satisfying (ia) or (ib) (resp.; (ic) or (id)).

Given a formula ’, the recognition algorithm proceeds as follows. It picks an index
j such that one of (ia)–(id) holds, and then recursively proceeds with ’(xj←a) as in
(ii). The important point here is that (ii) implies that a greedy choice of any variable xj
satisfying one of the conditions in (i) is enough, and that no backtracking is needed.
The details of the algorithm, which implements this greedy choice strategy, can be
found in [12]. For its time complexity, we obtain the following result. For a formula
’, let |’| denote its length, i.e., the number of symbols in ’.

Theorem 4.2. Let F be a class of formulas closed under assignments (i.e.; ’A ∈F
holds for every ’∈F and assignment A) such that checking equivalence of ’ to �
and ⊥; respectively; can be done in O(t(n; |’|)) time for any ’∈F. 3 Then; deciding
whether a given ’∈F represents an f∈C1-DL can be done in O(n2t(n; |’|)) time.

Proof. Immediate from the fact that the recursion depth is bounded by n and that at
each level O(n) tests (ia)–(id) are made.

Hence, the algorithm is polynomial for many classes of formulas, including Horn
formulas and quadratic (2-CNF) formulas. Since testing whether ’≡� and ’≡⊥ for
a Horn DNF ’ and a quadratic formula is possible in O(|’|) time (cf. [10, 15]), we
obtain the following.

Corollary 4.3. Deciding whether a given Horn DNF or 2-CNF ’ represents an f∈
C1-DL can be done in O(n2|’|) time.

Theorem 4.2 has yet another interesting corollary.

Corollary 4.4. Deciding if an arbitrary positive (i.e.; negation-free) formula ’ rep-
resents an f∈CLR-1 can be done in polynomial time.

In fact, deciding whether a positive formula ’ represents a read-once function is
co-NP-complete [22, 11]. It turns out that the class of CLR-1 is a maximal subclass

3 That is, F is syntactically closed under projection. Formulas such as Horn DNFs must be slightly
generalized by allowing occurrences of constants for this property. As usual, t(n; |’|) is monotonic in both
arguments.
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of CR-1 w.r.t. an inductive (i.e., context-free) bound on the size of disjunctions and
conjunctions in a read-once formula such that deciding f∈CR-1 from a positive formula
’ is polynomial. Let the class F2LR-1 of 2-linear read-once formulas be the (smallest)
class of formulas such that

(1) �;⊥∈F2LR-1, and xi; Mxi ∈F2LR-1 for every variable xi;
(2) if ’∈F2LR-1\{�;⊥} and  is a read-once formula that contains at most 2 literals

and shares no variables with ’, then  ∨’,  ∧’∈F2LR-1.

Note that F2LR-1 generalizes FLR-1 by increasing in clause (2) the number of literals
in  from one to two; this is the least possible increase.
Let C2LR-1 denote the class of all Bfs which can be represented by some for-

mula from F2LR-1. Clearly, CLR-1⊆C2LR-1, and the inclusion is strict. For example,
f= x1x2 ∨ x3x4 is a function in C2LR-1\CLR-1. From results in [11, 22], we easily derive
the following result.

Proposition 4.5. Deciding if an arbitrary positive (i.e.; negation-free) formula ’ rep-
resents a function f∈C2LR-1 is co-NP-hard.

Proof. Based on a construction in [22], it was shown in [11, Theorem 5.7] that deciding
whether a given positive formula ’ represents any function f∈CR-1 is co-NP-hard.
The proof there establishes that this problem is co-NP-hard, even if it is asserted
that the only possible such f is of the form f= x1x2 ∨ x3x4 ∨ · · · ∨ x2n−1x2n. Since
f∈C2LR-1⊆CR-1, the result follows.

In general, the recognition problem for CLR-1 is unsurprisingly intractable.

Theorem 4.6. Deciding whether a given formula ’ represents a function f∈C1-DL is
co-NP-complete.

Proof. The recognition problem for CR-1 is in co-NP [2], and it is easy to see that
it also in co-NP for C2M. Since co-NP is closed under conjunction, membership in
co-NP follows from Theorem 3.1. The hardness part is easy: any class C having the
projection property, i.e., C is closed under assignments, contains f=1 for each arity,
and does not contain all Bfs, is co-NP-hard [20]; obviously, C1-DL enjoys this property.

As for k-decision lists, it turns out that the recognition problem is not harder than for
1-decision lists. In fact, membership in co-NP follows from the result that k-decision
lists are exact learnable with equivalence queries in polynomial time (proved by Nick
Littlestone, unpublished; this also derivable from results in [21] and Theorem 3.14),
and the result [2] that for classes which are exact learnable in polynomial time with
equivalence and membership queries (under minor constraints), the recognition problem
is in co-NP. Hardness holds by the same argument as in the proof of Theorem 4.6.
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We conclude this section with some remarks concerning the equivalence and the
implication problem. The problems are, given k-decision lists L1 and L2 representing
functions f1 and f2, respectively, decide whether f1 =f2 (equivalence) and f16f2
(implication) holds, respectively. Both problems are obviously in co-NP, and they are
complete for any 8xed k¿3, since they subsume deciding whether a k-DNF formula
is a tautology. On the other hand, for k =1, both problems are polynomial, and in fact
solvable in linear time. For the remaining case k =2, it can be seen that the problem
is also polynomial; the underlying reason is that the satis8ability problem for 2-CNF
formulas is polynomial.

