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Abstract

With the demand for knowledge-handling systems capable of dealing with and dis-

tinguishing between various facets of imprecision ever increasing, a clear and formal

characterization of the mathematical models implementing such services is quintessen-

tial. In this paper, this task is undertaken simultaneously for the definition of impli-

cation within two settings: first, within intuitionistic fuzzy set theory and secondly,

within interval-valued fuzzy set theory. By tracing these models back to the underlying

lattice that they are defined on, on one hand we keep up with an important tradition of

using algebraic structures for developing logical calculi (e.g. residuated lattices and MV

algebras), and on the other hand we are able to expose in a clear manner the two models�
formal equivalence. This equivalence, all too often neglected in literature, we exploit to

construct operators extending the notions of classical and fuzzy implication on these

structures; to initiate a meaningful classification framework for the resulting operators,

based on logical and extra-logical criteria imposed on them; and finally, to re(de)fine the

intuititive ideas giving rise to both approaches as models of imprecision and apply them

in a practical context.
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1. Introduction

Intuitionistic fuzzy sets [1] and interval-valued fuzzy sets ([54,67] and more

recently, [58]) are two intuitively straightforward extensions of Zadeh�s fuzzy
sets [66], that were conceived independently to alleviate some of the drawbacks

of the latter. Henceforth, for notational ease, we abbreviate ‘‘intuitionistic

fuzzy set’’ to IFS and ‘‘interval-valued fuzzy set’’ to IVFS. IFS theory basically
defies the claim that from the fact that an element x ‘‘belongs’’ to a given degree

(say l) to a fuzzy set A, naturally follows that x should ‘‘not belong’’ to A to the

extent 1� l, an assertion implicit in the concept of a fuzzy set. On the con-

trary, IFSs assign to each element of the universe both a degree of membership

l and one of non-membership m such that lþ m6 1, thus relaxing the enforced

duality m ¼ 1� l from fuzzy set theory. Obviously, when lþ m ¼ 1 for all ele-

ments of the universe, the traditional fuzzy set concept is recovered. IFSs owe

their name [4] to the fact that this latter identity is weakened into an inequality,
in other words: a denial of the law of the excluded middle occurs, one of the

main ideas of intuitionism. 1

IVFS theory emerged from the observation that in a lot of cases, no ob-

jective procedure is available to select the crisp membership degrees of elements

in a fuzzy set. It was suggested to alleviate that problem by allowing to specify

only an interval [l1; l2] to which the actual membership degree is assumed to

belong. A related approach, second-order fuzzy set theory, also introduced by

Zadeh [67], goes one step further by allowing the membership degrees them-
selves to be fuzzy sets in the unit interval; this extension is not considered in

this paper.

Both approaches, IFS and IVFS theory, have the virtue of complementing

fuzzy sets, that are able to model vagueness, with an ability to model uncer-

tainty as well. 2 IVFSs reflect this uncertainty by the length of the interval

membership degree [l1; l2], while in IFS theory for every membership degree

1 The term ‘‘intuitionistic’’ is to be read in a ‘‘broad’’ sense here, alluding loosely to the denial of

the law of the excluded middle on element level (since lþ m < 1 is possible). A ‘‘narrow’’, graded

extension of intuitionistic logic proper has also been proposed and is due to Takeuti and Titani

[57]––it bears no relationship to Atanassov�s notion of IFS theory.
2 In these pages, we juxtapose ‘‘vagueness’’ and ‘‘uncertainty’’ as two important aspects of

imprecision. Some authors [45,47,60] prefer to speak of ‘‘non-specificity’’ and reserve the term

‘‘uncertainty’’ for the global notion of imprecision.
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ðl; mÞ, the value p ¼ 1� l� m denotes a measure of non-determinacy (or un-

decidedness).
Each approach has given rise to an extensive literature covering their re-

spective applications, but surprisingly very few people seem to be aware of their

equivalence, stated first in [2] and later in [31,63]. Indeed, take any IVFS A in a

universe X , and assume that the membership degree of x in A is given as the

interval [l1; l2]. Obviously, l1 þ 1� l2 6 1, so by defining l ¼ l1 and m ¼ 1�
l2 we obtain a valid membership and non-membership degree for x in an IFS

A0. Conversely, starting from any IFS A0 we may associate to it an IVFS A by

putting, for each element x, the membership degree of x in A equal to the in-
terval [l; 1� m] with again ðl; mÞ the pair of membership/non-membership de-

grees of x in A0. As a consequence, a considerable body of work has been

duplicated by adepts of either theory, or worse, is known to one group and

ignored by the other. Therefore, regardless of the meaning (semantics) that one

likes his or her preferred approach to convey, it is worthwhile to develop the

underlying theory in a framework as abstract and general as possible. Lattices

seem to lend themselves extremely well to that purpose; indeed it is common

practice to interpret them as evaluation sets from which truth values are drawn
and to use them as a starting point for developing logical calculi. Let us apply

this strategy to the formal treatment of IVFSs and IFSs: we will describe them

as special instances of Goguen�s L-fuzzy sets, 3 where the appropriate evalua-

tion set will be the bounded lattice ðL�; 6L� Þ defined as [14]:

Definition 1 (Lattice ðL�; 6L� Þ)

L� ¼ fðx1; x2Þ 2 ½0; 1�2j x1 þ x2 6 1g
ðx1; x2Þ6L� ðy1; y2Þ () x1 6 y1 and x2 P y2

The units of this lattice are denoted 0L� ¼ ð0; 1Þ and 1L� ¼ ð1; 0Þ. A special

subset of L�, called the diagonal D, is defined by D ¼ fðx1; x2Þ 2
½0; 1�2j x1 þ x2 ¼ 1g. The shaded area in Fig. 1 is the set of elements x ¼ ðx1; x2Þ
belonging to L�.

Note. This definition favours IFSs as they are readily seen to be L-fuzzy sets

w.r.t. this lattice, while for IVFSs a transformation from ðx1; x2Þ 2 L� to the

interval [x1; 1� x2] must be performed beforehand; this decision reflects the

background of the authors. Nevertheless, it is important to realize that nothing

stands in our way to define equivalently:

LI ¼ fðx1; x2Þ 2 ½0; 1�2j x1 6 x2g

3 Let ðL; 6 LÞ be a complete lattice. An L-fuzzy set in U is an U ! L mapping [36].
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ðx1; x2Þ 6LI ðy1; y2Þ () x1 6 y1 and x2 6 y2

and develop the theory in terms of ðLI ; 6 LI Þ. For compliance with the existing

literature, we denote the class of L�-fuzzy sets in a universe U by FL� ðUÞ.
Note. In this paper, if x 2 L�, we refer to its and first and second components

by x1 and x2 respectively. In case we want to refer to the individual components

of an expression like f ðxÞ, where in this case for instance f is an L� ! L�

mapping, we write pr1f ðxÞ and pr2f ðxÞ, where the projections pr1 and pr2 map

an ordered pair (in this case an element of L�) to its first and second compo-

nent, respectively.

The lattice ðL�; 6L� Þ is a complete lattice: for each A � L�, supA ¼
ðsupfx 2 ½0; 1�jð9y 2 ½0; 1�Þððx; yÞ 2 AÞg; inffy 2 ½0; 1�jð9x 2 ½0; 1�Þððx; yÞ 2 AÞgÞ
and inf A ¼ ðinffx 2 ½0; 1�jð9y 2 ½0; 1�Þððx; yÞ 2 AÞg; supfy 2 ½0; 1�jð9x 2 ½0; 1�Þ
ððx; yÞ 2 AÞgÞ.

As is well known, every lattice ðL; 6 Þ has an equivalent definition as an

algebraic structure ðL;^;_Þ where the meet operator ^ and the join operator _
are linked to the ordering 6 by the following equivalence, for a; b 2 L:

a6 b () a _ b ¼ b () a ^ b ¼ a

The operators ^ and _ on ðL�; 6L� Þ are defined as follows, for
ðx1; y1Þ; ðx2; y2Þ 2 L�:

ðx1; y1Þ ^ ðx2; y2Þ ¼ ðminðx1; x2Þ;maxðy1; y2ÞÞ
ðx1; y1Þ _ ðx2; y2Þ ¼ ðmaxðx1; x2Þ;minðy1; y2ÞÞ

This algebraic structure will be the basis for our subsequent investigations. In

the next section, entitled ‘‘Preliminaries’’ the most important operations on
ðL�; 6L� Þ are defined, notably: triangular norms and conorms, negators and

implicators. They model the basic logical operations of conjunction, disjunc-

tion, negation and implication. Implicators on L� will be the main point of in-

Fig. 1. Graphical representation of the set L�.
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terest in the remainder of the paper: in Section 3 we review construction tech-

niques for them, Section 4 examines their classification w.r.t. a number of cri-
teria imposed on them while Section 5 embeds the results into the frameworks of

well-known logical calculi such as residuated lattices and MV algebras. Section

6 then puts the focus back on the models that we started out with: IFSs and

IVFSs, and describes their applicability in the field of approximate reasoning.

Future opportunities and challenges are also discussed in that section.

2. Preliminaries

In the literature on IFSs and IVFSs, several methods for constructing
connectives have emerged, their rationale typically based on specific consid-

erations taken in the light of the actual framework for which they were de-

veloped. While most of them have the advantage of being readily understood

by anyone familiar with that framework, they are not always the most general

nor the most suitable ones that could be defined. Therefore, to put matters in as

wide as possible a perspective, in this and the next section, we introduce logical

connectives simply as algebraic mappings on L�, regardless of their interpre-

tation in the context of a specific model. We recall the definitions of the main
logical operations in ðL�; 6L� Þ, as well as some of the representation results

established earlier and obtained in the framework of an extensive study on

intuitionistic fuzzy triangular norms and conorms [27–29].

Definition 2 (Negator on L�). A negator on L� is any decreasing L� ! L�

mapping N satisfying Nð0L� Þ ¼ 1L� , Nð1L� Þ ¼ 0L� . If NðNðxÞÞ ¼ x 8x 2 L�,

N is called an involutive negator.

The mapping Ns, defined as Nsðx1; x2Þ ¼ ðx2; x1Þ 8ðx1; x2Þ 2 L�, will be

called the standard negator. Involutive negators on L� can always be related to

an involutive negator on ½0; 1�, as the following theorem shows [29].

Theorem 1. Let N be an involutive negator on L�, and let the ½0; 1� ! ½0; 1�
mapping N be defined by, for a 2 ½0; 1�, NðaÞ ¼ pr1Nða; 1� aÞ. Then for all
ðx1; x2Þ 2 L� : Nðx1; x2Þ ¼ ðNð1� x2Þ; 1� Nðx1ÞÞ.

Since 6L� is a partial ordering, an order-theoretic definition of conjunction

and disjunction on L� as triangular norms and conorms, t-norms and t-
conorms for short, respectively, arises quite naturally:

Definition 3 (Triangular Norm on L�). A t-norm on L� is any increasing, com-

mutative, associative ðL�Þ2 ! L� mapping T satisfying Tð1L� ; xÞ ¼ x for all

x 2 L�.
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Definition 4 (Triangular Conorm on L�). A t-conorm on L� is any increasing,

commutative, associative ðL�Þ2 ! L� mapping S satisfying Sð0L� ; xÞ ¼ x, for
all x 2 L�.

Obviously, the greatest t-norm with respect to the ordering 6L� is Min,

defined by Min ðx; yÞ ¼ x ^ y; the smallest t-conorm w.r.t. 6L� is Max, defined

by Max ðx; yÞ ¼ x _ y for all x; y 2 L�. Note that it does not hold that

for all x; y 2 L�, either Min ðx; yÞ ¼ x or Min ðx; yÞ ¼ y. For instance,

Min ðð0:1; 0:3Þ; ð0:2; 0:4ÞÞ ¼ ð0:1; 0:4Þ.
Involutive negators on L� are always linked to an associated fuzzy con-

nective (a negator on ½0; 1�); the same does not always hold true for t-norms

and t-conorms, however. We therefore have to introduce the following defi-

nition [16]:

Definition 5 (t-representability). A t-norm T on L� (respectively t-conorm S) is

called t-representable if there exists a t-norm T and a t-conorm S on ½0; 1�
(respectively a t-conorm S0 and a t-norm T 0 on ½0; 1�) such that, for x ¼ ðx1; x2Þ,
y ¼ ðy1; y2Þ 2 L�,

Tðx; yÞ ¼ ðT ðx1; y1Þ; Sðx2; y2ÞÞ
Sðx; yÞ ¼ ðS0ðx1; y1Þ; T 0ðx2; y2ÞÞ

T and S (respectively S0 and T 0) are called the representants of T (respectively

S).

