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1. INTRODUCTION 

Let RN be a left R-module and let B = End RM be its endomorphism 
ring. When investigating the relationship between properties of B and 
properties of M, one very useful and well-known technique makes use of 
two natural dual Galois connections, Gl and G2, which exist between the 
lattice, L, of submodules of M and the lattices, L, or L,, of right or left 
ideals of B. The Galois connection, Gl, is given by the maps rg: L -+ L, 
and i,: L, --f L, where rB( U) = {h f B: Uh = 0 >, for U G M, and I,(J) = 
{FIZZ M: mJ= 01, for JC B. Hcrc, the restrictions, YB and fJw, of rB and I, 
to the Galois objects of GI, E={UEL:U=~&J), for JcB), and 
z, = ( JEI- L,: J= rB( U), for U c M), are mutually inverse bijections 
between L and L,. When studying a given property of B via G1, the first 
thing one needs to do is to determine the class of ideals of B which is 
associated with this property and, to establish that these ideals are Galois 
objects of G I. Once that is done, all that remains is to identify those sub- 
modules of M which correspond, via r,, to the relevant ideals. In this way, 
we obtain a correspondence theorem involving the particular ideals which 
concern us, and from this correspondence theorem it becomes possible to 
deduce conditions on M which are necessary and sufficient in order for B 
to possess the property under investigation. 

To illustrate, consider the property that B is right noetherian; here, the 
relevant ideals of B are all the finitely generated (f-g.) right ideals, since B is 
right noetherian if and only if it satisfies the ascending chain condition 
(a.c.c.) on f.g. right ideals. Now, when M is quasi-injective, every f.g. right 
ideal of B is a Galois object of G I. Moreover, FB and r, induce order- 
reversing bijections between the f.g. right ideals of B and the finitely closed 
submodules of M; hence, we can deduce that B is right noetherian if and 
only if A4 has the d.c.c. on finitely closed submodules [ 1, Corollary 4.3( 1 )I. 
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The beauty of this technique lies in the fact that it allows one to group a 
class of related properties of B and to treat them in a systematic and 
unified manner. In [ 11, for example, Albu and Nastasescu used this techni- 
que to study chain conditions on B and their relationship to chain con- 
ditions on M, and were consequently able to derive, in a unified and sim- 
plified manner, some classical results. In this paper, we use this same 
technique to give a unified and systematic treatment of properties of B 
associated with annihilators (such as the property that B is a Baer ring or a 
right or left upper or lower Levitzki ring), and of properties of B associated 
with left complements in B (such as the property that B is a left CS ring or 
a ring with finite left Goldie dimension). 

As we observed above, the key result one needs, when studying proper- 
ties of B via this technique, is a correspondence theorem between those 
ideals of B which are associated with the property under investigation and 
certain submodules of M. Consequently, we direct our efforts here towards 
the establishment of correspondence theorems for annihilators and of 
correspondence theorems for left complements, and we find that, in this 
way, we can coordinate a variety of well-known results, as well as deduce 
some new results, all within one unified, simplified framework. 

In Section 2, we establish the correspondence theorems for annihilators 
(Theorems 2.2 and 2.5) and from these we can immediately deduce, for 
example, necessary and sufficient conditions on M in order that B should 
be Baer (Corollaries 2.3, 2.4, and 2.6) or Levitzki (Corollary 2.7). In Sec- 
tion 3, we establish the correspondence theorems for left complements 
(Theorems 3.5, 3.7, and 3.10), which, analogously, give us as corollaries 
necessary and sufficient conditions on M in order for B to be left Goldie 
(Corollaries 3.4 and 3.14) or left CS (Theorem 3.6 and Corollaries 3.8, 3.9, 
and 3.11). In some cases, the correspondence theorems are applied 
together, and we try, as much as possible, to compare the various 
hypotheses on M which are sometimes required for the establishment of 
these correspondence theorems. We end the paper with a small diagram 
summarizing the relationships between the various types of modules used 
in our correspondence theorems. 

2. CORRESPONDENCE THEOREMS FOR ANNIHILATORS 

Throughout this paper, unless otherwise indicated, R denotes an 
associative ring with 1, J4 a left R-module, and B the ring of 
R-endomorphisms of J4. The action of homomorphisms will be written on 
the side opposite to that of the scalars. 

The right (left) annihilator in B of a subset, H, of B will be denoted by 
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$I?( H)( 9’( H)), while Y and 1 will be used for annihilators in A4 of subsets of 
B, or in B of subsets of M: 

l,(H)= (mEM:mh=O, for each hi U), for Her 3 

rB( U) = (h E B: ub = 0, for each u E U), for Ucr M. 

Also, let 1,(U) = f h E B: Mb c VI, for any submodule, U, of M, and 

i m,h,:m,EM, h,EH for any subset II of B. 
!=I 

The following Lemma is straightforward: 

LEMMA 2.1. (i) S,f,(U)r U and Ucf~rB(U), for any .~~brno~~fe, U, 
of ht?. 

(ii) Z,/,(H) = Y(H) and r,S,(H) = .9?(H), for Hc B. 

Let L be a complete lattice. A closure operator on L is a mapping 50: L -+ L, 
written q$a)=a”, such that: 

(cl) a < h implies a” < h’; 

(c2) a < 0"; 

(c3) (a”)“‘= a’. 

