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Mitochondrial dysfunction and nuclear-mitochondrial shuttling of TERT
are involved in cell proliferation arrest induced by G-quadruplex ligands
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G-quadruplex ligands DODC and TMPyP4 have different binding modes to quadruplex structure and
cause cell proliferation arrest. Here we showed that DODC was more efficient in cell growth inhibi-
tion than TMPyP4. Both G-quadruplex ligands induced nuclear-cytoplasmic shuttling and accumu-
lation of TERT in mitochondria. This effect was not fully dependent on cellular oxidative stress.
DODC induced robust cell apoptosis by perturbing mitochondrial function intensively. Overexpres-
sion of TERT could not counteract the effects of DODC on mitochondrial respiratory function. Taken
together, our results suggest that interference of mitochondrial function by DODC is one of main
targets for its anti-tumor ability.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Telomeres are composed of tandem d(TTAGGG) repeats with a
protracted single stranded overhang at the 30 end and protect
chromosome ends from being recognized as DNA breakage [1].
This guanine-rich region tends to form a 4-stranded DNAs by 4
guanines in a planar structure which termed as G-quadruplex
[2]. Small molecules that stabilize the G-quadruplex conformation
will interfere with the maintenance of telomere, leading to telo-
mere shortening and cell senescence, and ultimately cell apopto-
sis [3].

G-quadruplex ligands are recognized as potential drugs for
anticancer therapy and their anticancer functions are estimated
in cell-based assays [4,5]. Some unexpected findings showed that
G-quadruplex ligands induced cell senescence within a short time
and even without telomere shortening [6,7]. These results are
contradictive with the initial theory that G-quadruplex ligands in-
hibit cell proliferation by interfering telomere lengthening [8].
The molecular mechanisms of instant anti-proliferation effect of
G-quadruplex ligands include inducing DNA damage response
due to double-strand breakage and provoking telomere uncap-
ping by competitive displacement of telomere binding protein
[9,10].

Cancer cells generally are heterogenic in their telomere length
and some have extremely short telomeres. It has been suggested
that these cells with critical short telomere play a crucial role to
the overall cell population [11]. Therefore, one cannot exclude a
possibility that the instant effect of telomerase inhibition on criti-
cal short telomere was actually caused by G-quadruplex ligands.
Recent studies showed that telomerase catalytic subunit TERT is
translocated to mitochondria and plays a protective role under oxi-
dative stress [12,13]. Whether G-quadruplex ligands interfere with
cellular localization of telomerase has not been studied.

In this study, we showed that two G-quandruplex ligands,
TMPyP4 and DODC, have similar effects on telomerase activity
inhibition by cell-based assays although they have different bind-
ing mode and stabilization ability to G-quadruplex structures
in vitro. G-quandruplex ligands induce the nuclear export of TERT
within 6 h and nuclear-cytoplasmic shuttling is not dependent on
cellular oxidative stress.

Mitochondria played an important role in cell apoptosis in-
duced by G-quandruplex ligands. The strategy for testing the
anti-tumor efficiency of G-quandruplex ligands should not be re-
stricted to only evaluating the G-quadruplex structure stabilization
binding ability.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.febslet.2013.04.010&domain=pdf
http://dx.doi.org/10.1016/j.febslet.2013.04.010
mailto:ygyaozh@gmail.com
http://dx.doi.org/10.1016/j.febslet.2013.04.010
http://www.FEBSLetters.org
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2. Materials and methods

2.1. Cell culture and chemicals

Human cervical cancer cell line HeLa, human hepatoma cell line
HepG2 and human glioma cell lines U251 were cultured in RPMI
1640 supplemented with 10% fetal bovine serum (FBS) at 37 �C
in a 5% CO2 incubator with 100% humidity. Human hepatic L02 cell,
a TERT-negative cell, was cultured in DMEM supplemented with
10% FBS under same condition. 3,30-diethyloxadicarbocyanine io-
dide (DODC) and 5,10,15,20-tetra (N-methyl-4-pyridyl) porphine
(TMPyP4) were purchased from Sigma–Aldrich. These drugs were
prepared as 1000� stock solution in DMSO and were diluted in cell
culture medium immediately before treatment.

2.2. Determination of cell proliferation

Cells were seeded in 96-well plates at 50% confluence and cul-
tured for 16 h before the assay. MTT (Promega) was added to cells
and incubated for 4 h at 37 �C. The reduction of MTT was analyzed
in an ELISA Reader (BioTek) at 570 nm. Each treatment was deter-
mined in triplicate.