Example 1. Consider the following mappings on L�:

S1ðx; yÞ ¼ ðx1 þ y1 � x1y1; x2y2Þ

S2ðx; yÞ ¼
x if y ¼ 0L�

y if x ¼ 0L�

ðmaxð1� x2; 1� y2Þ;minðx2; y2ÞÞ else

8><
>:

It is easily verified that they are t-conorms. The first one is t-representable with
the probabilistic sum and algebraic product on ½0; 1� as representants. It is an
extension of the probabilistic sum t-conorm to L�. The second one is not t-
representable, since its first component depends also on x2 and y2. It is an

extension of the max t-conorm to L�.

The theorem below states the conditions under which a pair of connectives

on ½0; 1� gives rise to a t-representable t-norm (t-conorm) on L�.

Theorem 2 [16]. Given a t-norm T and t-conorm S on ½0; 1� satisfying
T ða; bÞ6 1� Sð1� a; 1� bÞ for all a; b 2 ½0; 1�, the mappings T and S defined
by, for x ¼ ðx1; x2Þ and y ¼ ðy1; y2Þ in L�:
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Tðx; yÞ ¼ ðT ðx1; y1Þ; Sðx2; y2ÞÞ;
Sðx; yÞ ¼ ðSðx1; y1Þ; T ðx2; y2ÞÞ;

are a t-norm and a t-conorm on L�, respectively.

Note. The discovery of a mapping like S2, first mentioned in [16], rules out

the conjecture, implicit in most of the existing literature (see e.g. [7,14,35,41]),

that interval-valued or intuitionistic fuzzy t-norms and t-conorms are neces-

sarily characterized by a pair of fuzzy connectives on which some condition (cf.

Theorem 2) is imposed to assure that the result of an operation belongs to the

evaluation set. Moreover, as we shall see in Section 4, implicators based on t-
representable operators do not inherit as much of the desirable properties of

their fuzzy counterparts as we would like them to, a defect that can be mended

by considering non-t-representable extensions for the implicator construction.

The dual of a t-norm T on L� (t-conorm S) w.r.t. a negator N is the

mapping T� (respectively S�) defined by, for x; y 2 L�,

T�ðx; yÞ ¼ NðTðNðxÞ;NðyÞÞÞ
ðrespectively S�ðx; yÞ ¼ NðSðNðxÞ;NðyÞÞÞÞ

It can be verified that T� is a t-conorm and S� is a t-norm on L�. Moreover,

the dual t-norm (t-conorm) with respect to an involutive negator N on L� of a

t-representable t-conorm (t-norm) is t-representable [29].

In [29] a representation theorem for t-norms on L� meeting a number of

criteria was formulated and proven.

Theorem 3. T is a continuous t-norm on L� satisfying

• ð8x 2 L� n f0L� ; 1L�gÞðTðx; xÞ <L� xÞ (archimedean property)
• ð9x; y 2 L�Þ (x1 6¼ 0 and x2 6¼ 0 and y1 6¼ 0 and y2 6¼ 0 and Tðx; yÞ ¼ 0L�)

(strong nilpotency)
• ð8x; y; z 2 L�ÞðTðx; zÞ6L� y () z6L� supfc 2 L�jTðx; cÞ6L� ygÞ (residuation

principle)
• ð8x; y 2 DÞðsupfc 2 L�jTðx; cÞ6L� yg 2 DÞ
• Tðð0; 0Þ; ð0; 0ÞÞ ¼ 0L�

if and only if there exists an increasing continuous permutation u of ½0; 1� such
that for all x; y 2 L�,

Tðx; yÞ ¼ ðu�1ðmaxð0;uðx1Þ þ uðy1Þ � 1ÞÞ; 1� u�1ðmaxð0;uðx1Þ
þ uð1� y2Þ � 1;uðy1Þ þ uð1� x2Þ � 1ÞÞÞ

or equivalently, there exists a continuous increasing permutation U of L� such
that U�1 is increasing and such that T ¼ U�1 �TW � ðU � pr1;U � pr2Þ, where
TW , the Łukasiewicz t-norm on L�, is defined by, for x; y 2 L�:
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TW ðx; yÞ ¼ ðmaxð0; x1 þ y1 � 1Þ;minð1; x2 þ 1� y1; y2 þ 1� x1ÞÞ

The list of imposed conditions on T seems overwhelming, but on closer

inspection the relationship with the analogous result in fuzzy set theory (rep-

resentation of continuous, archimedean, nilpotent t-norms on ½0; 1�, see e.g.

[46]) becomes obvious, so it is justified to state that Theorem 3 constitutes a

conservative extension of that result. A generalization of Theorem 3 can be

found in [30].
The final and for our present purposes most important construct is that of

an implicator on L�. Our definition includes a very wide class of mappings on

L�; the task of classification (Section 3) will be to select from this class those

implicators that are, in a way, the most appropriate ones.

Definition 6 (Implicator on L�). An implicator on L� is any ðL�Þ2 ! L�-mapping

I satisfying Ið0L� ; 0L� Þ ¼ 1L� , Ið1L� ; 0L� Þ ¼ 0L� , Ið0L� ; 1L� Þ ¼ 1L� , Ið1L� ; 1L� Þ ¼
1L� . Moreover we require I to be decreasing in its first, and increasing in its
second component.

3. Construction of Implicators on L*

The purpose of this section is to give the reader some feeling for the sheer

multitude of connectives that fit Definition 6, by providing a number of il-

lustrative examples, and also to arm ourselves sufficiently well for the classi-

fication task that awaits us in the next section, by putting some structure into

the class of implicators on L�: as a point of departure, we extend the common

notions of S- and R-implicators from fuzzy set theory to L� [16,27], an ap-

proach that has the virtue of being the algebraically most straightforward and
flexible one (w.r.t. classification). The story does not end there, however, as the

eclectic literature on intuitionistic fuzzy and interval-valued connectives has

bequeathed us with some operators outside the above-mentioned classes but in

line with Definition 6 and with varying usefulness.

3.1. Strong implicators on L�

Strong implicators, or shortly S-implicators, on the unit interval emerged by

paraphrasing the equivalence between the formulas P ! Q and :P _ Q in bi-

nary propositional logic using a negator and a t-conorm. A straightforward

extension to L� presents itself as follows:

Definition 7 (S-implicator on L�). Let S be a t-conorm and N a negator on L�.

The S-implicator generated by S and N is the mapping IS;N defined as, for

x; y 2 L�:
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IS;Nðx; yÞ ¼ SðNðxÞ; yÞ

If S is t-representable, IS;N is called a t-representable S-implicator on L�.

It can be verified that the resulting construct satisfies Definition 6 regardless

ofN andS. Below we present some common examples of S-implicators on L�;

for every operator thus defined we also quote the corresponding connective on

the unit interval that this implicator extends. Note especially how a single

implicator on ½0; 1� gives way to several extensions, with––as will become clear

in the next section––significantly differing properties.

Example 2. Let S ¼ Max and N ¼ Ns. Then

IMax;Nsðx; yÞ ¼ ðmaxðx2; y1Þ;minðx1; y2ÞÞ

IMax;Ns is an extension of the Kleene–Dienes implicator on ½0; 1�,
Ibðx; yÞ ¼ maxð1� x; yÞ for all x; y 2 ½0; 1�. Since Max is the smallest t-conorm
on L�, IMax;Nsðx; yÞ6L� IS;Nsðx; yÞ for arbitrary t-conorm S on L� and for all

x; y 2 L�. This implicator occurred in literature previously in the work of e.g.
Atanassov and Gargov [3,5] on IFSs.

Example 3. Let Sðx; yÞ ¼ ðminð1; x1 þ y1Þ;maxð0; x2 þ y2 � 1ÞÞ for all x; y 2 L�

and N ¼ Ns. Then

IS;Nsðx; yÞ ¼ ðminð1; x2 þ y1Þ;maxð0; x1 þ y2 � 1ÞÞ

IS;Ns is an extension of the Łukasiewicz implicator on ½0; 1�, Iaðx; yÞ ¼
minð1; 1� xþ yÞ for all x; y 2 ½0; 1�.

Example 4. Let Sðx; yÞ ¼ ðminð1; x1 þ 1� y2; y1 þ 1� x2Þ;maxð0; x2 þ y2 � 1ÞÞ
for all x; y 2 L� (i.e. S ¼ SW , the dual of the Łukasiewicz t-norm TW ) and

N ¼ Ns. Then

ISW ;Nsðx; yÞ ¼ ðminð1; y1 þ 1� x1; x2 þ 1� y2Þ;maxð0; x1 þ y2 � 1ÞÞ

ISW ;Ns is another extension of the Łukasiewicz implicator on ½0; 1�. It is also an

example of a non-t-representable S-implicator.

3.2. Residual implicators on L�

Another way of defining implication in classical logic is to consider the

equivalence

P ! Q � supfX 2 f0; 1gjP ^ X 6Qg

and fuzzify it, using a t-norm, to obtain the definition of residual implicators

on ½0; 1�, or R-implicators for short.
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Definition 8 (R-implicator on L�). Let T be a t-norm on L�. The R-implicator

generated by T is the mapping IT defined as, for x; y 2 L�:

ITðx; yÞ ¼ supfc 2 L�jTðx; cÞ6L� yg
If T is t-representable, IT is called a t-representable R-implicator on L�.

Again, the above-defined mappings are implicators on L� in the sense of

Definition 6. Some of them have occurred previously in literature; for instance,

in [41], Jenei already introduced the class of t-representable R-implicators on L�

in the specific setting of IVFSs.

Due to the supremum operation appearing in their definition, it is not al-

ways straightforward to derive an explicit form for R-implicators on L�, as the
examples below show.

Example 5. LetTðx;yÞ¼Minðx;yÞ¼ðminðx1;y1Þ;maxðx2;y2ÞÞ for all x;y2L�. Then

IMinðx; yÞ ¼ supfc 2 L�jðminðx1; c1Þ;maxðx2; c2ÞÞ6L� yg
We now derive an explicit formula for IMin:

• If x1 6 y1 and x2 P y2, then minðx1; c1Þ6 x1 6 y1 8c1 2 ½0; 1� and

maxðx2; c2ÞP x2 P y2 8c2 2 ½0; 1�. Hence, in that case, IMinðx; yÞ ¼ 1L� .

• If x1 6 y1 and x2 < y2, then still minðx1; c1Þ6 x1 6 y1 8c1 2 ½0; 1�, but
maxðx2; c2ÞP y2 if and only if c2 P y2, hence inffc2 2 ½0; 1�jmaxðx2; c2ÞP
y2g ¼ y2. We conclude that IMinðx; yÞ ¼ ð1� y2; y2Þ.

• If x1 > y1 and x2 P y2, then still maxðx2; c2ÞP x2 P y2 8c2 2 ½0; 1�, but

minðx1; c1Þ6 y1 if and only if c1 6 y1, hence supfc1 2 ½0; 1�jminðx1; c1Þ6
y1g ¼ y1. We conclude that IMinðx; yÞ ¼ ðy1; 0Þ.

• If x1 > y1 and x2 < y2, then

supfc1 2 ½0; 1�jminðx1; c1Þ6 y1g ¼ y1
inffc2 2 ½0; 1�jmaxðx2; c2ÞP y2g ¼ y2

Since y 2 L�, we may conclude that IMinðx; yÞ ¼ ðy1; y2Þ.
To summarize, we obtain:

IMinðx; yÞ ¼

1L� if x1 6 y1 and x2 P y2
ð1� y2; y2Þ if x1 6 y1 and x2 < y2
ðy1; 0Þ if x1 > y1 and x2 P y2
ðy1; y2Þ if x1 > y1 and x2 < y2

8>><
>>:

IMin is an extension of the G€oodel implicator on ½0; 1�, defined by, for

x; y 2 ½0; 1�:

Igðx; yÞ ¼ 1 if x6 y
y otherwise

�

Since Min is the greatest t-norm on L�, IMin is the smallest R-implicator on L�.
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Example 6. Let Tðx; yÞ ¼ ðmaxð0; x1 þ y1 � 1Þ;minð1; x2 þ y2ÞÞ. Then
ITðx; yÞ ¼ supfc 2 L�jðmaxð0; x1 þ c1 � 1Þ;minð1; x2 þ c2ÞÞ6L� yg

To find an explicit formula for IT, we distinguish between the following cases:

• If x1 6 y1 and x2 P y2, then clearly x1 þ c1 � 16 y1 and x2 þ c2 P
y2 8ðc1; c2Þ 2 L�. It follows easily that ITðx; yÞ ¼ 1L� .

