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Abstract—A deterministic model for the growth of a size-structured proliferating cell population is
analyzed. The developmental rates are allowed to vary with time. For periodically varying rates stability
of the cell-size distribution is shown under similar conditions for the growth rate of individual cells as
found before in the time-homogeneous case. Strongly positive quasicompact linear operators on Banach
lattices serve as powertul abstract tools. Finally. the autonomous case is revisited and the conditions for
stability found in [1] are relaxed.

INTRODUCTION

The growth of a size-structured population of cells which reproduce by fission into two equal
parts can be described by the partial differential equation

an(t, x) + d g - n)t, x) + (w + b)) n(t, x) = 4b - n(t, 2x). (la)

Here d/(g - n)(z, x) denotes (d/dx)(g(¢, X)n(z, x)), (n + b) - n(t, x) denotes (u(r. x) +
b(t, x))n(z. x). The independent variables ¢ and x denote, respectively. time and cell size (e.g.
the length, volume, weight, protein content. etc. of a cell). At fixed time ¢. n(r, x) describes
the size density of the population. The development of an individual cell is governed by three
processes: growth (i.e. increase in size), death (or dilution), and reproduction by splitting into
two parts of equal size. g(¢, x), (¢, x) and b(¢. x) indicate the respective rates in dependence
on time ¢ and cell size x. Equation (la) relates these individual changes to the change of the
population density. For a further explanation and a derivation of (la) see [1, Sec. 2 and
Appendix].

We assume that cells can only divide between a minimum size ¢ > 0 and a maximum size
which has been normalized to be 1, i.e.

b-n(t.x) =0 ifxé [a. l). (1b)
with @ < 1. Consequently there are no cells with size less than a/2. so we require
n(t, al2) = 0. (Ic)

Usually we consider (1) as an initial-value problem. i.e. (la—c) are assumed to hold for ¢t > 1,
with ¢, € R. and

n(ty, X) = nylx) (2)

with a given initial cell density ny.
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In (1] we impose conditions on the splitting rate b which guarantee that all cells die or
divide before reaching the maximum size 1. But this is an unnecessary restriction. We confine
the size interval to [@/2. 1} in (1a). however. and so assume that cells with a size exceeding
the maximum splitting size 1 do not affect the further development of the population. This
assumption, as well as the linear character of Eq. (1). is justified if the environment of the
population is unlimited (this can be artificially achieved in a laboratory) such that density-
dependent feedback mechanisms can be ignored.

In [1] we considered (1) for time-independent rates g. w. b and found conditions under
which a cell population (with an arbitrary cell-size distribution at the beginning) asymptotically
(t — x) exhibits exponential growth with a stationary cell-size distribution, i.e.

aft. x) ~ Ce"ia(x). t— =, (3)

Here o and / do not depend on the initial state of the population, whereas the positive scalar
C depends on the initial function in a linear and strictly positive way. The conditions mainly
concerned the individual growth rate g: (3) holds. for example. if g(2x) < 2g(x) for x €
[a/2, %], whereas (3) does not hold if g(2x) = 2g(x) for x € [a/2, }].

We generalize the results of [1] to the case of time-periodic rates g, w, b (with the same
period for b, g. ) in presenting similar conditions under which

n(t, x) ~ Ce"ilr, x). 11— =%, 4)

with C, o, # having the same characteristics as in the time-homogeneous case and r(¢, x) being
periodic in ¢ (having the same period as g. b, W) (see Sec. 6). In Sec. 7 we revisit the time-
homogeneous case and prove the conjecture at the end of Sec. 8 in [1]. namely that g(2x) # 2¢(x)
on an open subinterval of [a/2, §] is sufficient for (3) to hold. In [1] we already showed that
{(3) does not hold for arbitrary initial values if ¢(2x) = 2g(v) on |¢/2. §]. e.g. in the case of
exponential individual cell growth. So a complete characterization of those growth rates ¢ has
been achieved which cause convergence to steady-state exponential growth from arbitrary initial
states. This improvement of our former result is of particular importance because the stronger
assumptions in [1. Sec. 8] are not satisfied by data found for g by Anderson er af. (see [2. Fig.
4.B]) whose work[2-35] (besides the work of Sinko and Streifer{6.7]. see also [8]) has been
the main motivation for our study. See [1] for some more references. We mention that splitting
into two unequal parts of fixed ratio (as it is considered in Sinko and Streifer’s work[7] on
planarian worms) can be dealt with in essentially the same way. Heijmans{9] deals with a model
in which the ratio of mother size and daughter size is described by a probability distribution.

Recently, related models of proliferating cell populations have been studied by Lasota and
Mackey[10] and by Tyson and coworkers[11-16]. Hannsgen, Tyson and Watson{16] examine
the stationary size distribution for populations growing under steady-state conditions and they
find, among other things, that such a distribution does not exist if growth is proportional to
size and division is governed by the (purely age-dependent) transition probability model. In
[13] Tyson and Hannsgen analyse the ““Tandem Model.”” which is obtained from the transition
probability model by adding a critical size requirement. Lasota and Mackey[10] consider the
size distribution at birth in successive generations (so they are not concerned with the evolution
in time of the size distribution of extant cells). Their assumptions about the dynamics of
individual cells resemble ours and they prove that the birth-size distribution converges to a
unique globally stable distribution when the generation number tends to infinity. In [13] Tyvson
and Hannsgen derive a similar result for the case that the probability of division is governed
by age (and not size) and individual cell growth is linear. Moreover, they show that such a
result does not hold if one assumes that individual cell growth is exponential instead of linear.
In{11,12] finally, Tyson makes a comparison of the generation time distribution and the division-
size distribution predicted by various models and observed for a population of fission veast
cells.

The organisation of our paper is as follows: In Sec. | we study the characteristic curves
associated with the first-order partial differential equation (1a). These are important tools to
transform (1), (2) into an integral equation. the solutions of which can be considered weak
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solutions of (1), (2} (see Sec. 2). In Sec. 3 we prove uniqueness and existence of solutions to
the integral equation and derive some properties. In Sec. 4 we study the solution operators
corresponding to the integral equations. in particular their positivity and compactness properties.
In Sec. 5 we investigate their spectral properties, if the rates g. . b are time-periodic. Here
we make substantial use of the theory of strongly positive linear operators on Banach lattices
(see. e.g. [17.18]). In Secs. 6 and 7 we formulate and prove our results. first for the periodic
and. under less restrictive assumptions. for the time-homogeneous case. In the appendix we
present some material from the theory of Banach lattices.

Finally. we mention that the extensions and improvements of the results in [1], which we
achieved in this paper. lead to corresponding extensions and improvements of the results in
[19] for a rather special nonlinear variant of the model.

1. THE CHARACTERISTIC CURVES

The growth of an individual cell

In dealing with PDE:s of first order. integration along characteristic curves plays an important
role (see, e.q.. [20.21]). In our case these characteristic curves describe the growth of an
individual cell.

Throughout this paper we impose the following conditions on the growth rate g.

ASSUMPTION 1.1
g is a continuous nonnegative function on R X [a/2, 1] with the following properties:

(a) ¢ is bounded and bounded away from zero, i.e.
0< gin S g1, 0) € grax <% fort € R, x € [a/2, 1]

{b) The partial derivatives d,g(t, x), 9;g(t, x), 9.,8(z, x) exist and are continuous and
bounded on R X [a/2, I].

We recall that even if cells should grow beyond the maximum splitting size 1, only cells
of size x € [a/2, 1) affect the further development of the population [see (1b, c)]. So it is
sufficient to know g on R X [a/2, 1]. For convenience we extend g to R* by

glt,x) = g(e, D) forx =1, (3
g(t,x) = g(z,a/2) forx = a/l.

The derivatives d,g and d?¢ now exist and are continuous on R, d.g still exists in a
generalized sense and is bounded.

