
Linear Complexity Parallel Algorithms
for Linear Systems of Equations
with Recursive Structure*

I. Gohberg

School of Mathematical Sciences
Raymond and BQWTZ~ Sackler Faculty of Exact Sciences
Tel Aviv University
Tel Aviv, Israel

T. Kailath

Information Systems Laboratory
Department of Ebxtrical Engineering
Stanford University
Stanford, Califmia

I. Koltracht and P. Lancaster

Department of Mathematics and Statistics
University of Calgary
Calgary, Alberta, Canada

In memory of James H. Wilkinson

Submitted by Jack Dongana

ABSTRACT

A method of derivation of parallel algorithms for (N + 1) X (N + 1) matrices with
recursive structure is presented and applied to Toeplitz, Hankel, and other Toeplitz-like
matrices. The derived algorithms, executed on O(N) parallel processors, require
O(N) arithmetic operations per processor.

1. INTRODUCTION

In the present paper we consider linear systems of equations

LINEAR ALGEBRA AND ITS APPLICATIONS 88/89:271-315 (1987) 271

0 Elsevier Science Publishing Co., Inc., 1987
52 Vanderbilt Ave., New York, NY 10017 0024-3795/87/$3.50

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82077056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

272 I. GOHBERG ET AL.

where R is an (N + 1) X (N + 1) matrix with recursive structure as defined in
[7]. We consider strongly regular coefficient matrices, that is, matrices with
nonsingular principal leading minors. However, in Section 8 we indicate how
to apply algorithms obtained here to matrices with some singular principal
leading minors.

In [7] it is shown that matrices of Toeplitz, Hankel, close to Toeplitz,
Hilbert, and Vandermonde type that are important in applications have
recursive structure, and 0(N 2, recursive algorithms are derived. A common
feature of these algorithms is that they require computation of inner products
at each step of the recursion. Since calculation of the inner product of two
vectors of length k on parallel processors requires at least O(log k) operations
per processor, the algorithms of [7] are not well suited for implementation on
parallel processors. In this present paper we show how to exclude inner-prod-
uct computations from algorithms for matrices with recursive structure. This
is done by a method that includes extension of the principal leading minors of
R and still preserves the recursive structure of R. Algorithms of [7] are
accordingly transformed into algorithms for extended vectors and no longer
require the computation of inner products, thus allowing parallel implemen-
tation.

To illustrate, in the Levinson algorithm for a strongly regular symmetric
Toeplitz matrix R = { rli ~ j, }t we find recursively, for k = 1,. . . , N,

k-l

pk= - c 'j+lYk-l(j)'
j=O

0.2)

yk(j> = ~[yk_l(j-l)+pkyk_l(k-j-l)] for j=L...,k-1,

Yk(O) = ” --y?‘k-l(k - 1)~
l-pk

YkV4 = -&Yk-dk - ‘), 0.5)

(1.4)

starting with ya(0) = l/ra. The computed quantities determine the UDL
factorization of R-’ [see (2.18) to follow]. The last vector yN also gives the
inverse of R via the Gohberg-Semencul formula [6, p. 861.

LINEAR COMPLEXITY: PARALLEL ALGORITHMS 273

The extended Levinson algorithm starts with

Yo(6) = l/r0 Y y,(j)= -rj/q, j=l,..., N,

Y,(-j)= -rj/rO, j=l,..., N,

(1.6)

(1.7)

and finds recursively, for k = 1,. . . , N,

n(j) =

Yk(O) =

Yk-I(- l)Yk-dk - 1)

l-$I(-1) ’

Yk-ltk - ‘)
dk) = 1_ y;_l(- 1) ’

j=k- N... N, j#O, k, (1.8)

(1.9)

(1.10)

We see that the inner product pk [of Equation (1.2)] is now found as the
yk_r(-1)th entry Of thevector Yk_l=[yk_l(k-N-l),...,yk_l(N)]T. The
extended vector Yk consists of three parts. The central part [&(O), . . . , yk(k)] T,
after division by yk(k), gives the kth column in the upper triangular factor of
the UDL decomposition of R - ‘, and the lower part [yk(k f l), . . . , Yk(N)] r
with the opposite sign gives the kth column in the lower triangular factor of
the LDU decomposition of R [see (2.11) and (2.18) below for details]. The
upper part [yk(k - N),...,y,(- 2)lT is auxiliary.

The solution of the system of equations (1.1) can be computed from the
vectors Yk with a simultaneous recursion involving a delay of only one
recursion step. More precisely, starting with x,, = f + f(O)[y, - e,], calculate
recursively for k = 1,. . . , N

x,(j) =xk-,(j)+xk-l(k)Yk(j), j=O ,..., N, j#k, (1.11)

X&C) = Xk-r(k)Yk(k). (1.12)

The solution of (1.1) is given by xv. This algorithm can be easily extended
for simultaneous solution of (1.1) with any number of right-hand sides.

The algorithm (1.6)-(1.12) requires at most 2N + 1 multiplications per
processor, and can be executed on O(N) parallel processors (with the number
of processors depending on the number of right-hand sides). The storage

274 I. GOHBERG ET AL.

requirement here is proportional to the number of processors. Since all
quantities required for the solution and factorization of (1.1) are packed into
one vector, the recursion (1.6)-(1.12) also allows efficient implementation on
pipelined computers.

A parallel algorithm for the LDU decomposition of a positive definite
Toeplitz matrix and a consequent solution of (1.1) using either this de-
composition or the Gohberg-Semencul formula was presented in [13]. For
nonsymmetric Toeplitz matrices a parallel algor$hm with lower storage
requirements based on the Barreis algorithm (see [2]) was given in [4]. A
linear complexity algorithm for the Cholesky decomposition of a general
positive definite matrix on a triangular array of processors is presented in [l].
In the case of a Toeplitz matrix, the triangular array reduces to a linear array
similar to the one of [131. These algorithms are of linear complexity, though
the coefficients in the expression O(N) are not given. It appears that these
coefficients must be greater than 2N, since all the above algorithms include
the LDU decomposition of R as one of their steps, and this decomposition
requires at least 2N multiplications per processor. In contrast, due to the
efficient packing of data into one array, the whole algorithm of (1.6)-(1.12)
has the same complexity as the LDU decomposition of R, namely 2N.

It is a common feature of the extended algorithms for all classes of
matrices considered here that together with the UDL factorization of R-r,
they also give the LDU factorization of R. Moreover, the computation of the
LDU factors of R can be done independently, thus allowing further reduc-
tion in complexity and the number of processors.

The algorithms presented here also have a possible advantage in their low
storage requirements. It will be seen that the solution of (1.1) will require that
only O(N) numbers be stored simultaneously. If required, the storage of
triangular factors of R and R - ’ will be more memory consuming, as 0(N2)
numbers must then be stored simultaneously.

In Section 2 the general extension method for matrices with structure is
presented. In Sections 3-7 this method is used to obtain parallel algorithms
for Toeplitz, Hankel, close to Toeplitz, Hilbert-type, and Vandermondetype
matrices respectively. Since a.ll the algorithms presented find triangular
factors of all principal leading minors and their inverses, the use of these
algorithms can be recommended only for those matrices for which the
conditioning of each principal leading minor is not worse than the condition-
ing of the matrix R itself. (Positive definite matrices obviously belong to this
category.) In case of ill-conditioned or singular principal leading minors the
method suggested in Section 8 can be used. This will generally mean a
tradeoff between worse conditioning of the linear system to be solved and the
improved co’mplexity of computation offered by our algorithm.

In Section 9 we present some numerical experiments comparing roundoff
error accumulation for the algorithms presented here with that of the

LINEAR COMPLEXITY: PARALLEL ALGORITHMS 275

numerically stable QR algorithm with column pivoting [17, p. 1111 and with
that of Gaussian elimination with partial pivoting [17, p. 931. The commonly
used (and numerically infamous) Hilbert matrix [17, p. 1081 is used as a test
matrix whenever possible.

In all of these comparisons the parallel algorithms of this paper display
qualities of numerical stability comparable to those of the standard algorithms
(see also [18] and [19]). Indeed, in some cases the parallel algorithms
demonstrate remarkably good properties in this respect.