2.3. Assay for telomerase enzyme activity

Telomerase activity was measured by the telomerase repeat
amplification protocol (TRAP) as described before [14]. Primer
extension was carried out in the presence of an internal standard
(IS). Cell lysate were diluted using lysis buffer to reach an approx-
imate concentration of 1000 cells/lL. PCR products were resolved
using 10% polyacrylamide gel and were stained with ethidium bro-
mide to visualize the 6 bp ladder. The heat-inactivated cell lysate
was used as negative control. Telomerase activity was taken as
the integrated density of all PCR product bands by using the Quan-
tity-One software for Bio-Rad Image analysis systems (Bio-Rad
Laboratories), followed the previously described procedure [14].

2.4. Cell fractionation and immunoblotting

Whole cell lysates were prepared in RIPA-buffer. Mitochondria
were prepared using Mitochondria Isolation Kit for Cultured Cells
(Pierce) according to the manufacturer’s protocol. Protein concen-
tration was determined using the Bradford method. Equal amount
of protein (20 lg) was subjected to 10% SDS–PAGE and transferred
onto high-quality polyvinylidene difluoride (PVDF) membrane
(Roche). The protein bands were probed with different primary
antibodies including rabbit polyclonal antibody against human
TERT (ab32020, Abcam), mouse monoclonal antibodies against
mitochondria (ab3298, Abcam), tubulin (E12-043, Enogene) and
b-actin (E12-041, Enogene), and were visualized by the Immobilon
Western Chemiluminescent HRP Substrate (Millipore).

2.5. Immunocytochemistry

HeLa cells were grown on coverslips for 24 h. After treatment
with TMPyP4 or DODC, cells were fixed in 4% parformaldehyde
and permeabilized with 0.4% Triton X-100. All procedures were
done at room temperature. Cells were washed twice in phosphate
buffered saline (PBS) and were blocked in 1% BSA for 1 h at 37 �C,
followed by an overnight incubation with antibody against TERT
(ab32020, Abcam, 1:25). For fluorescence detection, cells were
incubated with FITC-conjugated secondary antibody (KPL, 1:50).
Nuclei were counterstained with 1 lg/ml DAPI (Roche). The
stained cells were analyzed by laser scanning confocal microscopy
(ZEISS, LSM 510 META).
2.6. Assay of cellular oxidative stress, mitochondrial membrane
potential (MMP) and apoptosis

Cellular reactive oxygen species (ROS) was measured by stain-
ing with 5 lM DCF-DA (Sigma–Aldrich). To exclude potential arti-
facts of this probe, we also quantified the ROS level in HeLa cells
treated with TMPyP4 using 1 lM DHE (Invitrogen). We did not
analyze cells treated with DODC using DHE, simply because DODC
is a dye with similar emission wavelength as this probe. We used
2 lg/mL JC-1 (Invitrogen) to quantify the MMP in HeLa cells with
and without drug treatment. The fluorescence of cells was ana-
lyzed by flow cytometry (BD FACScan system, Vantage SE). Apop-
tosis of HeLa cells were determined by flow cytometry using an
Annexin V-FITC Kit (Bender Medsystems, eBioscience) according
to the manufacture.

2.7. Oxygen consumption

Cellular oxygen consumption was measured using intact cells
and a Clark-type oxygen sensor (Hansatech instruments) at 25 �C.
Equal number of HeLa cells (3 � 106) with different treatments
was analyzed in growth culture medium in triplicate.

2.8. Plasmids and cell transfection

The cDNA of human TERT was amplified and cloned into the
pCMV-myc vector (Clontech) and pCMV-myc-mito vector (Invitro-
gen). All constructs were confirmed by sequencing. HeLa cells were
transiently transfected using FuGENE HD Transfection Reagent
(Roche) according to the manufacture’s instruction. Briefly,
1 � 106 cells were seeded in a 6-well plate 12 h before transfection.
2 lg of vector and 3 lL of transfection reagent were mixed in
100 lL Opti-MEM (Gibco) and added to cells drop by drop. After
transfection for 48 h, cells were treated by TMPyP4 or DODC for
2 h before harvest.

2.9. Statistical analysis

All experiments were repeated for three times unless otherwise
stated. Data are presented as mean ± S.D. of three independent
experiments. Differences between cells treated with or without
drug were analyzed using unpaired Student’s t-test. A value of
P < 0.05 was considered statistically significant (�).