So g is smooth enough such that the following ODE initial-value problems can be solved:

9, T(t, x, ¥) = 1/g(T(t, x, ¥). ¥). (6)
T(t,x,x) =1,
0.X(t, s, ) = g(t, X(t, 5, X)), (7
X(s, s, 0) = x,

fore, s, v,y € R.

T and X can be interpreted biologically: A cell with size x at time s has size X(r. s. x) at
time ¢; a cell with size x at time ¢ has size v at time T(z, x, ¥). The following lemma lists a
number of properties of the unique solutions T and X to (6) and (7). These will serve as
paramount tools in our analysis of problem (1). A proof can be established by standard methods
or can be found in textbooks dealing with differential equations (see, e.g. [22, Chap. VI].
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Lemaa 1.2

There exist unique continuously differentiable solutions 7 of (6) and X of (7) on R*. They
have the following properties:

(a) T(z. x, ¥) and X(r. 5. ¥) strictly increase as ¢ and v increase and v and s decrease.
by T(Te. x. vy v, 2) = T(t, x, ). X(e. ro X(r. 5. x)) = X5, 0).
(c) T(s, x. X(¢t. s v)) =T, T(t Xt s.0.x) = so T, X(eoso 0.0 v) = T(s,x, v).
(d)y X(s, T(s. x. ¥ = LOLsovy = X Tis e v)o vy = X(1L s, x).
i g(T(t. X.on o))
9T, x. v) = ’ m)
(e) (2. 6.3 exP ( g(T(t, x. ). 20"

(f) 0.X(t, 5. x) = exp (J d-g(r. X(r. s. .\'))dr).

(g) 0,T(t. x.v) + g(t, x)a.T(z, x.v) = 0.
(h 0,X(r. s, x) + g . Xt 5. x) = 0.

As an exercise the reader might verify (a)-(d) from the biological interpretation ot 7 and
X. Because of their permanent use these properties will not explicitly be quoted in the sequel.

Since we extended g from R X [a/2. 1] to R we should be aware of the domains in
which 7 and X only depend on the values of g on R x [a/2, 1]: Eq. (6) tells us that this is
the case for T(s, x. v) iff x, v &€ [a/2. 1]. It follows from (7) that. it ¥ € [a/2. 1]. X(¢, 5. X)
depends on the values of gon R X [a/2, 1]ift X1z 5. 0) € {a/2, 1. d.e. iff t € [T(s. x, a/2).
T(s. x. D] or, equivalently. iff s € [T(¢, a/2. x). T, 1. 0.

2. TRANSFORMATION OF THE PROBLEM

Weak solutions

As we shall see in Sec. 3 one cannot find classical sotutions of (1) for r > ¢, if the initial
values n(t,. +) and the rates p and b are not differentiable. Since we want to include initial
values and rates which are continuous only, we look for a reformulation of (1) which is equivalent
to the original one for differentiable data and solutions. but makes sense for continuous non-
differentiable data and solutions as well.

Throughout this paper we make the following assumptions on the splitting and mortality
rates b and ..

ASSUMPTION 2.1
(a) w is a continuous nonnegative function on R X {a/2, 1.
(b) b is a nonnegative function on R* with the following properties:
(1) b is continuous on R X [a, I).
(i) b(t. x) > 0if x € (a, 1), b(t. x) = 0 if x & [a. 1).
(iii) There exists a continuous function b, on (a. 1) and some ¢ > 0 such that

bo(x) < b(r. x) < chylx).
By assumption (b) cells can divide at any size in (a. ). but at no size outside {a, 1). If
{1 by(x) dx = =, then every cell dies or divides before reachmg the maximum size 1.
In a first step we transform (1) to a simpler equation. We define

m=g-nk (8)

with

< [o ~ k \
E(r. x) = exp (f [—ﬁ - M———-)j' (T(t. x.2). D) d:). (9)
ul g_ g
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If (m + b)(s, 2) is differentiable in 5. by Lemma 1.2(g).
_ 9,8 ‘
(0, + glt. x)0)E = | — — (L =~ B | E:
L1

hence Eq. (1) is equivalent to the following equations for m:

(om/g)t, x) + dm(t. ) = D(r. )m(t, 2x). x € (a/2. 1) (10a)
D(t, x)m(t, 2x) = 0. x & [a/2. by (10b)
m(t,al2) = 0; (10¢)

with

b(t, 2)E(t, 2x
D(t, x) = 4————( VE( ‘). al2 =x <4t (rH
g(t. 2X)E(t, x)

The initial function takes the form
m(ty, x) = (g - nlEXt,. x) = : Ox). (12)

The following properties of D follow from Assumptions 1.1 and 2.1.

LeEMMA 2.2
(a) D is continuous on R X [a/2. §).
(b) D(t, x) > 0ifx € (a/2, 4, D(t. x) = 0if x & [a/2, }).
(c) There exists a continuous function Dy on {a/2, %] such that D(t, x) < Dy(x).
J1IDy(x) dx < =,

Note that Lemma 2.2 even holds if [} by(x) dv = =. This *reduction in the singularity’
will be very useful in the next section and is an extra motivation for the transformation (8).
The transformation from (1) to (10) does not yet settle the problems we mentioned at the
beginning of this section. So, in a next step. we integrate (10a) along the characteristic curves
T. To this end we define
u(s, z, x) = m(T(s, z. x), X). (13)
By (10a) and (6),

a.u(s, z. x) = D(T(s.z, x), x).m(T(s, z, x), 2x).

Hence, since T(s, z, s,

u(s, z, x) J'X D(T(s, z. ¥). ¥).m(T (s, z, ¥), 2v) dv + m(s, 2). (14)

In order to return to an equation for m, we use that m(r, x) = u(s, z, x) with 5 =
T(t, x, z) by (13). But, dealing with an initial-value problem, we have to avoid that s < ¢,.
So, if x < X(t, ty, a/2) we choose - = a/2 and s = T(z, x, a/2) >y,

If x = X(1, 1y, a/2), we choose = = X(4. ¢, x) = a/2 and s = T(¢, x, 2) = t,. In this
way we arrive at the following integral equation for m on which we will focus in the sequel:

12
m(t, x) = J K(t, x. vim(T (¢, x. v), 2v) dv + my(t. x) (15a)

CAMWAL2:4/5-1
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fort = t,, x € la/2. 1), with

K(t, x, ¥)
K(t, x, )

D(T(t, x.y). ¥y, X4 t.x) < v =x and
0 otherwise. {15b)

f

il

my, contains the information about the initial function &
my(t, x) = ®(X(ty, £, 0) W X(r, 1, @/ = x < 1, my(r.x) = 0 otherwise, (16)

with ® being the initial values of m at r = 1.

Let us summarize what we have done so far. We have shown that. if (n — b)s. x) is
differentiable in s, solutions n of (1) correspond to solutions m of (10) via the transformation
(8) and conversely. Furthermore, any solution of (10) with initial function m(t,. -) = ¢ at
t = ty solves (15), (16). Conversely, if m is a solution of (13). (16) and m{r, x). D{t, x) are
differentiable in ¢ and ®(x) is differentiable in x, then m is a solution of (10) by Lemma 1.2
(g, h). But Eq. (15) also makes sense, if m and m, are continuous (without the special form
of my in (16)) and D has the properties listed in Lemma 2.2. So (15). (16) can be considered
a weak version of (10), (12) or (1), (2) respectively, and we define the following.

Definition 2.3. A continuous solution m of (15), (16) is called a ""weak solution of (10)
with initial function ® at ¢ = ¢,"". If m(z,, ) = P is given by (12), n = m - E'g is called a
weak solution of (1) with initial function n(r,. ) att = t,.

