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Abstract A study on the melt elasticity behavior and extrudate characteristic of low density poly-

ethylene (LDPE)/nanoclay composite and maleated polyethylene (MAPE) as compatabilizer was

done. Extrusion studies were carried out in capillary rheometer. A microscope has been used to

examine the surface characteristics of the extrudate by taking photographs. With a view to charac-

terize melt elasticity of these nanocomposites, parameters such as die swell, principle normal stress,

recoverable shear strain, and shear modulus were calculated. Compatibilizers were premade as

block copolymers (BCPs), are of crucial importance during the formation and stabilization of poly-

mer blends. These polymeric surfactants reduce the interfacial tension, R, between the blend com-

ponents, and due to their ability to accumulate preferentially in the interface, they stabilize the

obtained morphology against coalescence. Small amounts of these species in the range of parts

of percent are already active.
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

In recent years, the study of polymer/organoclay nanocompos-
ite due to its superior properties compared with neat polymer
has attracted major research and commercial interests (Dong

et al., 2008; Lertwimolnun and Vergnes, 2005; Toshniwal
et al., 2007; Liu et al., 1999; Shih et al., 2008; Wang et al.,
2006). The improvement in mechanical properties such as ten-

sile strength and modulus (Toshniwal et al., 2007), solvent
resistance (Shih et al., 2008), barrier properties (Wang et al.,
2006), and flame retardant capability (Liu et al., 1999), are a

few selected examples of the advantages provided by this
new class of materials. However, to fully use this improvement,
it is necessary to achieve a relatively uniform dispersion of the

clay nanoparticles within the polymeric host matrix (Dong
et al., 2008; Lertwimolnun and Vergnes, 2005; Toshniwal
et al., 2007; Liu et al., 1999; Shih et al., 2008; Wang et al.,
2006; Hedayati and Arefazar, 2009).

Polymer composite (PC) offers an easy and cost effective
method to develop new materials with desired properties
(Saheb and Jog, 1999). The major associated with blending is

the immiscibility between the filler and the polymer. The incor-
poration of various types of filler into polymer matrix was car-
ried out with the aim of improving the specified physical and

mechanical properties of polymer composites (Hemelrijck
et al., 2005). When polymer melt flows through a capillary un-
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Figure 1 Effect of percent nanoclay and 1% MAPE on the flow

curve of LDPE at 190 �C.

Figure 2 Effect of nanoclay concentration on the surface
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der the force of shear, the polymer chains get oriented. As the

melt emerges out from the die, the polymer chains tend to
recoil, leading to the phenomenon of extrudate swell which
causes a contraction in the direction of flow being offset
by lateral expansion. This relaxation effect is a result of

recovery of the elastic deformation imposed in the capillary.
Crosslinking, chain branching, presence of fillers and
plasticizers, stress relaxation, etc. are the important factors

controlling elastic recovery. The (De/Dc) ratio increase with
the die wall shear stress. This effect is due to elastic recovery
of the material. Elastic properties and extrudate characteristics

of polymer melts in shear flow are of great importance in poly-
mer processing (Moly et al., 2002). In this paper, polymer com-
posite (PC) between low density polyethylene (LDPE) and

nanoclay in different percent (0.5%, 2.5% and 2.5%) with
1% maleated polyethylene (MAPE) used as compatabilizer.
The shear rate was (2.74, 9.14, 27.4, 91.4, 274 and 914 S�1).
The viscoelastic properties of the composite were studied at

temperature 190 �C.

2. Experimental

2.1. Materials

The LDPE matrix polymer was commercial pipe grade (Scpi-
lene 22004) from the State Company for Petrochemical Indus-

tries (SCPI), Basrah-Iraq with a melt index of 0.3 g/10 min. at
190 �C and 2.16 kg load. The PE-g-MA selected for this work
was PB3200, supplied by Crompton, with 2% degree of malea-

tion. Closite 15A, organically modified montmorillonite nano-
clay supplied by Southern Clay Products (USA) was used as
received.

2.2. Preparation of nanocomposites

Samples were prepared by melt mixing the components. Melt

mixing was carried out using a mixer-600 attached to Haake
90 rheometer at a temperature of 140 �C and at a rotor speed
of 60 rpm. LDPE was melted for 5 min and blended with

nanoclay (0.5%, 2.5% and 5%) for another 5 min. Finally
1% compatibilizer PE-g-MA(MAPE) was added and blended
for another 3 min. Digital camera type CCD attached to Pho-
tomicroscope (wild) was used for the purpose of photograph-

ing the samples.