An element a is closed under cp if a = a’. 
Let L’ be another complete lattice. A Galois convection between L and L’ 

is a pair of mappings 0: L -+ L’ and r: t’ + L satisfying: 

(1) x,<,q implies ammo for x,,.Y2EL. 

(2) y1 <.rz implies r(~~)>,z(y,) for y,, yzEL’. 
(3) x < TIT(X) and y < or(y) for x E L, y E L’. 

Given a Galois connection, it can be shown that aso =a(~) and 
rtrr(y) = r(y) for ,Y E L, y E I,‘, so that the maps err and zc are closure 
operators on L and L’, respectively. The closed elements, or Galois objects, 
in L (resp. L’) are those which are of the form z(y) for some 1;~ L’ (resp. 
a(x) for some .YE L). Set L= r(L’) and L’= g(L), and let 5: L + L’ and 
f: ii’ + L denote the restrictions of g and r to the sets of Galois objects of 
L and L’, respectively. Then it is straightforward to show that ci and ? are 
inverse bijections to one another. 

For RM a left R-module and B = End RM, let L denote the lattice of sub- 
modules of M, L, the lattice of right ideals of B, and L, the lattice of left 
ideals of B; for any lattice, A, let AOP denote its opposite lattice, i.e., A 
ordered by the opposite order. Then it is easily seen that: 
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- the mappings rR and I, form a Galois connection Cl, between L 
and L,; 

- the mappings I, and S, form a Galois connection G2, between L 
and (L,)“‘; and 

~ the mappings Y and 9? form a Galois connection between L, and 
L,. 

The Galois objects I,(H) of M are called the a-closed submodules of M, 
and the Galois objects S,(H) of M are called the M-cotorsionfess sub- 
modules of M. The Galois objects 9’(H) and 9(H) are, of course, the left 
and right annihilator ideals of B. 

The following observation is easily verified and will be used without 
comment in the sequel: If U is a direct summand in M, then U is u-closed 
and M-cotorsionless. 

If J is a right ideal of B which is generated by an idempotent Ed B, i.e., 
J= eB, then J is a right annihilator ideal in B, in fact, J= 9?[ B( 1 - e)], 
and similarly for left ideals. In case &! is a vector space, then we have, 
conversely : 

(a) if J is a right annihilator ideal in B, then J is generated by an 
idempotent in B; and 

(b) if H is a left annihilator ideal in B, then H is generated by an 
idempotent in B. 

Moreover, in any ring B with 1, (a) and (b) are equivalent properties. Any 
ring having properties (a) and (b) is called a Baer ring. 

Baer endomorphism rings have been investigated by several authors, 
using the three Galois connections mentioned above (cf. e.g., [S, 7, 51). 
These Galois connections are especially appropriate for the investigation of 
when B is a Baer ring, since, by Lemma 2.l(ii), any right or left annihilator 
in B= End ,$J is a Galois object. Consequently, according to the techni- 
que outlined under Introduction, the main task here is to identify those 
submodules of M which correspond to the left or right annihilators in B. 
For simplicity and conciseness in the statement of our theorems, recall that 
if we have two partially ordered sets, then a bijection between them which 
is order-preserving (resp. order-reversing) is called a projectivity (resp. a 
duality). 

THEOREM 2.2. The mups U + rg( U) and J + i,(J) determine u duality 
between S, = {U G M: U = l,r,[S,Z,( U)]} and the right annihilators 
.d(~.)= {J&B: J-~(H), H&B). 

ProoJ For any UE S,, we have rB( U) = r,[S,,,Z,( U)] = 3[ZB( U)], by 
Lemma 2.l(ii); i.e., re( U) is a right annihilator in B. On the other hand, let 
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J= W(H) be a right annihilator in B, and let U = IM(J). Then, by Lemma 
2.1 (ii), 

= I,.@?(H) = lM( J) = 6’; 

i.e., U E S,. Since any UE S, is a-closed and any right annihilator, 
J=R(H), is a Galois object J=r,S,(H), we have: U=l,r,SMIle(U) + 
riJ( U) = .@[I,( U)] -+ l,r,( U) = U, and J = g(H) = rBSM(H) -+ I,+,(J) = 
I,,,, rs S,( H) + rB l,,,( J) = J. Hence the two order-reversing mappings are 
inverses of each other and so determine a duality. 1 

COROLLARY 2.3. B is a Baer ring if and only if euery U E St is a direct 
s~mmand in M. 

Proof: Assume that every UE S, is a direct summand in M, and let 
J= L%(H) be a right annihilator in B. Then U = l,,,(J) is in S1 , so there is 
an idempotent eE B such that U = Me. It follows that J= r,l,(J) = 
rB( U) = r&Me) = B(e) = (1 - e)B, i.e., J is generated by an idempotent in 
B, proving that B is Baer. 

Conversely, assume that B is a Baer ring and let U E S, . Then J = r,(U) 
is a right annihilator in B, so J= eB, for e = e2 E B. It follows that 
U = l,r,( U) = lM(J) = l,(eB) = I,(e) = M( 1 - e); i.e., U is a direct sum- 
mand in M. 1 

COROLLARY 2.4. Q” &f is semisimple~ rhen E is a Baer ring. 