5. Extension problems

The extension problem for C1-DL has already been studied to prove the PAC-
learnability of this class. It is known [34] that it is solvable in polynomial time. We
point out that the result in [34] can be further improved, by showing that the extension
problem for C1-DL can be solved in linear time. This can be regarded as a positive
result, since the extension problem for the renaming closures of classes that contain
C1-DL is mostly intractable, e.g., for CRHorn ;C

R
pos;C

R
R-1 =CR-1;CR2M =C2M [7, 6], or no

linear time algorithms are known.
We describe here an algorithm EXTENSION (see Fig. 1), which outputs a 1-decision

list for an extension of a given pdBf (T; F). It uses Lemma 4.1 for the equivalent class
CLR-1 for a recursive extension test. The algorithm is similar to the more general
algorithm described in [34], and also a relative of the algorithm “total recall” in [21].
Informally, it examines the vectors of T and F , respectively, to see whether a decom-
position of form L∧’ or L∨’ is possible, where L is a literal on a variable xi; if
so, then it discards the vectors from T and F which are covered or excluded by this
decomposition, and recursively looks for an extension at the projection of (T; F) to the
remaining variables. Cascaded decompositions L1 ∧ (L2 ∧ (L3 ∧ (· · ·))) etc., are handled
simultaneously.
To 8nd an extension of a given pdBf (T; F), the algorithm is called with I={1; : : : ; n}.

Observe that it could equally well consider J+ ∪ J− before I+ ∪ I−, when going into
the recursive calls. In particular, if an index i is in the intersection of these sets, then
both decompositions xi ∧ g and xi ∨ g are equally good. Note that the execution of steps
2 and 3 alternates in the recursion. Moreover, the algorithm remains correct if only
a subset S ⊆ I+ ∪ I− (resp., S ⊆ J+ ∪ J−) is chosen, which may lead to a di:erent
extension.

Proposition 5.1. Given a pdBf (T; F); where T; F ⊆{0; 1}n; algorithm EXTENSION
correctly @nds an extension f∈C1-DL in O(n2(|T |+ |F |)) time.

Note that algorithm EXTENSION is easily modi8ed such that it outputs an equiva-
lent formula ’∈FLR-1 instead of L. Alternatively, L may be converted into a nested
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Fig. 1. Algorithm for computing an 1-DL representing an extension in C1-DL.

di:erence of concepts x1; : : : ; xn in linear time using the rewriting scheme from the
proof of Theorem 3.11. Furthermore, integer weights wi and a threshold w0 for the
function represented by L can be easily computed from ’ with O(|’|) many additions,
i.e., in linear time (see [12]). Thus, variants of algorithm EXTENSION may generate
these alternative representations for an extension of (T; F) in C1-DL within the same
time bounds.
It is possible to speed up algorithm EXTENSION by using proper data structures so

that it runs in linear time.

Theorem 5.2. The extension problem for C1-DL (equivalently; for CLR-1;CTH ∩CR-1;
and CND) is solvable in time O(n(|T |+ |F |)); i.e.; in linear time.

Proof (Sketch): This result can be obtained by using appropriate data structures, in
particular doubly linked lists and cross-reference pointers. The data structures assure
that the same bit of the input is looked up only few times. We merely sketch the
main ideas here; the technical details and an implementation-level description of the
algorithm can be found in [12].
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Fig. 2. Data structures for (T; F) where T = {(010); (001)} and F = {(000)}.

The set of true vectors, T , is stored as follows (cf. Fig. 2). For each i=1; 2; : : : ; n
and j=0; 1, there is a doubly linked list LTi; j of all the vectors v in T such that v has at
component i value j; at each component i of v, a link to the entry of v in the respective
list LTi; j exists. A counter #Ti; j records how many vectors are contained in LTi; j. The
counters #Ti; j are placed via pointers in buckets BT [0]; : : : ; BT [n], which are organized
as doubly linked lists, such that the counter #Ti; j is in BT [#Ti; j]. A further counter #T
records the number of vectors in T ; note that #T =

∑
i; j #Ti; j=n. The set of false vectors

is stored using completely analogous data structures LFi; j; #Fi; j; BF[0]; : : : ; BF[n], and
#F (see Fig. 2).
Notice that these data structures can be built from (T; F) in time O(n(|T | + |F |)).

Step 2 of algorithm EXTENSION is then modi8ed as follows. The bucket BT [#T ]
contains those counters #Ti;1 and #Tj;0 such that i∈ I+ and j∈ I−, respectively. The
sets F ′ and T ′ result by removing from F all vectors v in the lists LFi;1 and LFj;0;
using the cross-references, occurrences of v in the other lists LFi′ ; j′ are removed as
well. Step 3 is analogous.
Like above, the 1-decision list L computed by EXTENSION can be converted to an

equivalent formula ’∈FLR-1, a threshold function given by integer weights wi and a
threshold w0, or a nested di:erence of concepts x1; : : : ; xn in linear time.

Thus, in the learning context we obtain the following result.

Corollary 5.3. Learning a Bf f∈C1-DL from an arbitrary (possibly spoiled) teaching
sequence for f is possible in linear time in the size of the input.