The method used here, involving the extension of principal leading
minors, originated in the paper by Gohberg and Koltracht [8]. In that paper
the problem of numerical solution of Fredholm integral equations was
addressed and led to parallel difference schemes for displacement, displace-
ment plus Hankel, and close to displacement kernels. (Phenomena of this
kind have been investigated in [20].)

2. PARALLEL ALGORITHMS FOR STRONGLY REGULAR MATRICES

Let R = {rij};j=o b e any (N + 1) X (N + 1) matrix with nonsingular
leading submatrices Ri = { ri j } f, j=. for k = 0, 1, . . . , N. Let

R=
R: *

[1 R; *
(2.1)

(Here, superscripts 1 and c denote “leading” and “complementary,” respec-
tively.)

Suppose we are given qk X (k + 1) matrices U, for k = 0, 1, . . . , iV of the
form

‘k = { uij} i_f”- qk,03 90 > 91> . . * a 9N = 0,

andpkX(k+l)matricesVkfork=O,l,...,iVoftheform

vk = { "ij} p(;:i 1.0, p, > p, > * * * 2 p, = 0.

Then we can define extensions of the leading submatrices Ri of the form

R,=
0 R: I,_, 0

(2.2)

276 I. GOHBERG ET AL.

and observe that R, is nonsingular if and only if Ri is nonsingular. We also
require that the extensions of R, be nested in the sense that U, with the last
column deleted is equal to EJJi_ I (where E, truncates the first ok_ r - qk
rows of U, _ r), and V, with deleted last column is equal to FkVk_ 1 (where Fk
truncates the last pk _ 1 - pk rows of vk _ 1). Thus

‘k=l li; i I,;_; j.

Extensions of this kind are called structured. We remark that U,, Vk, or both
can have zero dimension, which means that no extension is actually made in
the corresponding direction.

Finally, suppose we are given a vector f E C N+ltp~+q~, f T = [f(- qo),
. . ., f(- l), f(0) ,..., f(N) ,..., f(N+ p,)]. Define fi = [f(O) ,..., f(N)lT. Let

and then recursively

k=l,...,N,

partitioning we denote byNe L??)’ ’ ’ ’ ’
such that, in particular f = f(N)]? Consistently with the above

N+l+pk+ql the vector k

II 0

ek= ei ,

0

where ei E C Nt ‘, ei = [0, . . . ,0, l,O, . . . ,O] ‘, with 1 in the kth position.
It will also be convenient to introduce an operator Tk,k which acts on

vectors of size N + 1+ p,_ 1 + qk_ 1 by eliminating the top qk _ , - qk and the

LINEAR COMPLEXITY: PARALLEL ALGORITHMS 277

bottom p,_ 1 - pk elements and, in addition, replaces the entry qk- 1 + k + 1

by zero. Thus,

0

Tk,k=

-0

. . .

. . .

0 1

0
1

0
1

0
0

0 . . .

1 0 **.

0

O_

and

Tk,kfk-l

= [f(-qk),...,f(-l),f(O),...,f(k-l),O,f(k+l),...,f(N+qk)l.

(2.4)

Nestedness of extensions of principal leading minors ensures that the follow-
ing recursive relation also holds for the extended solutions (see also Equation
(2.3) of [7]). Thus, let Xk and Yk be the solutions of the equations R,x k = f k
and R,y,=e, for k=O,l,..., N. Then

Xk = Tk,kXk-l + Xk-dkhk* (2.5)

Indeed, using the nestedness of Rk in the above sense, it is easily verified that

which implies (2.5).
Let us consider now the transposed equation RTx = f and apply the

above technique. The notation of Equation (2.1) is extended to give

278

Then write

I. GOHBERG ET AL.

1 rl, 0 0

RI=
o’* (RgT 0 0

0 (R$)T IN-k 0 *

0 q 0 G_

where ok and vk are nested in the same sense as U, and V,, respectively. If
Xk and ok denote the solutions of the equations Rzxk = f, and RIuWk = ek

for k = 0, 1, . . . , N then, for the transposed matrices, we also have

Xk = Tk,kXk-l+ X&+“k~ (2.6)

The recursion (2.5) shows that if yk are known for k = 0, 1, . . . , N, we can
find the solution of the equation

RX=f (2.7)

on O(N) processors in parallel at the expense of N multiplications and N
additions per processor. Similarly, one can solve the transposed system

RTX=f (2.8)

provided the vectors wk are known. We can see the equations (2.5) and (2.6)
as two equations with four unknown vectors (those with subscript k). The
idea now is to use the available structure of the matrix R to deduce
additional equations for these unknowns by carefully choosing the right-hand
sides in (2.7) and (2.8). To be precise, we give the following general

DEFINITION. A strongly regular (N+l)X(N+l) matrix R= {rij}$=o

is said to have a parallel recursive structure if there exist extensions R, and
R;, k=O,l,..., N, of the form (1.4) and (1.5) and right-hand sides g”, h”,
v=l ,***, (Y, such that for the solutions of the equations

R&‘; = g;, v=l >...> e, (2.9)

R;J/k’ = Wk, v=l >..., o, (2.10)

LINEAR COMPLEXITY: PARALLEL ALGORITHMS 279

there exist operators r, and W, (not necessarily linear) such that, for
k=l,...,h’,

(1) we have

yk=rk(Yk-l,Ok_l,(P:_l,...,(P~-l,~:-l,..., 44-l), (2.11)

Ok=Wk(yk_l,Wk_l,(P:_l,...,(pUk-l,~:-l,..., 44-l); (2.12)

(2) the computation of yk(j) and ok(j) for each j = - ok,. . ., h7+ pk
requires a number of arithmetic operations bounded by some number /3
which is independent of j and k.

In what follows we shall use flops to measure the complexity of al-
gorithms. By a flop we understand one multiplication or division and one
addition or subtraction: ab k c or a/b f c. (For the justification of this use
see [9, p. 321.) Thus the complexity of an algorithm is M flops if it takes no
more than M flops per processor to get the solution.

The definition of a matrix with recursive structure implies that for such a
matrix the vectors yk and wk, k = 1,. . . , N, can be computed on Z((Y + 1)
(N + p, + qo) parallel processors in (p + l)N + 1 flops. Indeed, at step k we
compute yk and tik in at most /? flops per processor and then find (pi and
+ky, v=l , . . . , a, via (2.5) and (2.6) in one flop per processor. We remark that
there can be an obvious tradeoff between the number of processors and the
complexity per processor per step.

In what follows we shall sometimes use more general forms of the above
definition. For example, we may consider operators rk and Wk depending on
quantities computed in two or more previous steps of the recursion, or on
solutions for several different extensions of Rk and Rz.

To start the recursions (2.5), (2.6), (2.11), and (2.12) we set

wg = -r&f)’ f-_qo,o,..., [c_,,o, -1,~,,,...,~,,~v”l,o~...~~~“,o IT, (2.14)

cP;;=g”+g’(0)[~o-eol~ v=l ,.*., a, (2.15)

+,Y=W+hY(0)[tdO-eo], ,..., a. v=l (2.16)

280 I. GOHBERG ET AL.

Comparing the equations

R kyk = ek and RIuWk = ek, k = 0,. . . , N,

with the equations

RUpl = LD and RTLpT = UTD,

we also get the triangular factorizations

I 1 0 . . . 0
-y,(l) 1 ... 0

R= - Ycl(2) -y,(2) *f f 0

l-y,(N) -Y@) ... 1

1

- 42) .. .

- 42) ...

. . . 0

. . .

. . .

. . . 1

1 0 . . . 0

40) . . .
41)

1 0

x .

ON(O) Qdl) - . . .
UN(N) ON(N)

1

0

1

YNW)

(2.17)

0

YN(N) 1
(2.18)

LINEARCOMPLEXITY:PAFULLELALGOFUTHMS

3. TOEPLITZ MATRICES

281

Let R = { T~_~);~=,, b e a strongly regular Toephtz matrix. We define the
structured extensions of principal leading minors R: via (2.2), setting p, = 0
and

Tk-N-1 *‘*

. . .