If every submodule, U, of M is M-cotorsionless, i.e., U = SMI,( U), then 
it4 is said to be a self-generator [9]. Any free module and any semisimple 
module is a self-generator; another example of a self-generator is any 
infinitely generated projective module containing a unimodular element 
(cf. [6]). The property of being a self-generator is very useful, and often 
plays a crucial role, in establishing correspondences between the a-closed 
submodules of M and the right annihilators of B (cf., e.g., [S-S]). 
However, it is not necessary for M to be a self-generator in order to have 
such a correspondence theorem; rather, an approximation of self- 
generation is sufficient~and necessary-in order that rA and I, should 
induce a lattice anti-isomorphism between Vu = { U c M: U = l,r,( U) > 
and the right annihilators &(B.). 

DEFINITION 1. Using the notation l,r,(U) = U” for the “a-closure” 
operator 1, rB, we will call M an a-self-generator if, for every a-closed sub- 
module, U, of .&I, we have U= [S,Z,( U)]“. It turns out that this con- 
dition on M is also equivalent to obtaining a fattice isomorphism, via ID 
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and S,, between V” and the left annihilators ,d(.B) = (HG B: H = xl(J), 
JcB), for, we have: 

THEOREM 2.5. The ,following UYP equivalent: (1) &! is an a-selfl 
generator. 

(2) The maps U + rB(U) and J-+ l,(J) determine a lattice anti- 
isomorphism between Vu and &(B.). 

(3) The maps U + Z,(U) and H -+ [S,(H)]” determine a lattice 
i.~o~~orphi~~m between %Y and &(. Bf. 

Proof: (1) * (2) Always: S, c ‘c”; M is an ~-self-generator if and only 
if WC S,. Clearly, V” E S,-or, equivalently, V = S,-implies, by 
Theorem 2.2 that rg and i, determine an anti-isomorphism between W’ 
and .02( B.). 

(2) =+ (1) If rB and I,,,, give such an anti-isomorphism, then, for any 
U E %““, we have rB( U) = C&?(H), for Hc: B, hence 

Ell,rBISMZB(U)] = I,r,[S,Z,l,r,(U)] =l,KY.@(H) 

= i,,,,g(H) = I,r,( U) = Ii; 

i.e., U E S,. 
(l)*(3) Note first that, for any UEV, IB(U) is in .d(.B), since 

I,(U) = I,l,r,(U) = Yr,( U), and, clearly, [S,(H)]” E %Y for any H c B. 
Now assume (1); then, we have, for any UE V, U + I,(U) -+ 
[S,Z,(U)]“= U, and, for any HE&(.@, H+ [S,,,(H)]“-+ 
Z,l,r,S,( H) = dp%?( H) = H. Hence the two order-preserving maps are 
inverses of each other, and so determine a lattice isomorphism. 

(3) =F (1) If the two maps are inverses of each other, then we have 
U= [S,I,(U)J” for UE%?. 1 

COROLLARY 2.6. Let ,+M be an asset-generator. Then B is a Baer ring 
if and only tf every a-cloyed submodule of M is a direct ~ummand in M. 

Remarks. (1) Any self-generator is clearly an a-self-generator. In 
Section 3, we shall give an example of an a-self-generator which is not a 
self-generator. 

(2) Corollary 2.4 is Theorem 6 of [S]. If M is a free module, then the 
a-closed submodules coincide with the dual-closed submodules and 
Corollary 2.6 gives Theorem 9 of [S] or Theorem 2 of [7]. The a-closed 
submodules and the dual-closed submodules coincide also in case A4 is an 
infinitely generated projective containing a unimodular element, in which 
case Theorem 2.5 gives Theorem 3.8 of [6]. 
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(3) Theorems 2.2 and 2.5 can be applied to investigate other properties 
of B having to do with annihilators. Recall that B is said to be right upper 
(lower) Leuitzki if it satisfies the a.c.c. (d.c.c.) on annihilator right ideals. 
Left Levitzki rings are defined analogously. It follows immediately, for 
example, that: 

COROLLARY 2.7’. Let RM be an a-self-generator. Then B is right upper 
(lower) Levitzki zf and only if M satisfies the d.c.c. (act.) on a-closed sub- 
modules, and B is left upper (lower) Levitzki if and only if M satisfies the 
a.c.c. (d.c.c. ) on a-closed submodules. 

Another class of rings which is defined in terms of annihilators, and is 
closely related to Baer rings, is the class of Rickart rings. Recall that B is a 
left (resp. right) Rickart ring if the left (resp. right) annihilator of any 
element of B is generated by an idempotent in B. Just as in the case of Baer 
rings, we can use our Galois connections to find out when B = End RM is 
right or left Rickart. Using similar proofs, we easily find, for example, that: 

PROPOSITION 2.8. The maps U + rB( U) and J+ l,(J) determine a 
duality between K,= {UEM: U=(Mb)LI, for beB} and &,(B.)= {JcB: 
J= g(b), b E B), and B is a right Rickart ring ifand only ifevery U E K, is a 
direct summand in M. 