It turns out that our algorithm can be used as a substitute for the learner in the
teacher=learner model for C1-DL described in [17]. That algorithm is based on the idea
to build a decision list by moving an item (‘; b), where ‘ is a literal and b an output
value, from the beginning of a decision list towards the end if it is recognized that some
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example is misclassi8ed by this item. Initially, all possible items are at the beginning,
and the procedure loops until no misclassi8cation occurs (see [17] for details); it takes
O(m2n) many steps if the input has size O(mn), where m is the length of the shortest
decision list for the target.
The method in [17] is somewhat dual to ours, and it is easily seen that the items

which remain at the beginning of the list are those whose literals are selectable for
decomposition in our algorithm. Thus, by the greedy nature of our algorithm, it con-
structs from the (possibly spoiled) teaching set as in [17] exactly the target function.
This shows that C1-DL is an eQciently learnable class; since the teaching set is con-
structible from the target in linear time, we have that C1-DL is a nontrivial class of
optimal order, i.e., linear time for both teaching and learning.

5.1. Generating all extensions

A standard generalization of 8nding one solution to a combinatorial problem is to 8nd
all solutions, with particular emphasis on algorithms that enumerate all the solutions
one by one (and without repetitions of the same solution), see e.g. [24, 27, 38].
Enumerating all extensions of a pdBf in C1-DL is a combinatorial problem of interest.

It is clear that in general, a pdBf may have an exponential number of extensions in
C1-DL, and thus not all extensions can be computed in polynomial time. However, a pro-
cedure which produces the extensions one by one such that the time until the next out-
put occurs is bounded by a polynomial allows one to generate a polynomial number of
extensions in polynomial time; in particular, if only polynomially many extensions exist,
all of them can be generated in polynomial time. In an application, an extension may be
chosen after seeing a polynomial number of possible candidates which can be produced
eQciently. In this way, a good extension on a certain criterion can be generated with
polynomial time e:ort, where it is intractable to 8nd the best extension. The enumer-
ation procedure serves here to eQciently generate the search space of all extensions.
For example, 8nding a shortest extension (in terms of a 1-decision list) of a given

pdBf is unsurprisingly NP-hard, as follows from results in [12, 14]. As a simple ap-
proximation, the shortest decision list out of a polynomial number of decision lists
generated in polynomial time may be chosen.
Ideally, the next extension is generated in time bounded by a polynomial p(·) in

the original input size, i.e., in time p(n(|T | + |F |)) where n(|T | + |F |) is the size of
a pdBf (T; F). Thus, regardless of how many (possibly already exponentially many)
extensions have already been generated, the next extension will be found within the
same time, or it will be recognized that no further extension exists. Such an algorithm
is called a polynomial delay algorithm in [24].
In this section, we present an algorithm for enumerating all extensions of a pdBf in

C1-DL, with polynomial delay, such that each extension is output only once and that
no auxiliary memory is used for storing the extensions already output. Informally, the
algorithm is a backtracking procedure similar to EXTENSION that recursively outputs
extensions with common pre8x in their syntactical representation as 1-DLs. However,
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a simple realization is prevented by ambiguous representation of the same function
through di:erent 1-DLs. There are two sources of ambiguity:
(I) The commutativity of logical connectives. For example, the 1-DLs (x1; 1); (x2; 1);

(�; 0) and (x2; 1); (x1; 1); (�; 0) both represent the function f= x1 ∨ x2.
(II) In every 1-DL, there exist two equivalent choices for the two innermost nodes of

the 1-DL. For example, (x1; 1); (x2; 1); (�; 0) and (x1; 1); ( Mx2; 0); (�; 1) both repre-
sent the function f= x1 ∨ x2.

In combination, these two sources generate further ambiguity: also (x2; 1)(Mx1; 0); (�; 1)
represents f= x1 ∨ x2. Thus, even if any pre8x of this 1-DL is di:erent from any pre8x
of the 1-DL (x1; 1); ( Mx2; 0); (�; 1), they both represent the same function. To avoid such
ambiguity, our enumeration algorithm uses the following canonical form of 1-DLs:
1. (�; 0) and (�; 1) are canonical, representing f=0 and f=1, respectively;
2. any 1-DL (‘1; 0); (�; 1) is canonical; and
3. a 1-DL (‘1; b1); : : : ; (‘d; bd) where d¿3 is canonical, if no variable occurs more
than once in it and its tail is either (‘d−2; 1); (‘d−1; 1); (�; 0) or (‘d−2; 0); (‘d−1; 0);
(�; 1).
For example, f= x1 ∨ x2 is represented by the canonical 1-DL (x1; 1); (x2; 1); (�; 0).
It is easy to see that the canonical form amounts to the requirement that in the

form (3.1) of equivalent (renamed) linear read-once formulas, the innermost level has
at least two literals, and that a canonical 1-DL is thus unique up to permutations of
neighbored elements (‘i; bi); (‘i+1; bi+1) that have the same output value, i.e., bi= bi+1.
Our enumeration algorithm handles this ambiguity by excluding any literal ‘, once it
has been chosen for a level i of the (renamed) form (3.1), for further selection at the
same level.
We need some preparatory de8nition. The variable of a literal ‘ is denoted by V (‘).