Remarks
(a) Since

12
K(t, x. y) < Dyy), f Dy(yydy < = (17

a2

by (15b) and Lemma 2.2(c), it will be appropriate to handle (15) with m. m, being continuous
on [t,, T} X {a/2, 1], T > t,. This involves that, in order to obtain weak solutions n of (1)
for initial functions n(ty, ), we must assume (g - n/E)(z,, *) to be continuous on [a/2, 1]. As
a kind of tradeoff we obtain that g - #/E is continuous in [f, f] X [a/2. 1].1 > 1.

{b) There are two other ways of defining and/or handling weak solutions of (10). The
first one approximates the initial function and the other data of the equation by sufficiently
smooth ones, and finds *strong’’ solutions of the approximating equations which have a limit:
the weak solution. This can be done, for example. by studying Eq. (15). The second way studies
(10) as a temporally inhomogeneous evolution equation (see, e.g. [23. XIV.4] or [24,23]) of
the form

m'(t) = A(ym{), m(ty) = @

and joins an ‘*evolutionary system’’ (¢, 5) with the operators A(z). Since U(t, 1,)® provides
“‘strong’” solutions of (10) for sufficiently smooth data and initial values ®. U(t. 1) can be
considered a weak solution of (10). Whereas the first alternative only provides an additional
characterization of weak solutions, the second also suggests a different mathematical approach.

In this paper we concentrate on (15). [n a second step we show that the solution operators
associated with (15), (16) form an evolutionary system. In the temporally homogeneous case
{1} we subsequently refer to the underlying evolution equation and consider the infinitesimal
generator A and its spectrum in order to derive conclusions about the asymptotic behaviour of
the semigroup. Here the corresponding approach would consist in considering the generating
operators A(¢) and deriving information about the qualitative behaviour of U(z. ¢,) from spectral
properties of A(¢). Since the theory of abstract evolutionary systems has not yet been developed
so far as the theory of semigroups, we will not do so. Instead we draw the required information
about the spectrum of U(+. t,) more or less directly from (15). (16) by means of positivity and
compactness arguments.
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3. EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS

In the preceding section we revealed a one-to-one correspondence between weak solutions
of (1). (2) and solutions of (15), (16). In this section we look for solutions m of (15) in the
space ¥ = C([ty, ;] X [a/2. 1]) of real-valued continuous functions with m, € Y being given.
By Lemma 2.2 and (17) the integral in the right-hand side of (15a) provides a bounded linear
operator F on Y. We show that the spectral radius of F is zero by finding equivalent norms
. X > 0, on Y such that. for the associated operator norms [F||, — 0 for A — x. We take

M

Imll, = supfe™|m(r, ity stst.a/2<x< 1}

Then, by (15) and (17),

le M(Fm)(t, x)| < |iml, f‘r eMTleri=np (v) dy.

al

We have to show that the integrals /,(r. x) on the right-hand side of this equation converge to
zero for A — = uniformly in . Since T(¢, x, ¥) < r for v < x and D, is integrable, pointwise
decreasing convergence follows from Lebesgue’s theorem of dominated convergence. As
1,(t, x) continuously depends on ¢ and x, uniform convergence follows from Dini’s lemma.
Thus (15) takes the abstract form

m=Fm + m,

with the bounded linear operator F having zero spectral radius. Hence (/ — F)~' exists (with
I being the identity operator on ¥) and can be represented by the Neumann series ZF/ with
convergence in the operator topology. Note that the operator F preserves continuity and non-
negativity and so does (/ — F)~'. So we obtain the following.

THEOREM 3.1
Let m, be a continuous function from {t,, ) X [a/2. 1] to R. Then there exists a unique
continuous solution m of (15) on [#. %) X [a/2. 1]. m can be represented as

E'Y

m(t, x) = > mlt, x) (18)
j=0
with
1:2
mi(t, x) = f K(t, x, y)ym,_(T(t, x, ¥). 2y) dy (19)
forj = 1,2, . ... The convergence of the series in (18) is uniform on [z, #,] X [a/2. 1] for

any t; > t,. If m, is nonnegative, so is m.

We have not yet stated that m depends continuously on my. To make this precise let
| flo.. be the sup-norm on [t,. ] X [a/2. l] fort < =.

ProposiTION 3.2
Let my and m be as in Theorem 3.1. Then

Imllo., < c(Dlimyllo., fort =1,
with constants c(z) depending continuously on ¢. but not depending on my.

This boundedness result can be sharpened. To this end we define

vo(t, X) = f D(T(t.x.v), V) dy, a2<cx<l, (20)
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with D from (11). D(r. v) = 0 for v > 4. It follows from assumption 2.1(by 1y that

vyt X) < J D, iv) dy (2

P2

for: € R.x € [a/2. 1], with Dy from Lemma 2.2(¢). Hence we obtain the following estimate
from proposition 3.2 and (15a).

COROLLARY 3.3
Let m, and m be as in Theorem 3.1. Then

Imie, 0F < cOlmyfly, - vileox) + Imgles ol
with constant ¢(¢) depending continuously on r. but not on m,.

In order to let the reader appreciate this estimate we recall that my(z. ©) = 0. 1f m, is given
by (I6)and t = T(sy. a/2. ).

Remark 3.4

(a) As in [1]. Sec. 4, m, in (18) can be considered the j* generation of cells and for any
t, > 1, 1t can be shown that there exists j, € N with m,(r. x) = Oforj = /.1 Z [1,.1]. x €
[a/2. 1]. So at any time only finitely many generations are present.

(b) The last observation helps to tind conditions under which a solution m of (13). (16).
1.e. a weak solution of (10) with initial function ®. actually is a strong solution of (10) and so
provides a strong solution of (1). As we mentioned in Sec. 2 the crucial step consists in proving
the differentiability of m(¢. x) in ¢. If my is given by (16). it is differentiable if ® is differentiable
and ®(a’2) = P'(a/2) = 0. The operator F defined by (19) preserves differentiability except

atx = 4, if D is differentiable in /. i.e. if b and p are ditferentiable with respect to time. Thus

all m; are differentiable and so is m because the series (18) is locally finite.

4. PROPERTIES OF THE SOLUTION OPERATORS

In studying the asymptotic behaviour of weak solutions 1 to (1). (2). or. equivalently. of
solutions m to (13). (16) in the case of time-periodic developmental rates, we want to apply
the spectral theory of strongly positive. quasicompact operators on Banach lattices (see. e.g.
[18]). To this end it is convenient to consider the solution operators belonging to Egs. (13).
(16).

Let Z be the Banach space of continuous real-valued functions « on [« 2. 1] with
u(a/2) = 0. The norm |||} on Z is provided by the supremum-norm. Note that the continuity
of wat x = 1, in view of Eg. (1), involves for the initial values of n that (¢ - n/E)1,. X)
converges forx T 1.

For @ & Z there exists a unique solution m of (15). (16) by Theorem 3.1. The solution
operators U(r. 1,). t = t, are now defined by

U, ) = m(t. ). (22)
It turns out that the operators U(r. ). t 2 1,, form an evolutionary system.
PropPoOSITION 4.1
(a) U, 1y) 1s a bounded linear operator on Z.
by Ut. s)U(s. 1) = Ult. .y <s st Ut.nu = n.u € Z.

(¢) Foru € Z. U(t, ty)u continuously depends on ¢, t = ¢,

(a) and (c) follow from Theorem 3.1 immediately. (b) can also be formulated in this way:
if m is a weak solution of (10) with initial values at ¢ = . then

(]
(7

pi(t. ) = Ut symts, ). 1= 5 21, (
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Since solutions of (13) are unique by Theorem 3.1. (23) tollows by showing that m(r, x) s a
weak sotution of (10) for ¢ > s with initial values mis. -) at ¢+ = 5. This is easily done by
using the properties of T and X in Lemma .2,

In order to prepare the application of the theory of strongly positive operators we recall
that Z is a Banach lattice. The cone Z_ is formed by the nonnegative functions, the ordering
"< is the point-wise ordering and the modulus (or absolute valuey of ¥ € Z is given by
bty = |utx)|. x € [a/2. 1] (see the Appendix and [18]).