PROPOSITION 2.9. Let RM be an a-self-generator. Then the maps 
U + ZB( U) and H + [S,,,,(H)]“ determine a projectivity between K, = 
(UcM: U=I,(b)=kerb, for beB} and d,(.B)={HsB: H=.Y(b), 
b E B}, and B is a left Rickart ring if and only if every U E K, is a direct 
summand in M. 

If we take M to be a free module, then Propositions 2.8 and 2.9 give 
Theorem 3 of [7]. 

3. CORRESPONDENCE THEOREMS FOR LEFT COMPLEMENTS 

As mentioned under Introduction, in order to use our Galois connec- 
tions to study a property of B which is defined in terms of a certain class of 
ideals of B, we need to establish that these ideals are Galois objects of Cl 
or G2. In Section 2, this relationship already existed since, for any RM, any 
right or left annihilator is a Galois object in Cl or G2. When dealing with 
ideals other than annihilators, however, we need to choose M in such a 
way that the required relationship, between the ideals in question and the 
Galois objects of Cl or G2, can be established. For example, when the 
relevant ideals are f.g. right ideals, M is taken to be quasi-injective since, 
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for such an &, J= r&,,,,(J), for any f.g. right ideal, J, of 3 [ 1, Proposition 
4.11. In this section, since we are interested in properties of B defined in 
terms of left complements, we shall be dealing mostly with nondegenerate 
modules (which we shall define in a moment), for, when M is non- 
degenerate, every left complement, H, in B is a Galois clement of G2; i.e., 
H=I,S,(H). 

Before defining a nondegenerate module, we recall some notation: 
M* = I-Iom,(M, R) denotes, as usual, the dual module of M, 
T= (M, M*)= (x;=, mif,: miEM, f,~ IV*} denotes the trace of M in R, 

and CR, &fB, B MS, B) is the standard Morita context for M, with the 
R - R-bimodule homomorphism ( , ): M 0 B M* -+ R given by (m, f) = mf; 
for mEM, feM*, and the B- B-bimodule homomorphism [ , ] : 
M*@~M-+Bdefinedbym,[f,m]=(m,,f)m,form,m,~M,f~M*. 

Also, RU c ’ RM denotes that U is an essential R-submodule of M, i.e., 
that U has nonzero intersection with each nonzero R-submodule of M. 

DEFINITION 2. We will say that RM is nondegenerate if: 

Tm=O=+m=O, for any m E M. 

The following Proposition is easily verified. 

PROPOSITION 3.1. For arty RM, the foIlowing are equivalent: 

(1) +I4 is nondegener~te. 

(2) For each mEM, [M*, m] =O imp&s m=O. 

(3) For each submodule, KU, of KM, TU c ’ RU. 

Any free module, in fact, any generator, is nondegenerate. A self- 
generator, on the other hand, need not be nondegenerate: the Z-module 
Z/p”Z is a self-generator which is not nondegenerate. M can also be non- 
degenerate without being a self-generator: let R be the ring of all Cauchy 
sequences in Q with component-wise multiplication and M the ideal of 
zero sequences; then M is nondegenerate but not a self-generator. 

Recall that RM is said to be nonsingular if, for any m E M, Im = 0, with RI 
an essential left ideal of R, implies m = 0. From Definition 2, it is clear that 
any nonsingular module with essential trace is nondegenerate. Another 
example of nondegenerate modules is: any torsionless module over a 
semiprime ring. 

Nondegenerate modules possess several properties which make them 
especially appropriate for establishing correspondence theorems for left 
complements in B. In particular, the property that, for M nondegenerate, 
every left complement, H, in B satisfies H = Z,S,(H) will follow directly 
from (3) of the next proposition. Before stating Proposition 3.2, we remark 
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that the following well-known property of essential submodules will be 
used without comment in the sequel: If ,$Jc .VCE &4, then ,&IJ c’ ,+%4 if 
and only if ,& (=’ ,Vand RVc’RM. 

PROPOSITION 3.2. Let RM be nondegenerate. Then: 

(I ) For any nonzero subm~d~ie, U, of M, we have: IB( U) # 0. 

(2) If H and J are left ideals of B such that HE: J, then we have: 

gH c’,J if and only if S,(H) c ’ S,(J). 

(3) For any left ideal, H, in B, we have: gH t ’ IsS,(H). 

(4) If U and V are s~brn~d~Ie~ of h4 such that UC V, then we have: 

.UC’,V if’ and only if I,(V) c ’ I,( V). 

(5) M is an a-self-generator. 

ProoJ: (1) Let U be a nonzero submodule of M, and let 0 # UE U. 
Then, since M is nondegenerate, CM*, u] # 0 (Proposition 3.1). From 
~[M*,~]=(M,~*)~~R~, we see that CM*, u] E Z,(U); hence 
1st U) # 0. 

(2) Assume that $ c ’ d and let 0 # m = x;2, mi jj E S,(J), with 
mjEMandjiE Jfor i= 1, . . . . n.ThenO#[M*,m]=C;=, [M*,miJji~J, 
hence [M*, m] n Hf 0. We have: O#M(Hn [M*,m])sMHn 
M[M*,m]=MH~(~, M*)m_cMHnRm; therefore, MH=S,(H) C’ 
s,(J). 

Conversely, assume that S,(H) c’S~(J), for HcJ, and let O#CEJ. 
Then, MC # 0 implies MC n S,(H) # 0, and this implies: 

hence gH c ’ BJ. 