The literal is called ∧ -selectable (resp., ∨ -selectable) for a set of vectors S, if either
‘= xj and j∈ON (S) (resp., j∈OFF(S)), or ‘= Mxj and j∈OFF(S) (resp., j∈ON (S)).
The set of all ∧-selectable (resp., ∨-selectable) literals for S is denoted by Sel-Lit∧(S)
(resp., by Sel-Lit∨(S)).
Our algorithm, ALL-EXTENSIONS, is described in Fig. 3. It builds an 1-DL L step

by step from scratch. The expansion of the current list by an element (‘; 0) (resp.,
(‘; 1)) is called a conjunction step (resp., a disjunction step). For eQciency reasons,
the algorithm calls functions POSS-∧((T ′; F ′); I ′; Lit′∧) and POSS-∨((T ′; F ′); I ′; Lit′∨),
respectively, which are generic functions for pruning the search space by eliminating
branches of the computation which will for sure not lead to a new extension. They are
supposed to report “Yes” whenever the current partial 1-DL L=(‘1; b1); : : : ; (‘i; bi) for
(T; F), where i¿1, can be completed to a canonical 1-DL such that:
(i) at least one further element (‘i+1; bi+1) where ‘i+1 �=� must be appended, and
(ii) all elements (‘j; bj) where bj =0 (resp., bj =1) that are appended before the next

disjunction step (resp., conjunction step) must be from Lit′∧ (resp., Lit
′
∨).

Clearly, any pruning functions POSS-∧ and POSS-∨ which satisfy this property are
sound, i.e., they do not prune the search space including a new extension. We note the
following result.
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Fig. 3. Enumeration algorithm for 1-DLs for all extensions in C1-DL.

Proposition 5.4. Suppose POSS-∧((T ′; F ′); I ′; Lit′∧) and POSS-∨((T ′; F ′); I ′; Lit′∨) are
sound pruning functions. Then; algorithm ALL-EXTENSIONS correctly enumerates
1-DLs for all extensions f∈C1-DL of (T; F); i.e.; 1-DLs L1; L2; : : : ; Lm such that each
extension f∈C1-DL is represented by some Li and diEerent Lis represent diEerent
extensions.
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Fig. 4. Pruning function POSS2-∧.

Proof. The proof by induction on |I | is straightforward. It is easy to see that the
asserted soundness condition on POSS-∧ and POSS-∨ guarantees that the algorithm
outputs each extension in C1-DL: every completion of a partial 1-DL L to some canonical
1-DL that has not been output so far is found. Furthermore, the exclusion of literals
from Lit∧ in the while loop of Step 1 (resp., Lit∨ in the while loop of Step 2) eliminates
ambiguity (I), i.e., commutativity of logical connectives. Since only canonical 1-DL are
output by the condition on the outputs, di:erent outputs represent di:erent extensions.

A trivial implementation of POSS-∧ and POSS-∨ simply returns “Yes”, independent
of the input (call this POSS1). However, the resulting algorithm is not polynomial de-
lay. For example, consider (T; F) where T={(1 · · · 1)}, F={v∈{0; 1}n | |OFF(v)|=1}.
This pdBf has a unique extension in C1-DL, which amounts to f= x1x2 · · · xn. Us-
ing POSS1, algorithm ALL-EXTENSIONS has exponentially many computation paths
which drive to no solution: each subset of {x1; : : : ; xn} will be considered as initial
conjunctive pre8x for an extension in C1-DL, but only one of them succeeds.
We consider here the pruning functions POSS2-∧ and POSS2-∨, where POSS2-∧

is shown in Fig. 4. The function POSS2-∨ is completely symmetric. The following
lemma is easily established. In what follows, let for any set of literals A and set of
vectors S denote V (A)= {V (‘) | ‘∈A} and SA= {v∈ S | v∈T (‘) for all ‘∈A}, where
V (‘) denotes the variable of ‘.

Lemma 5.5. POSS2-∧ is a sound pruning function; which is executable in
O(|I |2||F[I ]|) time.

Proof. Suppose that the current partial 1-DL can be completed to a canonical 1-DL as
in items (i) and (ii) before Proposition 5.4, i.e., POSS2-∧ is supposed to return “Yes”.
Then there exists a 1-DL L=(‘1; b1); : : : ; (‘k ; bk); (�; bk+1) representing an extension
f �=⊥;� such that {‘i | 16i6j}⊆Lit∧ holds for the maximal pre8x (‘1; 0); : : : ; (‘j; 0)
of L with output 0. As f �=⊥;�, the 8rst if-statement is correct; hence the else-
if statement is also correct. For what is left, we consider the case in which Lit∧
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does not contain opposite literals. If j= k (i.e., L=(‘1; 0); : : : ; (‘j; 0); (�; 1)), then
M‘j is ∨-selectable for FA[IA] with A=Lit∧\{‘j}. This means that POSS2-∧ correctly
returns “Yes”. On the other hand, if j¡k, then ‘j+1 is ∨-selectable for FA[IA] with
A=Lit∧\{‘j+1}. POSS2-∧ correctly returns “Yes” also in this case. This proves the
soundness of POSS2-∧.
As for the time bound, using counters for |F |; |T | and the number of opposite

literal pairs in Lit∧ (which can be eQciently maintained), the 8rst if statement and the
elseif statement can be executed in constant time; note that |F[I ]|= |F |; |T [I ]|= |T |
as in calls of POSS2-∧ all vectors in F; T coincide on {1; 2; : : : ; n}\I . The remainder
is clearly executable in O(|I |2|F |) time.

We remark that considering only A=Lit∧ in POSS2-∧ (instead of all A with |A|¿
|Lit∧|−1) would be incorrect, as some literal on a variable in Lit∧ may be needed for
an ∨-selectable literal. For example, consider (T; F) where T = {(1111)}; F = {(1101);
(1110); (0100)} and assume I = {1; 2; 3; 4} and Lit∧= {x1; x2}. Then, the modi8ed test
would report “No”, which incorrectly prunes the canonical 1-DL (Mx1; 0); (x2; 1); ( Mx3; 0);
( Mx4; 0); (�; 1) representing f= x1( Mx2 ∨ x3x4).
For POSS-∨, we obtain a symmetric result.