• If x1 6 y1 and x2 < y2, then still x1 þ c1 � 16 y1 8c1 2 ½0; 1�. The expression

x2 þ c2 P y2 is equivalent to c2 P y2 � x2. But y2 � x2 > 0. Hence inffc2 2
½0; 1�jx2 þ c2 P y2g ¼ y2 � x2. So ITðx; yÞ ¼ ð1� ðy2 � x2Þ; y2 � x2Þ ¼ ð1�
y2 þ x2; y2 � x2Þ:

• If x1 > y1 and x2 P y2 then x2 þ c2 P y2 8c2 2 ½0; 1�. The condition

x1 þ c1 � 16 y1 is equivalent to c1 6 1þ y1 � x1. But now 1þ y1 � x1 < 1,

so supfc1 2 ½0; 1�jx1 þ c1 � 16 y1g ¼ 1þ y1 � x1. Hence ITðx; yÞ ¼ ð1þ
y1 � x1; 0Þ.

• If x1 > y1 and x2 < y2, then x1 þ c1 � 16 y1 is equivalent to c1 6 1þ y1 � x1,
and x2 þ c2 P y2 is equivalent to c2 P y2 � x2. Since we also require
c1 þ c2 6 1, we need to find the supremum (in L�) of the set of ðc1; c2Þ�s that
satisfy the following array of inequalities:

c1 6 1þ y1 � x1
c2 P y2 � x2
c1 þ c2 6 1

8<
: ð1Þ

Fig. 2 shows the set of solutions (shaded area) to this array of inequalities
graphically; depending on the position of x and y we have to distinguish

between two possible situations, denoted (a) and (b) in the figure.

It is clear that in each case the supremum of the shaded area is equal to:

ITðx; yÞ ¼ ðminð1� y2 þ x2; 1þ y1 � x1Þ; y2 � x2Þ

Fig. 2. (a) 1� y2 þ x2 < 1þ y1 � x1; (b) 1� y2 þ x2 P 1þ y1 � x1.
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In summary we get:

ITðx; yÞ ¼ ðminð1; 1þ y1 � x1; 1þ x2 � y2Þ;maxð0; y2 � x2ÞÞ

IT is an extension of the Łukasiewicz implicator on ½0; 1� (see Examples 3

and 4).

Example 7. Let T ¼ TW , the Łukasiewicz t-norm on L�. Then

ITW ðx; yÞ
¼ supfc 2 L�jðmaxð0; x1 þ c1 � 1Þ;minð1;x2 þ 1� c1; c2 þ 1� x1ÞÞ6L� yg

To find an explicit expression for ITW , let x; y; c 2 L�. Then

TW ðx; cÞ6L� y

() maxð0; x1 þ c1 � 1Þ6 y1 and minð1; x2 þ 1� c1; c2 þ 1� x1ÞP y2
() x1 þ c1 � 16 y1 and x2 þ 1� c1P y2 and c2 þ 1� x1P y2
() c16 y1 þ 1� x1 and c16 x2 þ 1� y2 and c2P y2 þ x1 � 1

() c16 minð1; y1 þ 1� x1; x2 þ 1� y2Þ and c2P maxð0; y2 þ x1 � 1Þ

The last formula holds because c is an element of L�. Hence we ob-

tainITW ðx; yÞ ¼ supfc 2 L�jTW ðx; cÞ6L� yg ¼ ðminð1; y1 þ 1� x1; x2 þ 1� y2Þ;
maxð0; y2 þ x1 � 1ÞÞ.

Note especially that ITW ¼ ISW ;Ns , and thus it also extends the Łuka-

siewicz implicatorIa on ½0; 1�. This should not come as a surprise since in fuzzy

logic the Łukasiewicz implicator is both an R- and an S-implicator.

3.3. Miscellaneous implicators and related operators on L� outside the previous

classes

The phrase ‘‘Implicators and Related Operators on L�’’ in the title of this

subsection owes to the fact that not all the ‘‘implicators’’ defined so far within

the literature on IFSs and IVFSs meet the criteria set by Definition 6. It is
definitely not our goal to produce an exhaustive list of all possible alternatives;

we merely quote some of the more interesting examples.

Example 8 (Two alternative extensions of G€oodel implication). In Example 5, we

constructed an R-implicator on L� that was an extension of Ig, the G€oodel im-

plicator (itself also an R-implicator) on ½0; 1�. Below we outline two alternative

generalizations of Ig, neither of which is an R-implicator (or an S-implicator,

for that matter) on L�.
The first one was defined in [3] by Atanassov and Gargov as an implication

operator for intuitionistic fuzzy logic; in the context of ðL�; 6L� Þ it can be

paraphrased as:
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Iagðx; yÞ ¼
1L� if x1 6 y1
ðy1; 0Þ if x1 > y1 and x2 P y2
ðy1; y2Þ if x1 > y1 and x2 < y2

8<
:

Let us start by proving that Iag is not an S-implicator; suppose Iagðx; yÞ ¼
SðNðxÞ; yÞ for all x; y 2 L�, S a t-conorm and N a negator on L�. Since

SðNðxÞ; 0L� Þ ¼ NðxÞ, we find

NðxÞ ¼ Iagðx; 0L� Þ ¼
1L� if x1 ¼ 0

0L� otherwise

�

Now put x ¼ ð0:25; 0:45Þ, then NðxÞ ¼ 0L� and Sð0L� ; yÞ ¼ y regardless of S.

But if e.g. y ¼ ð0:1; 0:3Þ, thenIagðx; yÞ ¼ ð0:1; 0Þ 6¼ y. Thus, there does not exist
such an S and hence Iag is not an S-implicator.

Secondly, suppose that Iagðx; yÞ ¼ supfc 2 L�jTðx; cÞ6L� yg for all

x; y 2 L�, and T a t-norm on L�. Let x 2 L� n D such that x1; x2 > 0, g 2 L� such

that g <L�1L� and g1 < x1 and 1� x1 > g2 > 0 (this is always possible since

x 62 D). Then Tðx; gÞ6L� ðx1; 1� x1Þ holds, 4 so pr2Tðx; gÞP 1� x1. Similarly,

Tðg; xÞ6L� ðg1; 1� g1Þ, so pr2Tðx; gÞ ¼ pr2Tðg; xÞP 1� g1. Thus,

pr2Tðx; gÞP maxð1� x1; 1� g1Þ

Now put y ¼ ðg1; 1� x1Þ, so pr2Tðx; gÞP 1� x1 ¼ y2. On the other hand,

pr1Tðx; gÞ6 minðx1; g1Þ ¼ g1 ¼ y1, and thus g 2 fc 2 L�jTðx; cÞ6L� yg. But

then supfc 2 L�jTðx; cÞ6L� ygP L�g >L� ðg1; 1� x1Þ ¼ y, a contradiction since

Iagðx; yÞ ¼ y. Hence Iag is not an R-implicator.

The second extension of Ig we present here may be considered in some way
its most genuine generalization to L�. Defined by, for x; y 2 L�:

IGðx; yÞ ¼
1L� if x6L� y
y otherwise

�

it is however an implicator without a representation as an S- or R-implicator.

To check this, suppose IGðx; yÞ ¼ SðNðxÞ; yÞ for all x; y 2 L�, S a t-conorm
and N a negator on L�. We find

NðxÞ ¼ IGðx; 0L� Þ ¼
1L� if x ¼ 0L�

0L� otherwise

�

Suppose now that x 6¼ 0L� and x6L� y <L� 1L� . In that case we find

SðNðxÞ; yÞ ¼ Sð0L� ; yÞ ¼ y <L� 1L� ¼ IGðx; yÞ, a contradiction. Hence, IG is

not an S-implicator.

4 Indeed, since x1 6 x1, Iagðx; ðx1; 1� x1ÞÞ ¼ 1L� ¼ supfc 2 L�jTðx; cÞ6L� ðx1; 1� x1Þg, so for all

c 2 L� such that c2 > 0, we have Tðx; cÞ6L� ðx1; 1� x1Þ.
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Suppose on the other hand that Igðx; yÞ ¼ supfc 2 L�jTðx; cÞ6L� yg for all

x; y 2 L�, and T a t-norm on L�. Choose x; y 2 L� n D such that x1 > y1 and
x2 P y2 > 0. Then Igðx; yÞ ¼ ðy1; y2Þ by assumption. On the other hand,

ITðx; yÞP L�IMinðx; yÞ ¼ ðy1; 0Þ (see Example 5), since Min is the greatest

t-norm on L�. But ðy1; 0Þ >L� ðy1; y2Þ, again a contradiction. Hence, IG is no

R-implicator either.

Example 9 (Aggregated implicators on L�). In [9] Bustince et al. constructed

implication operators for intuitionistic fuzzy logic based on aggregation op-

erators on ½0; 1�. Recall that an aggregation operator is a ½0; 1�2 ! ½0; 1� map-
ping M that satisfies the following conditions:

(1) Mð0; 0Þ ¼ 0

(2) Mð1; 1Þ ¼ 1

(3) M is increasing in its first and in its second argument

(4) Mðx; yÞ ¼ Mðy; xÞ for all x; y 2 ½0; 1�

They proved that if I is an implicator and N an involutive negator on
½0; 1�, and M1, M2, M3, and M4 are aggregation operators such that M1ðx; yÞþ
M3ð1� x; 1� yÞP 1 andM2ðx; yÞ þM4ð1� x; 1� yÞ6 1 for all x; y 2 ½0; 1�, then
I defined by, for all x; y 2 L�,

Iðx; yÞ ¼ ðIðM1ðx1; 1� x2Þ;M2ðy1; 1� y2ÞÞ;NðIðNðM3ðx2; 1� x1ÞÞ;
NðM4ðy2; 1� y1ÞÞÞÞÞ

is an implicator on L� in the sense of Definition 6.

As a simple instance of this class, putting M1 ¼ M3 ¼ max, M2 ¼ M4 ¼ min

and I the Kleene–Dienes implicator on ½0; 1�, we obtain the S-implicator from

Example 2. More interesting implicators emerge when the aggregation opera-

tors are chosen strictly between min and max, i.e. minðx; yÞ < Miðx; yÞ <
maxðx; yÞ, for some x; y 2 ½0; 1� and i ¼ 1; . . . ; 4. For instance, putting M1 ¼
M2 ¼ M3 ¼ M4 ¼ M with Mðx; yÞ ¼ xþy

2
for all x; y 2 ½0; 1�, we obtain the fol-

lowing implicator I on L�:

IBðx;yÞ¼ max
1� x1þ x2

2
;
1� y2þ y1

2

� �
;min

1� x2þ x1
2

;
1� y1þ y2

2

� �� �

This implicator has no representation in terms of S- nor R-implicators. Indeed,

suppose IBðx; yÞ ¼ SðNðxÞ; yÞ for all x; y 2 L�, S a t-conorm and N a ne-

gator on L�. Put x ¼ 1L� ; y ¼ ð1
2
; 1
4
Þ. Then

IBðx; yÞ ¼ max
1� 1þ 0

2
;
1� 1

4
þ 1

2

2

� �
;min

1� 0þ 1

2
;
1� 1

2
þ 1

4

2

� �� �

¼ 5

8
;
3

8

� �
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On the other hand, SðNðxÞ; yÞ ¼ Sð0L� ; yÞ ¼ y 6¼ ð5
8
; 3
8
Þ, a contradiction, so IB

cannot be an S-implicator.
Suppose on the other hand that IBðx; yÞ ¼ supfc 2 L�jTðx; cÞ6L� yg for all

x; y 2 L�, and T a t-norm on L�. Put x ¼ y ¼ ð1
4
; 1
4
Þ. Then IBðx; yÞ ¼ ð1

2
; 1
2
Þ. But

IMinðx; yÞ ¼ 1L� , thus IBðx; yÞjL�IMinðx; yÞ and hence IB has no representa-

tion as an R-implicator.

Example 10 (Wu implicator on L�). The mapping Iwu on L� defined by, for

x; y 2 L�:

Iwuðx; yÞ ¼
1L� if x6L� y
MinðNsðxÞ; yÞ otherwise

�

is an implicator on L�: if x6L� x0, then it follows easily that Iwuðx; yÞPL�

Iwuðx0; yÞ, since 1L� P L�MinðNsðxÞ; yÞ, and x6L� x0 implies MinðNsðxÞ; yÞPL�

MinðNsðx0Þ; yÞ. If y6L� y0, then MinðNsðxÞ; yÞ6 L� MinðNsðxÞ; y 0Þ6L� 1L� ,

from which follows easily that Iwuðx; yÞ6L� Iwuðx; y 0Þ.
Iwu is an extension of the implicator on ½0; 1� introduced by Wu in [64].

