
Physics Letters B 744 (2015) 105–108

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Three-body calculation of the 1s level shift in kaonic deuterium

P. Doleschall a, J. Révai a, N.V. Shevchenko b,∗
a Wigner Research Center for Physics, RMI, H-1525 Budapest, P.O.B. 49, Hungary
b Nuclear Physics Institute, 25068 Řež, Czech Republic
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and width were evaluated using Faddeev-type equations with Coulomb interaction. The obtained exact 
results were compared with commonly used approximate approaches.
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Kaonic deuterium is a very useful exotic atom, which can be 
accurately studied experimentally and theoretically and after com-
paring the results give us additional information about antikaon–
nucleon interaction.

Interaction of an antikaon with a nucleon is the basis for in-
vestigation of strong quasi-bound states in antikaonic–nucleus sys-
tems, attracted large interest recently. The most interesting and
intensively studied theoretically and experimentally is the lightest 
K − pp system, see e.g. [1]. At present, the theoretical predictions 
for binding energies and widths of the quasibound state differ 
substantially. The theoretical results, however, agree that the quasi-
bound state really can exist in the K − pp system. The experimental 
results also differ from each other; moreover, their binding ener-
gies and widths are far from all theoretical predictions. Since the 
question of the possible existence of the quasibound state in K − pp
system is still actual, new experiments are being planned and per-
formed by HADES and LEPS Collaborations, in J-PARC E15 and E27 
experiments.

There are two origins of uncertainty for theoretical results. The 
first one is different few-body methods, which were used for the 
calculations. However, it was shown in [1] that even calculations 
using the same three-body Faddeev-type equations give different 
results in dependence on the K̄ N potential used as the input.

The problem is that available two-body experimental informa-
tion on the K̄ N interaction is insufficient for construction of a 
unique interaction model. In particular, it was shown e.g. in [2]
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that phenomenological models of the interaction having one or 
two poles for the �(1405) resonance and reproducing all low-
energy experimental data on K − p scattering and kaonic hydro-
gen equally well can be constructed. The same is true for the 
recently constructed in [3] chirally-motivated model of the inter-
action. A way to obtain some additional information about the K̄ N
interaction is to use it as an input in an accurate few-body calcu-
lation and then compare the theoretical predictions with eventual 
experimental data. Kaonic atoms, in contrast to kaonic nuclear 
states, can be measured accurately. Kaonic deuterium is the best 
candidate since energy shift and width of its 1s level can be mea-
sured directly and calculated accurately. It allows a direct compari-
son of the theoretical predictions with experimental data on kaonic 
deuterium, which hopefully will be obtained in the SIDDHARTA-2 
experiment [4].

Characteristics of kaonic deuterium, however, are hard to cal-
culate accurately. Due to this only approximate formulas such 
as Deser [5] or corrected Deser [6], connecting 1s level shift 
and width of an atom with the corresponding scattering length, 
are used by experimentalists and some theorists. However, it 
was shown, for example in [7], that even for two-body system, 
(anti)kaonic hydrogen, the formulas give quite large error in com-
parison with the exact result. Since no three-body effects can be 
taken into account by such a formula, the accuracy of the formulas 
for kaonic deuterium should be less.

To the best of our knowledge, the most accurate evaluation of 
kaonic deuterium characteristics was done recently in [2] and re-
peated in [3] with new K̄ N potentials. The two-body calculations 
using effective optical K − − d potential together with Coulomb in-
teraction were performed. The potential was constructed in such 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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a way that it reproduces elastic amplitudes of K −d scattering 
obtained from the Faddeev calculation with strong interactions 
only.

In this letter we present the results of the first exact calcula-
tion of the three-body atom – kaonic deuterium with no reduction 
to any effective two-body problem. The obtained energy of the 
1s level of the atom is an exact eigenvalue of the corresponding 
three-body Hamiltonian with all of its interactions taken into ac-
count simultaneously. The dynamically exact results are compared 
with those of the approximate methods.

At present there are powerful methods to solve three-body 
problems, especially for the somewhat easier task of finding real or 
complex eigenvalues: Faddeev equations (in integral or differential 
form) or variational methods based on wave function expansion in 
coordinate space. However, just for our case both methods face se-
rious difficulties. In the Faddeev approach we have the everlasting 
problem of the long range Coulomb force, which is even worse for 
attractive interaction. As for the coordinate space expansions, the 
main difficulty lies in the presence of two very different distance 
scales, both relevant for the calculated level shift.