First we note that the boundedness of U(t. t,) holds in a stricter, order-theoretic way if ¢ is
large enough.

ProposiTION 4.2
For ¢ = T(r,, a/2, 1) we have [U{t, ty)u] < c|ullv, for u € Z with ¢ depending on ¢ and
f,. and v, given by (20).

In other words Ut(r. ;) continuously maps Z into the Banach space Z, ,, (see Appendix
2). it ¢ = T, a/2, 1). For then my(r, -) = 0, if m, is given by (16). and so the proposition
easily follows from Corollary 3.3. Finding conditions under which the operators U{t. ¢,) are
strongly positive s much more involved.

Strong positiviry of the solution operators

We look for conditions under which, after a sufficiently long time ¢, cells of every size in
{a:;2. 1) are present in the population. i.e.

met, xy >0 forx € (a/2, 1]. 24)

We claim that the following assumption will work.

ASSUMPTION 4.3
For any v € (3. 1) there existe > 0, v, - € [a, 1],y = x. =

W

3 such that

(o)
[
—

T(T(s, x.v).v/2,x) + e < T(T(s. 4. 2). =
for all s € R,

Assumption 4.3 roughly states the following: consider a cohort (group) of cells all having
the same size x € [3. 1) and a cohort of cells having size 3. at time s. Then some daughters
of the first cohort have reached size x again before al/ daughters of the second cohort (either
have divided or) have reached &.

In order to show that Assumption 4.3 actually implies (24) for large 1. we define T(s. x)
to be the latest possible time at which a daughter of a cell having size x at time s can reach
size x again, formally

T(s.x) = sup{T(T(s. x. ¥). ¥/ 2. x) x.a <y <1, 2« (

LD
wn

Remember that the mother cell can split at any size y with x. a <y < 1. We also define
X(t. 5. x) and X(r. 5. x) to be the maximum and the minimum size which daughters of a cell
having size x at time s can reach up to time ¢. formally

Xtr.s.x) = sup{X(e. T(s. x.¥). ¥/2)i x.a < v < X(1. 5. x). 1} (26)

for 1 = s, ¢t = T(s. x, a). X{z. s, x) is the corresponding infimum. Equation (26) only makes
sense if the mother cell can reach the minimum splitting size a up to time ¢, i.e. for t >
Tis. x. a). or equivalently. « < X(r, 5, x). We mention that X. X are continuous and that
Xtro s, x) and X(r. s. x) strictly monotone increase if r. x increase and s decreases. More
precisely. there is some € > 0 such that

Nttws.0 = X, s.0) =&t — tpforalt o =1 = 5.0 € [a/2. 1] with s, = T(s. x. ),
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Furthermore. for any r > 0, 1 2 x, > x; > a/2 there exists € > 0 such that
X(t.5.0) — X(t.s.x)=e, if0O<t—-s=<r.t=T(s.x.a.

The same statements hold for X. They follow from the Assumptions 1.1 and from Lemma 2.2.
Since Assumption 4.3 states that daughters of a cell having size x € [4, 1) at time s can
reach size x again before time T(s. 3). it follows that 7(s, %) = T(s. x. a) and

X(T(s. 4, s.0=x+d forx € [% 1), (27)

where a/2 < ¥ < §and 8 > 0 can be chosen independently of 5 € R and of x in any compact
subset of [£, 1). Equation (27) can be derived from Assumption 4.3 rigorously by exploiting
Lemma 1.2. Similarly. it is intuitively clear and can rigorously be derived from Lemma 1.2
that

X(T(s, d).s5, 5 =14 (28)
Before we actually dive into the proof of (24) we state a couple of useful lemmas.
The following statement is intuitively evident from the interpretation of X.
LEmMMmA 4.4
Let m be a weak solution of (10) for r >y, If s=Z . a2 <y, <x <1, and

m(s.v) > 0forx, < v =< x, thenm(s, x) > 0forr = 5. X(r.5.x) = v = X(1,5. x5 ) X =l

‘In order to prove Lemma 4.4 take into account that m(z, x) is a weak solution of (10)
with initial function m(s, -) att = s (see Proposition 4.1 and the subsequent remarks). Hence.
by (15) and (16), m(t, x) = m(s, X(s, t, O) if X(¢. 5. a/2y = x = |,

The next lemma states that the presence of cells of size x. ¢« < x < 1, implies the presence
of cells of size x/2 by splitting. It is an obvious consequence of the continuity of m and of
(15a).

LeEmMMA 4.5
Let m be as in Lemma 4.4, s > ¢, x € (a, 1]. If m(s, x) > 0. then m(s, x/2) > 0.

Combining Lemmas 4.4 and 4.5 yields the following statement, which is intuitively evident
from the interpretation of X and X.

LEMMA 4.6
Let m be as in Lemma 44. Let t > s>t a2 < =x.< 1. 1=T(s, x.a) lf
m(s. x) >0 forx <x=<ux, thenm(sr,z) >0for Xr.5.x) s:- < ,\(t s.x). o= L.

Actually combining Lemmas 4.4 and 4.5 leads to the following conclusion: if s > z,
al2 < x<land m(s,x) >0, thenm(t,z) >0 forallz = X(¢t. r. X{r.s. x}/2) with - <
ssr=<t,a=s=X(r, s x) = |, or, equivalently for all - = X(z, T(s, x. v). v/2) with = <
x,a <y < |. Lemma 4.6 now follows from the definitions of X and X in (26).

From (27) and (28) we can now derive Lemma 4.7.

LEMMA 4.7
Letmbe asin Lemmad.4, s > 1,, ¢t = T(s, 4. x € [5. 1). If mcs. vi>0forssy=uyx
then m(r, z) > 0 for z € [4, £] N {3, 1] with & = X(r. 5. x).

Remark
Note that ¥ > x + 8 and that & > 0 can be chosen independently of s € R and of x in

compact subsets of [§, 1).

After these preparations we are ready for the proof of (24).
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First we note from Lemmas 4.4 and 4.5 that, if the initial value ® € Z_ at time ¢t = 1,
satisfies @ # 0. then

misy, ¥) >0
with some s, € (4, T(t;, a/2, 1)]. Guided by Lemma 4.5 we define

5/‘! = T(5/~ %),

%o = min(l, X(s;-, 5. %)),
X =4,
It follows that
x* = limx; = 1.
e
forj =0.1...., and find a strictly increasing sequence x; < | with

m(s;, x) >0 forx € [, x].

for. if «* < I, by Lemma 4.7 and the subsequent remark. x,_, = x; + & with 3 > 0 for all
J € N, in contradiction to the convergence of x;. Now, by Lemma 4.5,

m(s,, x) >0 forx € (x, x,/2] U [}, x] (29)
with x = max(a/2, }) and x; — 1 for j — =. By (27) there exists x€ [, ) such that
X(T(s, 9,5, 0=14

for all s € R, in particular

X(S/+Iv s,

i, ¥ = 5

By the remarks following the definition of X, X in (26) we obtain

X(Sje10 8, 0 S X(5500, 8.9 —d =13 —3

with 8 > 0 not depending on j. Since, for large j, x,/2 > yxand x,.,/2 > { ~ 3 we obtain from
(29) and Lemma 4.6 that

m(s;.,, x) >0 forx € (x, x;.4],

tor sufficiently large j, with x; — | for j — =. If j is large enough, T(s;, x,. 1) < T(s;, 1. b
hence

m(s, x) >0 forisx<l,
with some large § > s,. By Lemma 4.5,
m(§,x) >0 fora/2<xs=l.
The continuity of m and Lemma 4.5 yield
m(s,x)>0 ftora/l2<x=<1,s5s=3.
We formulate this result in terms of the solution operators U(r. #). v € Z. is a quasi-

interior point of Z. (see the Appendix, point 4) iff v is continuous on [a/2. 1] and v(x) > 0
for v € (a’2, 1].
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ProPOSITION 4.8
Let the assumption 4.3 be satisfied. Then. for 1, € R. there exists ¢, > 1, such that
Utt, 1)@ is a quasiinterior point of Z_ ifr = ¢, o€ Z.. & = 0.