Since that implicator is neither an S- nor an R-implicator, the Wu implicator

on L� likewise is not.

We conclude with an example of a mapping that was designated as an in-
tuitionistic fuzzy implicator, but in fact does not meet the criteria of Definition 6.

Example 11. In [3], Atanassov and Gargov defined the following ðL�Þ2 ! L�

mapping J :

Jðx; yÞ ¼

1L� if x6L� y
ðy1; x2Þ if x1 > y1 and x2 P y2
ðx1; y2Þ if x1 6 y1 and x2 < y2
0L� if x >L� y

8>><
>>:

It is not decreasing in its first component. Indeed, put x ¼ ð0:6; 0:2Þ,
x0 ¼ ð0:7; 0:15Þ and y ¼ ð0:4; 0:1Þ. Then x6L� x0, but Jðx; yÞ ¼ ð0:4; 0:2Þ <L�

Jðx0; yÞ ¼ ð0:4; 0:15Þ.

4. Classification of implicators on L*: an algebraic approach

The task of classifying implicators defined within any many-valued exten-

sion of classical binary propositional logic essentially comes down to checking

how many desirable properties of the original operation are kept by the ex-
tended structure. Therefore, regardless of background and goals, inspiration

for this process draws primarily from logic, and the notion of a tautology

(meaning a formula whose truth value is always 1L� , regardless of the truth
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values of its constituents), or a weakened version of it, 5 will play an important

role in it.
Fuzzy logics, as examples of well-studied many-valued truth structures, have

shown how an algebraic treatment––translating desirable properties into alge-

braic laws (or axioms) to be satisfied, and subsequently tracing the shape an

implicator should have in order to satisfy a list of axioms––can shed a systematic

and pragmatical light on the subject by providing a yardstick method for ‘‘mea-

suring’’ the usefulness of implicators. We pursue this strategy for implicators on

L�, taking as our point of departure an extended version of the Smets–Magrez

axioms and finishing offwith an algebraic representation of implicators satisfying
the entire axiom list. This strategy is therefore dubbed an ‘‘algebraic approach’’.

4.1. Axioms of Smets and Magrez

In [55], Smets and Magrez outlined an axiom scheme for implicators on

½0; 1�. They took a number of important tautologies from classical logic,

translated them into four algebraic axioms and complemented the scheme with

monotonicity (A.1) and continuity (A.6) requirements that emerge naturally
when we swap the discrete space {0,1} for the continuum ½0; 1�. Smets–Magrez

axioms stand as a yardstick to test the suitability of implicators on ½0; 1�; it is
therefore instructive to generalize them to L�:

Definition 9 (Smets–Magrez axioms for an implicator I on L�)

(A.1) (8y 2 L�) (Ið:; yÞ is decreasing in L�) and (8x 2 L�) (Iðx; :Þ is increasing
in L�) (monotonicity laws)

(A.2) (8x 2 L�) (Ið1L� ; xÞ ¼ x) (neutrality principle)

(A.3) 8ðx; yÞ 2 ðL�Þ2
� �

(Iðx; yÞ ¼ IðNIðyÞ;NIðxÞÞ (contrapositivity)

(A.4) 8ðx; y; zÞ 2 ðL�Þ3
� �

(Iðx;Iðy; zÞÞ ¼ Iðy;Iðx; zÞÞ) (interchangeability

principle)

(A.5) 8ðx; yÞ 2 ðL�Þ2
� �

(x6L� y () Iðx; yÞ ¼ 1L�) (confinement principle)

(A.6) I is a continuous ðL�Þ2 ! L� mapping (continuity).

5 In concreto, we think about the following two possible variations on a tautology:

• Fuzzy tautologies [49], formulas whose truth values ðx1; x2Þ are such that x1 P 0:5.

• Intuitionistic fuzzy tautologies [3], formulas whose truth values ðx1; x2Þ are such that

x1 P x2.
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Note. In axiom 3, the mapping NI, defined by NIðxÞ ¼ Iðx; 0L� Þ, is a

negator on L�. It is called the negator induced by I. It can be easily verified
that if (A.2) and (A.3) hold, then necessarily NI is involutive.

In what follows, we first conduct a detailed investigation to verify if and

under which conditions the implicators of the previous section satisfy the

various Smets–Magrez axioms. Afterwards, we proceed to derive an algebraic

expression for general implicators on L� satisfying the six axioms simulta-

neously. In this context, we need to introduce some additional terminology: an

implicator in the sense of Definition 6 is called a border implicator if it satisfies
the neutrality principle (A.2); a contrapositive border implicator additionally
satisfying the interchangeability principle (A.4) is called a model implicator; and
finally, a continuous model implicator for which (A.5) is also verified, is called

a Łukasiewicz implicator.

4.2. Smets–Magrez axioms for S- and R-implicators on L�

As can be seen from Definition 9, axiom 1 merely asserts the monotonicity

conditions incorporated into the definition of implicators on L�. It is kept in the

list for reasons of tradition, but will not occur in the following discussion.

4.2.1. S-implicators

Theorem 4. An S-implicator IS;N on L� is a model implicator on the condition
that N is involutive.

Proof. We verify that each of the axioms (A.2), (A.3) and (A.4) is fulfilled. Let

x; y; z 2 L�.

ðA:2Þ IS;Nð1L� ; xÞ ¼ SðNð1L� Þ; xÞ
¼ Sð0L� ; xÞ
¼ x

ðA:3Þ IS;NðIS;Nðy; 0L� Þ;IS;Nðx; 0L� ÞÞ ¼ SðNðNðyÞÞ;NðxÞÞ
¼ Sðy;NðxÞÞ
¼ SðNðxÞ; yÞ
¼ IS;Nðx; yÞ

ðA:4Þ IS;Nðx;IS;Nðy; zÞÞ ¼ SðNðxÞ;SðNðyÞ; zÞÞ
¼ SðSðNðxÞ;NðyÞÞ; zÞ
¼ SðSðNðyÞ;NðxÞÞ; zÞ
¼ SðNðyÞ;SðNðxÞ; zÞÞ
¼ IS;Nðy;IS;Nðx; zÞÞ

The deduction for axiom (A.3) requires the involutivity of N. h
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As the following theorem shows, t-representability presents us with an

important obstacle in our quest for a Łukasiewicz implicator on L�.

Theorem 5. Axiom (A.5) fails for every t-representable S-implicator IS;N on L�,
provided that N is involutive.

Proof. Assume that the representants of S are S and T . By definition we have,

for x; y 2 L�:

IS;Nðx; yÞ ¼ ðSðpr1NðxÞ; y1Þ; T ðpr2NðxÞ; y2ÞÞ

Let y ¼ ð0; y2Þ 2 L�, x ¼ ð0; x2Þ 2 L� such that 1 > x2 P y2, so x6L� y. Then

IS;Nðx; yÞ ¼ ðSðpr1NðxÞ; 0Þ; T ðpr2NðxÞ; y2ÞÞ
¼ ðpr1NðxÞ; T ðpr2NðxÞ; y2ÞÞ

If pr1NðxÞ ¼ 1 then pr2NðxÞ ¼ 0 and thus x ¼ NðNðxÞÞ ¼ Nð1L� Þ ¼ 0L� ,

which contradicts our assumptions about x. Hence pr1NðxÞ 6¼ 1, and thus

IS;Nðx; yÞ 6¼ 1L� . h

Theorem 6. Axiom (A.6) holds for an S-implicator IS;N on L� as soon as S and
N are continuous. In particular, a t-representable S-implicator represented by T
and S is continuous as soon as T , S and N are continuous.

Proof. This is obvious by the chaining rule for continuous mappings on the

subspace L� of R2. h

4.2.2. R-implicators

Theorem 7. An R-implicator IT on L� is a border implicator.

Proof. We only have to verify (A.2). Let x 2 L�. We have:

supfc 2 L�jTð1L� ; cÞ6L� xg ¼ supfc 2 L�jc6L� xg ¼ x �

Again, problems emerge w.r.t. t-representability, this time concerning the

contrapositivity of the implicator.

Theorem 8. Axiom (A.3) does not hold for any t-representable R-implicator IT

on L�.

Proof. Assume that the representants of T are T and S. Let x; y 2 L�, and

suppose (A.3) holds. Then NIT
is involutive. We have:

ITðNIT
ðyÞ;NIT

ðxÞÞ ¼ supfc 2 L�jTðNIT
ðyÞ; cÞ6L� NIT

ðxÞg
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Let y ¼ 0L� , then NIT
ðyÞ ¼ 1L� and

ITð1L� ;NIT
ðxÞÞ ¼ NIT

ðxÞ

We also have ITðx; 0L� Þ ¼ NIT
ðxÞ, in other words:

supfðc1; c2Þ 2 L�jðTðx1; c1Þ; Sðx2; c2ÞÞ6L� 0L�g ¼ NIT
ðxÞ

Let x ¼ ðx1; 0Þ 6¼ 1L� , then NIT
ðxÞ 6¼ 0L� since NIT

is involutive. We find:

ITðx; 0L� Þ ¼ supfðc1; c2Þ 2 L�jðT ðx1; c1Þ; c2Þ6L� 0L�g ¼ NIT
ðxÞ

Since inffc2 2 ½0; 1�jc2 P 1g ¼ 1, we obtain

ITðx; 0L� Þ ¼ 0L� 6¼ NIT
ðxÞ

which is a contradiction. In other words, (A.3) does not hold. h

Theorem 9. Axiom (A.5) holds for the R-implicator IT if and only if there exists
for each x ¼ ðx1; x2Þ 2 L� a sequence ðdiÞi2N� in X ¼ fd 2 L�jd2 > 0g such that
limi!1 di ¼ 1L� and,

lim
di!1L�

pr1Tðx; diÞ ¼ x1 ð2Þ

lim
di!1L�

pr2Tðx; diÞ ¼ x2 ð3Þ

Proof. Assume first that conditions (2) and (3) are fulfilled. We start by proving
that

ð8ðx; yÞ 2 ðL�Þ2Þðx6L� y ) ITðx; yÞ ¼ 1L� Þ
Let x ¼ ðx1; x2Þ, y ¼ ðy1; y2Þ 2 L� such that x6L� y, then 8c 2 L�, Tðx; cÞ6L�

x6L� y. Hence

supfc 2 L�jTðx; cÞ6L� yg ¼ 1L�

To prove the converse implication,

8ðx; yÞ 2 ðL�Þ2
� �

ðx6L� y ( ITðx; yÞ ¼ 1L� Þ;

let x ¼ ðx1; x2Þ, y ¼ ðy1; y2Þ 2 L�. From

ITðx; yÞ ¼ supfc 2 L�jTðx; cÞ6L� yg ¼ 1L�

it follows that X � fc 2 L�jTðx; cÞ6L� yg, and so pr1Tðx; diÞ6 y1 8i 2 N�, so

limdi!1L� pr1Tðx; diÞ ¼ x1 6 y1. Similarly we obtain limdi!1L� pr2Tðx; diÞ ¼
x2 P y2. Hence x6L� y.

Conversely, assume that (A.5) holds. Suppose now that for each sequence

ðdiÞi2N� in X converging to 1L� , either limdi!1L� pr1Tðx; diÞ is strictly smaller

than x1, or does not exist, or that limdi!1L� pr2Tðx; diÞ is strictly greater than x2
or does not exist.
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Let now

y ¼ supfTðx; cÞjc 2 Xg;

then since Tðx; cÞ6L� x for all c 2 L�, y6L� x. Suppose y ¼ x. Let then � ¼ 1
n,

with n 2 N�. Then, since x1 ¼ supfpr1Tðx; cÞjc 2 Xg, there exists a cn 2 X such

that x1 � � < pr1Tðx; cnÞ6 x1, thus jx1 � pr1Tðx; cnÞj < � ¼ 1
n. Similarly, there

exists a c0n 2 X such that jx2 � pr2Tðx; c0nÞj < �. Let now c00n ¼ supfcn; c0n; ð1�
1
n ;

1
nÞg. Then c00n P L�cn, so pr1Tðx; c00nÞP pr1Tðx; cnÞ, and similarly

pr2Tðx; c00nÞ6pr2Tðx; c0nÞ. Furthermore c00n 2 X, since c00n;2 ¼ minfcn;2; c0n;2; 1ng > 0.