(3) From S~(~~=S~~~S~~~), for any left ideal, BH, in B, we have, 
in particular, that S,(H) c ’ S,Z,S,(H), hence by (2), H t ’ IDS,(H). 

(4) Observe first that it follows from (1) that, for any nonzero sub- 
module, U, of M, we have S, Ie(U) c ’ U; for, if 0 # u E V, then there is 
0 # b E I,(Ru). Hence, since I&R@) c ZB( U), we have: 0 #Mb E 
Run S,JB(U), so that S,I,(Uf c’ RU. 

Now let U and V be nonzero submodules of M such that UC: V (the 
cases when one or both of U and V is 0 are trivial), and assume first that 
RUC’R V. Then, we have: IB( U) _c I,{ V), S,I,( U) c S,I,( V) c ’ V, and 
S,f,( U) c ’ U c ’ V; therefore, S,I,( U) c ’ V and hence +SMls( U) c ’ 
SMZR( V), and this last implies, by (2), that Z,(U) c: ’ f,( V). 
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Assume now that Z,(U) c ’ Z,( Y). Then, using (2), we have 
S,Zs( U) c ’ SMZ,( V) t ’ V, hence S,Z,( I/) c ’ V. But S,Z,( U) c ’ U c V, 
hence S,Z,( U) c ’ I/ implies that U c ’ I/. 

(5) Let U be an a-closed submodule of M. It will suffice to show that 
T~(U)=T~[S~Z~(U)], for then U=I,T~(U)=I,~T~[S~Z~(U)]. Clearly, 
since S,Z,( U) c U, we always have rB( U) c r&S,Z,( U) J. For the reverse 
inclusion, let b E r,[SMZe( U)], so that [S, ZB( U)] b = 0 and consequently 
[Z,(U)] h = 0. If u is any nonzero element in U, we have, by non- 
degeneracy, CM*, u] # 0. But, as we noted in (l), [M *, u] s Zs( U), so that 
CM*, z.&] = CM*, u]bc [ZB(U)]b=O, which last implies, by non- 
degeneracy again, that uh = 0. Hence 6% = 0 and h E r,(U), completing the 
proof. 1 

Property (1) of Proposition 3.2 is of interest in itself: 

DEFINITION 3. We wiil say that ,& is ~~~~~e~~~~~ if, for any nonzero 
submodule, U, of M, we have: Is(U) #O. Moreover, if “8’ is any closure 
operator on L, then we will say that M is c-retractable if, for any nonzero, 
c-closed UC M, we have: Z,(U) # 0. 

It follows easily from the proof of Proposition 3.2(4) that M is retrac- 
table if and only if S,Z,(U) c ’ JJ for each nonzero submodule, U, of kZ. 

Combining Proposition 3.2(5) with Corollaries 2.6 and 2.7, we get: 

COROLLARY 3.3. Let &f be nondegenerate. Then: (I ) B is a Baer ring iJ‘ 
and only if every a-closed submodule of M is a direct summand in M; (2) B is 
right upper (lower) Levitzki if and only [f N satisfies the d.c.c. (a.c.c.) on 
a-closed ~ubmodu~es; and (3) B is !eft upper (lower) Levitzki tf and only if M 
satisfies the a.c.c. (d.c.c.) on a-closed submodules. 

Before proving our first correspondence theorem for left complements, 
we recall that: A submodule, Jl, of M is said to be a complement in M if U 
has no proper essential extension in M or, equivalently, if there is a sub- 
module, V, of M such that U is maximal with respect to the property 
un v= 0. 

M is said to be a CS rn~du~e if every complement in M is a direct sum- 
mand in M. A ring R is said to be a left (right) CS ring if RR(RR) is a CS 
module. Injective and quasi-injective modules are CS modules, as are 
semisimple and uniform modules; for other examples, see, e.g., [2]. N is 
said to be unite-dimens~ona~~ in the sense of Goldie-notation: 
d( ,M) < co--if M satisfies the a.c.c. on complement submodules. A ring R 
has kite left (right) Goldie dimension if RR(RR) is finite-dimensional. R 
is a left Goldie ring if it satisfies the a.c.c. on left annihilators and on left 
complements. 
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It is known that, if ,& is nondegenerate, then d( #) = d( BB), so that M 
is unite-dimensional if and only if B has finite left Goldie dimension (cf. 
e.g., [4, Proposition 33). Combining this with Corollary 3.3(3), we obtain: 

COROLLARY 3.4. Let RM be nondegenerate. Then B is a left Goldie ring 
if and only tf M satisfies the a.c.c. on a-closed and on complement sub- 
modules. 

THEOREM 3.5. Let &M be non~generate. The maps U--+ L,(U) and 
H -+ S,(H) determine a projectivity between S, = { U E M: U = S,+, Is{ U) 
and Is(U) is a complement left ideal in B) and the complement left ideals 
c(3)= (HG B: H is a complement left ideal of B ). 