Note that 1, is independent of .
After having established this positivity property of the operators U(t, 1)) for ¢ — 1, being
large we now turn to compactness.

Compactness of the solution operators

In order to show that the operators U(z. f,) are compact on Z if t — ¢, is large enough,
we consider an arbitrary bounded subset M of Z and consider the weak solutions m of (10)
with initial function ® € M for + = ¢,. By the Arzela~Ascoli theorem we have to show that
m(t, +) is bounded and continuous uniformly in & € M for + — i, being large. Boundedness
is obvious trom Theorem 3.1 and (16). For the proof of equicontinuity we set

vis, x) = m(T(s, a/2, x),x) fors =1,

It follows from (14) and Theorem 3.1 that v(s, x) is continuous in x uniformly for s ranging
in a bounded interval and ® € M. Transforming (14) into an equation for v we obtain

minix.l 2y
v(s. x) = J D(T(s, a/2, v). v)v(f(s.¥), 2v) dy (30)

a2

fors = T(ty, a/2, 1), with
fGs.v)y = T(T(s.a/2.¥v). 2v. a/2). (3D

Since m(t, x) = w(T(t, x, a/2), x) for t = T(t,, a/2. x) we are done, if v can be shown to be
continuous in (s, x) uniformly in @ € M. This follows from the uniform (with respect to s and
& € M) continuity in x. if a change of variables f(s. v) = r can be performed in the right-
hand side of (30). To this end we differentiate f with respect to v and obtain. with § =
T(s, a/2,v) trom Lemma 1!.2(g),

N I
d.f(s.v) = 28,T(5, 2v.al2) (72” 3 - 25 7\.)). (32)

Guided by this formula we make the following assumption.

ASSUMPTION 4.9

There exist at most finitely many points x, € [a/2. #] such that 2g(s. x.) = ¢(s. 1x,) for
some s € R.

By this assumption the interval [a/2. 3] can be divided into intervals [x.. x._,] such that
2g(s, v) — g(s, 2v) is either strictly positive on (x;. x,_,) or strictly negative.

We want to solve the equation

fls, his.r)y) =r (33)

with #,(s, r) € (x,. x,_,). To this end we differentiate (33) with respect to r and obtain the
following differential equation for A;:

i
oh(s, ry = ———"—/——. (34
tds. ) d.f(s. s, r))

Since 3¢ exists and is continuous by Assumption 1.1, d.f(s. v} is Lipschitz continuous in
(s.v) by Lemma 1.2(e) and (32). So we find a continuous solution /,(s. ri of (34) and thus
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of (33) for s € R, r in the interval with endpoints f(s. x,). f(s. x,.;). We now split up the
integral (30) into integrals

f YUD(T (s, a2 vy, yv(f(s. y). 23) dy

minjy.x )

[fis.minfv, b T(s, /2.,, y s,
- J' D(T(s. a L(s. r). hls. 1) vir. 2h{s. r)) dr.

- fis.minfcx, b 621(5 /11(5~ r))

Since the first integral exists if we take absolute values of the integrand, so does the second.
We conclude that the integrals are continuous in (s, x) uniformly for ® € M.

Summarizing our preceding considerations we conclude that v(s. x) is continuous in
(5.0, 2 T(ty.a/2. 1),a/2 < x < |, uniformly ford € M. Since m(r.x) = w(T(t.x.a/2).x)
for t = T(1y. a/2, x). m(t, x) is continuous in (z, Xx) uniformly for ® € M. provided that
T(t, x. a/2) 2 T(ty, a/2, 1), a/2 < x = 1. thus in particular if 1 = d(d(1y) with d(s) =
T{s.a/2, 1). By the Arzela—Ascoli theorem (see, e.g. [22, IX, Sec. 4]) we obtain the following
result.

ProOPOSITION 4.10
Let Assumptions 4.9 be satisfied. Then the operators U(s, t,) are compact on Z for
t = O(d(1)).

One can presumably prove that the operators U{t, t,) are compact on Z for t = (1) by
studying the generation expansion (18). (19) (see [1], Sec. 5). Recall that at time &(t,) all cells
from the initial population (i.e. the cells of the zero generation) have divided or died.

Furthermore, Assumption 4.9 can be relaxed, e.g. by assuming that the set {(s, v): s € R,
a/2 <y <4, 2¢(s, v) = g(s, 2y)} is contained in the union of finitely many graphs of

continuous functions x;: R — [a/2, §].

5. THE SOLUTION OPERATORS UNDER PERIODICITY

In this section we study the operator
B = Uty + p, 1) (35)

the properties of which are of crucial importance for the asymptotic behaviour of weak solutions
of (10), if the developmental rates are time-periodic with period p. We will use the language
ot Banach lattices which is summarized in the Appendix.

From now on we make the following assumption.

ASSUMPTION 5.1
g, x). u(r, x), b(t, x) are periodic in + € R with the same period p > 0 for g. b. p.

This periodicity assumption has the following consequence for the solution operators.

PrROPOSITION 5.2
Ut + p.ty + p) = Ule.ty) foralle, 1y, € R, t =1,

Proof. Let m be the weak solution of (10) with initial function & € Z at 1 = ,. By the
uniqueness of solutions it is sufficient to show that m(s. -) = m(r — p. *) is a weak solution
of (10) with initial values ® at ¢t = 1, + p. This easily follows from Lemma 3.3.

LEnya 5.3
T(t + pox.y) =T, x.v)y + p. Xt + p,s + p.x) = X(1.5.0).

The lemma follows from the uniqueness of solutions to the differential equations (6), (7).
Proposition 4.1 now implies the following.
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ProposITION 3.4
{a) B is a positive bounded linear operator on Z.
by Forke N.r€ [0, p]. Utry + kp + 1. 1)) = Ult, + 1. 1,)B"

Assumptions 4.3 now take the following seemingly weaker form (see Lemma 5.3).

ASSUMPTION 3.5
For any x € [4. 1) there exist v, = € [a, 1], v = x, z = 3 such that T(T(s. x. v). v/2. x)
< T(T(s, %.2).z/2. % forall s € R.

Recall the interpretation we gave after Assumption 4.3. Propositions 4.2. 4.8 and 4.10
imply the following properties of B.

PROPOSITION 3.6
{a) If Assumption 4.9 holds then B’ is a compact operator on Z for sufficiently large j.
{b) For large enough j, B’ maps Z continuously into the Banach lattice Z . with v,(¢,)
being the quasi-interior point of Z_ defined in (20).
(c) If Assumption 5.5 holds then B’ maps Z_\{0} into the quasi-interior points of Z_ for
large enough ;. In particular B is strongly positive on Z (see Appendix. points 4. 7).

The following spectral properties of B now follow easily from the theory of power compact
strongly positive operators (see [18. Chap. V]).

PROPOSITION 5.7

Let Assumptions 4.9 and 5.5 be valid. Then the following holds:

(a) The spectral radius r, = spr 8 of B is different from zero.

(b) ry 1s an algebraically simple eigenvalue of B and B'.

(c) There is an eigenvector w;, of B belonging to r, which is a quasi-interior point of Z_.

(d) There is a strictly positive eigenfunctional w) € Z' of B’ belonging to r,. w, = 0 on
(rol — B)Z.

(e) All spectral values of B different from r, lie in a circle around 0 € C with radius
strictly smaller than r,.

(f) r, is the unique eigenvalue of B with an eigenvector in Z_.