Thus we obtain a sequence ðc00nÞn2N� in X such that jc00n;1 � 1j þ jc00n;2 � 0j6 2
n and

jpr1Tðx; c00nÞ � x1j þ jpr2Tðx; c00nÞ � x2j < 2
n. Clearly limn!þ1 c00n ¼ 1L� and

limn!þ1 Tðx; c00nÞ ¼ x, which is in contradiction with our assumption. Hence

y <L� x, so xiL�y. Clearly

supfc 2 L�jTðx; cÞ6L� yg ¼ 1L�

In other words, (A.5) is violated, so our assumption that conditions (2) and (3)

do not hold was false. h

Corollary 10. If T is a t-norm on L� such that pr1T is a left-continuous
ðL�Þ2 ! ½0; 1� mapping and pr2T is a right-continuous ðL�Þ2 ! ½0; 1� mapping
then IT satisfies (A.5).

Proof. We will prove this result by constructing a sequence meeting the con-

ditions of Theorem 9. From the left-continuity of pr1T and the right-conti-

nuity of pr2T follows for all x; y 2 L� [29]:

ð8� > 0Þð9d1 > 0Þð9d2 > 0Þð8y 0 2 L�Þðy1 � d1 < y01 6 y1 and

y2 6 y02 < y2 þ d2 ) jpr1Tðx; yÞ � pr1Tðx; y0Þj þ jpr2Tðx; yÞ
� pr2Tðx; y0Þj < �Þ

In [29] this property is proven to be equivalent to

Tðx; supAÞ ¼ sup
y2A

Tðx; yÞ

for any x 2 L� and any subset A of L�. So let arbitrarily x 2 L�. Then we obtain

supc2X Tðx; cÞ ¼ Tðx; supXÞ, i.e. supfTðx; cÞjc 2 Xg ¼ Tðx; 1L� Þ ¼ x, where

X ¼ fd 2 L�jd2 > 0g. Similarly as in Theorem 9 a sequence can be constructed

which satisfies the desired properties. h

To convince the reader that t-representability really does impose an unac-

ceptable restriction on an implicator on L�, we now prove that ITW ¼ ISW ;Ns ,
i.e. the implicator derived in Examples 4 and 7, satisfies all Smets–Magrez

axioms, showing at the same time that a Łukasiewicz implicator on L� can be

both an S- and an R-implicator.
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Theorem 11. ISW ;Ns is a Łukasiewicz implicator.

Proof. ISW ;Ns satisfies (A.1)–(A.4) because it is an S-implicator on L� and Ns

is involutive. Since SW and Ns are continuous, so is ISW ;Ns . Only (A.5) is left

to verify. Recall the definition of ISW ;Ns , i.e. for all x; y 2 L�:

ISW ;Nsðx; yÞ ¼ ðminð1; y1 þ 1� x1; x2 þ 1� y2Þ;maxð0; y2 þ x1 � 1ÞÞ

We find: y1 þ 1� x1 < 1 iff y1 < x1, x2 þ 1� y2 < 1 iff x2 < y2. Hence

minð1; x2 þ 1� y2; y1 þ 1� x1Þ < 1 iff either y1 < x1 or x2 < y2. So minð1; x2 þ
1� y2; y1 þ 1� x1Þ ¼ 1 iff y1 P x1 and x2 P y2, i.e. iff x6L� y. h

In Table 1, we have summarized the classification results w.r.t. the extended
Smets–Magrez axioms. For completeness, apart from S- and R-implicators, we

have also included the implicators discussed in Section 3.3. It is left to the

reader to verify these properties.

A question unanswered by this table is whether there exist Łukasiewicz

implicators on L� outside the classes of S- and R-implicators. This and other

issues are resolved in the following paragraph.

4.3. Representation of model and Łukasiewicz implicators on L�

We have shown, by explicit example, that a Łukasiewicz implicator on L�

exists. The next question to ask is whether we can capture all of them by a
parameterized formula, as was done for implicators on ½0; 1� (see e.g. [46]). The
answer turns out to be largely affirmative, as the following discussion reveals.

Table 1

Smets–Magrez axioms for a number of implicators and implicator classes on L�

(A.1) (A.2) (A.3) (A.4) (A.5) (A.6)

S-implicators yes yes provided N

involutive

yes e.g. ITW provided

S and N

continuous

t-representable
S-implicators

yes yes provided N

involutive

yes no provided

S, T andN

continuous

R-implicators yes yes e.g. ITW e.g. ITW Theorem 9 e.g. ITW

t-representable
R-implicators

yes yes no unknown e.g.

Example 5

unknown

Iag yes yes no yes no no

Ig yes yes no yes yes no

IB yes no yes yes no yes

Iwu yes no no no yes no

J no no no no yes no

C. Cornelis et al. / Internat. J. Approx. Reason. 35 (2004) 55–95 75



A first important subresult in this direction is the observation that each

model implicator on L� has a representation as an S-implicator.

Lemma 1 (Triangular norm and conorm induced by a model implicator). If
I is a model implicator, then the ðL�Þ2 ! L�-mappings TI and SI defined by,
for x; y 2 L�,

TIðx; yÞ ¼ NIðIðx;NIðyÞÞÞ
SIðx; yÞ ¼ IðNIðxÞ; yÞ

are a t-norm and an t-conorm on L�, respectively. They are called the t-norm and
t-conorm induced by I.

Proof. We prove the claim for TI. The proof for SI is analogous.

• TI is increasing. This is obvious because I is an implicator and N a nega-

tor on L�.

• TI is commutative. Indeed, for x; y 2 L�, we have:

TIðx; yÞ ¼ NIðIðx;NIðyÞÞÞ Definition TI

¼ NIðIðNIðNIðyÞÞ;NIðxÞÞÞ I contrapositive w:r:t: NI

¼ NIðIðy;NIðxÞÞÞ NI is involutive

¼ TIðy; xÞ Definition TI

• TI is associative. Indeed, for x; y; z 2 L�, we have:

TIðx;TIðy; zÞÞ
¼ NIðIðx;NIðNIðIðy;NIðzÞÞÞÞÞÞ Definition TI

¼ NIðIðx;Iðy;NIðzÞÞÞÞ NI is involutive

¼ NIðIðx;IðNIðNIðzÞÞ;NIðyÞÞÞÞ I is contrapositive w:r:t: NI

¼ NIðIðx;Iðz;NIðyÞÞÞÞ NI is involutive

¼ NIðIðz;Iðx;NIðyÞÞÞÞ I satisfies ðA:4Þ
¼ NIðIðNIðIðx;NIðyÞÞÞ;NIðzÞÞÞ I is contrapositive w:r:t: NI

¼ TIðTIðx; yÞ; zÞ Definition TI

• TIð1L� ; xÞ ¼ x. Indeed, for x; y 2 L�, we have:

TIð1L� ; xÞ ¼ NIðIð1L� ;NIðxÞÞÞ Definition TI

¼ NIðNIðxÞÞ I satisfies ðA:2Þ
¼ x NI is involutive �

Definition 10 (IF de Morgan triplet). An IF de Morgan triplet is any triplet

ðT;S;NÞ consisting of a t-norm T, a t-conorm S and a negator N on L�

such that, for all x; y 2 L�:

76 C. Cornelis et al. / Internat. J. Approx. Reason. 35 (2004) 55–95



NðTðNðxÞ;NðyÞÞÞ ¼ Sðx; yÞ
NðSðNðxÞ;NðyÞÞÞ ¼ Tðx; yÞ

Lemma 2. If I is a model implicator on L�, then ðTI;SI;NIÞ is an IF de
Morgan triplet.

Proof. We have to prove that TI and SI are dual w.r.t NI. For x; y 2 L�, we

have:

� NIðTIðNIðxÞ;NIðyÞÞÞ
¼ NIðNIðIðNIðxÞ;NIðNIðyÞÞÞÞÞ Definition TI

¼ IðNIðxÞ; yÞ NI is involutive

¼ SIðx; yÞ Definition SI

� NIðSIðNIðxÞ;NIðyÞÞÞ
¼ NIðIðNIðNIðxÞÞ;NIðyÞÞÞ Definition SI

¼ NIðIðx;NIðyÞÞÞ NI is involutive
¼ TIðx; yÞ Definition TI �

Definition 11 (IF de Morgan quartet). An IF de Morgan quartet is any quartet

ðT;S;N;IÞ consisting of a t-norm T, a t-conorm S, a negator N and

an implicator I on L� such that ðT;S;NÞ is an IF de Morgan triplet and, for

all x; y 2 L�:

Iðx; yÞ ¼ SðNðxÞ; yÞ

Theorem 12. If I is a model implicator on L�, then ðTI;SI;NI;IÞ is an IF de
Morgan quartet.

Proof. From Lemma 2 we know that ðTI;SI;NIÞ is an IF de Morgan

triplet. Furthermore, for all x; y 2 L� we find:

SIðNIðxÞ; yÞ ¼ IðNIðNIðxÞÞ; yÞ DefinitionSI

¼ Iðx; yÞ NI is involutive �

Corollary 13. A model implicator on L� is an S-implicator.

Proof. Indeed, from Theorem 12 we know that for a model implicator I,

ðTI;SI;NI;IÞ is a de Morgan quartet. Choose S ¼ SI and N ¼ NI,

then I ¼ IS;N. h

This, and the results from the previous subsection, confirm that our search for

Łukasiewicz implicators on L� is limited to non-t-representable S-implicators.
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We now proceed to establish a link between Łukasiewicz implicators

on L� and R-implicators generated by t-norms satisfying the conditions of
Theorem 3. To this aim, a number of lemmas are introduced.

Theorem 14. Let T be a t-norm on L� satisfying the residuation principle. Then
the following statements are equivalent:

ii(i) IT satisfies (A.3)

i(ii) ITðx; yÞ ¼ NðTðx;NðyÞÞÞ for all x; y 2 L�

(iii) Tðx; yÞ6L� z () Tðx;NðzÞÞ6L� NðyÞ for all x; y; z 2 L� (exchange
principle)

where N ¼ NIT
. Moreover, if T satisfies (iii), then T satisfies the residuation

principle.

Proof. We will prove that (iii)) (ii)) (i)) (iii). First note that since IT

satisfies (A.2) and (A.3), NIT
is involutive.

• Assume (iii) holds. The following deduction, for all x; y; z 2 L�, shows that

(ii) holds.

ITðx; yÞ ¼ supfc 2 L�jTðx; cÞ6L� yg
¼ supfc 2 L�jTðx;NðyÞÞ6L� NðcÞg
¼ supfc 2 L�jc6L� NðTðx;NðyÞÞÞg
¼ NðTðx;NðyÞÞÞ

• Assume next that (ii) holds, then for all x; y; z 2 L�, we have:

ITðNðyÞ;NðxÞÞ ¼ NðTðNðyÞ;NðNðxÞÞÞÞ
¼ NðTðNðyÞ; xÞÞ
¼ NðTðx;NðyÞÞÞ
¼ ITðx; yÞ

• Lastly, assume IT is contrapositive; we prove (iii). Since IT satisfies the

residuation principle, we obtain successively, for all x; y; z 2 L�:

Tðx; yÞ6L� z () Tðy; xÞ6L� z
() x6L� ITðy; zÞ
() x6L� ITðNðzÞ;NðyÞÞ
() TðNðzÞ; xÞ6L� NðyÞ
() Tðx;NðzÞÞ6L� NðyÞ

Since from (iii) follows (ii), and using the fact that N is involutive and de-

creasing, we obtain successively:
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Tðx; zÞ6L� y () Tðx;NðyÞÞ6L� NðzÞ
() z6L� NðTðx;NyÞÞ
() z6L� ITðx; yÞ

Hence from (iii) follows the residuation principle. h

Lemma 3. Let T be a t-norm on L� satisfying the exchange principle. Then
Tðx; yÞ ¼ 0L� () x6L� NIT

ðyÞ () y6L� NIT
ðxÞ.

Proof. From the exchange principle follows Tðx; yÞ ¼ 0L� () x ¼ Tðx;
1L� Þ6L� NIT

ðyÞ. h

Lemma 4 [29]. Let T be a t-norm on L� satisfying the residuation principle. Then,
for any x; y; z such that Tðx; yÞ ¼ z, there exists an y 0 2 L� such that y0 PL�y and

Tðx; y 0Þ ¼ z and y0 ¼ ITðx; zÞ: ð4Þ

Lemma 5. Let T be a continuous t-norm on L� satisfying TðD;DÞ � D and the
exchange principle. Then T also satisfies the archimedean property, strong nil-
potency, ITðD;DÞ � D and Tðð0; 0Þ; ð0; 0ÞÞ ¼ 0L� .