Proof Clearly, by definition, if UE S2 then I,(U) E C(.B). On the other 
hand, if HE C(. B), then S,(H) is M-cotorsionless and f,S,(H) = H by 
Proposition 3.2(3), hence S,(H) E S,. We have: for UE Sz, U -+ 1,(U) -+ 
S,Z,( U) = U, and, for HE C(.B), H -+ S,(H) -+ Z,S,(H) = H. Hence, the 
two order-preserving maps are inverses of each other and so determine a 
projectivity. [ 

THEOREM 3.6. Let .M be non~generate. Then: (1) B is a left CS ring if 
and only if every U E S, is a direct summand in M; (2) If M satisfies the 
a.c.c. on M-cotorsionless submodules, then B is a left Goldie ring. 

Proof (1) Assume that every U E S2 is a direct summand in h4, and 
let H be a complement left ideal of B. Then S,(H) E S,, hence, there is an 
idempotent, e = e2, in B such that S,(H) = Me, and H = I,S,(H) = 
I,(Me). But I,(Me) = Be, for, clearly, e E I,( Me), hence Be c Ze(Me), and, 
conversely, for b E Z,(Me), we have, for any m E M, mb = m, e for some 
m, E M, hence mbe = m, e2 = mb; i.e., b = be E Be. It follows that H = Be; i.e., 
H is a direct summand in B. 

Conversely, assume that B is left CS and let U E Sz. Then I&U) is a left 
complement in B, so I,(U) = Be, where e= e2E B. It follows that 
U= S,I,( U) = S,(Be) = Me, so U is a direct summand in M. 

(2) Assume that M satisfies the a.c.c. on M-cotorsionless submodules. 
Then, in particular, M satisfies the a.c.c. on the elements of S,, and this 
implies, by Theorem 3.5, that B satisfies the a.c.c. on complement left ideals. 
Next, let Y(Ki) c Y(K,) E . ‘. be an ascending chain of left annihilators in 
B. Then S,[z(K, )] c S,[9(K2)] c . . . is an ascending chain of 
M-cotorsionless submodules of M; hence, there is an n >O such that 
S,[$P(K,)] =IS,+,[.Y(K,+~)], for j> 1. Then, using Lemma 2.l(ii), we 
have ~~(~~)=r,S,[~(K,)J=r,S,[~(K,+j)J=~~(Kn+j), for ia 1, 
and therefore 8(&) = Y(Km,i) for j> 1, proving that B satisfies the a.c.c. 
on left annihilators. 1 
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Remark. From Theorem 3.6(2) and Corollary 3.4, we see that, for a 
nondegenerate M, if M satisfies the a.c.c. on M-cotorsionless submodules, 
then M satisfies the a.c.c. on a-closed and on complement submodules. 

Things become more interesting when the nondegenerate module is, in 
addition, a self-generator or a CS module, for, in both of these cases, the 
submodules of S, are precisely the complements of M. 

THEOREM 3.7. Let $%I he nondegenerate. If h4 is a self-generator or a 
CS module, then the maps I, and S, determine a projectivity between the 
complement submodules of M and the complement left idea& of B. 

Proqfi By Theorem 3.5, it will be sufficient to show that U f S, if and 
only if U is a complement in M. 

Let U E S,, so that U = S,Zg( U) and Is{ U) is a left complement in B. 
Suppose that RU c ’ RV; we may assume, using Zorn’s Lemma, that V is a 
complement in M. By Proposition 3.2(4), ZB( U) c’ ZB( I’), hence, since 
Zs( U) is a left complement, ZB( U) = Z,(V) and U = S,I,( U) = S,Z,( V). If 
M is a self-generator, then every submodule is A4-cotorsionless, so 
I/= SMZg( V) = W, and U is a complement; and if M is CS, then every com- 
plement is a direct summand hence M-cotorsionless, so again 
V = S,,,,Z,( I’) = U and U is a complement. 

Conversely, let U be a complement in M. Then if M is a self-generator or 
a CS module, U is ~-cotorsionless. To see that Z,(U) is a left complement 
in B, suppose that ZB( U) c ‘J, where J may be taken to be a left com- 
plement in 3 (using Zorn’s Lemma). Then, by Proposition 3.2(2), 
S,+fZI,( U) c ’ S,(J), so u = S,Z,( U) c: ’ S,,,,(J), hence U = S,(J) since U is 
a complement. But this implies .J c Zs( U), hence .Z= Z,(U), proving that 
Zs( U) is a left complement in B. This shows that U E S, and completes the 
proof. 1 

COROLLARY 3.8. Let R&l be a nondegenerate self-generator. Then B is a 
/eft CS ring if and only if M is a CS module. 

COROLLARY 3.9. Let &f be a nondegenerate CS module. Then B is a left 
CS ring. 

From these last results we see that the existence of a projectivity between 
the complements of M and the left complements of B is a very useful thing 
to have, since the existence of such a projectivity means that B is left CS iff 
A4 is CS. We shall now show that, for a nondegenerate M, it is possible to 
have such a projectivity without requiring A4 to be a self-generator or a CS 
module, but simply by taking M to be nonsingular. In this case, however, 
the maps which give the projectivity must be adjusted slightly in order to 
make up for the fact that we do not have as many M-cotorsionless sub- 
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modules at our disposal as we had in the case of CS or self-generating 
modules. We recall here that, when A4 is nonsingular, then, to any sub- 
module, U, of M, there corresponds a unique complement, U’, in M such 
that U c’ U’ (cf. [3, p. 61, Proposition 71). The map lJ-* U’ defines a 
closure operator, called the essential closure (or e-closure) operator, on the 
lattice L of submodules of M. 

