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1. INTRODUCTION

Let xM be a left R-module and let B=End M be its endomorphism
ring. When investigating the relationship between properties of B and
properties of M, one very useful and well-known technique makes use of
two natural dual Galois connections, 1 and G2, which exist between the
lattice, L, of submodules of M and the lattices, L, or L,, of right or left
ideals of B. The Galois connection, G1, is given by the maps rz;: L— L,
and [, L,— L, where rg(U)y={be B: Ub=0}, for U= M, and /,(J)=
{me M:mJ =0}, for J< B. Herc, the restrictions, 75 and [, of rz and [,
to the Galois objects of G1, L= {UeL: U=1,{J), for J= B}, and
L,={JeL,:J=rgU), for Uc M}, are mutually inverse bijections
between I and L,. When studying a given property of B via G1, the first
thing one needs to do is to determine the class of ideals of B which is
associated with this property and to establish that these ideals are Galois
objects of G'1. Once that is done, all that remains is to identify those sub-
modules of M which correspond, via [,,, to the relevant ideals. In this way,
we obtain a correspondence theorem involving the particular ideals which
concern us, and from this correspondence theorem it becomes possible to
deduce conditions on M which are necessary and sufficient in order for B
to possess the property under investigation.

To illustrate, consider the property that B is right noetherian; here, the
relevant ideals of B are all the finitely generated (f.g.) right ideals, since B is
right noetherian if and only if it satisfies the ascending chain condition
(a.c.c.) on f.g. right ideals. Now, when M is quasi-injective, every f.g. right
ideal of B is a Galois object of G1. Moreover, 7z and /,, induce order-
reversing bijections between the {.g. right ideals of B and the finitely closed
submodules of M; hence, we can deduce that B is right noetherian if and
only if M has the d.c.c. on finitely closed submodules [1, Corollary 4.3(1)].
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The beauty of this technique lies in the fact that it allows one to group a
class of related properties of B and to treat them in a systematic and
unified manner. In [ 1], for example, Albu and Nastasescu used this techni-
que to study chain conditions on B and their relationship to chain con-
ditions on M, and were consequently able to derive, in a unified and sim-
plified manner, some classical results. In this paper, we use this same
technique to give a unified and systematic treatment of properties of B
associated with annihilators (such as the property that B is a Baer ring or a
right or left upper or lower Levitzki ring), and of properties of B associated
with left complements in B (such as the property that B is a left CS ring or
a ring with finite left Goldie dimension).

As we observed above, the key result one needs, when studying proper-
ties of B via this technique, is a correspondence theorem between those
ideals of B which are associated with the property under investigation and
certain submodules of M. Consequently, we direct our efforts here towards
the establishment of correspondence theorems for annihilators and of
correspondence theorems for left complements, and we find that, in this
way, we can coordinate a variety of well-known results, as well as deduce
some new results, all within one unified, simplified framework.

In Section 2, we establish the correspondence theorems for annihilators
(Theorems 2.2 and 2.5), and from these we can immediately deduce, for
example, necessary and sufficient conditions on M in order that B should
be Baer (Corollaries 2.3, 2.4, and 2.6) or Levitzki (Corollary 2.7). In Sec-
tion 3, we establish the correspondence theorems for left complements
(Theorems 3.5, 3.7, and 3.10), which, analogously, give us as corollaries
necessary and sufficient conditions on M in order for B to be left Goldie
{Corollaries 3.4 and 3.14) or left CS (Theorem 3.6 and Corollaries 3.8, 3.9,
and 3.11). In some cases, the correspondence theorems are applied
together, and we try, as much as possible, to compare the various
hypotheses on M which are sometimes required for the establishment of
these correspondence theorems. We end the paper with a small diagram
summarizing the relationships between the various types of modules used
in our correspondence theorems.

2. CORRESPONDENCE THEOREMS FOR ANNIHILATORS

Throughout this paper, unless otherwise indicated, R denotes an
associative ring with 1, xM a left R-module, and B the ring of
R-endomorphisms of zM. The action of homomorphisms will be written on
the side opposite to that of the scalars.

The right (left) annihilator in B of a subset, H, of B will be denoted by
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RHNZL(H)), while r and ! will be used for annihilators in M of subsets of
B, or in B of subsets of M:

[y(H)={me M: mh=0, for each he U}, for H& B
rg(U)={be B:ub=0, for each ue U}, for Uc M.

Also, let I4(U)= {be B: Mb< U}, for any submodule, U, of M, and

MH=S,,(H)= { Y mhimeM, he H}, for any subset H of B.

i=1
The following Lemma is straightforward:

LemMa 2.1. (i) S, Ix(UYc U and U< iyry(U), for any submodule, U,
of M.
(i) Igly(H)=%(HYand rzS,(H)=2R(H), for H< B.

Let L be a complete lattice. A closure operator on L is a mapping ¢: L — L,
written @{a)=a, such that:

{cl) a<b implies a° < b,
(€2) a<a’
(c3) (a“)'=a".