. . .

and similarly for RE we set p, = 0 and

r2 a.’

k=Ol N. , ,.*., (3.2)

Note that t& and 4 develop the Toeplitz Structure of R in a natural way.
Furthermore, the special structure of R, and Rz can be fuhy expressed in
terms of the rotation matrix &N_k+l of size 2N - k + 1:

I2N-k+l=

In fact, we have

0 0 ‘.. 0 1
0 0 ... 1 0
. . . .
. . _. . .

(j ; -... ;, ;,

1 0 *** 0 0

(3.3)

%i= 12N-k+lRk12N-k+v (3.4)

which characterizes the persymmetry of the extension R,. Now let f = e, in
(2.5) and (2.6). Then Rkcpk = e, and RIG, = e,. Since JzN_k+ i = Z, we get
from (3.4)

(Pk = 12N-k+lWky J/k = J2N-k+lYk’ (3.5)

where, as before, yk and wk are defined as the solutions of the equations

282 I. GOHBERG ET AL.

R,y, = ek, R&k = ek. Substituting (3.5) into (2.5) and (2.6), we get

Jm-k-1Yk = ~k,kJm-k-2Yk-l+ Yk-l(- G+G

&?N-k-lWk - -T k,k&2N-k-2ak-l + Ok-1(- lhk>

which can be rewritten in the following way:

and we use the notation Tk,O = &N_k+lTk, k.&.N_k. It fouows from the Strong
regularity of R that yk_l(- l)ok_l(- 1) + 1. Thus

Yk = rkhk-l,Wk-l),

ok = Wk(Yk4 @k-l)>

where

1
rkbk-ltWk-l) = ___

1 - Yk-I(- +k-l(- ‘>

x[Tk,,Yk~,+Yk~~(-l)~,,-k+,T,,“wk~,l, c3@

1
Wk(Yk-l>Wk-l)=

1 - Yk-l(- +k-I(- ‘>

x [Tk,,wkd + Ok-1 (- l)-h,~k+,Tk,,Yk-,]~ (3.7)

We can also write

I 1 Yk = 1

wk 1 - Yk-d - l)wk-l(- l)

1 Yk- I(- 1&!Npk+ 1
X

mk-l(- lh?N-k+l I

ALGORITHM 3.1. Let R = {ri_j}~j=o be a strongly
matrix. Then one can find the solution of the equation

regular Toeplitz

RX=f (3.9)

in the following way.

(3.8)

LINEAR COMPLEXITY: PARALLEL ALGORITHMS 283

1. start with

y&q = q)(o) = l/r,; yo(j)=oo(-j)= -rj/ro, j=fl,...,+N;

x0(9) = fWrcl; x,(j) = f(j) - f(“)rj/rCl~ j=l ,**., N.

2. Compute recursively for k = 1,. . . , N

Pk=l-Yk_l(-l)Wk-l(-l);

Y&q = PkiYk-1(- l)%l(k - l)* Yk(k) = PkiYk-l(k - l),

q(9) = PklYk-1(- l)Y,-,(k - 1)7 q(k) = /?;lW&l(k - 1);

Yk(j)=P~1[Yk-l(j-l~+~k-l~-l~~k-l~k-j-l~17

j=k-N ,..., N, j#O,k,

W,(j)=Pkl[Ok-l(j-l)+Ok-l(-l)Yk-l(k-j-l)l,
j=k-N ,..., N, j#O,k;

and starting with k = 2,

xk-l(k - 1) =x&k - 1)Ydk - 1);

xk-l(j) = xk-A) + xdk - lhk-djL

j=O ,...,N, j#k-1;

3. The vector xv computed via

xiv(N) = xdN)~&'%

xd j> = xN-kj)+ xN-lWyN(j)~ j=O ,..., N- 1,

gives the solution of (3.9).

This algorithm can be executed on 5N + 2 parallel processors with
no more than 2N + 1 flops per processor. Indeed, we can compute

Pk, ykpl(j - 1)-t ykpl(- l)wl(k - j - 1) and ok-kj - I)+ q-1(- 1)
yk_l(k- j-1)for j=k-N,..., N, j # 0, k, simultaneously in one flop and
then find Yk(j) and ok(j), j = k - N, . . . , N, in one division. The vectors xk
are computed with one delay.

284 LGOHBERGETAL.

It has been seen in equations (2.17) and (2.18) that the vectors yk, wk,
k=O,..., N, also yield the LDU factorization of R and the UDL factoriza-
tion of R-l. It follows from Algorithm 3.1 that the LDU factorization of R

can be found independently as follows:

ALGORITHM 3.2. Under the conditions of Algorithm 3.1:

1. Start with

YOtj> = wl)(j> = - rj/r(), j=*1 ,..., f N.

2. Compute recursively for k = 1,. . . , N

Pk = l- Yk-l(- lbk-1t - 07

yk(j)=Pkl[Yk-l(j-l)+Yk-lt-l)~k-ltk-~-l)l~
j= -1 ,,.., k-N, j=k+l,..., N,

w,(j)=Pkl[~~~~(j-l)+~k~1(-l)~k~I(k-j-l)17

j=-1 ,..., k-N, j=k+l,..., N.

3. The LDU factorization of R is now given by (2.17).

Both Algorithms 3.1 and 3.2 can be further simplified if R is symmetric,
i.e., rj = r_ j, j=l ,..., N, in which case yk = wk for k = 0 ,..., N. The
symmetric version of the Algorithm 3.2 is also known as the Schur algorithm
(see [lo], for example).

4. HANKEL MATRICES

Let R = {T,+~}:~=,, b e a strongly regular Hankel matrix. The extended
principal leading minors R, are defined via (2.2) by setting q0 = 0 and

k=O,..., N, (4.1)

‘2N-k+l “’

thus developing the Hankel structure of R in a natural way.

LINEAR COMPLEXITY: PARALLEL ALGORITHMS 285

We shall describe two possible choices of operators r,. The first one
yields a parallel version of an algorithm originally due to Lanczos (1952). So
let Ry, = ek, and let us introduce for k = 1,. . . , N three linear operators:

TkO,Tk k which map C2N-k+2 into C2N-k+1, and Tk,k+l which maps
CdNPkg3 into CzNMk+‘, according to the rules

T,,,[f(o)m f(ZN- k +2)]’

= [o,f(o),...,f(k-l),f(k+2),...,f@N-k+2)lT>

T,,,b-(“)m f(2N-k+2)lT

= [f(o),...,f(k-1),0,f(k+1),...,f(2~-k+l)1T>

Tk,k+l[f(o)....,f(2N-k+3)T

= [f(o) ,..., f(k-2),0,0,f(k+-~),...,f(2i+k+1)~’

It is obvious that

and

RkTk.k+lYk-2=ek-2 - Yk-2@ - l)ek-l- Yk-z(k)ek+

It also follows from the Hankel structure of Rk that

Thus

Rk[Tk,OYk-l- Tk,k+lyk-2 + [Yk-dk) - Yk-2ck - l>lTk,kYk-ll

= [Yk-s(k) - Yk-dk+l)+ Yk-dk)[Yk-dk - 1) - Yk-dk)llek.

It follows from the strong regularity of R that

Pk = Yk-2(k) - Yk-dk +I)+ Yk-#)[Yk-&-1) - Yk-l(k)] #o.

286

Thus

I. GOHBERG ET AL.

y/(= rk(Yk-1’Yk-2)’

where

&(Yk-19 Yk-2)

=Pkl{Tk,lYk-l-Tk,k+lYk-2 + [Yk-l(k) - Y&2@ - l>l Tk,kYk-11.

(4.2)

We see that in this case yk is expressed in terms of quantities computed in
two previous steps of the recursion. This case can be included in the
definition of Section 2 by an obvious generalization of Equations (2.11) and
(2.12).

ALGORITHM 4.1. Let R = { ri + j } rjjBo be a strongly regular Hankel ma-
trix. Then the solution of the equation

RX=f (4.3)

can be found in the following way.

1. start with

Y,(O) = ;? y,(j)= -;, j=l,..., 2N,

Yl(O> = - 4 9

*or2 - r1

Y,(l) = $T 1

1

Yl(j) = - rjYl(") - rj+ lYl(l)> j=2 ,...,2N-1,

f(O)
x0(0) = -p

rjf(“)

TO

xo(i)=f(j)-7, j=l,..., 2N.