The usual description of hadronic atoms is based on a two-body 
picture: a negatively charged hadron in the Coulomb field of the 
nucleus. The strong interaction with the nuclear few- or many-
body system is incorporated into an absorptive nucleus–hadron 
interaction. Thus the two interaction types, forming the system, 
are treated not on equal footing: first, the pure strong interac-
tion problem is reduced to an effective two-body one, while the 
Coulomb force is “added” as a second step.

Some years ago a method for simultaneous treatment of short 
range plus Coulomb forces in three-body problems was pro-
posed [8]. The method was successfully applied for short range 
plus repulsive Coulomb forces (nuclear case) [9], and purely 
Coulomb systems with attraction and repulsion [10]. The present 
case of three strongly interacting hadrons with Coulomb attraction 
between certain pairs, which is practically inaccessible by other 
methods, was not considered.

The basic idea was to transform the Faddeev integral equa-
tions into matrix form using a special discrete and complete set of 
Coulomb Sturmian functions as a basis. Coulomb Sturmian func-
tions in coordinate space have the form

〈�r|nlm〉 = 〈�r|i〉 = Nnlr
le−br L2l+1

n (2br)Ylm(�̂r), (1)

were b is a range parameter. The functions 〈�r|i〉 are orthogonal 
with the weight function 1/r, or they form a bi-orthogonal and 
complete set with their counter-parts 〈�r|ĩ〉〈
i

∣∣∣∣1

r

∣∣∣∣ j

〉
= δi j, 〈�r |ĩ〉 = 1

r

〈�r |i〉 , 〈i| j̃〉 = 〈ĩ| j〉 = δi j . (2)

The most remarkable feature of this particular basis set is, that 
in this representation the matrix of the (z −hc) operator, where hc

is the pure two-body Coulomb Hamiltonian, is tridiagonal. There-
fore, if we use this property for evaluation the matrix elements 
of the two-body Coulomb Green’s function 〈ĩ|gc(z)| j̃〉, we get an 
infinite tridiagonal set of equations, which can be solved exactly, 
see [11] and references therein. The same holds for the matrix el-
ements of the free two-body Green’s function 〈ĩ|g0(z)| j̃〉.

The Noble form of the homogeneous Faddeev equations [12]
for the K − pn three-body problem, when the Coulomb interaction 
appears in Green’s functions, reads

�np =
(

z − H0 − V s
np(xnp) + e2

|cnp�xnp + �yK −|
)−1

× V s
np(xnp)(�nK − + �pK −)
�nK − =
(

z − H0 − V s
nK −(xnK −) + e2

|cnK −�xnK − + �yp|
)−1

× V s
nK −(xnK −)(�np + �pK −)

�pK − =
(

z − H0 − V s
pK −(xpK −) + e2

xpK −

)−1

× V s
pK −(xpK −)(�np + �nK −) (3)

where, as usual for equations of Faddeev type, the total three-body 
wave function is separated into three components

� = �np(�xpn, �yK −) + �nK −(�xnK − , �yp) + �pK −(�xpK − , �yn). (4)

In Eqs. (3) V s denote the two-body strong potentials, (�xpn, �yK − ), 
(�xpK − , �yn) and (�xnK − , �yp) are the three sets of Jacobi coordinates, 
and c are mass coefficients. The Coulomb interaction between the 
antikaon and the proton −e2/xpK − is the same in all three equa-
tions, but expressed in different coordinates.

Introducing the shorter notation: α = (pn, K −), (pK −, n),
(nK −, p) for the partition channels, (�xα, �yα) for Jacobi coordi-
nates and inserting (approximate) unit operators into the system 
of equations

1̂α =
Nα∑
μ

|μα〉〈μ̃α | ∼ 1̂ (5)

〈�xα, �yα |μα〉 = 〈�xα |i〉〈�yα |I〉 = 〈�xα |nl〉〈�yα |N L〉, (6)

with three-body μ and two-body iI quantum numbers μ = iI =
nlN L, we can write the system of equations for the unknowns 
Xα

μ = 〈μ̃α |�α〉 to be solved:

Xα
μ =

∑
(μ)γ �=α

[Gα(z)]μμ′′(V s
α)μ′′μ′′′(Mαγ )μ′′′μ′ Xγ

μ′ . (7)

The eigenvalue equation is Det(1̂ − A(z)) = 0, where matrix A(z) =
G(z)V s M .

The matrix elements of the overlap matrix between basis func-
tions from different Jacobi coordinate sets (Mαγ )μμ′ = 〈μ̃α |μ′

γ 〉
and of the strong potentials (V s

α)μμ′ = 〈μα |V s
α |μ′

α〉 in Eq. (7) can 
be calculated numerically. The remaining matrix elements in the 
kernel – matrix elements of the partition Green’s functions:

[Gα(z)]μμ′

=
〈
μ̃α

∣∣∣∣∣
(

z − h0(xα) − h0(yα) − V s
α(xα) − e2

xpK −

)−1
∣∣∣∣∣ μ̃′

α

〉
,

(8)

are the basic quantities of the method, and their calculation de-
pends on α.