An element a is closed under ¢ if a=a".
Let L’ be another complete lattice. 4 Galois connection between L and L'
is a pair of mappings ¢: L — L’ and t: L' — L satisfying:

(1) x, € x, implies a(x,)>a(x,) for x,, x,e L.
(2) y, <y, implies ©(y,)=t(y,) for y,, y,eL".
(3) x<rto{x)and y<ot(y)forxel, yel’

Given a Galois connection, it can be shown that oto(x)=o0(x) and
tat(y)=1(y) for xe L, yeL’, so that the maps ot and to are closure
operators on L and L', respectively. The closed elements, or Galois objects,
in L (resp. L') are those which are of the form t(y) for some ye L’ (resp.
a(x) for some xeL). Set L=1(L’) and L' =¢(L), and let 6: L > L' and
#: L' » L denote the restrictions of ¢ and 7 to the sets of Galois objects of
L and L', respectively. Then it is straightforward to show that & and 7 are
inverse bijections to one another.

For M a left R-module and B=End M, let L denote the lattice of sub-
modules of M, L, the lattice of right ideals of B, and L, the lattice of left
ideals of B; for any lattice, A, let A°" denote its opposite lattice, ie., 4
ordered by the opposite order. Then it is easily seen that:
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— the mappings r, and /,, form a Galois connection G1, between L
and L, ;

— the mappings I and S,, form a Galois connection G2, between L
and (L,)°"; and

— the mappings % and # form a Galois connection between L, and
LI.

The Galois objects /,,(H) of M are called the a-closed submodules of M,
and the Galois objects S,,(H) of M are called the M-cotorsionless sub-
modules of M. The Galois objects £ (H) and #(H) are, of course, the left
and right annihilator ideals of B.

The following observation is easily verified and will be used without
comment in the sequel: If U is a direct summand in M, then U is a-closed
and M-cotorsionless.

If J is a right ideal of B which is generated by an idempotent e€ B, ie.,
J=eB, then J is a right annihilator ideal in B, in fact, J=Z[B(l1 —e)],
and similarly for left ideals. In case xM is a vector space, then we have,
conversely:

(a) if J is a right annihilator ideal in B, then J is generated by an
idempotent in B; and

(b) if H is a left annihilator ideal in B, then H is generated by an
idempotent in B.

Moreover, in any ring B with 1, (a) and (b) are equivalent properties. Any
ring having properties (a) and (b) is called a Baer ring.

Baer endomorphism rings have been investigated by several authors,
using the three Galois connections mentioned above (cf. e.g., [8, 7, 5]).
These Galois connections are especially appropriate for the investigation of
when B is a Baer ring, since, by Lemma 2.1(ii), any right or left annihilator
in B=End M is a Galois object. Consequently, according to the techni-
que outlined under Introduction, the main task here is to identify those
submodules of M which correspond to the left or right annihilators in B.
For simplicity and conciseness in the statement of our theorems, recall that
if we have two partially ordered sets, then a bijection between them which
is order-preserving (resp. order-reversing) is called a projectivity (resp. a
duality).

THEOREM 2.2. The maps U - rg(U) and J — 1,,(J) determine a duality
between S, ={UcM:U=1,rz[SyIs(U)]} and the right annihilators
/(B.)={J<=B:J=AH), Hs B}.

Proof. For any Ue S|, we have rg(U)=rg[ S, 15(U)]=R[I4U)], by
Lemma 2.1(ii); i.e., rz(U) 1s a right annihilator in B. On the other hand, let
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J=32(H) be a right annihilator in B, and let U=1{,,(J). Then, by Lemma
2.1(ib),

Lur g Syl g(U) =1y RIg(13 (1)) = 1y RL(T) = Lyy RELR(H)
=1y R(H)=1,,(J)=U;

ie, UeS,. Since any UeS, is a-closed and any right annihilator,
J=2(H), is a Galois object J=r S {H), we have: U=1,,rzS,[5(U})—>
r(Uy=RLg(U)] > lyrg(U)y=U, and J=R(H)=rzSy(H)-1,{J)=
LyrgSy(H)Y = rgly(J)=J. Hence the two order-reversing mappings are
inverses of each other and so determine a duality.

COROLLARY 2.3. B is a Baer ring if and only if every Ue S, is a direct
summand in M.

Proof. Assume that every Ue S, is a direct summand in M, and let
J=%(H) be a right annihilator in B. Then U=/{,,(J) is in S;, so there is
an idempotent ee B such that U= Me. It follows that J=rgzly(J)=
rp{U)y=rg(Me)=R(e)=(1 —e)B, ie, J is generated by an idempotent in
B, proving that B is Baer.