Lemma 5.6. POSS2-∨ is a sound pruning function; which can be executed in calls of
ALL-EXTENSIONS in O(|I |2||T [I ]|) time.

An example of ALL-EXTENSIONS is given in the appendix. We now show that
this algorithm, using POSS2, is polynomial delay in a suitable implementation.

Theorem 5.7. Suppose that ALL-EXTENSIONS uses POSS2-∧ and POSS2-∨; and
that; if possible; a literal ‘∈Lit∧ (resp.; ‘∈Lit∨) is selected in the while loop of
Step 1 (resp.; Step 2) in ALL-AUX such that M‘∈Lit∧ (resp.; M‘∈Lit∨). Then; it
enumerates 1-DLs for all extensions f∈C1-DL of (T; F) with O(n6(|T |3+ |F |3)) delay.

Proof. The correctness of the algorithm follows from Proposition 5.4 and Lemmas 5.5
and 5.6. We prove the polynomial delay property by analyzing the tree T of partial
1-DLs generated by ALL-AUX.
Each nonterminal node N in T is labeled with the parameters of the corresponding

call of ALL-AUX, which we refer to by N ·T , N ·F; etc., and has (ordered) children
as follows. For each literal ‘∈N ·Lit∧ (resp., ‘∈N ·Lit∨) an ∧-node N∧‘ , (resp.,
∨-node N∨‘ ) is generated. The arc from N to N∧‘ (resp., N∨‘ ) is labeled with ( M‘; 0)
(resp., (‘; 1)). The node N∧‘ (resp., N∨‘ ) is terminal, if the call of POSS2-∧ (resp.,
POSS2-∨) for ‘ returns “No”; otherwise, it is labeled with the parameters of the
subsequent call of ALL-AUX. The root of T; root(T), is generated in Step 2 of
ALL-EXTENSIONS; note that it is nonterminal. A node N in T is an output node,
if ALL-AUX has output before issuing the call of POSS2-∧ (resp., POSS2-∨) for N .
A node is productive, if the subtree rooted at N , denoted TN , contains some output
node N ′.
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We show that the size of TN is polynomially bounded, if N is not productive;
since the bodies of the while loops in ALL-AUX run in polynomial time, this will
establish that processing an unproductive subtree takes only polynomial time. Since
the number of children of each node and the recursion depth are O(n), this implies the
polynomial delay property. Note that the root of T is productive if it is nonterminal.
More precisely, we prove the following lemma.

Lemma 5.8. Suppose either N or all its children are not productive. Then if N is the
root or an ∧-node; the size of TN is O(|I |2|F |2). Similarly; if N is an ∨-node; the
size of TN is O(|I |2|T |2).

Proof (of Lemma 5:8): Let N be either root(T) or an ∧-node N in the tree T,
and suppose that N ′ is the 8rst nonterminal ∨-child of N (if one is generated). We
claim that N ′ is productive. To see this, note that POSS2-∨(T ′; F ′; I ′; Lit′∨) returns
“Yes”, where T ′=N ′ ·T , F ′=N ′ ·F , I ′=N ′ · I , and Lit′∨=N ′ ·Lit∨; this implies that
|I ′|¿1 and that F ′[I ′], T ′[I ′] do not contain all possible vectors on I ′. We show
that (T ′[I ′]; F ′[I ′]) has an extension f �=�;⊥ in C1-DL, which proves the claim. If
T ′= ∅, then let f describe any vector not in F ′[I ′]; similarly, if F ′= ∅, then let f’s
complement describe a vector not in T ′[I ′]. Otherwise, the existence of f is concluded
from Lemma 4.1. (We note in passing that if N ·F �= ∅, then every nonterminal ∨-child
of N is productive.)
As a consequence, if N is not productive, then all ∨-children of N are terminal. For

simplicity, let T =N ·T , F =N ·F , Lit∧=N ·Lit∧ and Lit∨=N ·Lit∨, and consider the
∧-children of N and their ∧-descendants. We consider two cases.
Case (1): Lit∧ does not contain a pair of opposite literals. Consider any unproductive

nonterminal ∧-node N ′ �=N in the tree TN such that N ′ is reached from N on a
∧-path, i.e., a path through ∧-nodes. As already shown above, N ′ has no ∨-children.
We observe that N ′ ·Lit∨ �= ∅ must hold (otherwise, N ′ is not generated), and in fact
|N ′ ·Lit∨|=1 must hold (otherwise, N ′ is productive).
We now show that the number of di:erent such nodes N ′ is bounded by |I | |F |.
Let A′= { M‘ | literal ‘ occurs on the path from N to N ′}⊆Lit∧, let I∗=V (Lit∧), and

let ‘′ be the (unique) literal in N ′ ·Lit∨. We call any vector w∈F[I∗] an evidence
for N ′, if w∈FA′

[I∗] and w∈F(‘) (i.e., w falsi8es ‘), for every literal ‘∈Lit∧\(A′ ∪
{‘′}). As easily seen, such an evidence must exist for N ′.
Consider now two unproductive nonterminal nodes N ′; N ′′ �=N reached from N on