See the Appendix, point 5. Since r, is a pole of the resolvent of B. we can split up the
space Z into a direct sum

Z = span{w,} ® Z,

with the eigenvector w, being provided by Proposition 5.7(c) and the B-invariant closed subspace
Z = (rfl — B)Z (see, e.g. [26, Chap. 1}). The spectral radius of B restricted to Z is strictly
smaller than r, by Proposition 5.7(e). In (d) it is stated that wj = 0 if restricted to Z. So we
obtain the following result.

PROPOSITION 5.8

Let w{ be normalized such that wyw, = 1. Then there exists a bounded linear projection
P on Z with the following properties:

(a) PB = BP.

(b) Pwy = 0, wyP = 0.

(c) ri: = spr BP < ry = sprB.

(d) Any w € Z has the unique representation w = w/(w)w, + Pu.

We conclude this section by characterizing the nonzero eigenvalues and eigenvectors of
B. Let Bw = ¢gw, ¢ # 0 and let m be the weak solution of (10) with initial value w atr = t..

ie. m(r. -) = Ut ty)w. Let N € C be such that e = ¢ and set

m(e, 2y = Mt ).
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Then
mit + p.)y =e™MPUE + porgw = e MU+ poty + p)w = e MU, t)w = mlt, )

by Proposition 5.4(b). We extend ri for t < 1, in a p-periodic way. If t = T(t), a/2, 1)

min{x. 12}
m(t, x) = j D(T (1, x, ¥), »)eMNT=¥""Om(T (s, x, v), 2¥) dy (36)

a2

by (15a). Since m(¢, x) is p-periodic in ¢, this equality holds for all + € R (see Lemma 5.3).
Moreover, 1t is continuous.

Conversely, if / is a continuous p-periodic solution of (36) on R x [a/2, 1], then
m(t, x) = eMmn(t, x) is a weak solution of (10) with initial value w = e*m(s, ) att = 1
satisfying Bw = e*w. (Use Lemma 1.2.)

Thus we have obtained the following relation between eigenvalues of B and p-periodic
solutions of (36).

PROPOSITION 5.9

Letg, N € C,q = ¢". Then g is an eigenvalue of B iff there exists a p-periodic continuous
solution st on R X [a/2, 1] of (36). The eigenvectors w of B belonging to g are related to the
periodic solutions # of (36) by

Ult, tyw = e¥m(e, -) fort =y,

6. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS

In order to prove our main result on the asymptotic behaviour of weak solutions to (10)
or to (1) respectively, we continue the considerations of the last section.

Let @ € Z and let m be the weak solution to (10) with initial value ® at¢ = ¢,. Furthermore,
lett > t, + kp, k € N. Then, by Propositions 5.4 and 5.8,

m(t, ) = UL, ty)® = U(t — kp, t)B*D = wi(P)U(t, t)wy + Ut — kp, to)(PB*®),

and |PB*|| < cr* for any r € (ry, ry) with ¢ > 0 depending on r, but not on &.

By Proposition 5.9 mi(t, ) = e MU(1, 1;)wy is a p-periodic continuous solution of (36) on
R X [a/2. 1]. Since w; is strictly positive on (a/2, 1] by Proposition 5.7(a), r(t, x) > 0 for
t € R, x € (a/2, 1] by Proposition 4.8. Now (36), (20), and the periodicity of 7 imply that

evy(t, x) = m(t, X) = cvy(L, x)

for t € R, x € [a/2, 1] with €, ¢ > 0 not depending on r and x. On the other hand,
|U(t = kp. ty)PB*®| < cr¥|d|vo(r) by Proposition 4.2, if t — kp = T(1,, a/2, 1) with ¢ de-
pending on r. Combining these observations and Corollary 3.3 yields the following.

THEOREM 6.1

Let Assumptions 1.1, 2.1, 4.9, 5.1 and 5.5 be satisfied. Then the following holds:

{a) There exists a unique A € R such that (36) admits a continuous nonnegative time-
periodic (with period p) solution s # 0 on R X [a/2, 1]. m is uniquely determined up to a
scalar factor.

(b) If m is a weak solution of (10) with continuous initial function @ on [a/2. 1} atr = ¢,
®(a/2) = 0, then. for r — =,

m(t. x) = eMm(t, x).(a + e ¥ (1))

with some € > 0. The scalar a depends in a linear and strictly positive way on the initial
function .
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More precisely, one can say that a(®) is a strictly positive bounded linear tunctional on
Z. The Landau symbol /(1) represents a bounded function m(r. v). Actually m(r, ) =
Uft. 1,)® with bounded linear operators U(:. 1,) on Z and | U'(t. t)li is bounded on {r,. *).
We now translate this result to weak solutions of (1) via (8). (9). We define

Etr.x) = exp (* J (brgyTir x. 2. 2y dz ).

@ 2

COROLLARY 6.2

Under the assumptions of Theorem 6.1 the following holds.

Let n be a weak solution of (1) for r > ¢, such that n(z,. x)/Etz,. x) is continuous in
x € [a/2, 1] and n(zy. a/2) = 0. Then. fort — =,

nit, x) = eMift, o~ e ¢ (1))

with some € > 0. In this expression A and the time-periodic (with period p) function 7 do not
depend on the initial function n(f,. ). The scalar «. however. depends linearly and strictly
positive on the initial function.

More precisely, a(¥), ¥ = n(z,, -). is a strictly positive bounded linear functional on
the Banach space Z;, .. 7 (1) stands for a bounded function a(r, x). Actually n(:, ) =
Ulr. t)¥ with Uz, 1;) now being bounded linear operators from Zz, ., to Z and {U(r. t,)i <
const for all r = 1.

Though Assumption 5.5 has a clear biological meaning (see the interpretation following
Assumption 4.3) one would like to have an assumption in terms of the growth rate g as well.
Unfortunately a condition of that kind which is not too complicated ¢an only be given in the
very special case

glt, x) = y(ngln.

Then, by (6),

(Tiix.y B d_"
J y(s) ds =J oy

r

and Assumption 5.5 takes the following form.
Forany x € [3, D thereexist v. 2 E {w. 1. v = x. - =

[

such that

Codg oode 22 | |
= <J —, l.e. — - — ¢ < 0.
2 gty ) gD oo Le2d)  2g(0)

But this already follows from Assumption 4.9. So we obtain the following result.

COROLLARY 6.3

Let Assumptions 1.1, 2.1 and 5.1 be satisfied. g(r. x) = v(fng(x) with g{2x) # 2g(x)
for all but finitely many x &€ [a/2. 3|. Then the statements (a) and (b) of Theorem 6.1 and
Corollary 6.2 are valid.

7. THE TIME-HOMOGENEOUS CASE REVISITED

For time-independent developmental rates one expects Theorem 6.1 and Corollary 6.2 to
hold with m(r. x) and #A(r. x) not depending on ¢. In fact. we established the theorems in this
form in 1] under one of the following conditions on the growth rate g:

() 2(2x) < 2g(v). x € [a/2. 4]
(i) az i glv)y = x forx € [a/2, Bl g(x) <x forx € (B. I]with B < 1.
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Unfortunately neither condition is satisfied by the experimental data for ¢ of Anderson et

al. [2): in particular they found « < i This situation is especially unsatistactory because

Anderson er al. gathered their data from cell populations which. after the experiment had run

for some time. showed exponential growth with a stationary size distribution. So our theorem

should hold for their data. In [1] we guessed that a substantial generalization of conditions (1)

or (i) would be very laborious or even impossible. Fortunately., this tear is unfounded. Let us
assume that

g(2x) # 2g(xv) forx € J. (37)

J being a nonempty open subinterval of [a/2. 3] =: /. Since g is continuous, (37) is a necessary
condition for asymptotic exponential growth with stationary size distribution. as we pointed out
at the beginning of [1. Sec. 8]. Replacing Assumption 4.9 by (37) we in general lose the
compactness of the operators U(t, 1)) even if 1 — 1, is large. The hope. however. is that (37)
is strong enough to imply that the radius of the essential spectrum of U(r, £,) is strictly smaller
than the spectral radius of U(r. 1)). The spectral values in the complement of the essential
spectrum essentially behave like the spectral values of a compact operator. We proceed as In
Sec. 8 of [I] where the reader can also find details and references concerning the essential
spectrum. (The essential spectrum consists of all elements of the spectrum which are not poles
of the resolvent with a residue of finite rank.)
A solution m of (15) can be split up as follows:

mir, x) = e, x) + e, x). (38)
with
m(r. x) = J, Kt x. vym(T(r. x. vy, 2v) dy + mylt. x). (39
{4
mt, x) = f Kt x, v)m(T{t, x, ¥), 2v) dv + J’ K, xovi(Tee, xov), 2y dy. (40
! J

With m, being given by (16) we define solution operators Cir. 1) and Uz, 1,) by

Ul t)® = e, ).