For α = (pK −, n) the Gα(z) is Green’s function of two non-
interacting subsystems. Therefore, it can be calculated by a con-
volution integral along a suitable contour in the complex energy 
plane [13]

Gα(z) =
∮

gsc
α (ε; xα)g0

α(z − ε; yα)dε, (9)

where

gsc
α (z; xα) =

(
z − h0(xα) − V s

α + e2

xα

)−1

(10)

g0
α(z; yα) = (z − h0(yα))−1 (11)
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are two-body Green’s functions with strong plus Coulomb po-
tential and free Green’s function, respectively. While values of 
[g0

α(z; yα)]II′ can be calculated using the properties of the Coulomb 
Sturmian basis, the matrix elements of [gsc

α (z; xα)]ii′ can be found 
from the matrix resolvent equation

[gsc
α (z; xα)]ii′ = [gc

α(z; xα)]ii′

+
∑
i′′,i′′′

[gc
α(z; xα)]ii′′(V s

α)i′′ i′′′ [gsc
α (z; xα)]i′′′ i′ . (12)

For the other two channels α �= (pK −, n) an intermediate 
step is required. In this case the Coulomb potential is given not 
in its “natural” coordinates, therefore, we first rewrite it in the 
form

− e2

|cα�xα + �yα| = − e2

yα
+

(
e2

yα
− e2

|cα�xα + �yα |
)

= V c,ch
α (yα) + Uα(�xα, �yα). (13)

Here V c,ch
α (yα) is the channel Coulomb interaction and Uα(�xα, �yα)

is a (short range) polarization potential, entering in the equa-
tion

Gα(z) = Gch
α (z) + Gch

α (z)UαGα(z) (14)

for calculation of Gα(z). Its matrix elements (Uα)μμ′ =
〈μα |Uα |μ′

α〉 can be evaluated by numerical integration. The chan-
nel three-body Green’s function in Eq. (14) is defined by

Gch
α (z) =

(
z − h0(xα) − h0(yα) − V s

α(xα) + e2

yα

)−1

(15)

and, again, it corresponds to non-interacting subsystems, therefore, 
can be found by a convolution integral

Gch
α (z) =

∮
gs
α(z; xα)gc,ch

α (z − ε; yα)dε (16)

with the two-body Green’s functions

gs
α(z; xα) = (

z − h0(xα) − V s
α

)−1
, (17)

gc,ch
α (z; yα) =

(
z − h0(yα) + e2

yα

)−1

, (18)

which can be obtained from resolvent equations similar to Eq. (12).
This schematic description of the formalism does not reflects 

the fact, that K̄ N interaction is isospin dependent and acts in I = 0
and I = 1 states. In particle representation it means that the po-
tential is a 2 × 2 matrix:(

V s
pK −,pK − V s

pK −,nK̄ 0

V s
nK̄ 0,pK − V s

nK̄ 0,nK̄ 0

)
, (19)

therefore, our final equations have 4 Faddeev components, includ-
ing �(nK̄ 0,n) , instead of three. A more detailed description of the 
formalism will follow in a subsequent paper.

Our aim was to evaluate 1s level shift and width of kaonic 
deuterium caused by strong interaction between the antikaon and 
the nucleons. The reference point z0, from which the energy shift 
�z = z − z0 is measured, is the lowest eigenvalue of the “dom-
inant” channel Green’s function Gch

(pn,K −)
(z). It corresponds to a 

deuteron and a kaon “feeling” a Coulomb force from the center of 
mass of the deuteron. At z = z0 all matrix elements of Gch

(pn,K −)
(z)

are singular, the search for Det(1̂− A(z)) = 0 was performed in the 
vicinity of z0.
Table 1
Range βK̄ N (fm−1) and strength λK̄ N,I=0, λK̄ N,I=1 (fm−2) parameters of the four 
complex K̄ N potentials V I , V II, V III , and V IV in isospin representation.

βK̄ N λK̄ N,I=0 λK̄ N,I=1

V I 3.0000 −1.7258 − i 0.8570 −0.7323 − i 0.4201
V II 3.6367 −2.1606 − i 0.5937 −1.0998 − i 0.4861
V III 3.6367 −1.9563 − i 0.4534 −0.9761 − i 0.3787
V IV 2.1978 −0.5669 − i 0.2744 −0.1666 − i 0.1489

In fact, even in the absence of the strong interaction of the 
kaon with the nucleons, the presence of the polarization poten-
tial U (pn,K −) causes a certain real shift of the eigenvalue from z0
to z1. It reflects the fact, that Coulomb interaction acts between 
the antikaon and the proton, not between K − and d. In principle, 
the strong shift should be measured from z1 instead of z0. How-
ever, the effect is small, in our case z1 − z0 ≈ 10 eV.