Conversely, assume that B is a Baer ring and let Ue §,. Then J=rxU)
is a right annihilator in B, so J=eB, for e=¢’¢ B. It follows that
U=1y,rg(U)=1J)=1y(eB)=1,(e}=M(1—-e¢); ie, U is a direct sum-
mand in M. |}

COROLLARY 2.4. If M is semisimple, then B is a Baer ring.

If every submodule, U, of M is M-cotorsionless, i.e., U= S§,,15(U), then
M is said to be a self-generator [9]. Any free module and any semisimple
module is a self-generator; another example of a self-generator is any
infinitely generated projective module containing a unimodular element
(cf. [6]). The property of being a self-generator is very useful, and often
plays a crucial role, in establishing correspondences between the a-closed
submodules of M and the right annihilators of B (cf, eg, [6-8]).
However, it is not necessary for M to be a self-generator in order to have
such a correspondence theorem; rather, an approximation of self-
generation is sufficient—and necessary—in order that r, and /,, should
induce a lattice anti-isomorphism between €°={Uc M: U=1,rx(U)}
and the right annihilators &/(B.).

DEFINITION 1. Using the notation lyrg(Uy=U*® for the “a-closure”
operator /,,r5, we will call M an a-self-generator if, for every a-closed sub-
module, U, of M, we have U=1[S,,I,(U)]% It turns out that this con-
dition on M is also equivalent to obtaining a lattice isomorphism, via I,
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and §,,, between ¥“ and the left annihilators &/(.B)={H< B: H=¥%(J),
J < B}, for, we have:

THEOREM 2.5. The following are equivalent: (1) M is an a-self-
generator.

(2) The maps U—-rg(Uy and J—1,(J) determine a lattice anti-
isomorphism between € and </ (B.).

{3) The maps U—Ig(U} and H - [Sy,(H)]? determine a lattice
isomorphism between €° and /(. B).

Proof. (1)=(2) Always: §, <%, M is an a-self-generator if and only
if €°<S,. Clearly, ¥“<S,—or, equivalently, ¥°=S,—implies, by
Theorem 2.2 that r, and /,, determine an anti-isomorphism between %
and /(B.).

(2)==(1) 1If rp and /,, give such an anti-isomorphism, then, for any
Ue €, we have ry(U)=#(H), for H< B, hence

Lyrg[Sulp(U))=lpr gl Sadglyr gl U] =y RL R(H )
=1y R(H)=1yra(U)="U;

1e., Ue S,.

{(1)=>(3) Note first that, for any Ue®®, I,(U) is in <Z{.B), since
T (U= 15l rg(U)y= Zrg{U), and, clearly, [ S, {H)]*e¥ for any H& B.
Now assume (1); then, we have, for any Ue®“ U-—Iyx{U)—
[Sylg(U)]4=U, and, for any Hes(B), H->[Sy(H)]-
Iy rgSy(H)=¥%(H)=H. Hence the two order-preserving maps are
inverses of each other, and so determine a lattice isomorphism.

(3)==(1) If the two maps are inverses of each other, then we have
U=[S,I{U)} for Ue¥’ |

COROLLARY 2.6. Let M be an a-self-generator. Then B is a Baer ring
if and only if every a-closed submodule of M is a direct summand in M.

Remarks. (1) Any self-generator is clearly an a-self-generator. In
Section 3, we shall give an example of an a-self-generator which is not a
self-generator.

{2) Corollary 2.4 is Theorem 6 of [8]. If M is a free module, then the
a-closed submodules coincide with the dual-closed submodules and
Corollary 2.6 gives Theorem 9 of [87] or Theorem 2 of [7]. The a-closed
submodules and the dual-closed submodules coincide also in case M is an
infinitely generated projective containing a unimodular element, in which
case Theorem 2.5 gives Theorem 3.8 of [6].
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(3) Theorems 2.2 and 2.5 can be applied to investigate other properties
of B having to do with annihilators. Recall that B is said to be right upper
(lower) Levitzki if it satisfies the a.c.c. (d.c.c.) on annihilator right ideals.
Left Levitzki rings are defined analogously. It follows immediately, for
example, that:

COROLLARY 2.7. Let xM be an a-self-generator. Then B is right upper
(lower) Levitzki if and only if M satisfies the d.c.c. (a.c.c.) on a-closed sub-
modules, and B is left upper (lower) Levitzki if and only if M satisfies the
a.c.c. (d.cc.) on a-closed submodules.

Another class of rings which is defined in terms of annihilators, and is
closely related to Baer rings, is the class of Rickart rings. Recall that B is a
left (resp. right) Rickart ring if the left (resp. right) annihilator of any
element of B is generated by an idempotent in B. Just as in the case of Baer
rings, we can use our Galois connections to find out when B=End M is
right or left Rickart. Using similar proofs, we easily find, for example, that:

PrOPOSITION 2.8. The maps U —rg(U) and J—1,,(J) determine a
duality between K, = {U< M: U= (Mb)‘, for be B} and o4 (B.y={J< B:
J=42R(b), be B}, and B is a right Rickart ring if and only if every Ue K| is a
direct summand in M.