∧-paths, such that N ′ and N ′′ have common evidence w′=w′′. Let ‘′ and ‘′′ be the
unique literals in N ′ ·Lit∨ and N ′′ ·Lit∨, respectively. Then we have ‘′; ‘′′ ∈Lit∧. To
verify this, suppose towards a contradiction that ‘′′ =∈Lit∧. This implies that A′′=A′ ∪
{‘′}, where A′ and A′′ are the sets of opposite literals occurring in the path from
N to N ′ (resp., N to N ′′). Now the pdBf (T [I ]; F[I ]) has extensions represented by
1-DLs N ′ ·L; (‘′; 0); (�; 1) and N ′ ·L; (‘′; 0); (‘′′; 0); (�; 1). Consequently, it also has an
extension N ′ ·L; (‘′; 1); (‘′′; 1); (�; 0). Since this extension is canonical, N ′ is produc-
tive, a contradiction. The proof for ‘′ =∈Lit∧ is analogous; we thus have ‘′; ‘′′ ∈Lit∧.
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It follows that A′ ∪{‘′}=A′′ ∪{‘′′}⊆Lit∧. Obviously, at most |I∗| − 1 (6 |I | − 1)
sets A′′ di:erent from A′ are possible. Thus, at most |I | di:erent nodes have the same
evidence. Since each N ′ must have some evidence, the number of di:erent N ′ is
bounded by |I ||F |.
This proves the above statement that the number of all nodes in subtrees rooted

at unproductive ∧-children of N is O(|I |2|F |). We can conclude that the same bound
holds on the number of all nodes in TN if either N or all its children are not productive.
Case (2): Lit∧ contains a pair of opposite literals. This implies T = ∅, and thus every

nonterminal node N ′ in TN satis8es N ′ ·T = ∅. Suppose N ′(�=N ) is an unproductive
nonterminal ∧-node reached from N on a ∧-path, and let A′ be as above the set of
opposite literals in this path. Note that FA′ �= ∅ holds (otherwise, N ′ would be produc-
tive). There are two cases: (i) N ′ ·Lit∧ contains opposite literals and (ii) it contains
no opposite literals. In case of (i), the asserted literal selection strategy of ALL-AUX
implies that A′ must be from Lit±∧ := {‘∈Lit∧ | ‘; M‘∈Lit∧}. By a simple inductive ar-
gument, we have at most 2|I

±| such nodes N ′, where I±=V (Lit±∧ ). In case of (ii),
N ′ ·Lit∨= {‘′} must hold. Similar as in Case (1) above, we can de8ne an evidence of
N ′ and at most (|I | − |I±|)2|I±| di:erent nodes may have the same evidence vector.
Thus, the number of di:erent nodes N ′ is bounded by 2|I

±||I ||F |.
The number of unproductive nodes N ′ in cases (i) and (ii) is then bounded by

2|I
±| + 2|I

±||I ||F |=O(2|I±||I ||F |). Since the 8rst nonterminal ∧-child of N is not
productive, we must have |F |¿ 2|I

±|. Thus, the number of unproductive nodes N ′

in (i) and (ii) is bounded by O(|I ||F |2). In particular, if N or all its children are
unproductive, then the tree TN has O(|I |2|F |2) many nodes.
This closes our analysis of TN where N is an ∧-node or the root of T. For an
∨-node N , we obtain symmetric results in analogous manner. That is, TN has
O(|I |2|T |2) many nodes if N or all its children are not productive. This proves the
lemma.

We now complete the proof of the theorem. By Lemma 5.5 (resp., Lemma 5.6), each
call of POSS2-∧ (resp., POSS2-∨) in ALL-AUX takes O(n2(|F |)) (resp., O(n2|T |))
time. The other statements in the bodies of the loops in Steps 1 and 2 take O(n|T |)
and O(n|F |) time, respectively. Thus, the next node in T is always generated within
O(n(|T |+ n|F |)) (resp., O(n(|F |+ n|T |)) time.
Consider now two output nodes N and N ′ in T corresponding to subsequent outputs

of ALL-AUX. Let

f(n; T; F) = n2(|T |2 + |F |2):
Then, if N ′ is in TN , by Lemma 5.8 the number of nodes generated between N and
N ′ is O(n ·f(n; T; F)) since the recursion depth is at most n. If N ′ is not in TN ,
then TN contains O(f(n; T; F)) many nodes. Backtracking in T to the least common
ancestor N ′′ of N and N ′ generates by Lemma 5.8 O(n2 ·f(n; T; F)) many nodes, and
between N ′′ and N ′ again O(n ·f(n; T; F)) many nodes are generated. Thus, in total
O(n2 ·f(n; T; F)) many nodes are generated between N and N ′. The time between
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subsequent outputs of ALL-AUX is thus bounded by

O(n(|T |+ |F |)(n+ 1)n2f(n; T; F)) = O(n6(|T |3 + |F |3)):
The same bound also applies on the time until the 8rst output of ALL-AUX and until
termination after the last output. The bound on the output delay of ALL-EXTENSIONS
now follows easily.

We remark that in [13], involved sound and complete pruning functions REST-EXT-
∧ and REST-EXT-∨ are described, which can be evaluated in O(n(|T | + n2|F |3))
and O(n(|F |+ n2|T |3)) time, respectively. Using them, ALL-EXTENSIONS runs with
O(n5(|T |3 + |F |3)) delay.
Improvements to ALL-EXTENSIONS can be made by using appropriate data struc-

tures and reuse of intermediate results. It remains to see whether an algorithm with
linear time delay is feasible. Note that like algorithm EXTENSION, also algorithm
ALL-EXTENSIONS can be easily modi8ed to enumerate equivalent representations of
the C1-DL-extensions of the pdBf (T; F) in terms of linear read-once formulas, sets of
threshold weights, or nested di:erence of concepts x1; : : : ; xn.
Theorem 5.7 has important corollaries.