Proof

• Tðð0; 0Þ; ð0; 0Þ ¼ 0L� .

Since NIT
is an involutive negator, we have that NIT

ð0; 0Þ ¼ ð0; 0Þ (see

[29]). Hence ITðð0; 0Þ; 0L� Þ ¼ ð0; 0Þ and from the residuation principle and

Theorem 14 follows that Tðð0; 0Þ; ð0; 0ÞÞ ¼ 0L� .
• T is archimedean.

Assume x 2 L� n f0L� ; 1L�g and Tðx; xÞ ¼ x. Then, since T is increasing

and Tðx; 1L� Þ ¼ x, we obtain Tðx; yÞ ¼ x for all yP L�x. In particular

Tðx; ðx1; 0ÞÞ ¼ x.
If x1 ¼ 0, then Tðð0; x2Þ; ð0; x2ÞÞ6L� Tðð0; 0Þ; ð0; 0ÞÞ ¼ 0L� <L� ð0; x2Þ. Sup-

pose now x1 > 0. We prove that there exists a sequence ðynÞn2N� which con-

verges to ðx1; 0Þ and such that, for all n 2 N�, yn ¼ ðyn;1; 0Þ and yn satisfies

Tðx;NIT
ðznÞÞ ¼ NIT

ðynÞ;where zn ¼ Tðx; ynÞ ð5Þ

Let n 2 N�. Since Tðx; yÞ6L� y for all y 2 L�, we obtain pr1Tðx; ðx1 �
1
n ; 0ÞÞ6 x1 � 1

n < x1. Since T is increasing, we have Tðx; ðx1 � 1
n ; 0ÞÞ6L�

Tðx; 1L� Þ ¼ x, so pr2Tðx; ðx1 � 1
n ; 0ÞÞP x2. Hence we obtain Tðx; ðx1 �

1
n ; 0ÞÞ <L� x. From Lemma 4 and Theorem 14 it follows that there exists a yn
such that Tðx; ynÞ ¼ Tðx; ðx1 � 1

n ; 0ÞÞ and yn satisfies (5). Furthermore, from
that lemma follows that yn P L� ðx1 � 1

n ; 0Þ, so x1 � 1
n 6 yn;1 and yn;2 ¼ 0. Since

Tðx; ynÞ <L� x, it follows that ynjL�x, thus yn;1 < x1 (since yn;2 ¼ 06 x2). From
this follows that jx1 � yn;1j þ j0� yn;2j ¼ x1 � yn;1 6 x1 � ðx1 � 1

nÞ ¼ 1
n; hence

C. Cornelis et al. / Internat. J. Approx. Reason. 35 (2004) 55–95 79



limn!þ1 yn ¼ ðx1; 0Þ. Moreover, since T is continuous, we have limn!þ1 zn ¼
limn!þ1 Tðx; ynÞ ¼ Tðx; ðx1; 0ÞÞ ¼ x. From the involutivity (and hence
the continuity) of N follows that limn!þ1 NIT

ðznÞ ¼ NIT
ðxÞ, and

limn!þ1 NIT
ðynÞ ¼ NIT

ðx1; 0Þ. Since yn satisfies (5), we obtain NIT
ðx1;0Þ ¼

limn!þ1NðynÞ ¼ limn!þ1Tðx;NIT
ðznÞÞ ¼Tðx;NIT

ðxÞÞ ¼ 0L� , using the

continuity of T and Lemma 3. Hence ðx1; 0Þ ¼ 1L� , which is a contradiction to

our assumption that x 6¼ 1L� .

• T is strong nilpotent.

From Lemma 3 follows Tðx; yÞ ¼ 0L� () x6L� NðyÞ. So let x 2 Dn
f0L� ; 1L�g, then NðxÞ 2 D n f0L� ; 1L�g (cf. [29]) and Tðx;NðxÞÞ ¼ 0L� . Hence T
is strong nilpotent.

• ITðD;DÞ � D.
By Theorem 14, ITðx; yÞ ¼ NIT

ðTðx;NðyÞÞ for all x; y 2 L�. By Theorem

1, there exists an involutive negator N on ½0; 1� such that NIT
ðxÞ ¼

ðNð1� x2Þ; 1� Nðx1ÞÞ for all x 2 L�. Particularly, if x 2 D, then NIT
ðxÞ ¼

ðNðx1Þ; 1� Nðx1ÞÞ. Hence NIT
ðxÞ 2 D. Since TðD;DÞ � D, it follows that

ITðD;DÞ � D. h

Theorem 15. Let T be a continuous t-norm on L� satisfying the residuation
principle and TðD;DÞ � D. IT is contrapositive if and only if there exists a
continuous increasing permutation U of L� such that U�1 is increasing and such
that T ¼ U�1 �TW � ðU � pr1;U � pr2Þ. If such a U exists then IT ¼ U�1 �
ITW � ðU � pr1;U � pr2Þ.

Proof. Let T be a continuous t-norm on L� satisfying the residuation principle

andTðD;DÞ � D. IfIT is contrapositive, then, by Theorem 14,T satisfies the
exchange principle. By Lemma 3 and Theorem 3, T ¼ U�1 �TW � ðU � pr1;
U � pr2Þ.

We obtain, for c 2 L�,

Tðx; cÞ6L� y () U�1ðTW ðUðxÞ;UðcÞÞÞ6L� y

() TW ðUðxÞ;UðcÞÞ6L� UðyÞ

() UðcÞ6L� ITW ðUðxÞ;UðyÞÞ

() c6L� U
�1ðITW ðUðxÞ;UðyÞÞÞ

where we used the fact that TW satisfies the residuation principle, and that U
and U�1 are increasing permutations. We easily obtain that ITW ðx; yÞ ¼
supfc2 L�jc6L�U

�1ðITW ðUðxÞ;UðyÞÞÞg ¼U�1ðITW ðUðxÞ;UðyÞÞÞ. Hence IT ¼
U�1 �ITW � ðU � pr1;U � pr2Þ.

On the other hand, suppose T ¼ U�1 �TW � ðU � pr1;U � pr2Þ. IT can

only be contrapositive w.r.t. its induced negator N ¼ NIT
, defined by

NIT
ðxÞ ¼ ITðx; 0L� Þ for all x 2 L�. Then
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NðxÞ ¼ U�1ðITW ðUðxÞ;Uð0L� ÞÞÞ
¼ U�1ðITW ðUðxÞ; 0L� ÞÞ
¼ U�1ðNsðUðxÞÞÞ

where we used NITW
¼ Ns. Hence we obtain

ITðNðyÞ;NðxÞÞ ¼ U�1ðITW ðUðNðyÞÞ;UðNðxÞÞÞÞ
¼ U�1ðITW ðNsðUðyÞÞ;NsðUðxÞÞÞÞ
¼ U�1ðITW ðUðxÞ;UðyÞÞÞ ¼ ITðx; yÞ

using the fact that ITW is contrapositive w.r.t. Ns. h

Theorem 16. If I is a Łukasiewicz implicator on L� such that IðD;DÞ � D, then
there exists a continuous increasing permutation U of L� such that U�1 is in-
creasing and

Iðx; yÞ ¼ U�1 �ITW � ðU � pr1;U � pr2Þ

Proof. Since any model implicator on L� is an S-implicator, we know that

I ¼ IS;N for some t-conorm S on L� and the involutive negator N ¼ NI.
Since I satisfies (A.5), x6L� y () SðNðxÞ; yÞ ¼ 1L� , or equivalently

NðxÞ6L� y () Sðx; yÞ ¼ 1L� . Since S is associative, it holds that

Sðx;Sðy; zÞÞ ¼ 1L� () Sðy;Sðx; zÞÞ ¼ 1L� , hence NðxÞ6L� Sðy; zÞ ()
NðyÞ6L� Sðx; zÞ. By changing the variable names as z ! x, y ! y and

x ! NðzÞ, we obtain

z6L� Sðx; yÞ () NðyÞ6L� Sðx;NðzÞÞ ð6Þ

Let T be the dual t-norm of S w.r.t. N, i.e. Tðx; yÞ ¼ NðSðNðxÞ;NðyÞÞÞ
for all x; y 2 L�. Then (6) is equivalent to z6L� NðTðNðxÞ;NðyÞÞÞ ()
NðyÞ6L� NðTðNðxÞ; zÞÞ. Since N is involutive and decreasing, this yields

NðzÞPL�TðNðxÞ;NðyÞÞ () yPL�TðNðxÞ; zÞ. By substituting the variable

names as x ! NðxÞ, y ! NðyÞ and z ! NðzÞ, we obtain

Tðx; yÞ6L� z () Tðx;NðzÞÞ6L� NðyÞ ð7Þ

From Theorem 14 follows that the R-implicator IT generated by T
satisfies ITðx; yÞ ¼ NðTðx;NðyÞÞÞ for all x; y 2 L�. Hence ITðx; yÞ ¼
NðTðx;NðyÞÞÞ ¼ NðTðNðNðxÞÞ;NðyÞÞÞ ¼ SðNðxÞ; yÞ ¼ IS;Nðx; yÞ ¼
Iðx; yÞ for all x; y 2 L�. Since I and N are continuous, so are S and T.

Since IðD;DÞ � D and NðDÞ � D for all x; y 2 D it holds that
Sðx; yÞ ¼ IS;NðNðxÞ; yÞ ¼ IðNðxÞ; yÞ 2 D. So we obtain that for all x; y 2 D
it holds that Tðx; yÞ ¼ NðSðNðxÞ;NðyÞÞÞ 2 D, i.e. TðD;DÞ � D. From

Theorems 14 and 15 follows that there exists a continous increasing permutation
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U of L� such that U�1 is increasing and such that I ¼ U�1 �
ITW � ðU � pr1;U � pr2Þ. h

In [29] it is shown that if U is a continuous, increasing permutation of L�

such that U�1 is also increasing, then there exists a continuous, increasing

permutation u of ½0; 1� such that UðxÞ ¼ ðuðx1Þ; 1� uð1� x2ÞÞ for all x 2 L�. It

follows that ifI is a Łukasiewicz implicator on L� such that IðD;DÞ � D, then
there exists an increasing permutation u of L� such that, for all x; y 2 L�,

Iðx; yÞ ¼ ðu�1 minð1; 1þ uðy1Þ � uðx1Þ; 1þ uð1� y2Þ

� uð1� x2ÞÞ; 1� u�1 minð1; 1� uðx1Þ þ uð1� y2ÞÞÞ

Theorem 17. Let I be the implicator on L� defined by, for all x; y 2 L�,

Iðx; yÞ ¼ ðu�1 minð1; 1þ uðy1Þ � uðx1Þ; 1þ uð1� y2Þ
� uð1� x2ÞÞ; 1� u�1 minð1; 1� uðx1Þ þ uð1� y2ÞÞÞ

Then I is a Łukasiewicz implicator.

Proof. We have Ið0L� ; yÞ ¼ ðu�1 minð1;1þuðy1Þ;1þuð1� y2ÞÞ;1�u�1�
minð1;1þuð1� y2ÞÞÞ ¼ 1L� , Iðx;1L� Þ ¼ ðu�1 minð1;1þ 1�uðx1Þ;1þ 1�uð1�
x2ÞÞ, 1� u�1 minð1; 1� uðx1Þ þ 1ÞÞ ¼ 1L� for all x; y 2 L�. Also, Ið1L� ; 0L� Þ ¼
0L� . Clearly, I is decreasing in its first and increasing in its second component,

since u and u�1 are increasing. Hence I is an implicator on L�.

Now Ið1L� ; yÞ ¼ ðu�1 minð1; 1þ uðy1Þ � 1; 1þ uð1� y2Þ � 1Þ, 1� u�1 �
minð1; 1� 1þ uð1� y2ÞÞÞ ¼ ðy1; y2Þ ¼ y. Hence (A.2) is verified.

For all x 2 L� we have NðxÞ ¼ Iðx; 0L� Þ ¼ ðu�1 minð1� uðx1Þ; 1� uð1�
x2ÞÞ; 1�u�1ð1� uðx1ÞÞÞ ¼ ðu�1ð1� uð1� x2ÞÞ; 1� u�1ð1� uðx1ÞÞÞ, using the

fact that x1 6 1� x2 and u is increasing. We obtain IðNðyÞ;NðxÞÞ ¼
ðu�1minð1;1þ1�uð1� x2Þ�1þuð1� y2Þ;1þ1�uðx1Þ�1þuðy1ÞÞ;1�u�1�
minð1;1�1þuð1� y2Þþ1�uðx1ÞÞÞ¼Iðx;yÞ. Hence (A.3) holds.