PROPOSITION 2.9. Let M be an a-self-generator. Then the maps
U—-Ig(U)y and H—- [S,(H)]" determine a projectivity between K,=
{UcsM: U=l (b)y=kerb, for be B} and (.B)={H<B: H=%(b),
be B}, and B is a left Rickart ring if and only if every Ue K, is a direct
summand in M.

If we take M to be a free module, then Propositions 2.8 and 2.9 give
Theorem 3 of [7].

3. CORRESPONDENCE THEOREMS FOR LEFT COMPLEMENTS

As mentioned under Introduction, in order to use our Galois connec-
tions to study a property of B which is defined in terms of a certain class of
ideals of B, we need to establish that these ideals are Galois objects of G1
or G2. In Section 2, this relationship already existed since, for any M, any
right or left annihilator is a Galois object in G1 or G2. When dealing with
ideals other than annihilators, however, we need to choose M in such a
way that the required relationship, between the ideals in question and the
Galois objects of G1 or G2, can be established. For example, when the
relevant ideals are f.g. right ideals, M is taken to be quasi-injective since,
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for such an (M, J=rzly{J), for any f.g. right ideal, J, of B [ 1, Proposition
4.17. In this section, since we are interested in properties of B defined in
terms of left complements, we shall be dealing mostly with nondegenerate
modules (which we shall define in a moment), for, when M is non-
degenerate, every left complement, H, in B is a Galois clement of G2; 1e.,
H=1,8,,(H).

Before defining a nondegenerate module, we recall some notation:
M*=Hom (M, R) denotes, as wusual, the dual module of M,
T=(M,M*y={3"_, mfi:meM, f,e M*} denotes the trace of M in R,
and (R, (Mg, gpM%, B) is the standard Morita context for M, with the
R — R-bimodule homomorphism (, : M ® s M* — R given by (m, )=/,
for meM, feM?* and the B— B-bimodule homomorphism [, ]:
M* @z M — B defined by m\[ f,m]j=(m,, f)m, form, m e M, fe M*

Also, U <’ M denotes that U is an essential R-submodule of M, ie.,
that U/ has nonzero intersection with each nonzero R-submodule of M.

DermviTION 2. We will say that M is nondegenerate if:
Tm=0=>m=0, for any me M.

The following Proposition is easily verified.

PROPOSITION 3.1, For any M, the following are equivalent:

(1) xM is nondegenerate.
(2) For each me M, [M*, m]=0 implies m=0.
(3} For each submodule, U, of M, TU <’ ,U.

Any frec module, in fact, any generator, is nondegenerate. A self-
generator, on the other hand, need not be nondegenerate: the Z-module
Z/p"Z is a self-generator which is not nondegenerate. M can also be non-
degenerate without being a self-generator: let R be the ring of all Cauchy
sequences in @ with component-wise multiplication and M the ideal of
zero sequences; then M is nondegenerate but not a self-generator.

Recall that pM is said to be nonsingular if, for any me M, Im =0, with f
an essential left ideal of R, implies m =0. From Definition 2, it is clear that
any nonsingular module with essential trace is nondegenerate. Another
example of nondegenerate modules is: any torsionless module over a
semiprime ring.

Nondegenerate modules possess several properties which make them
especially appropriate for establishing correspondence theorems for left
complements in B. In particular, the property that, for M nondegenerate,
every left complement, H, in B satisfies H=1,5,,{H) will follow directly
from (3) of the next proposition. Before stating Proposition 3.2, we remark

481/122,2-9
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that the following well-known property of essential submodules will be
used without comment in the sequel: If U< V< M, then U <’ M if
and only if ;U <’ gV and gV <’ M.

PROPOSITION 3.2. Let xM be nondegenerate. Then:

(1) For any nonzero submodule, U, of M, we have: I5{U) #0.
(2) If H and J are left ideals of B such thar H< J, then we have:

sH ' gJ if and only if S, (H) <’ S,,(J).

(3) For any left ideal, H, in B, we have: sH <'1,S,,(H).
(4) If U and V are submodules of M such that U<V, then we have:

U’ ¥ if and only if I{U) <’ I;(V).
{(5) M is an a-self-generator.

Proof. (1} Let U be a nonzero submodule of M, and let O0#uecU.
Then, since M is nondegenerate, {M* u]+#0 (Proposition 3.1}. From
MIM* u]l=(M,M*)u< Ru, we see that [M* u]<IyU); hence
I(U)#0.

(2} Assume that zH <’ 5/ and let 0#m=37_, m,;j, € S, (J)}, with
meMand jjeJfori=1,..,nThenO0#[M* m]=3"_, [M* m]]j.cJ,
hence [M*, m]nH#0. We have: O#£MHN[M* m]))cMHAN
MIM* ml=MH~{M, M*)m< MHn~ Rm; therefore, MH=S,(H)c’
Sl

Conversely, assume that S, (H) <’ S,(J), for H<J, and let O#cel
Then, Mc¢ #0 implies Mc S,,(H)#0, and this implies:

0# [M* Mcn S, (H)]<[M* Mcln[M* S,(H)]1< Ben H;

hence zH <’ gJ.