LINEAR COMPLEXITY: PARALLEL ALGORITHMS 287

2. Compute recursively for k = 2,. . . , N

6, = yk-e(k - 1) - Ydk)> Pk=Ydk)-~dk+1)+~k-dk)hc,

Y/m = - Pi l[SkYk- do) + Yk-2(0)1,

ydk-1)=Pi1[ydk-2)-byk-dk-1%

y/c(k) = P?ydk - I),

Yk(j)=Pk1[Yk-l(j-l)-Yk-8(j)-BkYk-l(j)l, j=l ,...,k-2,

n(j)=Pkl[Yk-l(j+l)-Yk-e(j)-SkYk-l(j)l,

j=k+l ,...,2N- k,

x,-,(j)=Xk-e(j)+Xk-z(k-1)Yk-,(~)~

Xk_l(k-l)=X _ (k-l)y _‘(;:;,:2N-k’ jzk-”
k 2 k 1

3. The vector xN,

x,(j) = xi&)+ XN-ltwYivtj)~ j=O,...,N-1,

XN(N) = XN-i(N)Y,(N)

gives the solution of (4.3).

This algorithm can be executed on 3N + 4 parallel processors at the
expense of no more than 2N + 1 flops per processor. Indeed, we can compute
SimultaneOuslySk,Yk-2(k)-Yk-Xk+1), and Y&i(j+l)-Y,_,(j)fora.h j,
then find akYk_i(j) and @k simuhaneousIy, and finahy find ah Yk(j). The
vector Xk_ i is computed with one delay.

The LDU factorization of R is given by:

ALGORITHM 4.2. Under the conditions of Algorithm 4.1:

1. start with

y,(j)= -2, j=l ,...,2N,

-f,(j)= -rjyl(0)-%, j=2 ,...,2N- 1.
r,r2 - r1

288 I. GOHBERG ET AL.

2. Compute recursively for k = 2,. . . , N

Pk = Ydk) - Yk-0 +l> - Yd+L

~~(j)=Pk~[Yk-~(j+l)-~k-~(j)-SkYk-~(j)l~ j=k+l ,...,2N- k.

3. The LDU factorization of R is given by (2.17).

Another algorithm for Hankel matrices includes the solutions of the
equations Rgp, = e, together with the calculation of the Yk. It is straightfor-
ward to check that

Therefore if

A, = - wx-dkh-0) - vk-l(k +l> f 0 (44

then

Yk = ; Pk,O(Pk-1+ (Pk-l(Wk,kYk-11.

If X, = 0 we can find yk in terms of yk_2 and (P&2 in the following way:

+ (Pk-2(k)Tk,kTk-l,k-1Yk-2

+

where

vk = - [(Pk-2(k + 1) + 9%e(k)Yk-z(k - I>] > (4.5)

pk = - [V’k-2@ +2) + W-e(k)Yk-e(k) - (P&k + I)%]. (4.6)

LINEAR COMPLEXITY: PARALLEL ALGORITHMS 289

Thus, in this case, we get the following expression for IYk:

Tk,O(Pk-1+ (Pk-lWk,kYk-11 if X,#O,

k-l,O(Pk-2+ ‘Pk-2(k)Tk,kTk-,,k-,k-2

+ vk

Tk, kTk-l O(Pk-2
(Pk-2@) ’ 1 if x,=0,

where A,, ,-lk, and vk are defined in (4.4), (4.5), and (4.6). Again, Yk is
expressed in terms of quantities computed in two previous steps of the
recursion.

ALGORITHM 4.3. Under the conditions of Algorithm 4.1:

1. Start with ‘p. = y. and x0 as defined in Algorithm 4.1.
2. Compute recursively for k = 1,. . . , N as follows:

If (~~_~(k) + 0 then

‘k = - bk-dk)Yk-l(k) + (Pk& + I)],

Yk(O) = &‘~k-dk)Yk-do)~ Yk(k) = Xi1~k-,(k - I),

yk(j)=x,‘[~k-,(j-l)+(Pk-l(k)Yk-&)l~ j=l ,...,k-1,

y,(j) =A;l[(Pk-l(j+l)+(Pk-l(k)Yk-l(j)]p j=k+l ,...,2N- k,

dk) = (Pk-l(k)Ydkh

v,(j) = vk-dj)+ CPk-dk)Yk(j), j=O ,..., 2N-k, j+k,

Xdk) = Xk-dkh(k)>

x,(j) =xk-dj)+xk-dk)Yk(j)r j=O ,..., N, j#k.

290
I. GOHBERG ET AL.

If qk_ ,(k) = 0 then

vk+l= - bk-dk +2) + P)k& + lhk-l(k)] >

pk+l= - I~k-l(k+3)+(Pk-l(k+1)Yk-l(k+1)-(Pk-l(k+2)vk+l],

Yk+l(O) =Clk;ll(pk-l(k+l)Yk-l(0),

Yk+ltk) = &fl (Pk-dk - 2, +

i

Yk+l@ +l> =&(Pk-l@ -l)y

y,+,(j) = pi:1 (P&j - 2)+ (Pk-dk + l>Yk-,(j)

i

+ ,_:;;: 1> ‘pk- dj - ‘))

)

j=2 ,...,k-1,

(Pk-l(j +2)+ (Pk-l# + ‘hk-l(j)

+
vk+l

‘Pk-l@ + l>
9)k- dj + 1) 9

1

j=k+2 ,...,2N- k - 1,

9)k+dk) = ‘Pk-dk+l)Yk+#h (Pk+dk +I) = vk-dk + lhk+# + 11,

qk.tdj) = ‘T’,-,(j)+ ‘Pk-dk+l)Yk+dj)>

j=o,..., 2N-k-l, j#k,k+l,

xk+l(O) = xk-d”)+ Xk-dk + lhk+l(“)>

Xk+dk) =Xk-dk +1hk+#) -
Xk-dk)

vk_l(k+l)(Pk-l(k-l)r

X/c+dk +I) =X&k+ l)Yk+l(k + 1) - Xk-l(k)

(Pk-l(k + 1) n-l(k +2>,

LINEAR COMPLEXITY: PARALLEL ALGORITHMS

_ Xk-l(k)
~,_l(k+l)%-lw)~ j=L...,k-1,

Xk+lw = Xk-1(j)+ Xl& + lhk-l()

291

_ Xk-l(k)
(Pk_l(k+l)~~-dj+l), j=k+Z...,N.

This algorithm has a similar complexity to Algorithm 4.1, but it can be
more efficient for the computation of (Pi. It is easy to see that cpk(k - I) # 0

if and only if the subprincipal leading minors Ri = { ri + j_ 1 }f, j_ 1 are nonsin -
gular. The knowledge of qN can be important if (P~(N - 1) # 0, because in
this case we can use the Gohberg-Semencul formula (see [6, p. 861) to write
R-’ as follows:

R-L-1
xv(o)

0

(Prm
- I i %(N- 1)

X

I 0

where J is the (N + 1) X (N + 1) rotation matrix defined in (3.3).

