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a b s t r a c t

In this paper, laminar fluid flow and heat transfer in channel with permeable walls in the
presence of a transverse magnetic field is investigated. Least square method (LSM) for
computing approximate solutions of nonlinear differential equations governing the
problem. We have tried to show reliability and performance of the present method
compared with the numerical method (Runge–Kutta fourth-rate) to solve this problem.
The influence of the four dimensionless numbers: the Hartmann number, Reynolds
number, Prandtl number and Eckert number on non-dimensional velocity and tempera-
ture profiles are considered. The results show analytical present method is very close to
numerically method. In general, increasing the Reynolds and Hartman number is reduces
the nanofluid flow velocity in the channel and the maximum amount of temperature
increase and increasing the Prandtl and Eckert number will increase the maximum
amount of theta.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

Flow problem in a porous tube or channel received much attention in recent years due to its various applications in
medical engineering, for example, in the dialysis of blood in artificial kidney [1], in the flow of blood in the capillaries [2], in
the flow in blood oxygenators [3], as well as in many other engineering areas such as the design of filters [4], in transpiration
cooling boundary layer control [5] and gaseous diffusion [6]. In 1953, Berman [7] described an exact solution of the Navier–
Stokes equation for steady two-dimensional laminar flow of a viscous, incompressible fluid in a channel with parallel, rigid,
porous walls driven by uniform, steady suction or injection at the walls. This mass transfer is paramount in some industrial
processes. More recently, Rashidi and et al. [8] Homotopy Simulation of Nanofluid Dynamics from a non-linearly stretching
isothermal permeable sheet with Transpiration investigated.

Slow viscous flow problem in a semi-porous channel in the presence of transverse magnetic field is investigated by
Sheikholeslami et al. [9]. They show that the method is asymptotically optimal Homotopy a powerful method for solving
nonlinear differential equations, such as the problem. Soleimani et al. [10] studied of natural convection heat transfer in an
enclosure filled mid-loop with nanofluid using the control volume based Finite Element Method. They founded turn angle
has a significant effect on flow lines, isotherms and local Nusselt number is maximum or minimum values. Sheikholeslami
er Ltd. This is an open access article under the CC BY-NC-SA license
.

hdi_fakoor8@yahoo.com (M. Fakour), ddg_davood@yahoo.com (D.D. Ganji),

www.sciencedirect.com/science/journal/2214157X
www.elsevier.com/locate/csite
http://dx.doi.org/10.1016/j.csite.2014.10.003
http://dx.doi.org/10.1016/j.csite.2014.10.003
http://dx.doi.org/10.1016/j.csite.2014.10.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csite.2014.10.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csite.2014.10.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csite.2014.10.003&domain=pdf
mailto:mehdi_fakour@yahoo.com
mailto:mehdi_fakoor8@yahoo.com
mailto:ddg_davood@yahoo.com
mailto:mmmortezaabbasi@gmail.com
http://dx.doi.org/10.1016/j.csite.2014.10.003


Nomenclature

NUM numerical method
P pressure
q mass transfer parameter
Re Reynolds number
U dimensionless velocity in the x direction
V dimensionless velocity in the y direction
h suspension height
Ec Eckert number
Ha Hartmann number
Pr Prandtl number
Lx length of the slider
Cp specific heat
k thermal conductivity
ΔT ¼ Th�T0 difference temperature between the plates
u0 x velocity of the pad
u dimensionless x—component velocity
v dimensionless y—component velocity
un velocity component in the x direction
vn velocity component in the y direction
x dimensionless horizontal coordinate
y dimensionless vertical coordinate

xn distance in the x direction parallel to the plates
yn distance in the y direction parallel to

the plates

Greek symbols

ρ fluid density
θ dimensionless temperature
ν kinematic viscosity
σ electrical conductivity
ε aspect ratio h/Lx
α fluid thermal diffusivity