(3) From S (H)=58,135,(H), for any left ideal, zH, in B, we have,
in particular, that S, (H) <’ S, 135Sy (H), hence by (2), H <’ ;S (H).

{4) Observe first that it follows from (1) that, for any nonzero sub-
module, U, of M, we have Sy, I (U) <’ U; for, if 0#ue U, then there is
O0#bely(Ru). Hence, since I Ru)ciy(U), we have: O0#MbC
Runr Sy, I5(U)Y, so that S, I(U) <’ U

Now let U and V be nonzero submodules of M such that U< V (the
cases when one or both of U and V' is 0 are trivial), and assume first that
2U <’ V. Then, we have: I,(U)YS I{(V), Sy lgU)c Sy (V) 'V, and
SylpglU) ' Uc'V; therefore, Sy, fz(U)c’V and hence S, Ix(U)c’
Sy 1g(V), and this last implies, by (2), that I,{U) <’ Iz(V).
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Assume now that [ U) c’'Ig(V). Then, using (2), we have
Syulg(Uy ' Sylg(V) 'V, hence S, I5(U) <’ V. But S, I;(U)c’' UV,
hence S, I5(U) <’V implies that U <’ V.

{5) Let U be an g-closed submodule of M. It will suffice to show that
ralUy=rpg[Syls(U)], for then U={,rg(U)=1,r[ S, I5{U}]. Clearly,
since S, 1(U)c U, we always have r{U) S rz[ S, 15(U)]. For the reverse
inclusion, let berg[ S, [4(U)], so that [ S, I5(U)]b=0 and consequently
[I5(U)]b=0. If u is any nonzero element in U, we have, by non-
degeneracy, [M*, u]#0. But, as we noted in (1), [M*, u] < I;(U), so that
[M* ubl=[M* ulbc [I,{U)]b=0, which last implies, by non-
degeneracy again, that ub = 0. Hence Ub =0 and b e r4(U}), completing the
proof. |}

Property (1) of Proposition 3.2 is of interest in itself:

DermiTioN 3. We will say that M is retractable if, for any nonzero
submodule, U, of M, we have: I,(U)#0. Moreover, if “¢” is any closure
operator on L, then we will say that M is c-retractable if, for any nonzero,
c-closed U< M, we have: I,(U)#0.

It follows easily from the proof of Proposition 3.2(4) that M is retrac-
table if and only if S,,1,{U) <’ RU for each nonzero submodule, U, of M.
Combining Proposition 3.2(5) with Corollaries 2.6 and 2.7, we get:

COROLLARY 3.3. Let oM be nondegenerate. Then: (1) B is a Baer ring if
and only if every a-closed submodule of M is a direct summand in M; (2) B is
right upper (lower) Levitzki if and only if M satisfies the d.c.c. (a.cc.) on
a-closed submodules; and (3) B is left upper {lower) Levitzki if and only if M
satisfies the a.c.c. {d.c.c.) on a-closed submodules.

Before proving our first correspondence theorem for left complements,
we recall that: A submodule, U, of M is said to be a complement in M if U
has no proper essential extension in M or, equivalently, if there is a sub-
module, V, of M such that U is maximal with respect to the property
UnV=0.

M is said to be a CS module if every complement in M is a direct sum-
mand in M. A ring R is said to be a left (right) CS ring if ;R(Rz) is a CS
module. Injective and quasi-injective modules are CS modules, as are
semisimple and uniform modules; for other examples, see, e.g., [2]. M is
said to be finite-dimensional, in the sense of Goldie—notation:
d( gM) < co—if M satisfies the a.c.c. on complement submodules. A ring R
has finite left (right) Goldie dimension if xR{R,) is finite-dimensional. R
is a left Goldie ring if it satisfies the a.c.c. on left annihilators and on left
complements.
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It is known that, if zM is nondegenerate, then d( ;M) = d(zB), so that M
is finite-dimensional if and only if B has finite left Goldie dimension (cf.
e.g., [4, Proposition 3]). Combining this with Corollary 3.3(3), we obtain:

COROLLARY 3.4. Let zM be nondegenerate. Then B is a left Goldie ring
if and only if M satisfies the a.c.c. on a-closed and on complement sub-
modules.

THEOREM 3.5. Let xM be nondegenerate. The maps U — Iz(U} and
H — S,,(H) determine a projectivity between S,={UcM: U=S8,,14U)
and 15(U) is a complement left ideal in B} and the complement left ideals
C(.B)={H< B: H is a complement left ideal of B}.