292 I. GOHBERG ET AL.

5. CLOSE-TO-TOEPLITZ MATRICES

According to the definition given in [5] an (N + 1) X (N + 1) matrix R is
called close to Toeplitz if it admits the representation

’ R = 2 Liui
(5.1)

i=l

where L’ are lower triangular Toeplitz matrices

(5.2)

and U’ are upper triangular Toeplitz matrices

(5.3)

It is clear that the minors R, will have the same structure as R, namely

i=l

Let us introduce (Y extensions of R:,

0 (u$ 0 1 0 0 0’
j=l ,...,a (5.4)

LINEAR COMPLEXITY: PARALLEL ALGORITHMS

where

(qC= (5.5)

and solutions of the equations R[yi = ek, R$pkj = ri, where ri =
[0, . . . ,O, r,, . . . , r&l r. Let Tk,e map C2N-k+’ into C2N-k according to the
rule

T,,,[f(k - N- l),..., f(-l),f(0),...,f(N)IT

= [f(k--N-l) ,..., f(-2),O,f(O) ,..., f(N-l)]r. (5.6)

Then it is straightforward to check that

y~=Tk,oykJ_l+ 5 &I(- l)Q. (5.7)
i=l

Using (2.5), we get

l- 2 yL_1(- l)q@,(k) y/= T,,,Y:_,+ t y:_l(- l)q.J&l,,
i=l I i=l

where Tk k is defined in (2.4). It is easy to see [7] that 1 Z
c:_i,v:-r(,- l)&!i(k). Th us, in the clos&oToeplitz case, we have a op-
erators IL, j = 1,. . . , a, defined by

r,$y:_, ,..., Y&(pifi ,..., (p;?J =
1

1 -C:==,&,(- l)Q$i,(k)

x T,,,Y:_~ + t Y:-I(- l)T,,,cp:i, >
[i=l I

(5.6)

and so the recursive structure of a close to Toeplitz matrix is defined via (Y
different extensions of each principal leading minor. Also, this case can be
included in the definition of Section 2 by an obvious generalization of (2.11).

294 I. GOHBERG ET AL.

ALGORITHM 5.1. Let R be a close to Toeplitz matrix defined by (5.1).
Then one can find the solution of the equation

Rx=f (5.9)

in the following way.

1. Start with y&O) = + * . = y;(O) = l/C~zI,r,“s, and

y;(m) = . . . = y;(m) = - y()(o) t s($;, m=l ,...> N,
i=l

y,i(- m) = - uO(0)sl, m=l ,..., N, >...>a, j=l

cpb.j(O) = y()(O)r’, i,j=l >*..>a,

cpkj(m) = riz - yO(0)ri e sopr,p, i, j=l ,...> a, m = l,..., N,
p=l

cpkj(- m) = - y,(O)r,‘s~,, i, j=l >...> a, m = l,..., N,

x0(0) = Yo(O)f(O),

x0(m) =_ftml -- vdO)f(O> i: Sk> m=l ,..., N.
p=l

2. Compute recursively for k = 1,. . . , N

P{ = t Y%,(- 1)qkP:jl(k), j=l ,***>a,
p=l

Y:(O) = j = l,...,(~,

y;(k)=L 1 _ &(k - I),

1
y/(m) = -

14
ykj_l(m- l)+ i: y,P_J - l)q[:jl(m) ,

p=l 1
j=l >...> a, m=k-N ,..., N, m#O,k,

c&j(k) = r$/fl(k)y~(k), i, j=l ,...>a,

LINEAR COMPLEXITY: PARALLEL ALGORITHMS 295

i,j=l,..., a, m=k-N ,..., N m#k,

xdk) = xk-dkh:W

xkW = xk-h4 + xk-dkMW7 m=O ,..., N, m#k.

3. The vector xN gives the solution of (5.9).

This algorithm can be executed on (e2 + 2c~ + 3)N parallel processors at
the expense of no more than ((Y + 2)N flops per processor. Indeed, we can

so that it takes cu + 1 flops to calculate 1 - pi and g&f ,(k)[yL_ l(m) +
X;dlyv,“_.(- l)q$?$(m)], and then one more flop to find ykj(m).

We remark that rpij(m)=cpkP(m) for i=l,...,a, ykm)=yi(m), and
p[=pIforall j,r,=l,..., cuand k,m=O ,..., N.

We also remark that the same algorithms for the transposed matrix RT
will give vectors RIaOk = ek. The entries yk(m) and wk(m) can be found
separately, without finding yk(m) and wk. m) for m = 0,. . . , k, thus giving
the LDU decomposition of R.

Simpler extensions of principal leading minors of the matrix I? will be
sufficient if we introduce solutions for some additional right hand sides and
compute simultaneously yk and wk for k = 0,. . ., N. The complexity of the
second algorithm will be exactly the same as the complexity of the first one,
but the number of processors for the new algorithm will be (4a + 3)N only.
First we remark that for j = 1,. . . , a

k

y[(- 1) = - C y:(j)sfi+l.
j=O

Now let

T
(R$[y;(o),...,y:(k)]T= [&...J;+I] -

296 I. GOHBERG ET AL.

Since the last row of (II:)-T is just [yk(0),. . . , yk(k)lT, we get

v:t - 1) = -Y:(k), i=l ,...,a.

Therefore we can also consider the extensions R, with q,, = p, = 0 for
k = 0,. . . , N,

Too ... ‘Ok 0 . . . 0

(j . . . (j

R,=
TkO *.. ‘kk

rk+l,O ’ . . ‘k+l,k 1 0 .

TN0 *.. ‘Nk 0 .l

For k=O,...,N-1,let

R,Q$= [T;,...,r$-, i=l >***,a,

RT,t&= [s;,...,s;]‘, i=l >*.*, a,

R,x; = [ri 1 ,..., rk,OIT, i=l,...,a,

REyi= [si ,..., s~,o]~, i=l,..., a.

Thenfor k=l,...,N

where

1

rk = l+C:c’=,y;_l(k - 1)cp;_l(k)
T,qOyk-l- i: Y:-l(k-l)T,qk(P;-l

i=l 1
1

wk = l+C;=‘=,x;_,(k- l)&(k)
T&Ok-l - e &(k - l)T,q,& >

i=l I

LINEAR COMPLEXITY: P ARALLEL ALGORITHMS 297

where now T& and T& map CNf’ into itself according to the rule

and

ALGORITHM 5.2. Under the conditions of Algorithm 5.1:

1. start with

Y,(j) = - Ye(O) 2 s& j=l ,***> N,
i=l

w,(j) = - oo(o) ; r&j. j=l ,***> N,
i=l

q&(O) = Yo(O)& x;(o) = Yo(O)& i=l >**.,a,

q.$(j) = r/ - yo(0)r,” i s,Prr, j=l ,**a, N, >...,a, i=l
p=l

x;(j) = r/+l - y,(o)r; i so”rJ’, j=l ,..., N-l, i=l,..., a,
p=l

g)(o) = o,(o)s;, y;(o) = w,(o)s;, i=l ,***,a,

&(j)=si-q,(O)sg 2 qfsf’, j-l ,..., N, i=l,..., a,
p=l

a

vi(j) =s;+~- w,(o)si c r,psip, j=l ,..., N-l, i=l,..., a,
p=l

x0(0) = Yo@)f(O>

xdj> = f(j) - YdO)f@) it so”$ j=l ,***> N.
p-1

298 LGOHBERGETAL.

2. Compute recursively for k = 1,. . . , N - 1

pk = t YkP-ltk - l)cp,P-l(k)>
p=l

vk = c XkP-ltk - l)&(k),
p=l

&to) = -

Yk(k) = &yk-dk - l),

uk(i)=& Yk+(j - l> - 2 ykP-l(k-lhL(j) p

p=l 1
j =l,..., N, j+k,

wk(“) = - & i &(k - l)+,“-,(k),

k p=l

w,(k)=& ‘Jk- l(k - 1) = ?‘k(k) >
k

uk(j)=& wk-,(j-l)- i 4-dk-1)+,PPl(j) >
k p=l I

j=l ,..., N, j#k,

v,:(k) = d-dkhdk), r:(k) = xi-dkh(k)> i = l,...,a,

d(j) = d-,(j)+ 9’:-,(k)Ydj), i=l ,...,a, j=O ,..., N, j#k,

~:(j)=x:-,(j)+x:-,(k)Yk(j), i=l ,...,a, j=l >***> N, j+k,

d':(k) = 'k-,(+,(k), d(k)=&#+,tk), i=l,...,cx,

G(j) = kdj)+ rC/:-,(+‘,(j), i=l ,...,a, j=O ,..., N, j#k,

Y:(j)=Y:-l(j)+Y:-,(k)w,(j), i=l >...,a, j = O,..., N, j+k,

X&d =Xk-dk)Yk(kh

Xk(j)=Xk-l(j)+Xk-l(k)Yk(j)Y j=O >**., N, j+k.