3. Results

3.1. DODC and TMPyP4 inhibit cell proliferation

The two G-quadruplex ligands, DODC and TMPyP4, can bind
and stabilize the G-quadruplex structure which result in inhibition
of telomerase activity in some types of cancer cells [15–17]. In par-
ticular, DODC had poor effects on telomerase activity inhibition as
revealed by the cell-free TRAP and exonuclease I hydrolysis assay,
whereas TMPyP4 showed good capability of stabilizing G-quadru-
plex structure formed by telomere sequences and G-rich region of
the oncogene c-MYC promoter [18]. Due to the difference between
DODC and TMPyP4, we suspect that TMPyP4 might be more effi-
cient in inhibiting cell proliferation. As shown in Fig. 1A, the viabil-
ity of three cancer cell lines (HeLa, HepG2 and U251) presented a
dosage-dependent change when cells were treated with different
concentrations of these drugs for 48 h. Unexpectedly, the half max-
imal inhibitory concentration (IC50) of DODC (10 lM) was much
lower than that of TMPyP4 (100 lM) for HeLa cells. Treatment of
DODC and TMPyP4 in human hepatic L02 cells had similar effects
as observed in these cancer cell lines (Supplementary Fig. 1).
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Fig. 1. Inhibition of cell proliferation, telomerase activity and expression by DODC and TMPyP4. (A) HeLa, HepG2 and U251 cells were incubated with 0, 1, 10, 100 lM DODC
or TMPyP4 for 48 h. Cell viability was evaluated by the MTT assay and was normalized by the value without treatment of DODC or TMPyP4. (B) HeLa cells were treated with
DODC (10 lM) or TMPyP4 (100 lM) for 48 h and telomerase activity were detected by the TRAP method. The bands indicated by the arrowhead referred to the 36 bp internal
control (IC), as an indicator of PCR efficiency. (C) Immunoblotting analyses of hTERT and b-actin protein levels in HeLa, HepG2 and U251 cells treated with 10 lM DODC or
100 lM TMPyP4 for 48 h.
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Evidently, the efficiency of DODC and TMPyP4 to induce cell
growth arrest is not consistent with their capability of G-quadru-
plex structure stabilization and telomerase inhibition, suggesting
that other mechanism may underlie the variance of their roles on
cell growth inhibition.

3.2. DODC and TMPyP4 show different inhibitory effects on telomerase
activity and TERT expression

The effects of DODC and TMPyP4 on the activity and expression
of telomerase were examined using the TRAP method and immu-
noblotting. Analysis of HeLa cells treated with 10 lM DODC or
100 lM TMPyP4 for 48 h showed that both molecules inhibited
telomerase activity at a similar level (Fig. 1B). Unexpectedly,
TMPyP4 treatment had a stronger inhibitory effect on TERT protein
expression than DODC in all three cell lines (Fig. 1C). Treatment
with TMPyP4 caused reduction of both mRNA and protein expres-
sion of TERT in HeLa cells, whereas DODC had no apparent inhibi-
tion effect. Meanwhile, the c-MYC mRNA expression decreased
remarkably in cells treated with TMPyP4 (Supplementary Fig. 2).
These results suggested that different G-quadruplex ligands may
have different inhibitory effects on telomerase activity and TERT
expression via different regulatory pathways.

3.3. TERT shuttles from nucleus into cytoplasm and accumulates in
mitochondria upon short-term treatment of DODC and TMPyP4

We tested whether different suppression effects of DODC and
TMPyP4 on telomerase activity were caused by different pattern
of translocation of telomerase within a cell. We treated HeLa cells
with DODC (10 lM) or TMPyP4 (100 lM) for 2, 6 and 48 h, and
stained with anti-hTERT antibody to examine the localization of
telomerase by immunofluorescence assay. Telomerase was trans-
located from nucleus into cytoplasm at 2 h upon DODC and
TMPyP4 treatment, and the cytoplasmic distribution of TERT was
maintained at 6 h (Fig. 2).

To test whether the exported TERT from nucleus could be fur-
ther transported into mitochondria, we exposed HeLa cells to
DODC (10 lM) or TMPyP4 (100 lM) for different time points and
quantified TERT protein level in mitochondrial fraction. As shown
in Fig. 3, along with the treatment of DODC or TMPyP4, there
was a gradual decrease of cellular TERT level, which was in accor-
dance with the TERT protein level detected by immunofluores-
cence assay. Intriguingly, both drugs induced the translocation of
TERT in mitochondria at 2 and 6 h, and DODC treatment had a
stronger effect. To confirm this result was not caused by nuclear
contamination in mitochondria fraction, we used tubulin as cyto-
plasmic marker and histone H2A as nuclear marker and found no
trace of nuclear contamination (Fig 3B and supplementary Fig. 3).