Proof. Clearly, by definition, if Ue §, then 7,(U)e C(.B). On the other
hand, if He C(.B), then S, (H)} is M-cotorsionless and I,S,(H)=H by
Proposition 3.2(3), hence S,,(H)e S,. We have: for Ue S,, U—- I4{U)—~
Sylz(U)=U, and, for He C(.B), H - S,,(H) - I35 ,,(H) = H. Hence, the
two order-preserving maps are inverses of each other and so determine a
projectivity. §

THEOREM 3.6. Let M be nondegenerate. Then: (1) B is a left CS ring if
and only if every Ue S, is a direct summand in M; (2) If M satisfies the
a.c.c. on M-cotorsionless submodules, then B is a left Goldie ring.

Proof. (1) Assume that every Ue S, is a direct summand in M, and
let H be a complement left ideal of B. Then S, (H)e S,, hence, there is an
idempotent, e=e? in B such that S, (H)=Me, and H=1;5,(H)=
I(Me). But I4(Me)= Be, for, clearly, e € I5(Me), hence Be < Iz(Me), and,
conversely, for belg(Me), we have, for any me M, mb=m e for some
m, € M, hence mbe = m,e* = mb; ie., b=be € Be. It follows that H = Be; i.e.,
H is a direct summand in B.

Conversely, assume that B is left CS and let Ue S,. Then I,(U) is a left
complement in B, so I4(U)=Be, where e=e’eB. It follows that
U=S,,1,(U)=S8,/(Be)= Me, so U is a direct summand in M.

(2) Assume that M satisfies the a.c.c. on M-cotorsionless submodules.
Then, in particular, M satisfies the a.c.c. on the elements of S,, and this
implies, by Theorem 3.5, that B satisfies the a.c.c. on complement left ideals.
Next, let Z(K,)€ £(K,) < --- be an ascending chain of left annihilators in
B. Then S, [#(K)1sSy,[Z(K,)]c< --- is an ascending chain of
M-cotorsionless submodules of M; hence, there is an n>0 such that
SulZ(K)]=Su[£L(K,, )], for j=1 Then, using Lemma 2.1(i1), we
have RL(K,)=rzSu[L(K,)]=rpSul L (K, )1=RL(K,. ), for j=1,
and therefore #(K,)= Z(K,., ;) for j> 1, proving that B satisfies the a.c.c.
on left annihilators. |}
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Remark. From Theorem 3.6(2) and Corollary 3.4, we see that, for a
nondegenerate M, if M satisfies the a.c.c. on M-cotorsionless submodules,
then M satisfies the a.c.c. on a-closed and on complement submodules.

Things become more interesting when the nondegenerate module is, in
addition, a self-generator or a CS module, for, in both of these cases, the
submodules of S, are precisely the complements of M.

THEOREM 3.7. Let M be nondegenerate. If M is a self-generator or a
CS module, then the maps I, and S, determine a projectivity between the
complement submodules of M and the complement left ideals of B.

Proof. By Theorem 3.5, it will be sufficient to show that Ue S, if and
only if U is a complement in M,

Let Ue S,, so that U=S,,1,(U) and I4(U) is a left complement in B.
Suppose that (U <’ zV; we may assume, using Zorn’s Lemma, that V' is a
complement in M. By Proposition 3.2(4), I5(U) <’ Igz(V), hence, since
I(U) is a left complement, I4(U)=14¥)and U=S,I5(U)=SI5V). If
M is a self-generator, then every submodule is M-cotorsionless, so
V=_8,15(V}=U, and U is a complement; and if M is CS, then every com-
plement is a direct summand hence M-cotorsionless, so again
V=_84,1,(V)=U and U is a complement.

Conversely, let U be a complement in M. Then if M is a self-generator or
a CS module, U is M-cotorsionless. To see that I5(U) is a left complement
in B, suppose that I5(U} <'J, where J may be taken to be a left com-
plement in B (using Zorn’s Lemma). Then, by Proposition 3.2(2),
SulgU)y <" Sy(J), so U=8,,1,(U) =’ §,,(J), hence U=S,,(J) since U is
a complement. But this implies J< I,(U), hence J=14,U), proving that
I,(U) is a left complement in B. This shows that Ue S, and completes the
proof. |

COROLLARY 3.8. Let zM be a nondegenerate self-generator. Then B is a
left CS ring if and only if M is a CS module.

CoOROLLARY 38. Let ;M be a nondegenerate CS module. Then B is a left
CS ring.

From these last results we see that the existence of a projectivity between
the complements of M and the left complements of B is a very useful thing
to have, since the existence of such a projectivity means that B is left CS iff
M is CS. We shall now show that, for a nondegenerate M, it is possible to
have such a projectivity without requiring M to be a self-generator or a CS
module, but simply by taking M to be nonsingular. In this case, however,
the maps which give the projectivity must be adjusted slightly in order to
make up for the fact that we do not have as many M-cotorsionless sub-
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modules at our disposal as we had in the case of CS or self-generating
modules. We recall here that, when M is nonsingular, then, to any sub-
module, U, of M, there corresponds a unique complement, U*, in M such
that U ' U (cf. [3, p. 61, Proposition 7]). The map U — U* defines a
closure operator, called the essential closure (or e-closure) operator, on the
lattice L of submodules of M.