LINEAR COMPLEXITY: PARALLEL ALGORITHMS 299

3. Compute

(I

pN= c !&-l(N-l)~~-l@%
p=l

TN(O) = -

YNtN) = &N-1(- ‘1,

YN(+& yNT1(j - l) - t YkdN- ‘)v&-dj) 7

N p=l 1

j=l ,...,N-1,

x,(j) =xN-l(j)‘xN-l(N)YN(j)~ j=O ,...,N- 1.

4. The vector xN gives the solution of (5.9).

6. HILBERT-TYPE MATRICES

Matrices of Hilbert type are defined by the relation

diag{t,,..., t,}R-Rdiag{so,...,sN} = e gih; (6.1)
i=l

(see [ll], [7]), where {tj}$, and { s j }&, are two disjoint sets of pairwise
different numbers. In this case we consider

R,= (6.2)

300 I. GOHBERG ET AL.

thus setting p, = qk = 0 for k = 0,. . . , N. It follows from (6.1) and (6.2) that

where Pk is the projection on the first k + 1 coordinates,

Applying Rkl to both sides of (6.3) we get

R,‘diag{ to ,..., tN} - diag{ sa ,..., sN} RK1

= e &(P,+:)r+diag{O ,..., O,tk+i-sk+i ,..., t,-s,}Rki,
i=l

where cpi and +: are solutions of the equations

R,qpk = gi and Rz$k = hi.

Therefore

a

diag{t,-s, ,..., t,-ss,,t,-_tk+l ,..., t,-rt,}yk= x&(k)&.
i=l

Similarly

a

diag{t,-s,,...,t,-s,,s,+,-s,,...,s,-s,}wk= 1 &(k)+:.
i=l

Using (2.5) and (2.6), we get

Yk = rk(d-l)...) qJ_,&l>...>

LINEAR COMPLEXITY: PARALLEL ALGORITHMS 301

where

tk - sk

rk = ~~&_,(k)cp:_l(k)

Xbk-tk+l)-l ~~~~~(sk-tk)-l)&l+ek
1

and

tk - sk

wk = c~~_,lr/:-,(k)cp:_,(k)

i ~;_~diag((t~-tk)-l,...,(tk-l-tk)-l,O,
i=l

xbk+l- tk) -’,(s,-tk)-l)~;_l+ek .
1

ALGORITHM 6.1. Let R be a matrix of Hilbert type as defined in (6.1).
Then the equation

Rx=f (6.4)

can be solved in the following way.

1. Start with ~~(0) = o,(O) = l/rW and

y,(j)= -$ (J,(j)= -2, j=l ,**., N,

&(O) = $, #b(O) = 9, i = l,..., (y,
%o

x0(O) = fO,
%I

i=l ,***,a, j=l ,..*> N,

x0(j) =fW -fO$9 j=l >***, N.

302 I. GOHBERG ET AL.

2. Compute recursively for k = 1,. . . , N

Y/t(k) = 4k) =
tk - sk

~:~~J/:_~(k)(pfk_l(k) ’ (6.5)

u,(j) = Y&4
CL+:-,(k)cp:-l(j)

Sk - ti
, j=k+l ,..., N, (6.6)

w,(j) = ok(k)
Z=AdWL(j)

tj-tk ’
j=O ,...,k-1,

@k(j) = ‘+(k)
%,cp:-,(k)L(j)

si - t,
, j = k +l,..., N, (6.7)

$/c(k) = cp:-,(kh(kL #i(k) = #:-,(k)‘+(k), i = l)...) CX, (6.8)

q:(j) = ‘ptk-i(j)+ cp;-,(k)y,(j), j=O ,..., N, i=l,..., (Y, jzk,

(6.9)

~:(j)=~:~,(j)+J/:_,(k)wk(j), j=O ,..., N, i=l,..., (Y, j#k,

xk@d = xkdkhktkh

xk(j> = xk-d.i)+ xk-,(k)Yk(jL j=O ,..., N, j#k.

3. The vector xN gives the solution of (6.4).

This algorithm can be executed on parallel processors at the expense of no
more than 2aN flops per processor.

We also remark that the LDU decomposition of R can be computed
separately, via (6.5)-(6.9) for j = k + 1,. . . , N.

7. VANDERMONDE-TYPE MATRICES

Let R = {l;j}fjjzO, ri # 0, be a Vandermonde matrix. Since det R =
n Oak<i<iV(ri-rk), ’ is strongly regular if and only if ri # r, for i # k. We
first describe a parallel algorithm for the transposed system

RrX = f.

LINEAFiCOMPLEXITY:PAFULLELALGORITHMS 303

The extended minors R, are defined as in (6.2), setting pk = qk = 0. Let
Rpk = ek and R,+, = [l/r,, l/r,, . . . , l/rN]? Then it is easy to show that
the following algorithm holds (see the generalization below).

ALGORITHM 7.1. Let R = { r/}yj_,, be a strongly regular Vandermonde
matrix. Then the solution of the equation

RTX=f (7.1)

can be found in the following way.

1. start with

d&J)= [l, -l,..., -llT,

2. Compute recursively for k = 1,. . . , N

w,(j) = -
#k-I(j - 1)
wLl(k) ’

j=l k ,*a*> >

4j>= -
rj\l/k-l(.i)

ddk) ’
j=k+l N, ,**-,

#k(j>=#k-dj)-
#k-h - 1)

rk 9 j=l ,...,k-1,

~
k

(k) = _ +k-l(k - 1) ,
*k

ik(j)=(l-~)#k_I(j)y j=k+l,..., N,

xk(j)=Xk-l(j)+Xk-l(k)Ok(j)r j=O ,..., N, j#k,

Xdk) = Xk-dkbdk).

(7.2)

304 I. GOHBERG ET AL.

3. The last vector xN is the solution of (7.1).

Note that the entries of xk are computed with one delay after the entries
of wk are found. Therefore this algorithm can be executed on 4iV + 3 parallel
processors at the expense of no more than 2N + 1 flops per processor. Indeed,
in (7.2) we can compute rjGk_ r(j) and T~#~_ i(k) simultaneously and then
divide them.

Let us consider now the Vandermonde system

Rx=f,

and let Ri denote the principal leading minors of 2% It is easy to see that

x krqk=diag{r;‘,...,r;l} yk

where Rlk(Pk = e,, Riyk = ek with eO,ek E C k+l, and

since q,(k) = ‘dk.0) and yk(k) = Wk(k), we find from (2.5) and Algorithm 7.1

and that

that

(Pk-dk) = - +
k 1

_ (: _ q

yk-l(j)

Yk(j> = ~
rj - Tk ’

We also remark that

x

k

= _ +kdk - l>

‘k

j=o ,..., k - 1.

k

Xktk) = ((R,‘)‘fk,ek) = j&w,(j)f(j).

Thus we get the following algorithm for Vandermonde systems.

LINEAR COMPLEXITY: PARALLEL ALGORITHMS 305

ALGORITHM 7.2. Let R = { r/ }Fj=, be a strongly regular Vandermonde
matrix. Then the solution of the equation

can be found in the following way.

1. Start with w0 and J/a defined in Algorithm 7.1 and ~~(0) = 1, x0(O) =

f@>-
2. Compute recursively for k = 1,. . . , N

via Algorithm 7.1, and

yk-dj>
yk(j) = -

rj - rk '

j=O ,...,k-1,

Ydk) = Wk(k)a

3. Compute simultaneously for k = 1,. . . , N

x,(j) =xk-dj)+
Xk(khdj)

Yktk) ’
j=O ,...,k-1,

X&d = i uk(j)ftj>e
j=O

4. The last vector xN gives the solution of (7.3).

The second step can be executed on 4 N + 3 parallel processors at the
expense of no more than 2N flops per processor. This step will give us the
UDL decomposition of R-i, which is determined by [yk(O), . . . , yk(k)]’ and
[+(O),..., ak(k for k = l,..., N via (2.18). The third step can then be
executed on N + 1 parallel processors at the expense of 2N flops per
processor also.

Indeed, inner products c~_c~k(j)f(j) for j = 1,. . . , N can be ac-
cumulated simuhaneously, giving x)=i@k(j)f(j) and xk(k) = c&+dk(j)f(j)
at step k of the recursion.