3.4. Short-term treatment of DODC, but not TMPyP4, disrupts
mitochondrial function and induces cell apoptosis

Recent studies reported that mitochondrial localization of TERT
was induced by oxidative stress [12,13,19]. We measured cellular
ROS level in cells treated with DODC and TMPyP4. After two hours
treatment, the ROS level significantly increased in cells treated
with DODC but not TMPyP4 (Fig. 4A). Therefore, the translocation
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of telomerase from nucleus into mitochondria induced by these
two drugs was not fully dependent on cellular oxidative stress.
To validate the pattern as revealed by DCF-DA, we further quanti-
fied the ROS level in HeLa cells treated with TMPyP4 using DHE
(Invitrogen) and observed no change of ROS (Supplementary
Fig. 4), which was consistent with the above result.

In agreement with the rising of ROS, flow cytometric analysis
indicated that the proportion of cells with low mitochondrial
membrane potential (MMP) increased in cells treated with DODC
(Fig. 4B). To further investigate if treatment of DODC and TMPyP4
altered mitochondrial function, we measured the oxygen con-
sumption rate (OCR) in cells treated with both drugs using a
Clark-type oxygen sensor. As shown in Fig. 4C, DODC treatment
significantly reduced the OCR (up to 75% of the untreated cells),
whereas TMPyP4 treatment had no apparent effect.

We further evaluated the effects of DODC and TMPyP4 on cell
apoptosis within the time frame of mitochondrial localization of
TERT. Fraction of apoptotic cells was significantly elevated in cells
treated with DODC for 2 h but not for cells treated with TMPyP4
(Fig. 5).

3.5. Over-expression of TERT counteracts the elevated ROS but fails to
improve the mitochondrial respiratory function decline induced by
DODC

To investigate whether TERT overexpession would counteract
the negative effects of DODC on mitochondria, we measured the
change of cellular oxidative stress in TERT-overexpressing cells,
with and without targeted export to mitochondria. We confirmed
overexpression of exogenous TERT in HeLa cells by immunoblot-
ting (Supplementary Fig. 5). The ROS level was measured in trans-
fected cells after treatment with DODC or TMPyP4 for 2 h. We
found that ectopic expression of TERT, regardless of its cellular
localization, reduced the ROS level induced by DODC although
the difference was not statistically significant. We observed similar
salvaging effects in all three independent experiments. However,
we discerned no alteration of the ROS level in transfected cells
treated with TMPyP4 (Fig. 6A), a result consistent with the above
observations (Fig. 4).

Since the decrease of ROS level might be resulted from the
recovery of normal mitochondrial respiratory chain activity, we
sought to determine whether the respiration rate of cells treated
by DODC could be restored by overexpression of TERT. Our results
showed that overexpression TERT could not rescue the decreased
respiratory rate induced by DODC (Fig. 6B).

4. Discussion

G-quadruplex ligands are potential anticancer agents [4,5,20].
Recent studies showed that the instant anti-proliferation effect of
G-quadruplex ligands was more complex than we had thought
[6,7,21]. In this study, we aimed to examine whether G-quadruplex
ligands such as DODC and TMPyP4 could interfere with telomerase
expression and/or mitochondrial localization.

The two commercially available G-quadruplex ligands DODC
and TMPyP4 had different G-quadruplexes binding affinity and
specificity [18]. DODC, but not TMPyP4, was reported to have little
inhibitory effect on telomerase activity as evaluated by exoge-
nously adding DODC to cell-free TRAP reaction mixtures [18].
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However, whether the antitumor ability of DODC and TMPyP4 is
totally dependent on their stabilization with quadruplex structure
has not been sufficiently studied. In our study, we found that both
DODC and TMPyP4 led to reduced cell viability, and DODC had a
stronger anti-proliferation ability than TMPyP4 in all three cancer
cell lines (Fig. 1). Treatment with TMPyP4 and DODC decreased cell
proliferation and increased cellular ROS level in L02 cells, which
suggested that the effects of TMPyP4 and DODC on cell prolifera-
tion were TERT-independent (Supplementary Fig. 1). Intriguingly,
at their IC50 for cell viability, there was a similar inhibitory effect
on telomerase activity in HeLa cells treated with DODC or TMPyP4,
although the mRNA and protein levels of TERT were reduced in
cells treated with TMPyP4 but not in cells treated with DODC
(Fig. 1 and Supplementary Fig. 2). The reduction of TERT mRNA le-
vel induced by TMPyP4 was probably caused by transcriptional
inhibition through G-quadruplexes structure formed in the pro-
moter region of the TERT and c-MYC genes [4,22] (Supplementary
Fig. 2).