Ut t)® = we. -). (41)

In particular

Ult, f|)) = U{f‘ [()) + 0(’~ Iy). (42)

Observe that U(t, 1,) defines an evolutionary system.

We claim that (37) implies compactness of the operators Ulr. 1) for t — t, being large
enough. We proceed as in the proof of the compactness of the operators U1, #,) for large t — 1
in Sec. 4.

We find that

Vs, xy = m(T(s.al2, x),Xx)

is continuous in x uniformly for s ranging in a bounded interval in [z,. %) and for tnitial values
& in a bounded subset M of Z. Let ria(r. x) denote the second integral on the right-hand side
of (40). Then

m(T(s,a/2, x). x) = J D(T(s.a/2.v), vIv(fis, v). 2y) dy
RGN
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for s = T(ty, a/2, 1), with f in (31). By (37) we can perform the transformation f(s. ¥) = r
and find that mi(z. x) is jointly continuous in ¢ = &(d(1y)). x € [a/2. 1] uniformly in dec M
Here, as before.

&) = T ai2, ). (43)

By (40) ra(t, x) is jointly continuous in t = d(d(d(1). x € [ar2. 1]. uniformly in & € M.

Note that 71 can be given as a convergent series as in Theorem 3.1. By the Arzela-Ascoli
theorem we obtain the following.

LEMMA 7.1 )
The operators U, ;) are compact on Z for ¢ 2 &(d(d(1))).

For Lemma 7.1 to hold we did not need that the developmental rates are time independent.
This is different for the next lemma.

LEMMA 7.2 _

Let g, W, b be time independent. If + = &(d(d(f))). the spectral radius of Uft, 1) is
strictly smaller than the spectral radius of U(r. f,), in particular the radius of the essential
spectrum of U(z, £} is strictly smaller than the spectral radius of U(¢. 1,).

In order to prove Lemma 7.2 we first note that, if the developmental rates do not depend
on ¢,

D(t, v) = D(y) (44)
is independent of ¢ [see (11)]. Furthermore,
T(t, x,v) — ¢t =: Tylx, v} (43)

does not depend on 1. We note that (39) can be written in the form of (13) if D is replaced by
D’

Di(y) = D(y) fora/2 =sy<=i, v é J. (46)
Di(v) =0 otherwise.

Though the positivity and compactness results in Secs. 4, 5 may cease to be valid under this
modification, Propositions 4.1, 4.2 and 5.9 equally hold for .

In Sec. 5 we found p-periodic solutions of (36) from the properties of the operators
U(, to).__We now go this way backwards and try to obtain information on the operators
U(t, 1), U(t. ty) by looking for special periodic, namely r-independent solutions of (36). This
is possible because of (44) and (45). To this end we define operators V/on Z by

minte,}:2)
(Viw)x) = f D/(y)erTiesy(2y) dv (47)
for A\ € R, u € Z. Here we admit any open subinterval J of [a/2. }]. in particular J = ¢

ie. D’ = D.Recall that D’(v) > 0ifaa/2 <y < 4.y 6’_5 J (see Lemma 2.2). We now study
the eigenvalues and the positive eigenvectors of V{ in dependence on A. Since Proposition 5.9
also holds if D is replaced by D/, any pair A € C. u € Z withu = V{u provides an eigenvalue
eM of U’(t, + p, 1) with eigenvector u. Here U’(z, 1), ¢ = t,. denote the solution operators
associated with Eq. (39).

LEmma 7.3
(a) Let J be an open subinterval of (a/2 + €. 4 — €} for some € > 0. Then there exists

A = A\, € R such that the spectral radius of V{ is equal to |. Furthermore. for A = A,. there
are v € Z_. v, # O and v; € Z'. v # 0 such that Viv, = vyand (VD)'v) = ).
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{b) Let. in addition. the length of J be strictly smaller than

for any n € IN with @ < [/n. Then v, is comparable with v, in (20) and v;(v) > 0 for every
v € Z. with Vi(v) # 0. If J = @, i.e. D' = D. v} is strictly positive.

Remark

The notation A,, v;, v; may be misleading insofar as it suggests that these entities are
uniquely determined (in the case of v,. v; up to normalization). In general this might not be
the case. It will be the case, however. if J satisfies both the conditions of Lemma 7.3(a) and
{b). Note that v, in (20) is now time independent. The case J = @ has already been dealt with
by one of us in {27].

Proof of Lemma 7.3. Drop the index J for convenience. Let r, denote the spectral radius
of V.. It can readily be seen that ||V,|| = 0 for A — =. Recall that Tj(x. v) < 0 for x > ».
Thus r, — 0 for A — = In order to see that r, — x forA — —= wechoosev & Z_,v(x) = 0
forx < %, v(l) > 0. Then

N

12
(V”,-)(x) > f D’(y)e”“‘~"-"’v(2y) d.\‘ >0

arl

for § < x < 1, in particular V,v = ¢,v with ¢, > O for A € R and ¢, — = for A\ = —=. This
implies thatr, = ¢, > OforA € Rand ¢, — = forA — — . Note that V, continuously depends
on \ in the uniform operator topology. The formula r, = inf,[[Vii' " = lim,_.[[V}]' " reveals
that r, is continuous from above, i.¢. limg_, r; < r,. Since every nonzero spectral value of the
compact operator V, is an isolated point of the spectrum, the perturbation result in Theorem
3.16 in {28, Chap. 1V] implies the continuity of r, from below. i.e. lims_, r; = r,. The
intermediate value theorem now implies the existence of some A € R withr, = 1. The existence
of v, and v; follows from the Krein—Rutman theorem (see. for example, [29]).

Part (b) follows from the fact that there is some j € N such that (Viv)(x) > 0 for
al2<x<1,ifveZ, and V,v# 0. In fact, if V,v # 0, v € Z_, then (V,v)}{x) > 0 for
$ < x =< 1. Let us suppose that we have already proved

(Vi~'v)(x) > 0 for <

sx<l.j=2

oI

!
J
Then

DOV W2y) >0 fordj a2 <y veEJ

If4j< a2, D)ONVIT'VIRY) > 0 for a/2 < v < a/2 + € hence (Viv)x) > 0 for a/2 <
x =<4 If 57 > a/2, DY(v)(Vi'v)(2y) cannot vanish a.e. on [&j. 1/(j + 1)] because, by as-
sumption, the length of J is strictly smaller than the length of [§/, 1/(j + D)]: hence (Viv)(x) > 0
for 1/(j + 1) < x < 3. Repeating this step several times we find some j such that (Viv)(x) > 0
fora/’2 <x = 1. u

We now prove the crucial result which will imply that the spectral radius of Ult, 1) is
strictly smaller than the spectral radius of U(t, t), t > 1.

Lesya 7.4
Let J be an interval satisfying the assumptions in Lemma 7.3(a. b). Let A, A, € R be
such that the spectral radius of V and VY, equal 1. Then A > A,.