Abbreviations of LSM

LSM least square method
D differential operator
u estimated by a function
~u linear combination of fundamental functions
R residual
Wi weight functions
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et al. [11] investigated the flow of nanofluid and heat transfer characteristics between two horizontal plates in a rotating
system. Their results showed that for suction and injection, the heat transfer rate increases with the nanoparticle volume
fraction, Reynolds number, and parameter injection / suction increases and then decreases with the strength of the spin
parameter. Simultaneous effects of partial slip and thermal-diffusion and diffusion-thermo on steady MHD Convective Flow
due to a Rotating Disk studied by Rashidi et al. [12]. Natural convection of a non-Newtonian copper–water nanofluid
between two infinite parallel vertical flat plates was investigated by Domairry et al. [13]. They concluded that as the size of
nanoparticles increases, the boundary layer thickness increases, the thermal boundary layer thickness decreases.
Sheikholeslami et al. [14] studied the natural convection in a concentric annulus between a cold outer square and heated
inner circular cylinders in the presence of static radial magnetic field. Sheikholeslami et al. [15] performed a numerical
analysis for natural convection heat transfer of Cu–water nanofluid in a cold outer circular enclosure containing a hot inner
sinusoidal circular cylinder in the presence of horizontal magnetic field using the control volume based Finite Element
Method. They concluded that in the absence of a magnetic field, increasing the Rayleigh number increases, while the
opposite trend was observed in the presence of a magnetic field decreases. Sheikholeslami et al. [16] studied the effects of
magnetic field and nanoparticle on the Jeffery–Hamel flow using Adomian decomposition method. They showed that
increasing Hartmann number will lead to backflow reduction. Recently several authors investigated about nanofluid flow
and heat transfer [17–20].

The main goal of this paper is to examine the laminar nanofluid flow in channel with permeable walls in the presence of
transverse magnetic field using least square method. Effective Hartmann number, Reynolds number, Prandtl number, and
Eckert number on the velocity and temperature considered. In addition to speed and temperature for different structures
nanofluid (copper and silver nanoparticles in water or ethylene glycol) depicted.

2. Problem description

Steady two-dimensional laminar flow of an incompressible viscous electrically conducting fluid in a channel with
permeable walls with a long rectangular plate with uniform translation in xn, Lx over an infinite porous plate and made to
consider. The distance between the two plates is h. We are observing a normal velocity q on the porous walls (Fig. 1).
A uniform magnetic field B is assumed to be applied towards direction yn.

In the case of a short circuit to neglect the electrical field and perturbations to the basic normal field and without any
gravity forces, the governing equations are [19]:

∂un

∂xn
þ∂vn

∂yn
¼ 0; ð1Þ

un∂un

∂xn
þvn

∂un

∂yn
¼ � 1

ρnf

∂Pn

∂xn
þνnf

∂2un

∂xn2
þ∂2un

∂yn2

� �
�un

σnf B
2

ρnf
; ð2Þ



Fig. 1. Three dimensional Schematic of the problem water with copper, Re¼Ha¼Ec¼1, Pr¼5.784, φ¼0.04.
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un∂vn

∂xn
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∂yn
¼ � 1

ρnf

∂Pn

∂yn
þνnf

∂2vn

∂xn2
þ∂2vn

∂yn2

� �
: ð3Þ

ρnf � Cp un ∂T
∂xn

þvn
∂T
∂yn

� �
¼ knf

∂2T
∂xn2

þ ∂2T
∂yn2

� �
þμnf

∂un

∂yn

� �2

ð4Þ

The suitable boundary conditions for the velocity and temperature are:

yn ¼ 0:un ¼ 0; T ¼ To

vn ¼ q
ð5Þ

yn ¼ h:un ¼ u0; T ¼ Th

vn ¼ �q
ð6Þ

Calculating a mean velocity U by the relation:

U � h¼
Z h

0
un � dyn ¼ Lx � q ð7Þ

We consider the following transformations:

x¼ xn

Lx
; y¼ yn

h
; u¼ un

U
; v¼ vn

q
; Py ¼ Pn

ρ� q2
; θ¼ T�To

Th�To
ð8Þ

Then, we can consider four dimensionless numbers: the Hartmann number Ha for the description of magnetic forces [11]
and the Reynolds number Re for dynamic forces, Prandtl number and Eckert number:

Ha¼ Bh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σf

ρf � νf

s
; ð9Þ

Re¼ hq
νnf

ð10Þ

Pr¼ μnf Cp

knf
ð11Þ

Ec¼ U2

CpðTh�ToÞ
ð12Þ

where the effective density (ρnf) and specific heat capacity (CP) are defined as [12]:

ρnf ¼ ρf ð1�ϕÞþρsϕ

ðρ:CpÞnf ¼ ðρ� CpÞf ð1�ϕÞþðρ� :CpÞsϕ ð13Þ

The effective thermal conductivity of the nanofluid can be approximated by the Maxwell–Garnett’s (MG) model as [13]:

knf
kf

¼ ksþ2kf �2ϕðkf �ksÞ
ksþ2kf þϕðkf �ksÞ

ð14Þ



Table 1
Different models for simulation of dynamic viscosity.

Model Thermal conductivity Dynamic viscosity

I σnf
σf

¼ 1þ 3ðσs=σf �1Þϕ
ðσs=σf þ2Þ� ðσs=σf �1Þϕ μnf ¼ μf

ð1�ϕÞ2:5

II σnf
σf

¼ 1þ 3ðσs=σf �1Þϕ
ðσs=σf þ2Þ� ðσs=σf �1Þϕ μnf ¼ μf ð1þ7:3ϕþ123ϕ2Þ

Table 2
Thermo physical properties of nanofluids and nanoparticles.

Material Density (ρ) Electrical conductivity (σ) Specific heat capacity (CP) Thermal conductivity (K)

Silver 10500 6.30�107 230 418
Copper 8933 5.96�107 385 401
Ethylene glycol 1113.2 1.07�10�4 2410 0.252
Drinking water 997.1 0.05 4179 0.613
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where ϕ is the nanoparticle volume fraction. Different models for simulating dynamic viscosity of the nanofluids are shown
in Table 1. In the first model, the effective thermal conductivity and viscosity of nanofluid are calculated by the Maxwell
[13], [18] and Brinkman models, respectively. The thermo physical properties of the nanofluid are given in Table 2.

Introducing Eqs. (7)–(12) into Eqs. (1)–(4) leads to the dimensionless equations:

∂u
∂x

þ∂v
∂y

¼ 0; ð15Þ

u
∂u
∂x

þv
∂u
∂y

¼ �ε2
∂Py

∂x
þνnf
hq

ε2
∂2u
∂x2

þ∂2u
∂y2

� �
�u

Ha2

Re
Bn

An
; ð16Þ

u
∂v
∂x

þv
∂v
∂y

¼ �∂Py

∂y
þνnf
hq

ε2
∂2v
∂x2

þ∂2v
∂y2

� �
ð17Þ

Cn

Dn
Pr Re u

∂θ
∂x

þv
∂θ
∂y

� �
�Ec

∂u
∂y

� �2
" #

¼ ε2
∂2θ
∂x2

þ∂2θ
∂y2

� �
ð18Þ

where An, Bn, Cn and Dn are constant parameters:

An ¼ ð1�ϕÞþρs
ρf
ϕ; Bn ¼ 1þ 3ðσs=σf �1Þϕ

ðσs=σf þ2Þ�ðσs=σf �1Þϕ ð19Þ

Cn ¼ ksþ2kf �2ϕðkf �ksÞ
ksþ2kf þϕðkf �ksÞ

; Dn ¼ ð1�ϕÞþðρ: CpÞs
ðρ: CpÞf

ϕ ð20Þ

Quantity of ε is defined as the aspect ratio between distance h and a characteristic length Lx of the slider. This ratio is
normally small. Berman’s similarity transformation is used to be free from the aspect ratio of ε:

v¼ �VðyÞ;u¼ un

U
¼ u0 � UðyÞþx

dV
dy

: ð21Þ

Introducing Eq. (21) in the second momentum Eq. (17) shows that quantity ∂Py/∂y does not depend on the longitudinal
variable x. With the first momentum equation, we also observe that ∂2Py/∂x2 is independent of x. We omit asterisks for
simplicity. Then a separation of variables leads to [11]:

UV 0 �VU0 ¼ 1
Re

1
Anð1�ϕÞ2:5

U″�Ha2Bnð1�ϕÞ2:5U
h i

ð22Þ

VIV ¼Ha2Bnð1�ϕÞ2:5V″þReAnð1�ϕÞ2:5 V 0V″�VV‴
� � ð23Þ

θ″¼ �Cn

Dn
ð1�ϕÞ2:5Pr Reð1�ϕÞ2:5Vθ0 þEcðu0U

0Þ2
� �

ð24Þ
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where primes denote differentiation with respect to y and asterisks have been omitted for simplicity. The dynamic boundary
conditions are:

y¼ 0:U ¼ 0; V 0 ¼ 0; θ¼ 0
V ¼ �1
y¼ 1:U ¼ 1; V 0 ¼ 0; θ¼ 1
V ¼ 1 ð25Þ

3. Describe least square method and applied to the problem

Describe least square method

As Sheikholeslami, Hatami and Ganji [19] defined least square method is one of the weighted residual methods which
are constructed on minimizing the residuals of the trial function introduced to the nonlinear differential equation.
Fig. 2. Comparison of LSM and numerical results for dimensionless velocities and temperature (a) U(y), (b) V(y) and (c) θθ(y).
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For perception the principle of LSM, consider a differential operator D is acted on a function u to produce a function p:

D uðxÞð Þ ¼ pðxÞ ð26Þ

It is considered that u is estimated by a function, ~u which is a linear combination of fundamental functions chosen from a
linearly independent set. This is,

uffi ~u ¼ ∑
n

i ¼ 1
ciφi ð27Þ

by substituting Eq. (27) into the differential operator, D, the result of the operations generally isn’t p(x) and a difference
will be appeared. Hence an error or residual will exist as follows:

RðxÞ ¼D ~uðxÞð Þ�pðxÞa0 ð28Þ

The main concept of LSM is to force the residual to zero in some average sense over the domain. So,Z
x
RðxÞWiðxÞ ¼ 0 i¼ 1;2;…;n ð29Þ

where the number of weight functions Wi, is accurately equal the number of unknown coefficients ci in ~u. The result is a set
of n algebraic equations for the undefined coefficients ci. If the continuous summation of all the squared residuals is
minimized, the rationale behind the LSM’s name can be seen. In other words, a minimum of

S¼
Z
x
RðxÞRðxÞdx¼

Z
x
R2ðxÞdx ð30Þ

In order to achieve a minimum of this function Eq. (30), the derivatives of S with respect to all the each unknown
parameter should be zero. i.e.

∂S
∂ci

¼ 2
Z
x
RðxÞ∂R

∂ci
dx¼ 0 ð31Þ

Comparing with Eq. (31), the weighted functions for LSM will be,

Wi ¼ 2
∂R
∂ci

ð32Þ

Because the “2” coefficient can be eliminated, it can be negligible in the equation. So the weighted functions, Wi, for the
least squares method are the derivatives of the residuals with respect to the unknown constants

Wi ¼
∂R
∂ci

ð33Þ
Table 3
Comparison between V(y), U(y) and θ θ(y) results from applied method for Re¼Ha¼1 and φ¼0.04.

Y LSM(U) LSM(V) LSM(θ) NUM() NM(V) NUM(θ)