THEOREM 3.10. Ler M be nondegenerate and nonsingular. Then the
maps U [5(U) and H— [S,,(H)}° determine a projectivity between the
complement submodules of M and the complement left ideals of B.

Proof. Let U be a complement submodule of M; we will show that
I,(U) is a complement left ideal of B. Suppose that I4(U) <’ H, where we
may assume, by Zorn's Lemma, that H is a complement left ideal of B.
Then, by Proposition 3.2(2), Sy Iz(U) <’'S,(H), and this implies that
[Sy 1)) = [Sy{(H)]° But, by Proposition 3.2(1), S, Iz(U) <=' U, so
that U= [S) Io(U))° = [Sy(H)]¢ and this implies, in particular, that
S.(H)< U hence that H < Iz(U). Therefore, H=1I4(U), so Ix(U) is a left
complement in B. Conversely, it is clear that [S,,(H)]¢ is a complement in
M for any left ideal, H, in B.

If H is any left ideal of B, we have S, {H) < [S,(H)]%, and, since
M is nondegenerate, we have, by Proposition 3.2(4), IzS{(H)c’
1:{[S,(H)]°}, and, by Proposition 3.2(3), H €' IzS,(H). If H is a com-
plement left ideal in B, then we have H=1,8,,(H)=I,{[S,(H)]*}. We
have U~ I(U) > [Sy15(U)]*=U, for each complement, U, of M, and
H- [Sy(H)] - I:{[S,{(H)]*} = H, for each complement left ideal, H, of
B. Hence the two order-preserving maps are inverses of each other and so
determine a projectivity. |

COROLLARY 3.11. Let oM be nondegenerate and nonsingular. Then B is
a left CS ring if and only if M is a CS module.

Proof. Assume that M is a CS module and let H be a left complement
in B. Then [S,(H)]*=Me, for e=e’eB, and H=I3{[S,(H)]'}=
I,(Me) = Be. Hence H is a direct summand in B, proving that B is a left CS
ring.

Conversely, assume that B is a left CS ring, and let U be a complement
in M. Then I,U)=Be, for e=e’cB, and U=[S,Ix(U)}*=
[S,(Be)]¢ = [Me]® = Me, the last equality since every direct summand is
e-closed. Hence U is a direct summand in M and M is a CS module. |

As is clear from the last three Corollaries, complements in M play an
important role in determining when B is left CS. Our next theorem shows
that complements can also play an important role in determining when B is
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Baer. We will first prove a Lemma which will enable us to use the results of
Section 2 for the proof of Theorem 3.13. Using Definition 3, we will say M
is e-retractable if I,(U)# 0, for each nonzero complement, U, in M.

LeMMA 3.12.  Let xM be a nonsingular, e-retractable module. Then M is
an a-self-generator. Consequently, B is a Baer ring if and only if every
a-closed submodule of M is a direct summand in M.

Proof. Let U=1,,rg(U) be an a-closed submodule of M. We will show
first that, since M is nonsingular, U is a complement. In order to do this,
we will make use of the following well-known property of essential exten-
sions: If RN <’ xK and 0£ke K, then the left ideal, 7, of R defined by
fI=[N:k]l={reR:rkeN} is essential in LR (cf, eg, [3, p. 46,
Lemma 37). Let V=U*® so that, in particular, U <’ V; then, clearly,
rg(V) < ra(U). Conversely, let bery(U); then we will show that bergz(V).
Let ve V; then the left ideal J={U:v]={reR:rvelU} c' tR, and we
have Ivh=0. Since M is nonsingular, this implies vh =0, ie., bery(V),
and rg(U)=rg(V). We have V<l rg(V)=1,rg(U)="U, hence U=V, and
U is a complement in M.

In the preceding paragraph, we showed that, if U and V are any two
submodules of M such that U <’ .V, then rx(U)=rgx( V). We will show
next that, since M 1is e-retractable, we have S, J/4(C)<’C, for any
complement submodule, C, of M. Let 0#ceC; then we have 0# Y=
(ReY < Cand 0#£T4{Y)SI4(C). Let 0#belg{Y); then 0 # Mb < Y implies
0£Mb Rec S, 15(CYn Re, proving that §,,1(C) <’ C.

Now, if U is any a-closed submodule of M, then U is a complement and
we have S I5(U) <’ U. Hence rg[ Sy 15(U)]=rg(U), and U=1,,rg(U)=
Lyr g[Sy 1g(U)], proving that M is an ¢-self-generator. The second asser-
tion of the Lemma now follows directly from Corollary 2.6. {

THEOREM 3.13.  Let M be a nonsingular, CS module. Then B is a Baer
ring.