THEOREM 3.10. Let ,$f he nondegenerate and nonsingular. Then the 
maps U -+ I,(U) and H + [S,(H) J” determine a projectivity between the 
complement ~~brnod~ies of M and the complement left ideals of B. 

Proof Let U be a complement submodule of M; we will show that 
IB( U) is a complement left ideal of B. Suppose that IB( U) c ’ H, where we 
may assume, by Zorn’s Lemma, that II is a complement left ideal of B. 
Then, by Proposition 3.2(2), S,,,,ZB( U) c/S,,,(H), and this implies that 
[S,,,I,(U)]‘= [S,,,(H)]‘. But, by Proposition 3.2(l), S,Z,(U) c’ U, so 
that U= [S,,,,I,(U)]‘= [S,(H)]‘, and this implies, in particular, that 
S,(H) c U hence that HE Z,(U). Therefore, H = I,(U), so Z,(U) is a left 
complement in B. Conversely, it is clear that [S,(H)]’ is a complement in 
M for any left ideal, H, in B. 

If H is any left ideal of B, we have S,(H) c ’ [S,(H)]‘, and, since 
M is nondegenerate, we have, by Proposition 3.2(4), IBS,(H) c ’ 
I,([S,(IY)]‘), and, by Proposition 3.2(3), H ~‘Z~S~~H). Tf H is a com- 
plement left ideal in B, then we have H= ~~S~~~) = I,{ [S,(H)]“}. We 
have U -+ I,( U) + [S,Z,( U)]‘= U, for each complement, U, of h4, and 
H -+ [S,(H)]’ + Z,{ [S,(H)]‘} = H, for each complement left ideal, II, of 
B. Hence the two order-preserving maps are inverses of each other and so 
determine a projectivity. 1 

COROLLARY 3.11. Let ,$4 be nondegenerate and nonsingular. Then B is 
a left CS ring if and only if M is a CS module. 

Proof: Assume that M is a CS module and let H be a left complement 
in B. Then [S,(H)]‘= Me, for e=e2 E B, and H = Z~~[S~(H)]‘~ = 
f,(Me) = Be. Hence H is a direct summand in B, proving that B is a left C’S 
ring. 

Conversely, assume that B is a left CS ring, and let U be a complement 
in M. Then ZB(U)=Be, for e=e2EB, and U=[S,I,(U)]‘= 
[SM(Be)]” = [Me]’ = Me, the last equality since every direct summand is 
e-closed. Hence U is a direct summand in M and M is a CS module. fi 

As is clear from the last three Corollaries, complements in M play an 
important role in determining when B is left CS. Our next theorem shows 
that complements can also play an important role in determining when B is 
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Baer. We will first prove a Lemma which will enable us to use the results of 
Section 2 for the proof of Theorem 3.13. Using Definition 3, we will say M 
is e-retractable if I,(U) # 0, for each nonzero complement, U, in M. 

LEMMA 3.12. Let ,+I4 be a nonsingular, e-retractable module. Then M is 
an a-self-generator. Consequently, B is a Baer ring 11 and only if every 
a-closed submodule of M is a direct summand in M. 

ProojI Let U = I,r,( U) be an a-closed submodule of M. We will show 
first that, since M is nonsingular, Ii is a complement. In order to do this, 
we will make use of the following well-known property of essential exten- 
sions: If RN c ’ & and 0 # k E K, then the left ideal, J, of R defined by 
J= [N: k] = {rE R: rkE N) is essential in RR (cf., e.g., [3, p. 46, 
Lemma 31). Let V= U’, so that, in particular, U c’ V; then, cleariy, 
rg( V) E r,(U). Conversely, let b E re( U); then we will show that .5 E r,(V). 
Let UE:V; then the left ideal ,I=[U:v]={rER:ruEU} c’~R, and we 
have Ivb = 0. Since ,,$4 is nonsingular, this implies ub = 0, i.e., b E re( V), 
and rs( V) = r J V). We have I/ c 1, rB( V) = I, r B( U) = U, hence U = V, and 
U is a complement in M. 

In the preceding paragraph, we showed that, if U and V are any two 
submodules of M such that & c’ R V, then rs( U) = r,( V). We will show 
next that, since M is e-retractable, we have S,IB(C) c ’ C, for any 
complement submodule, C, of M. Let 0 # CE C; then we have 0 # Y = 
(Rc)’ E C and 0 # I,( Y) c IB( C). Let 0 # b E I,( Y); then 0 # Mb c Y implies 
0 # Mb n Rc c S,f,(C) n Rc, proving that S,I,(C) c ’ C. 

Now, if LJ is any a-closed submodule of M, then U is a complement and 
we have S,Z,( U) c ’ U. Hence rB[SNZB( V)] = rs( U), and U= I,r,( U) = 
/MrBISIWZB(U)], proving that M is an a-self-generator. The second asser- 
tion of the Lemma now follows directly from Corollary 2.6. i 

THEOREM 3.13. Let ,& be a nonsingular, CS module. Then B is a Baer 
ring. 