Corollary 5.9. There is a polynomial delay algorithm for enumerating the (unique)
prime DNFs for all extensions of a pdBf (T; F) in C1-DL (resp.; in CLR-1; CND; and
CRDH).

Proof. By Theorem 3.5, the prime DNF for a linear read-once formula ’ can be
obtained from ’ in O(n2) time.

Denote by C(n) the class of all Bf of n variables in C. Then, if we apply the
algorithm on (T; F), where T =F = ∅ for given n, then we obtain all members of
CLR-1(n). Hence,

Corollary 5.10. There is a polynomial delay algorithm for enumerating the (unique)
prime DNFs of all f∈C1-DL(n) (resp.; in CLR-1(n); CND(n); and CRDH(n)).

Transferred to the learning context, we obtain:

Corollary 5.11. Algorithm ALL-EXTENSIONS outputs all hypotheses f∈C1-DL
which are consistent with a given sample S with polynomial delay. Similar algorithms
exist for CLR-1; CND; and CRDH.

As a consequence, if the sample almost identi8es the target function, i.e., there are
only few (up to polynomially many) di:erent hypotheses consistent with the sample
S, then they can all be output in polynomial time in the size of S.
As another corollary to Theorem 5.7, checking whether a pdBf (T; F) uniquely iden-

ti8es one function from the class C1-DL is tractable.
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Corollary 5.12. Given a pdBf (T; F); deciding whether it has a unique extension
f∈C1-DL (equivalently; f∈CLR-1; f∈CND; and f∈CRDH) is possible in polynomial
time.

For learning, this gives us the following result.

Corollary 5.13. Deciding whether a given sample S is a teaching sequence for C1-DL
(equivalently; for CLR-1 and CND) is possible in polynomial time.

Example 5.1. Consider the pdBf (T; F), where T = {(011); (101)}, F = {(110); (001)}.
The algorithm ALL-EXTENSIONS outputs the single 1-DL (Mx3; 0); (x1; 1); (x2; 1); (�; 0),
which represents the extension  = x3(x1 ∨ x2). In fact,  is the unique extension of
(T; F) in C1-DL. Observe that only extensions f∈CLR-1 of form x3∧’ are possible, as
x3 is the only ∧-resp. ∨-selectable literal; since no term x3 Mxj can be an implicant of an
extension and T contains two vectors, it follows that x3(x1 ∨ x2) is the only extension
of (T; F) in CLR-1 and thus in C1-DL.

6. Conclusion

In this paper, we have considered the relation between decision lists and other classes
of Boolean functions. We found that there are a number of interesting and unex-
pected relations between 1-decision lists, Horn functions, and intersections of classes
with read-once functions. These results provide us with syntactical and semantical
characterizations of an operationally de8ned class of Boolean functions, and vice versa
with an operational and syntactical characterization of intersections of well-known
classes of Boolean functions. Moreover, they allow us to transfer results obtained for
one of these particular classes, the corresponding others. In this way, the characteriza-
tions may be useful for deriving future results.
On the computational side, we have shown that some problems for 1-decision lists

and their relatives are solvable in polynomial time; in particular, 8nding an extension
of a partially de8ned Boolean function (in terms of learning, a hypothesis consistent
with a sample) in this class is feasible in linear time, and enumeration of all extensions
of a pdBf in this class (in terms of learning, all hypotheses consistent with sample)
is possible with polynomial delay. Furthermore, the unique extension problem, i.e.,
recognition of a teaching sequence, is polynomial.
Several issues remain for further research. As we have shown, a simple generaliza-

tion of the characterizations of 1-decision lists in terms of other classes of Boolean
functions is not possible except in a single case. It would be thus interesting to see
under which conditions such a generalization could be possible. Observe that the in-
clusion Ck-DL⊆CTH(k) is known [3], where CTH(k) denotes the functions de8nable as
a linearly separable function where variables are replaced by terms of size at most k.
A precise, elegant description of the Ck-DL fragment within CTH(k) would be appreci-
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ated; as we have shown, intersection with read-k functions is not apt for this. Moreover,
further classes of Boolean functions and fragments of well-known such classes which
characterize k-decision lists would be interesting to know.
Other issues concern computational problems. One is a possible extension of the

polynomial-time delay enumeration for 1-decision list extensions to k-decision lists for
k¿1. While 8nding a single extension is possible in polynomial time [34], avoiding
multiple output of the same extension is rather diQcult, and a straightforward general-
ization of our algorithm is not at hand. Intuitively, for terms of size k¿1, consensus
plays a role and makes checking whether items of a decision list are redundant in-
tractable in general. We may thus expect that in general, no such generalization of our
algorithm for k¿1 is possible.
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Appendix Example for ALL-EXTENSIONS

Example. Consider the pdBf (T; F) where T = {(001); (010)}, F = {(000)}. We apply
ALL-EXTENSIONS.

Step 1: No output.
Step 2: L := nil; I := {1; 2; 3}; Lit∧= { Mx1}; Lit∨= {x1; x2; x3}.

Call ALL-AUX for (T [I ]; F[I ]), I , L, Lit∧, Lit∨.