0.00 0.000000000 �1.000000000 0.000000000 0.000000000 �1.000000000 0.000000000
0.05 0.022427956 0.9883224964 0.48923410 0.022428461 �0.9883236955 0.048923122
0.10 0.048138764 �0.9530069690 0.09974320 0.048144234 �0.9530054561 0.09997954
0.15 0.077069004 �0.8943169260 0.152817031 0.077069152 �0.8943159841 0.152816522
0.20 0.109155251 �0.8133498534 0.207115856 0.109156431 �0.8133489574 0.207115214
0.25 0.144334085 �0.7119329689 0.262535090 0.144335684 �0.7119325463 0.262534652
0.30 0.182542084 �0.5925189741 0.318739042 0.182543145 �0.5925185463 0.318738641
0.35 0.223715825 �0.4580818070 0.375392014 0.223717125 �0.4580817984 0.375391748
0.40 0.267791886 �0.3120123949 0.432158311 0.267792453 �0.3120120014 0.432157743
0.45 0.314706846 �0.1580144071 0.488702238 0.314707124 �0.1580141225 0.488701985
0.50 0.364397282 0.0000000000 0.544688099 0.364398164 0.0000000000 0.544687685
0.55 0.416799773 0.1580143920 0.599780198 0.416799842 0.1580140123 0.599780184
0.60 0.471850896 0.3120123796 0.653642839 0.471851123 0.3120123458 0.653642398
0.65 0.529487229 0.4580817941 0.705940326 0.529488259 0.4580817455 0.705940128
0.70 0.589645350 0.5925189616 0.756336965 0.589646384 0.5925189423 0.756336325
0.75 0.652261838 0.7119329594 0.804497058 0.652262287 0.7119325664 0.804496845
0.80 0.717273270 0.8133498466 0.850084910 0.717274598 0.81334954471 0.850084521
0.85 0.784616224 0.894316920 0.892764826 0.784617021 0.8943165412 0.892764430
0.90 0.854227278 0.953006964 0.932201111 0.854228137 0.9530061223 0.932200147
0.95 0.926043011 0.988322493 0.968058067 0.926054831 0.9883221447 0.968057752
1.00 1.000000000 1.0000000000 1.000000000 1.000000000 1.0000000000 1.000000000
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The LSM applied to the problem

It should be noted that the trial solution must satisfies the boundary conditions, and Eqs. (34)–(36), since the boundary
conditions are assumed to apply them [20] so the trial solution can be written as

UðyÞ ¼ yþc1ðy�y2Þþc2ðy�y3Þ ð34Þ

VðyÞ ¼ �1þc3
y2

2
�y3

3

� �
þc4

y2

2
�y4

4

� �
þc5

y2

2
�y5

5

� �
ð35Þ

θðyÞ ¼ yþc6ðy�y2Þþc7ðy�y3Þ ð36Þ
By introducing this equation to Eqs. (22)–(24) residual function will be found and by substituting the residual function

into Eqs. (34)–(36) a set of equations with seven equations and seven unknown coefficients will be appeared and by solving
Fig. 3. The effects of the nanoparticle and liquid phase material on velocity and temperature’s profiles.
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this system of equations, coefficients c1–c7 will be determined. By using LSM, when Re¼1, Ha¼1, Pr¼5.784, Ec¼1, φ¼0.04,
u0¼1, An¼1.318359242, Bn¼1.125, Cn¼1.124404794 and Dn¼0.9930146705 following equations will be determined for
temperature distribution and velocities for laminar nanofluid flow in channel with permeable walls in the presence of a
transverse magnetic field.

UðyÞ ¼ 0:4153077844yþ0:6692549096y2�0:0845626943y3 ð37Þ

VðyÞ ¼ �1þ4:610035778y2þ1:559856294y3�6:949819942y4þ2:779927864y5 ð38Þ

θðyÞ ¼ 0:9549552385yþ0:4926390805y2�0:4475943189y3 ð39Þ
Fig. 4. Effect of Hartmann number (Ha) on dimensionless velocities and temperature for water with copper nanoparticles, φ¼0.04, (a) V(y), Re¼1, (b) U(y),
Re¼1, (c) θθ(y), Re¼Ec¼1, Pr¼5.784. (d) V(y), Re¼5, (e) U(y), Re¼5, (f) θ(y), Re¼Ec¼5, Pr¼5.784.