We have Iðx;Iðy; zÞÞ ¼ ðu�1 minð1; 1þ uðu�1 minð1; 1þ uðz1Þ � uðy1Þ; 1þ
uð1� z2Þ�uð1� y2ÞÞÞ�uðx1Þ;1þuð1�1þu�1minð1;1�uðy1Þþuð1� z2ÞÞÞ�
uð1 � x2ÞÞ; 1 � u�1 minð1; 1 � uðx1Þ þ uð1 � 1 þ u�1 minð1; 1 � uðy1Þ þ uð1�
z2ÞÞÞÞÞ ¼ ðu�1 minð1; 1 þ 1 þ uðz1Þ � uðy1Þ � uðx1Þ; 1 þ 1 þ uð1 � z2Þ � uð1�
y2Þ � uðx1Þ; 1 þ 1 � uðy1Þ þ uð1 � z2Þ � uð1 � x2ÞÞ; 1 � u�1 minð1; 1 � uðx1Þþ
1� uðy1Þ þ uð1� z2ÞÞÞ, which is symmetrical in x and y and thus equal to

Iðy;Iðx; zÞÞ. So (A.4) holds.

Furthermore, Iðx; yÞ ¼ ðu�1 minð1; 1þ uðy1Þ � uðx1Þ; 1þuð1� y2Þ � uð1�
x2ÞÞ; 1�u�1 minð1; 1� uðx1Þ þ uð1� y2ÞÞÞ ¼ 1L� () minð1; 1þ uðy1Þ �uðx1Þ;
1þ uð1� y2Þ � uð1� x2ÞÞ ¼ 1 and minð1; 1� uðx1Þ þ uð1� y2ÞÞ ¼ 1 ()
uðy1ÞPuðx1Þ and uð1� y2ÞPuð1� x2Þ and uð1� y2ÞPuðx1Þ () y1 P x1
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and 1� y2 P 1� x2 and 1� y2 P x1 () y1 P x1 and y2 6 x2 () x6L� y using

the fact that u is an increasing permutation. Hence I satisfies (A.5).
Since u is a continuous increasing permutation of ½0; 1�, u�1 is also con-

tinuous. It follows easily that I is continuous and hence satisfies (A.6). h

The following theorem summarizes the results of this subsection:

Theorem 18. An ðL�Þ2 ! L� mapping I is a Łukasiewicz implicator satisfying
IðD;DÞ � D if and only if, for all x; y 2 L�

Iðx; yÞ ¼ ðu�1 minð1; 1þ uðy1Þ � uðx1Þ; 1þ uð1� y2Þ � uð1� x2ÞÞ;
1� u�1 minð1; 1� uðx1Þ þ uð1� y2ÞÞÞ

Open problem. Does there exist a Łukasiewicz implicator such that

IðD;DÞ*D?

Note. We wish to stress that the axioms imposed by Smets and Magrez are

by no means the only interesting ones for implicators. For instance, Gargov

and Atanassov [3] enforced the following distributivity condition on I:

ð8x; y; z 2 L�ÞðIðx;Iðy; zÞÞ ¼ IðIðx; yÞ;Iðx; zÞÞÞ ð8Þ

Łukasiewicz implicators do not satisfy it, while Iag from Example 4 does. So if

(8) is needed, Iag is obviously a better option, yet one should realize that it is

not contrapositive.

5. Links with residuated lattices and MV-algebras

It is well-known that classical logic can be described by a boolean algebra.

In order to have more than two values for the evaluation of formulas, there
have been many attempts to generalize this traditional structure. In this con-

text, residuated lattices and MV-algebras take a particularly distinguished role

(see e.g. [38,52,53,62]). The aim of this paragraph is to embed the classification

results established above into these general algebraic frameworks for logical

calculi.

Definition 12 (Residuated lattice). An algebraic structure L ¼ ðL;^;_;	;!;
0; 1Þ is called a residuated lattice provided

• ðL;^;_Þ is a bounded lattice with ordering 6 L and 0 and 1 as its smallest

and greatest element, respectively;

• 	 is a monotonous, commutative, associative L2 ! L mapping;

• ! is another L2 ! L mapping such that for all x; y; z 2 L holds:

x	 y 6Lz () x 6L y ! z
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From this definition and our previous discussion, it is obvious that

ðL�;Min;Max;T;IT; 0L� ; 1L� Þ is a residuated lattice if and only if T is a tri-
angular norm on L� that satisfies the residuation principle. As a noteworthy

example, Łukasiewicz implicators I such that IðD;DÞ � D (which are always

R-implicators generated by a t-norm T satisfying the residuation principle,

cf. Theorem 16) can be used to construct instances of residuated lattices.

We denote them by LI.

H€oohle introduced the concept of a square root [39] function of a residuated

lattice. Concretely, given the residuated lattice L ¼ ðL;^;_;	;!; 0; 1Þ, an

L ! L mapping
ffiffiffip
is called square root function of L if for every x; y 2 L

the following conditions hold:

S1
ffiffiffi
x

p
	

ffiffiffi
x

p
¼ x

S2 y 	 y 6L x ) y6 L
ffiffiffi
x

p

For the residuated lattice ð½0; 1�;min;max; TW ; Ia; 0; 1Þ a square root function

exists [52]. It is therefore worthwhile to examine whether this operation is still

definable for its extension, the residuated lattice LITW
. The answer turns out

to be negative.

Example 12. Assume the square root function of LITW
exists. Then for all

x 2 L� there exists an x0 2 L� such that

TW ðx0; x0Þ ¼ ðmaxð0; 2x01 � 1Þ;minð1; x02 þ 1� x01ÞÞ ¼ x

Let x ¼ ð0:1; 0:1Þ, then TW ðx0; x0Þ ¼ x if and only if 2x01 � 1 ¼ 0:1 and

x02 þ 1� x01 ¼ 0:1, i.e. if x01 ¼ 0:55 and x02 ¼ 0:1� 1þ x01 ¼ �0:35, so x0 62 L�.

We conclude that no square root function for LITW
exists.

In [10], Chang defined a stronger version of a residuated lattice called an

MV-algebra. We will not reproduce Chang�s original, lengthy definition here,

but instead define the notion by a characterization in terms of residuated lat-

tices [52].

Definition 13 (MV-algebra). An MV-algebra is a residuated lattice ðL;^;
_;	;!; 0; 1Þ such that the following condition is fulfilled, for all x; y 2 L:

ðx ! yÞ ! y ¼ x _ y

Again the question arises whether the extension LITW
of (½0; 1�,min,

max,TW ,Ia,0,1) inherits the property of being an MV-algebra. A simple coun-

terexample shows that it does not. Indeed, let x ¼ 1
9
; 1
5

� �
and y ¼ 2

3
; 1
4

� �
. Then

ITW ðITW ðx; yÞ; yÞ ¼ 43
60
; 1
5

� �
, while Maxðx; yÞ ¼ 2

3
; 1
5

� �
. So, whereas the Smets–

Magrez axioms can be maintained under the extension to L�, the property of

being an MV-algebra is lost. A stronger result can be proven using H€oohle�s
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claim [40] that an infinite, locally finite, 6 complete 7 MV-algebra is necessarily

isomorphic with (½0; 1�,min,max,TW ,Ia,0,1):

Theorem 19. If L ¼ ðL�;Min;Max;T;IT; 0L� ; 1L� Þ is locally finite, and T is
continuous, then L is no MV-algebra.

Proof. If L is an MV-algebra, then IT must be contrapositive [52]. From

Theorem 14, we derive that T satisfies the exchange principle, and thus by

Lemma 7 and the continuity of T, T is archimedean. Since no isomorphism

exists between ½0; 1� and L�, the proof is complete providedL is locally finite. h

6. Intuitionistic fuzzy and interval-valued implicators: applications, opportunities,

challenges

During the past two decades, fuzzy implicators have played an increasingly

prominent role within the research focused on fuzzy sets and fuzzy logic. Fuzzy
implicators have been shown useful in rule-based (expert) systems, for defining

inclusion measures and measures of guaranteed possibility and necessity, for

characterizing fuzzy rough sets and linguistic modifiers, for pattern classifica-

tion, aggregation, preference modelling and decision making, fuzzy logic

programming and many other fields.

Our goal in these pages is not to go into the details of generalizing all or even

any of these application domains; let it suffice to mention that a lot of work in

that direction has already been done in both the interval computations (see e.g.
[11,12,37,43,44,47,51]) and intuitionistic fuzzy set theory communities (see e.g.

[4,7,8,20,21,50,56]). Rather we aim to provide some basic insight of (a) the

usefulness and (b) the flexibility of calculation obtained by our lattice-valued

approach to implicators, and to outline some challenges and opportunities that

future research in this area could face. As a running example throughout this

section, we take the well-known generalized modus ponens (GMP) inference

rule [12,24,17], which reads:

IF X is A, THEN Y is B (1)

X is A0 (2)

Y is B0 (3)

6 An MV-algebra ðL;^;_;	;!; 0; 1Þ is called locally finite if to every x 2 L n f1g, there exists an
n 2 N such that

xn ¼ x	 x	 
 
 
 	 x|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ntimes

¼ 0

7 An MV-algebra with evaluation set L is called complete if L is complete.
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X and Y are assumed to be variables in the respective universes U and V . A
and A0 are mappings from U to L� (elements of FL� ðUÞ), while B and B0 are
mappings from V to L� (elements of FL� ðV Þ), and all of them can be inter-

preted as interval-valued or intuitionistic fuzzy sets. Generally, they are as-

sumed to be normalized: an L�-fuzzy set A in U is called normalized if there

exists at least one u 2 U such that AðuÞ ¼ 1L� . The statements (1) and (2) above

the line are called the if-then rule and the observation on X , respectively, while

the statement (3) below the line is called the inference on Y . The above scheme

does not state what the fuzzy restriction B0 should be when A;A0 and B are

given. From all the possible alternatives, we consider here only the single best-
known one, i.e. the implementation by the compositional rule of inference

(CRI). This rule is a rigorous tool from relational calculus (see e.g. [15]) that

joins the if–then rule and the observation and projects the result onto the

universe of Y . Using the notation of [17], if T is a t-norm on L�, I an im-

plicator on L� and IðA;BÞ is the mapping from U � V to L� defined by, for

all ðu; vÞ 2 U � V

IðA;BÞðu; vÞ ¼ IðAðuÞ;BðvÞÞ

then we define the operator (actually a mapping from FL� ðX Þ to FL� ðY Þ)
criTIðA;BÞ for all v 2 V by

criTIðA;BÞðA0ÞðvÞ ¼ sup
u2U

TðA0ðuÞ;IðAðuÞ;BðvÞÞÞ

Note how smoothly the extension of the GMP and the CRI 8 is obtained.

Again, this is due to the nature of L�-fuzzy sets (and, more generally, arbitrary

L-fuzzy sets) that allow all of the order-theoretic notions such as conjunction,

composition, . . .to be straightforwardly defined on them.

As a first simple consistency test for the procedure defined above, we in-

vestigate under which conditions it extends the classical modus ponens, that is:

if A0 ¼ A, then B0 ¼ B.

Theorem 20. If T is a t-norm on L� satisfying the residuation principle, then
criTITðA;BÞðAÞ ¼ B for all normalized L�-fuzzy sets A and B.

Proof. In [29] the following claim was proven: a t-norm T on L� satisfies the

residuation principle if and only if

sup
z2Z

Tðx; zÞ ¼ Tðx; sup
z2Z

zÞ ð9Þ

for any x 2 L� and any subset Z of L�. This allows for the following deduction,

for u 2 U and v 2 V :

8 In general, IðA;BÞ can be replaced by any U � V ! L� mapping R.
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TðAðuÞ;ITðAðuÞ;BðvÞÞÞ ¼ TðAðuÞ; supfc 2 L�jTðAðuÞ; cÞ6L� BðvÞgÞ

¼ supfTðAðuÞ; cÞjc 2 L� andTðAðuÞ; cÞ

6L� BðvÞg6L� BðvÞ

On the other hand, since A is normalized, there exists u� 2 U such that

Aðu�Þ ¼ 1L� , so TðAðu�Þ;ITðAðu�Þ;BðvÞÞÞ ¼ Tð1L� ;ITð1L� ;BðvÞÞ ¼ BðvÞ since
T is a t-norm and IT is a border implicator. Hence, for all v 2 V ,

criTITðA;BÞðAÞðvÞ ¼ BðvÞ �

Note. It is important to mark the difference with the analogous situation in

fuzzy set theory, where left-continuity of a t-norm T on ½0; 1� sufficed to extend

the modus ponens if the associated R-implicator was used. In [29], however, a

continuous t-norm on L� was constructed that does not satisfy equality (9).