Proof. 1f0# U is a complement in M, then, since M is CS, U is a direct
summand in M, so U= Me for some e =e?c B. Hence, I,(U)#0;ie., a CS
module is e-retractable. Also, since a complement is a direct summand,
every complement in M is a-closed. On the other hand, we know from the
proof of Lemma 3.12 that, when M is nonsingular, every a-closed sub-
module is a complement. Hence, in a nonsingular CS module, M, U is a
complement if and only if it is a-closed. Since M is, in particular, non-
singular and e-retractrable, we know from Lemma 3.12 that B is a Baer
ring if and only if every a-closed submodule is a direct summand in M, i.e.,
if and only if every complement submodule is a direct summand in M, ic.,
if and only if M is CS. Hence B is Baer and the proof is complete.
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Combining the fact that, in a nonsingular module, every a-closed sub-
module is a complement, with Corollary 3.4, we get:

COROLLARY 3.14. Let xM be nondegenerate and nonsingular. Then B is
a left Goldie ring if and only if M satisfies the a.c.c. on complement sub-
modules, ie., iff d(xM)< co.

Combining Corollary 3.9 and Theorem 3.13, we have:

COROLLARY 3.15. Let xM be nondegenerate, nonsingular, and CS. Then
B is Baer and left CS.

A comparison of the two results,

M nondegenerate CS=> B left CS (Corollary 3.9); and
M nonsingular CS=> B Baer (Theorem 3.13),

naturally brings up the questions: what is the relationship between Baer
rings and left CS rings and what is the relationship between nondegenerate
modules and nonsingular modules?

In order to answer the first question, we recall first that a ring R is said
to be left co-nonsingular if every left ideal of R which has zero right
annihilator is essential. Note that a Baer ring is always both left and right
nonsingular, whereas a left CS ring need not be left nonsingular. It is
known that: A ring is left nonsingular, left CS if and only if it is a left
co-nonsingular Baer ring ([2, Theorem 2.1]).

With regard to the second question, we have:

PROPOSITION 3.16. Let M be nonsingular. Then M is nondegenerate if
and only if @M is retractable and TM <’ M.

Proof. Assume that the nonsingular M is retractable and satisfies
TM ' M. We will show that M is nondegenerate by proving that
TU <’ U for any nonzero submodule, U, of M, for then this implies
0#TU=(M,M*YU=M[M*, U] and hence [M*, U] #0.

Note first that M[M* U]l= (M, M*)U< U, so that [M*, U] < I4(U).
We have: (M, M*YU=M[M*, U]< S, I5(U)c U, and, by retractability,
Sy 1(U) =’ U, so it remains to show that (M, M*)U c’S,,15(U). Let
0#ueS,Iz(U), and write u=3"_, mb;, with m;e M, b,eI4(U), and
mb,#0, for i=1,.,n Set K,=[(M,M*YM:m]={reR:rme
(M, M*)M}; then zK; <’ xR and 0# K;m,b, = (M, M*) Mb,~ Rmb,, for
i=1,..,n Let J=Ig(u)={re R:ru=0}; then, since M is nonsingular
and u#0, J is not an essential left ideal of R. Let O0+# N be a left
ideal of R such that NnJ=0. Then, since (\7_, K, ' gR, there is

i=1

O0#keNn(N"_, K;). We have: O#£ku=k(X! ,mb)=37  kmbe
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" (M, M*)Mb,, since ke(}K,, therefore since Mb,cU, O#kue
(M, M*) U Ru, which shows that (M, M*)U <’ §,,14(U), and M is
nondegenerate.

Conversely, if M is nondegenerate, then we know by Proposition 3.2(1)
that M is retractable. Moreover, it is easy to see that (M, M*)M <’ M,
for, if O#£meM, then, by nondegeneracy, O0#(M,M*)mc
(M, M*M~Rm. |}

If R is a ring which is not left nonsingular, then zR is nondegenerate but
not nonsingular, as is any free left R-module, zF. On the other hand, in
Example 3.2 of [2], we have a nonsingular, projective module which is not
retractable (not even e-retractable) and hence not nondegenerate.

In Example 3.4 of [5], M is a nonsingular, projective, e-retractable
module which is not retractable, hence not nondegenerate. However, by
Lemma 3.12, M is an g-self-generator. This gives us an example of an
a-self-generator which is not nondegenerate. Also, since a self-generator is
clearly retractable, this shows that an a-self-generator need not be a self-
generator. Finally, note that the example mentioned earlier in this section
of a nondegenerate module which is not a self-generator also shows that a
retractable module need not be a self-generator. The relationships between
self-generators, a-self-generators, nondegenerate and retractable modules
may be summarized in the following diagram, where the symbol “#”
indicates the counter-examples mentioned throughout this section:

nondegenerate  # self-generator

| =] 4

retractable < a-self-generator

It would be interesting to have an example of a rectractable module
which is not an a-self-generator, in order to complete the diagram.
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