Proof If 0 # U is a complement in M, then, since M is CS, U is a direct 
summand in M, so U = Me for some e = e2 E B. Hence, ZB( U) # 0; i.e., a CS 
module is e-retractable. Also, since a complement is a direct summand, 
every complement in M is a-closed. On the other hand, we know from the 
proof of Lemma 3.12 that, when M is nonsingular, every a-closed sub- 
module is a complement. Hence, in a nonsingular CS module, M, U is a 
complement if and only if it is a-closed. Since M is, in particular, non- 
singular and e-retractrable, we know from Lemma 3.12 that B is a Baer 
ring if and only if every a-closed submodule is a direct summand in M, i.e., 
if and only if every complement submodule is a direct summand in M, i.e., 
if and only if M is CS. Hence B is Baer and the proof is complete. 
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Combining the fact that, in a nonsingular module, every a-closed sub- 
module is a complement, with Corollary 3.4, we get: 

COROLLARY 3.14. Let RM be nondegenerate and nonsingular. Then B is 
a left Goldie ring if and only if M sati$es the a.c.c. on complement sub- 
modules, i.e., zff d( RM) < CD. 

Combining Corollary 3.9 and Theorem 3.13, we have: 

COROLLARY 3.15. Let RM be nondegenerate, nonsingular, and C’S Then 
B is Baer and left CS. 

A comparison of the two results, 

M nondegenerate CS* B left CS (Corollary 3.9); and 
M nonsingular CS=+ B Baer (Theorem 3.13), 

naturally brings up the questions: what is the relationship between Baer 
rings and left CS rings and what is the relationship between nondegenerate 
modules and nonsingular modules? 

In order to answer the first question, we recall first that a ring R is said 
to be left co-nonsingular if every left ideal of R which has zero right 
annihilator is essential. Note that a Baer ring is always both left and right 
nonsingular, whereas a left CS ring need not be left nonsingular. It is 
known that: A ring is left nonsingular, left CS if and only if it is a left 
co-nonsingular Baer ring ( [2, Theorem 2.1 I). 

With regard to the second question, we have: 

PROPOSITION 3.16. Let RM be nonsingular. Then RM is nondegenerate if 
and only if RM is retractable and TM c ’ RM. 

Proof: Assume that the nonsingular M is retractable and satisfies 
TM c ’ M. We will show that M is nondegenerate by proving that 
TU c ’ U for any nonzero submodule, ZJ, of M, for then this implies 
O# TU=(M, M*)U=M[M*, U] and hence [M*, U] #O. 

Note first that M[M*, U] = (M, M*) UC U, so that [M*, U] c I,( U). 
We have: (M, M *) U = M[M *, U] c S,,,,Z,( U) G U, and, by retractability, 
S,Z,(U) c’ U, so it remains to show that (M, M*)U c’ SMZ,(U). Let 
O#MES,Z,(U), and write u=Cr=, m,bi, with miEM, b;EZ,(U), and 
mibi # 0, for i= 1, . . . . n. Set K,=[(M,M*)M:rn,l={r~R:rrn,~ 
(M, M*)M}; then RKi c’ RR and 0 # KimibiG (M, M*) Mb, n Rm,b,, for 
i=l,...,n. Let J=l,(u)={r~R: ru = O}; then, since M is nonsingular 
and u # 0, J is not an essential left ideal of R. Let 0 # ,JV be a left 
ideal of R such that N n J= 0. Then, since fly=, Ki c’ RR, there is 
O#k~Nn(n;=, Ki). We have: O#ku=k(C:=, m,bi)=C;=, kmib,E 
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x;= 1 (N, M*) Mh,, since k E 0 Ki, therefore since Mh,s U, 0 # ku E 
(M,M*) UnRu, which shows that (M,M*)U c’S,Zs(U), and A4 is 
nondegenerate. 

Conversely, if M is nondegenerate, then we know by Proposition 3.2( 1) 
that M is retractable. Moreover, it is easy to see that (M, M*)M c:’ RM, 
for, if Oitn~M, then, by nondegeneracy, 0#(M,M*)rn~ 
(M, M*)Mn Rm. m 

If R is a ring which is not left nonsingular, then RR is nondegenerate but 
not nonsingular, as is any free left R-module, RF. On the other hand, in 
Example 3.2 of [2], we have a nonsingular, projective module which is not 
retractable (not even e-retractable) and hence not nondegenerate. 

In Example 3.4 of [S], RM is a nonsingular, projective, e-retractable 
module which is not retractable, hence not nondegenerate. However, by 
Lemma 3.12, M is an a-self-generator. This gives us an example of an 
a-self-generator which is not nondegenerate. Also, since a self-generator is 
clearly retractable, this shows that an a-self-generator need not be a self- 
generator. Finally, note that the example mentioned earlier in this section 
of a nondegenerate module which is not a self-generator also shows that a 
retractable module need not be a self-generator. The relationships between 
self-generators, a-self-generators, nondegenerate and retractable modules 
may be summarized in the following diagram, where the symbol “+” 
indicates the counter-examples mentioned throughout this section: 

nondegenerate * self-generator 

re!act ablX ’ ’ 4 u-self-generator 

It would be interesting to have an example of a rectractable module 
which is not an u-self-generator, in order to complete the diagram. 
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