In the next two subsections, we will come back to the GMP example to il-

lustrate the incorporation of uncertainty by means of IFSs and IVFSs into

knowledge-manipulating processes.

6.1. Propagation of uncertainty in L�-fuzzy sets

It has been mentioned in the introduction that fuzzy sets are unable to deal

adequately with uncertainty. In this light, a degree of non-determinacy p was

introduced. In this paragraph, we will treat p as a mapping from L� to ½0; 1�
defined by, for x 2 L�, pðxÞ ¼ 1� x1 � x2. For values x in D, obviously

pðxÞ ¼ 0.

The mapping p has the interesting feature that it allows us to focus exclu-

sively on uncertainty: controlling the propagation of uncertainty in the GMP

example will be tantamount to controlling the values pðxÞ for the membership

degrees x to the result L�-fuzzy set B0. In this sense, we lend a willing ear to the

constraints imposed on the implicator I by Bustince et al. in [9], for x; y 2 L�:

B:1 pðIðx; yÞÞ6 maxð1� x1; 1� y1Þ

B:2 x ¼ y ) pðIðx; yÞÞ ¼ pðxÞ

B:3 pðxÞ ¼ pðyÞ ) pðIðx; yÞÞ ¼ pðxÞ

The first constraint is aimed at establishing upper bounds for the uncertainty

caused by an application of an implicator. The following easy deduction shows
that criterion (B.1) is satisfied by all Łukasiewicz implicators, and more gen-

erally by all S-implicators IS;N on L� generated by arbitrary involutiveN and

S, by a very comfortable margin:
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pðIðx; yÞÞ ¼ 1� pr1ðSðNðxÞ; yÞÞ � pr2ðSðNðxÞ; yÞÞ

6 1� pr1ðSðNðxÞ; yÞÞ ¼ 1� pr1ðSððNð1� x2Þ; 1� Nðx1ÞÞ; yÞÞ

6 1�maxðNð1� x2Þ; y1Þ ¼ minð1� Nð1� x2Þ; 1� y1Þ

6 maxð1� x1; 1� y1Þ

where we used the representation Theorem 1 for N by the fuzzy negator N .

Obviously, the one but last line of the above deduction offers a tighter criterion

that we propose to replace the right hand side of (B.1) with; it will be hard to

prove compliance with stronger restrictions since lower bounds on I�s second
projection are difficult to obtain in general.

The remaining conditions address another issue, namely the conservation of

uncertainty through the application of an implicator on L�. Despite their

fairness from an intuitive perspective, they conflict with the requirement im-
posed by logic that Iðx; xÞ ¼ 1L� for x 2 L�, an immediate consequence of

axiom (A.5); Łukasiewicz implicators therefore never satisfy (B.2) nor (B.3);

the implicator from Example 2 on the other hand does.

The above observation appears to point out an intuitive anomaly, namely

that uncertainty can disappear entirely through the application of an implicator
on L�. Although this important debate on the apparent clash between logical

and cognitive assumptions needs to be pursued further and in full depth, our

feeling is that a decision to comply with (B.2) and/or (B.3) should depend
primarily on the application at hand, and so the conditions are not absolute.

For instance, in determining the degree of inclusion of fuzzy sets into one

another, sometimes the formula [26]

IncðA;BÞ ¼ inf
u2U

IðAðuÞ;BðuÞÞ

is used, where A and B are fuzzy sets in U and I is an implicator on ½0; 1�.
Suppose we replace I by an implicator I on L� and generalize A;B to arbitrary

L�-fuzzy sets. Naturally, IncðA;BÞ should be equal to 1 if and only if A � B,
that is ð8u 2 UÞðAðuÞ6L� BðuÞÞ. Hence I should satisfy (A.5). This material is

studied in detail in [25].

In the GMP example, there do not seem to be any arguments in favour of

(B.2) and (B.3) either. A more relevant criterion is the following:

ð8v 2 V ÞðpðcriTIðA;BÞðA0ÞðvÞÞP pðBðvÞÞÞ

In other words, unreliable observations do not give way to strictly more reli-

able conclusions, or equivalently uncertainty does not vanish. It can be

equivalently stated as:

pr1ðcriTIðA;BÞðA0ÞðvÞÞ þ pr2ðcriTIðA;BÞðA0ÞðvÞÞP pr1ðBðvÞÞ þ pr2ðBðvÞÞ
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Unfortunately, with the current machinery of Łukasiewicz implicators, the

latter inequality seems very difficult to realize. The main problem is that there is
no direct correlation between p and the ordering in L�, so that even when

x6L� y, all three options: pðxÞ ¼ pðyÞ, pðxÞ > pðyÞ, pðxÞ < pðyÞ are still possible.
We postpone the algebraic investigation of this property to a future paper,

remarking that the criterion is trivially met if there is no uncertainty in the if–

then rule (IðAðuÞ;BðvÞÞ 2 D for all ðu; vÞ 2 U � V ). This section identified one

index of uncertainty associated with L�-fuzzy sets; in the next subsection we fit

these ideas into a larger framework focussed on dealing with imprecise

knowledge.

6.2. A view of uncertainty inspired by intuitionistic fuzzy possibility theory

In [18,19,22], an intuitionistic fuzzy extension of possibility theory (in the

sense of Zadeh [68]) was proposed. We briefly recall the main ideas. 9

The central notion in possibility theory is that of a so-called elastic re-
striction that allows us to discriminate between the more or less plausible values

for a variable X in a universe U . In this sense, it reflects our uncertainty about
the true value of X . This elastic restriction is modelled by a mapping pX from U
to a set L, whose values represent degrees of possibility, so that pX ðuÞ ¼ l
means that it is possible to degree l 2 L that X takes the value u 2 U . Yet,
typically a mix of positive and negative evidence contributes to our knowledge

about X ; positive evidence here means that we get information that particular

values are to a given extent possible for X , while negative evidence includes

those statements that tell us something about the necessity that X cannot in fact

take a particular value. 10 It therefore appears counterintuitive to let this kind

of information be represented by a single degree (of possibility) for every ele-

ment in the universe, thereby enforcing implicit duality of the degree of ne-

cessity. Indeed, in traditional possibility theory, where L ¼ ½0; 1�, two measures
of possibility and necessity of a crisp set A in U are defined:

PX ðAÞ ¼ sup
u2A

pX ðuÞ

NX ðAÞ ¼ inf
u 62A

1� pX ðuÞ

Obviously, NX ðAÞ ¼ 1�PX ðcoðAÞÞ, where coðAÞ represents the complement of

A. It makes more sense to have two separate distributions that define the degree

9 The mentioned references considered also an interval-valued extension of possibility theory,

but we do not consider it here.
10 Note that this two-sided view bears a likeness to a widely used practise in artificial intelligence

(e.g. in learning processes and in fuzzy rough sets), namely to approximate a concept by giving

positive and negative specimen for it.
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of possibility that X ¼ u and the degree of necessity that X 6¼ u, respectively. In
[22] we suggested to use the membership and non-membership functions of an
intuitionistic fuzzy set for that purpose, such that formally L ¼ L�. The re-

sulting distribution pX was called an intuitionistic fuzzy possibility distribution.

The altered measures of possibility and necessity now read:

PX ðAÞ ¼ sup
u2A

pr1ðpX ðuÞÞ

NX ðAÞ ¼ inf
u 62A

pr2ðpX ðuÞÞ

They satisfy a weakened duality, i.e. NX ðAÞ6 1�PX ðcoðAÞÞ, embodying the

cognitive constraint that our belief (necessity) that X 6¼ u cannot surpass one
minus the possibility that X ¼ u. 1�PX ðAÞ � NX ðAÞ can be used to model

disbelief in (unreliability of) the observer that provided the information.

Let us consider this interpretation in the framework of our GMP example.

A, A0, B and B0 will all represent possibility distributions on their associated

variables. Let us assume at this moment that there is no uncertainty present in

the if–then rule, so AðuÞ 2 D and BðvÞ 2 D for all u 2 U and v 2 V . An inter-

esting situation to study is one in which we completely discredit the observer,

that is pr2ðA0ðuÞÞ ¼ 0 for all u 2 U . An obvious constraint to impose, then, is
the non-credibility of the result: pr2ðB0ðvÞÞ ¼ 0 for all v 2 V , since we do not

want to be forced to make any commitment due to an unreliable observer.

Assuming there exists u� 2 V such that Aðu�Þ ¼ 0L� , we have

criTIðA;BÞðA0ÞðvÞ ¼ sup
u2U

TðA0ðuÞ;IðAðuÞ;BðvÞÞÞ

PL�TðA0ðu�Þ;IðAðu�Þ;BðvÞÞÞ

¼ TðA0ðu�Þ;Ið0L� ;BðvÞÞÞ

¼ TðA0ðu�Þ; 1L� Þ

¼ ðpr1ðA0ðu�ÞÞ; 0Þ

Hence, pr2ðcriTIðA;BÞðA0ÞðvÞÞ ¼ 0 and the desired result is obtained. This result

holds regardless if T is t-representable or not.

In general, we could ask how the uncertainty associated with the observer

should be reflected in the result. It is important to note that the discussion on

the propagation of p-values from the previous subsection does not apply here,

because A0 and B0 are (usually) associated with different variables X and Y . It
appears that the CRI already takes care of variations in the possibility distri-

bution associated with X ; by enforcing its semantics of inferring the most
specific distribution on Y consistent with the constraints on X and Y , it puts
bounds on the reliability of the result, expressed by pr2ðB0Þ. Experiments will

have to reveal whether this belief is justified, and whether the CRI indeed
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operates in accordance with our expectations on the propagation of more or

less reliable information.

6.3. Other challenges and future work

In this short concluding paragraph, we list a few areas in which further work

and/or experiment is mandatory, along with appropriate questions to ask.

• Jenei [41] studied continuity w.r.t. to different metrics in the GMP for a par-

ticular subclass of fuzzy quantities (fuzzy sets in R). His results favoured the
Łukasiewicz implicators on ½0; 1�. Does this observation extend to L�?

• Atanassov and Gargov [3,5] proposed to replace the classical notion of a

tautology with that of an intuitionistic fuzzy tautology (IFT). A formula

P is called an IFT if its truth value x 2 L� is such that x1 P x2. Not every

IFT is necessarily also a classical tautology. For instance, for the implicator

IMax;Ns in Example 2, the formula Iðx; xÞ ¼ 1L� is not a tautology, but is an

IFT since maxðx2; x1ÞP minðx1; x2ÞÞ. IFTs may allow Bustince et al.�s crite-
ria to coexist with a modified version of the Smets–Magrez axioms. This di-
rection has yet to be explored in full depth. Related to this is Kenevan and

Neapolitan�s [44], and later Entemann�s [33] work on a logic with interval

truth values along with a proof theory for it. It was shown that this logic

is ‘‘fuzzy complete’’, that is: all fuzzy tautologies, i.e. formulas P such that

their truth value x 2 L� satisfies x1 P 0:5, can be proven in the theory. The

question then arises whether we could develop something like ‘‘intuitionistic

fuzzy completeness’’.

• IVFSs and IFSs can both be considered as stepping stones in a larger con-
text:

� IVFSs are characterized by membership degrees which are intervals in

½0; 1�. Going one step further, type-2 fuzzy sets emerge when we allow

membership degrees themselves to be fuzzy sets in ½0; 1�. They have been

receiving a lot of renewed attention lately, amongst others by Mendel [47]

and T€uurks�en [61], as a vehicle particularly suited to implementing the

computing with words (CWW) paradigm. It is worthwhile to further in-

vestigate the algebraic structure on which type-2 fuzzy sets are defined. In
this sense the theorem by Mizumoto and Tanaka [48] that convex and

normalized type-2 fuzzy sets give way to a bounded lattice is very impor-

tant.

� IFS theory, which is specifically tuned to the concept of positive (mem-

bership) and negative (non-membership) constituents, can be generalized

by dropping the restriction that lþ m6 1, and by instead drawing ðl; mÞ
from ½0; 1�2. This extension was coined quadrivalent (i.e. four-valued) fuzzy

logic and was studied e.g. in [13,34].
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7. Conclusion

We have constructed a representation theorem for Łukasiewicz implicators

on the lattice L� which serves as the underlying algebraic structure for both

intuitionistic fuzzy and interval-valued fuzzy sets. We have related our results

to the general theory of residuated lattices and MV-algebras, and explained

how to apply them in a practical context to model of different kinds of im-

precision.
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