(ALL-AUX (1)) Step 1. L= Mx1: I ′ := {2; 3}, Lit∧ := ∅; Lit′∧ := ∅;
T ′ := {(001); (010)}; F ′ := {(000)}; No output in the “if”.
Call POSS2-∧ for T ′[I ′]; F ′[I ′]), I ′= {2; 3}, and Lit′∧= ∅; it answers “Yes”
(x2 is ∨-selectable in F ′∅[I ′]).
Expand L by “(x1; 0)”: Lit′∨ := {x2; x3}; Call ALL-AUX for (T ′[I ′]; F ′[I ′]), I ′,
L′=(x1; 0), Lit′∧, Lit

′
∨;
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(ALL-AUX (2)) Step 1. void, as Lit∧= ∅.
Step 2: L= x2: I ′ := {3}; Lit∨ := {x3}; Lit′∨ := {x3}; T ′ := {(001)};
F ′ := {(000)}.
No output in the “if”.
Call POSS2-∨ for I ′= {3}; Lit′∨= {x3}; it answers “Yes” (x3 is ∧-
selectable in T ′∅[I ′]).
Expand 1 by “(x2; 1)”: Lit′∧:={x3}; Call ALL-AUX for (T ′[I ′]; F[I ′]),
I ′, L′=(x1; 0); (x2; 1), Lit′∧, Lit

′
∨.

(ALL-AUX (3)) Step 1. L= x3: I ′ := ∅; Lit∧ := ∅; Lit′∧ := ∅; T ′ :=
{(001)}; F ′ := ∅;
No output in the “if”.
The call of POSS2-∧ for I ′= ∅, Lit∧= ∅ answers “No”.
Step 2: L= x3: I ′ := ∅; Lit∨ := ∅; Lit′∨ := ∅; T ′ := ∅; F ′ := {(000)};

Output L1 = (x1; 0)(x2; 1); (x3; 1); (�; 0);
The call of POSS2-∨ for I ′= ∅, Lit∧= ∅ answers “No”.
(end of ALL-AUX (3))

(ALL-AUX (2) continued) Step 2. L= x3: I ′ := {2}; Lit∨ := ∅; Lit′∨ :=
∅; T ′ := {(010)}; F ′ := {(000)};
Call POSS2-∨ for I ′= {2}, Lit′∨ answers “Yes” (x2 is ∨-selectable in
T ′∅[I ′]). This branch does not drive to a solution.
Expand L by “(x3; 1)”: Lit′∧ := {x2}; Call ALL-AUX for (T ′[I ′]; F ′[I ′]),
I ′, L′=(x1; 0)(x3; 1), Lit′∧, Lit

′
∨;

(ALL-AUX (3)) Step 1. L=x2: I ′ :=∅; Lit∧ :=∅; Lit′∧ :=∅; T ′ :=
{(010)}; F ′ :=∅;
No output in the “if”.
The call of POSS2-∧ for I ′= ∅, Lit∧= ∅ answers “No”.
Step 2: void, as Lit∨= ∅. (end of ALL-AUX (3))

(end of ALL-AUX (2))
(ALL-AUX (1) continued) Step 2. L= x1: I ′ := {2; 3}; Lit∨ := {x2; x3}; Lit′∨ :=
{x2; x3}; T ′ := {(001); (010)}; F ′ := {(000)}; No output in the “if”.
The call of POSS2-∨ for I ′= {2; 3}, Lit′∨= {x2; x3}, answers “Yes” (x2 ∧-
selectable in T ′Mx3 [I ′]).
Expand L by “(x1; 1)”: Lit′∧ := ∅; Call ALL-AUX for (T ′[I ′]; F ′[I ′]), I ′, L′=
(x1; 1), Lit′∧, Lit

′
∨;

(ALL-AUX (2)) Step 1. void, as Lit∧= ∅.
Step 2: L= x2: I ′ := {3}; Lit∨ := {x3}; Lit′∨ := {x3}; T ′ := {(001); };
F ′ := {(000)}.
No output in the “if”.
Call POSS2-∨ for I ′= {3}; Lit′∨= {x3}; it answers “Yes” (x3 is ∧-
selectable in T ′∅[I ′]).
Expand 1 by “(x2; 1)”: Lit′∧ := {x3}; Call ALL-AUX for (T ′[I ′]; F[I ′]),
I ′, L′=(x1; 1)(x2; 1), Lit′∧, Lit

′
∨.

(ALL-AUX (3)) Step 1. L= x3: : : :
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Output L2 = (x1; 1)(x2; 1) (x3; 1)(�; 0); : : :
(end of ALL-AUX (3))

(Step 2: of ALL-AUX (2)) L= x3: : : : (end of ALL-AUX (2))
(ALL-AUX (1) Step 2. continued). L= x2: : : :

Output L3 = (x2; 1)(x1; 0)(Mx3; 0) (�; 1); : : :
: : : Output L4 = (x2; 1)(x3; 1) (�; 0); : : :

(ALL-AUX (1) Step 2. continued). L= x3: : : :
Output L5 = (x3; 1)(x1; 0)(Mx2; 0) (�; 1); : : :

(end of ALL-AUX (1))
(end of ALL-EXTENSIONS)
Thus, the algorithm outputs canonical 1-DLs for the 8ve extensions  1 = Mx1(x2 ∨ x3),

 2 = x1 ∨ x2 ∨ x3,  3 = x2 ∨ Mx1x3,  4 = x2 ∨ x3, and  5 = x3 ∨ Mx1x2.
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