The calculation itself demands a rather heavy numerical work 
with a lot of small but important technical details. The conver-
gence of the method depends on the good choice of the range 
parameters b of the Sturmian functions. The optimal parameters 
are different in different partition channels and are non-equal for 
the x and y variables. For a good choice of the b-s 30–40 functions 
for every variable give an accuracy of ∼ 0.5% (∼ 1 − 2 eV). The di-
mension of the final matrix is rather large, for 40 functions in each 
variable it is about 5000.

We used four models of K̄ N interaction, all are one-term sepa-
rable complex potentials with Yamaguchi form factors. The isospin 
dependent I = 0 and I = 1 potentials (their parameters are shown 
in Table 1) were transformed into particle basis, see Eq. (19). Two 
potentials reproduce low-energy characteristics of the K̄ N system, 
obtained from a coupled-channel chirally motivated model of the 
interaction from [3]: either the I = 0 and I = 1 K̄ N scattering 
lengths (V I I I ) or the K − p scattering length and the upper pole 
forming �(1405) resonance (V I I ). The other two models were fit-
ted to the experimental values of 1s level shift and width of kaonic 
hydrogen, measured by SIDDHARTA Collaboration [14] (V I , V I V ), 
and to the low-energy K − p cross-sections (V I V ). As a result, all 
four potentials give 1s level shift of kaonic hydrogen (presented in
Table 2) within or close to the SIDDHARTA data and a reasonable 
fit to the elastic K − p → K − p and charge exchange K − p → K̄ 0n
cross-sections.

For the N N interaction we took a separable potential, which 
reproduces N N scattering lengths, low-energy phase shifts and 
deuteron binding energy in np state.

The results of the calculations are shown in Table 2. The exact 
(accurate to ≈ 1 eV) results are compared with commonly used 
approximations, mentioned in the introduction. For the approxi-
mate evaluations we used outputs of our Faddeev calculations of 
low-energy K −d scattering without Coulomb interaction. In partic-
ular, the corrected Deser [6]

�EcD − i
�cD

2
= −2α3μ2

K −d aK −d

× [1 − 2αμK −d aK −d (lnα − 1)] (20)

and the original Deser formula [5], which contains only the first 
term in the brackets of the Eq. (20), use the K −d scattering length 
aK −d , calculated with the corresponding K̄ N potentials. The re-
duced mass of the K −d system is denoted by μK −d in Eq. (20), 
while α is the fine structure constant. The effective optical K − − d
potential was fitted to the low-energy K −d amplitudes from Fad-
deev calculation and then used in Lippmann–Schwinger equation 
together with Coulomb potential in the same way as in [2]. Keep-
ing in mind relative values of deuteron and Bohr radius of kaonic 
deuterium, the approximation seemed well grounded.
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Table 2
Kaonic deuterium and hydrogen 1s level shifts �E and widths � in a form �(E) − i �/2 (eV) for the four complex K̄ N potentials. The first and last column show two-
and three-body exact results, respectively, while the approximate Deser, corrected Deser values and those obtained with optical K − − d potential are in columns 2, 3 and 4, 
respectively.

Kaonic hydrogen 
shift

Kaonic deuterium shift

Deser Corrected Deser Complex V K −−d Exact Faddeev

V I −280 − i 268 −723 − i 596 −675 − i 351 −650 − i 434 −641 − i 428
V II −217 − i 292 −732 − i 634 −694 − i 370 −658 − i 460 −646 − i 444
V III −219 − i 293 −837 − i 744 −795 − i 390 −747 − i 517 −732 − i 490
V IV −280 − i 266 −854 − i 604 −750 − i 310 −740 − i 422 −736 − i 413
It is seen from the table that the original Deser formula can 
be considered only as a rough estimate. The corrected Deser gives 
somewhat better real part of the 1s level shift, but has quite large 
error for the width of the level. The most accurate approximation 
is the exact two-body calculation with the K − − d effective optical 
potential supplemented by the Coulomb interaction.

The next step could be a more realistic calculation of the kaonic 
deuterium atom. In particular, the formalism should be extended 
to treat energy dependent K̄ N interaction models. This is neces-
sary for the inherently energy dependent chirally motivated po-
tentials and for a proper account of the π channel via an energy 
dependent exact optical potential.
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