We further showed that both DODC and TMPyP4 induced the
translocation of TERT from nucleus into mitochondria within 2 h
of treatment and DODC had a stronger effect on the cytoplasmic
translocation of telomerase (Figs. 2 and 3). Inactive type of hTERT
that was localized in cytoplasm would lead to an increased degra-
dation of wild-type hTERT [23]. Therefore, it is most likely that
TMPyP4 inhibited telomerase activity mainly at the transcription/
translation level whereas DODC mainly at the post-translation le-
vel. The short-term response of cells (apoptosis and death) treated
by these ligands could not be merely explained by telomerase
inhibition.

The translocation of telomerase from nucleus to mitochondria
upon treatment of DODC and TMPyP4 is very intriguing. It links
mitochondria with the anti-proliferation effect of G-quadruplex li-
gands. Hitherto, several studies characterized mitochondrial telo-
merase, albeit its reported role in mitochondria remains
contradictory [12,19]. We found that the ROS level, MMP and
OCR of cells treated with DODC presented significant difference
with those of non-treated cells (Fig. 4). These findings suggested
that the observed effect of DODC was most likely pertinent to
mitochondria. In accordance to mitochondrial dysfunction induced
by DODC, percentage of apoptotic cells elevated significantly in
cells treated by this small molecule (Fig. 5). DODC was used as a
carbocyanine membrane dye to probe the microenvironment of
mitochondria and enhanced mitochondrial dysfunction induced
by chemotherapy drugs [24]. Our results were consistent with this
notion that DODC could disrupt the function of mitochondria [24].
In contrast, the basic structure of TMPyP4 is a porphyrin and has a
large aromatic planar geometry, which means that all atoms lie in a
single plane will stack with the plane formed by G-quadruplex
DNA. Previous studies had reported that induction of apoptosis
by TMPyP4 was associated with activation of DNA damage re-
sponse and cell cycle regulatory factors, and TMPyP4 also inhibited
the expression of crucial components in cell growth and prolifera-
tion, such as c-MYC [9]. We speculated that DNA damage and
change of expression profile of key regulators controlling cell sur-
vival caused by TMPyP4 might be a driving force for telomerase
delocalization from telomere and exporting from nucleus.

In an effort to confirm the mitochondrial protection role of TERT
[16], ectopic TERT were used to test whether it could confer resis-
tance to effect of DODC. Increased TERT expression reduced cellu-
lar ROS levels but had no effect on mitochondrial respiratory
function during the short-term treatment of DODC (Fig. 6). These
data were in agreement with previous reports linking TERT expres-
sion with reduced ROS in different types of cells [25].

TERT with disability to shuttle between nucleus and cytoplasm
negatively impacted mitochondrial function [26,27]. Mice without
TERT expression had a compromise of mitochondrial biogenesis
and metabolism, suggesting depletion or down-regulation of TERT
did not simply affect telomere maintenance [28]. All these studies
showed that telomerase plays an important role in mitochondrial
biology. Meanwhile, mitochondrial competence is important for
the survival of cancer cells, and coincidental extinction of mito-
chondrial maintenance factor and telomerase activity enhanced
antitumor effect [29]. Our results showed that DODC had a dual
role on inhibiting telomerase activity and mitochondrial function.
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This is probably the reason why DODC displayed a stronger anti-
proliferation ability than TMPyP4.

In short, we showed that treatment of DODC and TMPyP4 in
cancer cell lines caused mitochondrial localization of TERT, but
the underlying mechanism of this effect might be quite different.
Our results showed that cytotoxic mechanism of G-quadruplex li-
gands, such as perturbation of mitochondrial function, should be
considered besides the traditional concept of the G-quadruplex
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stabilization. Further study is necessary to answer the question
whether nuclear-cytoplasmic shuttling and mitochondrial localiza-
tion of TERT induced by G-quadruplex ligands is a cause or conse-
quence of drug effect and how this could contribute to a better
understanding of TERT function in extra-nuclear compartments.
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