306 I. GOHBERG ET AL.

Note that if f = e,, then we can omit the third step and compute (Pi via

TkYk(i)
%x(j) = - rj#k_l(k-l) = -

TkYk-l(j)
‘j(‘j - 'k)J/k-lck - 1) ’

j=O,...,k-1,

V’,(k)= ’ rk’h-l@) *

The Vandermonde matrices belong to a wider class of Vandermonde-type
matrices, defined by the relation

Rdiag{t,,..., tN} -ZR= ‘f g,h; (7.4)
i=l

(see [8], [4]), where

0 0 ... 0

z= I 1 . .O :” 0
. . . .

;> ..: 1’ 0 I
and ti Z 0, j = 0,. . . , N. It is easy to see that the unique solution of (7.4) is
given by

R= e [gi Zgi ... z”-‘gi]
i=l

Here D=diag{t,,..., t, }, and we use the fact that Z N = 0. In other words,

hi (0) h,(N) - . . . _

R= t L[g,]

t0 tN

i (7.5)
i=l

hi (0) h,(N) ’
- . . .

N+l
t0

---xGi-
t0

LINEAR COMPLEXITY: PARALLEL ALGORITHMS 307

where

Let R, be given by (6.2) as for Hilbert-type matrices. Then, it is easy to see
that

RkDkYk-l = ek + f
[

kilhi(j)Yk-l(j) gi,
i=l j=O 1

where &[f(O),...,f(N)]r= [tof(0),...,tk-lf(k -l),O,f(k)...f(N- l)]r
Introducing solutions of the equations R,cpi = gi, i = 1,. . . , (Y, we get

Yk=QYk-i- 2 ‘Iflhi(j)Yk-l(j) Cp:. [i=l j=O 1
For the transposed matrix we have

R&w, = tkek - k &(k)h,, i=l

(7.6)

where Skak = [ok(l) ,..., w~(Ic),O, tk+iwk(k + 1) ,..., tN~k(N)]r. Thus, intro-
ducing solutions of the equations REJ/i = hi, i = 1,. . . , (Y, we find that

s,w, = tp, - i q&(k)l//‘. (7.7) i=l
It is shown in [4] that yk(k) = tk/~~==I(P:_l(k)J/h_l(k). Since

k-l

c hi(j)yk_l(j)=J/k_l(k-1) for i=l,...,a, j=O
it follows from (2.5), (2.6) (7.6), and (7.7) that

Yk = rk(dc-1 ,...) (P;-l,+:_l>...r 44-l>?

308

where, assuming that g, = eO,

~~=~diag{(t,-t,)-‘,...,(t,_,
k

with

a

I. GOHBERG ET AL.

hk= c #&r(k)$‘_r(k) and rk=(Z-_kl)-l,

and

a

i=l

pk

-1 0

0

-i 0

0 Ai1

0 - Cl
0

0 -t$

x c hwLl~
i=l

with pk = ‘~:~~(k)/~~==1(~tk_~(k)~:_~(O). The assumption that g, = e, does
not imply any loss of generality [we can always add e,OT to the right-hand
side in (7.4)] and is immediately satisfied when R is Vandermonde.

ALGORITHM 7.3. Let R be a Vandermonde-type matrix defined in (7.4).
Then the equation

Rx=f (7.8)

can be solved in the following way.

LINEAR COMPLEXITY: P ARALLEL ALGORITHMS 309

I. Start with y,, = w,,, x0, & &, i = 1,. . . , a, given by (2.13)-(2.16).
2. Compute recursively for k = 1,. . . , N

h(k) = ‘+(k) =
tk

Z:sp&,(k)rCl:_,(k) ’

uk(i)=~~l~~-l(k)~x,(i), j=O,...,k-1,
1

wk(j)= - o,(k)i~l~~-l(k)i:l(j -lb

j=l ,...,k-1,

wk(j>= - ; Oktk) 2 cpi-dk)h(j) y
I i=l 1

j=k+l N. ,***,

cp;, i =l,..., (Y, and x are computed via (2.5), and

wk(“) = d(k). (7.10)

+:, i=l ,.**, (Y, are computed via (2.6).

Note that the back substitution in (7.9) is not parallel. The equation (7.9)
can be solved by FFI method in O(log k) flops. Therefore the whole
algorithm can be executed in O(N log N) flops on parallel processors.

8. THE NON-STRONGLY-REGULAR CASE

If the matrix R is nonsingular but not strongly regular and belongs to one
of the classes discussed in Sections 3-7, we can replace the equation RX = f
by the equation R *RX = R * f. It is shown in [7] that if R is Toeplitz, Hankel,

310 I. GOHBERG ET AL.

or close to Toeplitz, then R*R is close to Toeplitz, and if R is of Hilbert or
Vandermonde type, then R *R is of a Hilbert type. Thus Algorithm 4.1 or 6.1
can be applied to R*R. For example, if R is Toeplitz, then denoting the
complex conjugate with an overbar, we have

R*R = L(g)+ U(h) + L(r,)U(s,) - L(r2)u(s2>,

whereg=R*[r,, ,..., r,]r,h=[O,hr ,..., h,]rwith

[h 1 ,..., h,]T=(R;-l)*[j; ,..., fNIT, rr= [?O,...,T_N]T,

T
si= [O,r_, ,..*> T-N] , rs= [O,?, ,..., ?rlT, ss= [OJ,)...) r,]‘.

We remark that the computation of initial data for Algorithm 4.1 here
requires O(N) flops on 2N + 1 parallel processors.

As mentioned in the introduction, this method means a tradeoff between
squaring the conditioning of the original system and the improved complexity
of computation offered by our algorithms.

9. NUMERICAL EXAMPLES

In this section we compare results of numerical experiments for the
algorithms derived in Sections 3-7 with the most widely used Gaussian
elimination with partial pivoting [17, p. 931 and the QR algorithm with
column pivoting with its guaranteed numerical stability [17, p. 1111.

As test matrices we choose matrices for which the conditioning of each
principal leading minor is not worse than the conditioning of the matrix R,
and such that R is ill conditioned. One of the best known examples of this
kind is the Hilbert matrix R = { l/(i + j + l)}yj=,. This matrix can be used
for the testing of Algorithms 3.1, 4.1, 4.2, 5.1, 5.2, and 6.1. Indeed, the
Hilbert matrix is also of a Hankel type; thus RJ [where J is defined in (3.3)]
is Toeplitz and hence also close to Toeplitz.

For each of comparison we present only the computed (N, N) entry of
R - ’ as a function of the size N and of the algorithm. The results appear in
Table 1. The exact value given by the formula

(R_l),,, = w+ lY12
(2N+l)[N!14

LINEAR COMPLEXITY: PABALLE L ALGORITHMS 311

TABLE 1
HILBERT MATRICES OF SIZES 5 TO 10

CR-‘),,N
Algorithm N= 5 6 7 8 9 10

Gauss 44086 693986 9769178 39547369 - 161450760 33125049

QR 44086 696342 10399143 39834837 - 151806052 40498954
3.1 44085 694605 8768008 39629315 - 400982392 - 30626402
4.1 44089 693773 9344511 32833552 - 78562479 33403400
4.2 44088 693891 9635818 36628650 - 108446517 28262606
5.1 44082 694423 8607589 47961848 - 476352000 15983355
5.2 44082 694654 8555547 48135835 - 457933028 - 33041484
6.1 44100 698544 11099084 176679360 2815826112 44914172416
Exact 44100 698544 11099088 176679360 2815827300 44914183600

is shown in the last row of the table. The 2norm and co-norm condition
numbers of R are proportional to e3.5(N+1) (see [lo], for example).

It is immediately clear that, for these examples, the accumulation of
roundoff error in the parallel algorithms is no worse than that in the two
standard algorithms.

We note also the surprising numerical stability of Algorithm 6.1 as applied
to the Hilbert matrix. It is plausible that this could be explained using the
connection with recursion formulas for orthogonal polynomials. But the
following discussion suggests that this is not the case.