2.3. Rheological measurements

Rheological properties were carried out by using a capillary
rheometer device (Instron model 3211), ASTM D-3835. The

diameter of the capillary is 0.76 mm, the length to diameter
(L/D) ratio of 80.9, with an angle of entry of 90�. Load weigh-
ing which dropped on the polymer melts by plunger transverse

from the top to the bottom of the barrel was constant
(2000 kg). The constant plunger speeds ranged from 0.06 to
20.0 cm min�1 and the extrusion temperature was 190 �C.
The die swell ratio was identified by Eq. (1):

B ¼ De=Dc ð1Þ

where, De and Dc are the diameters of the extrudate and the die
respectively.
3. Results and discussion

The dependence of the wall shear stress as a function of the

apparent shear rate for the LDPE melts that had been filled
with various loadings of nanoclay particles is illustrated in
Fig. 1. For a given content of nanoclay particles, this property
of the melts for (0.5% and 5%) increased sharply for the low

shear rate less and then there was concavity at first critical
shear stress (s1) �100 S�1 which affected the surface of the
polymer composite extrudated and caused sharkskin phenom-

ena as shown in Fig. 2, then the curve was increased non-line-
arly (Shenoy, 1999). While for the LDPE melt with 2.5% the
flow curve was smooth and linear with no discontinuity, this

behavior was attributed to the nanoclay particles concentra-
tion that achieve a better dispersion between the polymer
chains, as a result of this dispersion higher interaction induced

between the polymer chains which was stronger that the adhe-
sion forces between the polymer chains and the die surface
distortion of the LDPE nanoclay composite.



Table 1 The effect of nanoclay concentration with 1%MAPE

on the viscosity of LDPE at 190 �C.

Share rate Viscosity (Pa S�1)

0.5% 2.5% 5%

2.74 3766.423358 4519.708029 5084.672

9.15 1409.836066 1635.409836 1860.984

27.4 546.1313869 621.459854 677.9562

91.5 186.0983607 203.0163934 219.9344

274 94.16058394 99.81021898 105.4599

915 33.83606557 35.52786885 36.65574

Figure 4 Variations of the (t11–t22) vs. percent of nanoclay

particle for the LDPE composite.
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cylinder wall. The induced chain interactions affected the

surface distortion as shown in Fig. 2. Also from Fig. 1, it
can be seen that the shear stress has increased in a non-linear,
decreasing-rate manner with the increase in the apparent shear

rate.
Interestingly, an abrupt increase in the wall shear stress for

various samples was observed at an apparent shear rate of
�270 S�1, after which point the increase in the property value

with the apparent shear rate occurred very marginally (Dang-
tungee and Supaphol, 2008). The increase in the wall shear
stress with an increase in the apparent shear rate in a non-lin-

ear, decreasing-rate manner indicated that the apparent shear
viscosity (i.e., wall shear stress/apparent shear rate) LDPE
nanoclay particle-filled melts decreased with an increase in

the apparent shear rate (viz. a phenomenon commonly known
as shear-thinning) as shown in Table 1 (Supaphol and Harnsir-
i, 2006).

The dependence of the die swell ratio on the apparent shear
rate for the LDPE melts that had been filled with various load-
ings of nanoclay particles is illustrated in Fig. 3. Here (Dang-
tungee et al., 2005), the degree of extrudate swell was reported

as the die swell ratio (B) .The die swell ratio (B) melts increased
in a non-linear manner with an increase in the apparent shear
rate for the LDPE contain (0.5% and 5%) nanoclay particle

and there was nonlinearity at the first critical shear rate. From
Figure 3 Variation of die swell ratio of polymer composite with

shear rate at 190 �C.
Fig. 3, the effect of the nanoclay particle concentration on the
die swell was clear. The LDPE with 2.5% nanoclay particle has
the less die swell value with all shear rate value, which was nor-

mal behavior of the filled polymer with less deformation will
have reduce melt elasticity (Tsai and Lin, 2010).

Melt elasticity parameter first normal stress difference (t11–
t22) of the composites was evaluated at 190 �C. Variations of

the (t11–t22) vs. percent of nanoclay particle for the LDPE
composite are presented in Fig. 4. It appears that the first nor-
mal stress difference increased with increased shear rate. This

is quite expected because on emergence from the die the stored
elastic energy is released causing the polymer swell (Gupta
et al., 2003). At higher shear rates the extent of elastic energy

stored and subsequently released will be greater.
4. Conclusion

The flow and elastic properties of the nanocomposite was eval-
uated to determine the effective concentration of nanoclay.

The following conclusions can be drawn from the conducted
study:

1. Control the discontinuity of the flow curve of the polyeth-

ylene in the presence of MAPE as compatabilizer with
2.5% of nanoclay.

2. The extrudate swell was increased non-linearly with

increasing shear rate with the 2.5% nanoclay concentration
in the composite that has the less die swell value.

3. The extrudate surface distortion was eliminated by the

2.5% nanoclay.
4. The melt elasticity which was characterized here by the first

normal stress difference increased with increased shear rate
because the stored elastic energy is released causing the

polymer swell.
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