Fig. 4. (continued)
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4. Results and discussion

In the present study LSM method is applied to obtain an explicit analytic solution of the laminar nanofluid flow and heat
transfer in a channel with porous walls in the presence of uniform magnetic field (Fig. 1). First, in Fig. 2 the comparison
between the present method and numerical method to solve this problem for Cu–water nanofluid has been shown.
Comparison between analytical and numerical methods for U, V and θ are provided in Table 3. As is observed the presented
analytical method is a valid and powerful method to solve this kinds of problems in science and engineering. The effects of
the nanoparticle and liquid phase material on velocity’s profiles are shown in Fig. 3. This figure reveals that when nanofluid
includes copper (as nanoparticles) or ethylene glycol (as fluid phase) in its structure, the U(y) value is greater than the other
structures. Effects of magnetic field on the temperature and velocity profiles are shown in Fig. 4. Generally, when the
magnetic field is imposed on the enclosure, the velocity field suppressed owing to the retarding effect of the Lorenz force.
Also the maximum value of θ increases because of Hartman number increases. For example for low Reynolds number, as
Hartmann number increases V(y) decreases for y4ym but opposite trend is observed for yoym, ym is a meeting point that



Fig. 5. Effect of Reynolds number (Re) on dimensionless velocities and temperature for water with copper nanoparticles, φ¼0.04, (a) V(y), Ha¼1, (b) U(y),
Ha¼1, (c) θ(y), Ha¼Ec¼1, Pr¼5.784 (d) V(y), Ha¼10, (e) U(y), Ha¼10, (f) θ(y), Ha¼Ec¼10, Pr¼5.784.
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all curves joint together at this point. Also it is worth to mention that the maximum value of θ happens in Re¼Ec¼5,
Pr¼5.784, Ha¼10. Effects of Reynolds number on the temperature and velocity profiles are shown in Fig. 5. The velocity
profile V(y) is not affected by Reynolds number changes. For low Hartman number, as Reynolds number increases.
For high Hartman number, as Hartmann number increases V(y) decreases for y4ym but opposite trend is observed for
yoym. It is worth to mention that the Reynolds number indicates the relative significance of the inertia effect compared to
the viscous effect and in turn increasing Re leads to an increase in the magnitude of the skin friction coefficient. For
low Ha, Pr and Ec number, as Reynolds number increases temperature increases for y4ym but opposite trend is observed
for yoym. For high Ha, Pr and Ec number, as Reynolds number increases maximum magnitude of temperature decreases.
Effect of Prandtl number on the temperature profile is shown Fig. 6. Generally, with increasing of Prandtl number,
the maximum value of theta increases in channel and the maximum value of θ occurs at Ha¼Re¼Ec¼10, Pr¼7.923.
Fig. 6 shows the effects of Eckert number on the temperature profile. Generally, increasing the Eckert number, the maximum
value of theta increases and maximum value of θ occurs at Ha¼Re¼Ec¼10. In all above result model I was used for
simulating μnf.



Fig. 5. (continued)
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5. Conclusion

In this study, least square method is applied to solve the problem of laminar nanofluid flow and heat transfer in a channel
with porous walls in the presence of uniform magnetic field. First of all a comparison between the applied method, LSM and
Numerical method is investigated. The results indicate that least square method has a good agreement with numerically
results. By solution of this equation the following points is concluded:
�
 In general, by applied magnetic field, velocity in the channel is reduced and the maximum amount of temperature
increases.
�
 Increasing of Reynolds number reduces the nanofluid flow velocity in the channel and also when the value of Hartmann,
Prandtl and Eckert number is low, increasing the Reynolds number increases the maximum value of θ but when the value
of Hartmann, Prandtl and Eckert is high, increasing the Reynolds number reduces the maximum value of θ.
�
 In general, increasing of Prandtl and Eckert number increases the maximum value of θ when the Reynolds and Hartmann
have a high quantity.



Fig. 6. Effect of Prandtl and Eckert numbers on dimensionless temperature for water with copper nanoparticles, φ¼0.04, (a) θ(y), Ha¼Re¼Ec¼1, (b) θ(y),
Ha¼Re¼Ec¼10, (c) θ(y), Ha¼Re¼1, Pr¼5.784, (d) θ(y), Ha¼Re¼10, Pr¼5.784.
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