It is clear that the vectors [yk(0), . . . , yk(k)] ‘, k = 0,. . . , N which corre-
spond to the Hilbert matrix R = { l/(i + 1 + j)}Fj=,, are composed of coeffi-
cients of Legendre polynomials; thus for j = 0,. . . , k

Then the vectors [yk(0), . . . , yk(k)lT, k = 0,. . . , N, can be computed via the
Lanczos recursion [151:

Yk@)

i- YkW I 2(4k2 - 1)
=

k2

0

Yk - do>
2 * 1 . Yk-16 - I) I -

yk - do)

Yk-16 - l>
0 I -2

Yk-2(O)

Yk-2h - 2>

0

0

312 I. GOHBERG ET AL.

The value yr,,(lO) can be found from (9.1) and it turns out to be

44914164192.

We remark that the roundoff error accumulation in Algorithm 6.1 is compara-
ble with that in the recursion (9.1). We also remark that this recursion is in
fact equivalent to the Lanczos-type Algorithm 4.1. The only difference is that
the coefficient 2(4k2 - 1)/k2 of (9.1) is computed recursively in Algorithm
4.1, rather than being known exactly. This apparently causes the faster
roundoff error accumulation shown in Table 1. Reasons for the unusual
numerical stability of Algorithm 6.1 for the Hilbert matrix will be studied
elsewhere.

For testing Algorithms 7.1, 7.2, and 7:3 we choose a sequence of ih-condi-
tioned Vandermonde matrices R, = { T~}~~,~, N= 3,4,5, defined by rj =
l/lOj, j = 0,1,2,3,4, such that

r1 1
r _L

R,= ‘”
101 !. * :

kd4 (i&J4

. . . 1

. . . 1
104

:I

. ’

... kJ4

The computed (N, N) entry of R;l for N = 3,4,5 is presented in Table 2 as
a function of the matrix size and the algorithm. The exact entry, given by the
formula

PG’),,, = l rl$y r, - Tj)

(see [7] for example), is shown in the last row of the table.

TABLE 2
VANDERMONDE MATRICES OF SIZES 3,4, AND 5

Algorithm

KJ1)N,N
N=3 4 5

Gauss 52542246 - 187236501504 426188854001664
QR 52549842 - 188273483776 263105164607488
7.1 52540199 - 187621146624 517226729832448
7.2 52540199 - 187621146624 517226729832448
7.3 52540204 - 187621265408 517226985684992
Exact 52540200 - 187621225900 517226640486400

LINE@ COMPLEXITY: PARALLEL ALGORITHMS 313

Again we note the surprising evidence of numerical stability for Al-
gorithms 7.1-7.3. This supports similar evidence reported in Bjork and
Pereyra’s paper [3].

In Tables 3 to 5 we compare the parallel algorithms for Toeplitz and close
to Toeplitz matrices with the Levinson algorithm, which involves the ac-
cumulation of inner products. We choose a version of the Levinson algorithm
with the normalization of Algorithm 3.1, described in the introduction. As a
test matrix we choose the 10 X 10 combinatorial matrix

R(x)= {y+6ij”}g,j=o, aij= ;> :;;> L

Levinson

888938
- 111333
- 109144
- 10164
- 94434
- 94846
- 87162
- 102435
- 99749

- 97227

TABLE 3
THE COMBINATORIAL MATRIX WITH ix = 10 ’

Alg. 3.1 Alg. 5.1 Alg. 5.2

901461 901461 901462
- 100162 - 100162 - 100162

- 100162 - 100162 - 100162

Exact

-100006

-1OOOOO

TABLE 4
THE COMBINATORIAL MATFtIX WITH % = 10 ’

Levinson

8007973
- 1564056
- 1413272
- 1116907
- 507633
- 877477
- 525685
- 704772
- 297170
- 1ooo996

Alg. 3.1 Alg. 5.1 Alg. 5.2 Exact

8628281 8628281 8628282
- 958697 - 958697 - 958698 -lo000

- 958697 - 958697 - 958698 -1oOOOOO

314 I. GOHBERG ET AL.

TABLE 5
THE COMBINATORIAL MATRIX WITH SZ = 10 ’

Levinson Alg. 3.1 Alg. 5.1 Alg. 5.2 Exact

44739242 60397975 60397975 60397977
- 22369621 - 6710886 - 6710886 - 6710886 - 10000000
- 22869621

0

0 - 6710886 - 6710886 - 6710886 - 10000000

The results of numerical examples of Tables 3 to 5 show that, for the
example of the combinatorial matrix, the parallel algorithms of Sections 3 and
5 perform better than the classical Levinson algorithm.

The essential difference between the Levinson algorithm and Algorithm

3.1 lies in the fact that the terms yk(- 1) and ok(- 1) are computed as
certain inner products in the Levinson case and, in contrast, they are
computed in Algorithm 3.1 using a recursion of Schur-type (see Algorithm
3.2). Since the top left entry in Tables 3, 4, and 5 is just

fIl Cl- Yk(- +!A - 1)) -IT

we see that (at least in these examples) the algorithm taking advantage of the
Schur recursion achieves higher accuracy than the Levinson method.

REFERENCES

H. A. Ahmed, J.-M. Delosme, and M. Morf, Highly concurrent computing
structures for matrix arithmetic and signal processing, IEEE Computer 15:65-82
(1982).
E. H. Bareiss, Numerical solution of linear equations with Toeplitz and vector
Toeplitz matrices, Numer. Math. 13~404-424 (1969).
A. Bjorck and V. Pereyra, Solutions of Vandermonde systems of equations, Math.
Cutnp. 24:893-903 (1980).
R. P. Brent and F. T. Luk, A systolic array of the linear-time solution of Toeplitz
systems of equations, J. VLSI Cutnput. Syst. l:l-22 (1983).
B. Friedlander, M. Morf, T. Kailath, and L. Ljung, New inversion formulas for
matrices classified in terms of their distance from Toeplitz matrices, Linear
Algebra Appl. 27:31-60 (1979).

LINE~COMPLEXITY; PARALLELALGORITHMS

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

I. C. Gohberg and I. A. Feldman, Conoolution Equations and Projection Meth-
ods f&~ Their SOZU~JO~, Translations of Mathematical Monographs, Vol. 41, Amer.

Math. Sot., Providence, 1974.
I. Gohberg, T. Kailath, and I. Koltracht, Efficient solution of linear systems of
equation with recursive structure, Linear Algebra A&., 80:81-113 (1986).
I. Gohberg and I. Koltracht, Numerical solution of integral equations, fast
algorithms and Krein-Sobolev equations, Numer. Math. 47:237-288 (1984).
G. Golub and C. Van Loan, Matrix Compututiotzs, Johns Hopkins U.P., Bal-
timore, 1983.
R. T. Gregory and D. L. Kamey, A Collection of Matrices for Testing Computa-
tional Algorithms, Wiley-Interscience, 1969.
G. Heinig and K. Rost, Algebraic Methods for Toeplitz-like Matrices and Oper-
atom, Bid&user, 1985.

T. Kailath, S.-Y. Kung, and M. Morf, Displacement ranks of matrices and linear
equations, I. Math. Anal. A&. 68 (1979).
S.-Y. Kung and Y. H. Hu, A highly concurrent algorithm and pipelined architec-
ture for solving Toeplitz systems, IEEE Trans. Acoust. Speech SignuZ Process.
31, No. 1 (1983).

C. L~IWZOS, Solution of systems of linear equations by minimized iterations, 1.
Res. Nut. Bur. Standards 49 (1952).

C. LLUWZOS, Applied Analysis, Prentice-Hall, New York, 1957.
N. Levinson, Appendix, in N. Wiener, Extrapolation, Interpolation and Smooth-
ing of Stationary Time Series, Wiley, New York, 1949.
J. H. Wilkinson and C. Reinsch, Linear Algebra, Handbook for Automatic
Computation, Vol. II, Springer, 1971.

A. Bultheel, Error analysis of incoming and outgoing schemes for the trigonomet -
ric moment problem, Proc. Conference on Rational Approximation, Amsterdam,

Springer-Verlag, 1981.

G. Cybenko, The numerical stability of Levinson-Durbin algorithm for Toeplitz
systems of equations, SIAM-SISSC 1 (1980).
N. Higham, Error analysis of the Bjork-Pereyra algorithm for solving Vander-
monde systems, Num. Anal. Rep. 108, 1985.

Received 2 December 1985; revised 29 August 1966