Proof. We suppose that A < X,. Choose v, € Z.. v, # 0 such that V,{J v, = v,. Since v,
is strictly positive by Lemma 7.3(b), Vv, > V{v, = V{ v, = v,. Recall that T\(x. y) < 0 for
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v < x. Now choose a strictly positive functionul v* = V" according to Lemma 7.3(b). Then
(VRS0 ViV )
= - = - = - = 1~
Vi) vy vy
a contradiction. N

Let us now fix the nonempty open subinterval J of [ = [«2. 1] such that J satisfies both
the assumptions in Lemma 7.3 and in (37). Choose an arbitrary p > 0. Proposition 5.9 and
Lemmas 7.3. 7.4 now imply that e™ and e are positive cigenvalues of B = Ul + p. 1)
and B = U(n) + p. 1) respectively with eigenvectors v. T which are comparable to v, in (20).
and that e” > e’™. Thus Z, = Z, = Z; as Banach spaces. Obviously B and B map Z, and
Z. continuously into themselves and have the spectral radii ¢”* and ™ on these spaces (see the
Appendix. point 8). It follows from proposition 4.2 that 8 and 8 map Z continuously into Z
for p = Tyla/2. 1). The next lemma will imply that B and 8 have the spectral radii ¢ >
e on Z so that Lemma 7.2 tollows from Lemma 7.1.

LEMMA 7.5

Let W. Z be Banach spaces. W a linear subspace of Z. Let B be a bounded linear operator
on Z such that BZ C W and B is also a bounded operator on W. Then, with the possible
exception of 0 € C. B has the same spectrum on Z and on W.

By the open mapping theorem the proof of the lemma reduces to showing that, for ¢ = 0.
¢l — B is a bijection on Z iff it is a bijection on W". But proving this is almost trivial and left
to the reader.

In order to conclude the consideration of the time-homogeneous case we remind that (37)
implies Assumption 5.5, as we have seen in the remarks preceding Corollary 6.3. Thus Prop-
ositions 3.6(b, ¢) hold. The power compactness of B stated in proposition 5.6(a) was only
needed to guarantee that the spectral radius r, of B = ({1, + p. ;) 1s a pole of the resolvent
of B. In order to realize that r, keeps this property under the present conditions we first note
that r, is a spectral value of the positive operator B (see [18. V.4.1]). By Lemma 7.2 r, has
the same properties as a nonzero spectral value of a compact operator, in particular r, Is an
eigenvalue and even a pole of the resolvent of B (see 1. Sec. 8)). Thus Propositions 5.7 and
5.8 are valid (see [18. Chap. V]) and so are Theorem 6.1 and Corollary 6.2, if we replace
Assumptions 4.8. 3.1 and 5.5 by (37) and the time independence of g. b. p. Note that 7t in
Theorem 6. 1 is now a time-independent solution of /2 = Vi, Thus. by (47). 7 is differentiable
for a/2 < x < |, x # % and satisfies the differential equation

(g?.\‘) + %) mi(x) = D{xpinldy) fora 2 <x<l.x =} (482)
D(x)m(2x) = 0. x =i (48b)

and the boundary condition
ma’2) = 0. (49

So Theorem 6.1 takes the following form.

THEOREM 7.6
Let Assumptions 1.1. 2.1 be satisfied. Let g. p. b be time independent and g(2x) # 2g(0)
for some x € (a/2. 3). Then the following holds.
(a) There exists a unique A € R with a nonnegative solution s = 0 of (48). (49). 1 1s
uniquely determined up to a scalar factor.
{b) If m is a weak solution of (10) with a continuous initial function @ on {a 2. 1] at
t = t,. Pla’2) = 0. then for 1 — =,

mie, x) = eV (o — e o)
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with € > 0 and « as in Theorem 6.1.

Again the dependence of a and 7 (1) on the initial values « can be described in more
detail. as we did in the sequel of Theorem 6.1.

When Theorem 7.6 is translated to Eq. (1), we note that A(¢, x) in Corollary 6.2 is time
independent, continuous in x, differentiable in x # a, % and a solution of the differential equation

d
Ni(x) + p (g -A)x) + (u + b) nlx) =4b-n2x), x € (a/2. ), x #a, i (50a)

b-Ax) =0 ifxé&I[a 1) (50b)

and the boundary condition
Aa/2) = 0. (5D

Furthermore, A(x)/E(x) is bounded in x € (a/2, 1) with

E(x) = exp (— f (b/g)z) d:). (52)

So Corollary 6.2 takes the following form.

COROLLARY 7.7
Let the assumptions of Theorem 7.6 be satisfied. Then the following holds.
(a) There exists a unique N € R with a nonnegative solution 7 # 0 of (30), (31) such
that 7i(x)/E(x) is continuous on [a/2, 1]. /i is uniquely determined up to a scalar factor.
(b) Let n be a weak solution of (1) for r > 1, such that n(z,, x)/E(x) is continuous in
x € [a/2, 1]. Then, for t — =,

n(t, x) = eMiax) - (o + e ¥ (1)
with € > 0 and « as in Corollary 6.2.

We remark that these results for the time-homogeneous model can also be obtained using
the semigroup theory we applied in [1]. The proof of the strong positivity of the solution
operators could then be replaced by a more thorough analysis of the operators V), in (47), in
particular by the considerations in [27, Sec. 7]. Though g(2x) < 2g(x) for all x € [a/2, 1] is
supposed there, the proof of Theorem 7.2 reveals that (37) is sufficient because the eigenfunction
®d, is strictly positive. For time-dependent developmental rates a direct proof of the strong
positivity of U(t, ¢) seems unavoidable.
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APPENDIX: SOME VOCABULARY FROM THE THEORY OF BANACH LATTICES

I. A Banach lattice Z is a Banach space with norm ||| and a vector lattice with cone Z_. ordering <" and
absolute value (or modulus) |-| with these two structures being interlinked by

tu| < |v| implies lfuw| < ||v| (AD

for all u, v € Z (see [18)).
2. LetveZ.,v#0 u& Zis called v-bounded iff

lu| = v for some ¢ > 0. (AD)

The set Z, of v-bounded elements is a linear subspace of Z and becomes a Banach space itself by the v-norm [lu},.
which is by definition the smallest ¢ such that (A2) is satisfied (see (17. Secs. 1.2, 1.3]). The Banach space Z, becomes
a Banach lattice by restricting the lattice structure of Z to Z,. in particular Z, . = Z N Z.. If Z is a function space.
then [|ufl, = sup{l(«/v)(x)|; v(x) # O}. The cone Z, . has interior points in the Z -topology.

3. Let u, v € Z_ u is called v-positive iff u = ev for some € > 0. « and v are called comparable (or order-
equivalent) iff u is v-bounded and v-positive. u and v are comparable iff Z. and Z, are equal as Banach lattice (in
particular Z, = Z, as sets and |||, and {|-}l, are equivalent norms); furthermore. « and v are comparable iff « is an interior
point in Z, and vice versa.

4. v € Z. is called a quasi-interior point iff Z, is dense in Z, or equivalently. iff v'v > O foranyvyv' € Z_ v # 0
(see {18, Thm. I1.6.3]).

5. A functional v' on Z is called positive iff v'(u) = 0 for all u € Z.. v' is called strictly positive iff v'(u) > 0
forallu&€ Z,, u#0.

6. A linear operator A from one Banach lattice into another is called positive iff it maps one cone into the other.
Positive linear operators between Banach lattices are automatically bounded (see (8. Sec. 11.5.3]).

7. A positive linear operator A is called strongly positive iff for any u € Z_, u # 0. A"u is a quasi-interior point
of Z, for some n € N.

8. A positive operator A on Z maps Z,, v € X _, into itself iff Av is v-bounded (i.e. Av € Z.). The operator norm
A}l of A on X, satisfies |All, = JAv|.. If Av = rv for some r > 0. then ||[All, = v and r is the spectral radius of A on
Z,.




