On the fractional Adams method\(^*\)

Changpin Li\(^a\,*\), Chunxing Tao\(^a,b\)

\(^a\) Department of Mathematics, Shanghai University, Shanghai 200444, China
\(^b\) Department of Mathematics, Hanoi University of Mining and Geology, Hanoi, Vietnam

Abstract

The generalized Adams–Bashforth–Moulton method, often simply called “the fractional Adams method”, is a useful numerical algorithm for solving a fractional ordinary differential equation:
\[D^\alpha y(t) = f(t, y(t)), \quad y^{(k)}(0) = y_k^{(k)}, \quad k = 0, 1, \ldots, n - 1, \]
where \(\alpha > 0\) and \(n := \lceil \alpha \rceil\) is the first integer not less than \(\alpha\). \(D^\alpha y(t)\) is the \(\alpha\)th-order fractional derivative of \(y(t)\) in the Caputo sense. Although error analyses for this fractional Adams method have been given for (a) \(0 < \alpha \leq 1\), (b) \(1 < \alpha < 2\), (c) \(n \alpha < 2\), (d) \(\alpha > 1\), \(f \in C^2(G)\), there are still some unsolved problems—

(i) the error estimates for \(\alpha \in (0, 1)\), \(f \in C^2(G)\),
(ii) the error estimates for \(\alpha \in (1, 2)\), \(f \in C^2(G)\),
(iii) the solution \(y(t)\) having some special forms. In this paper, we mainly study the error analyses of the fractional Adams method for the fractional ordinary differential equations for the three cases (i)–(iii). Numerical simulations are also included which are in line with the theoretical analysis.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, the fractional calculus and fractional differential equations have attracted much attention and increasing interest (see [1–4] and many references cited therein) due to their potential applications in science and engineering (see the introduction partsof Refs. [5,6]). Here we study a fractional differential equation in the following form:

\[D^\alpha y(t) = f(t, y(t)), \quad y^{(k)}(0) = y_k^{(k)}, \quad k = 0, 1, \ldots, n - 1, \]

where \(\alpha > 0\) and \(n := \lceil \alpha \rceil\) is the first integer not less than \(\alpha\). \(D^\alpha y(t)\) is the \(\alpha\)th-order (always fractional) derivative of \(y(t)\) in the Caputo sense, which is defined by

\[D^\alpha z(t) = \frac{1}{\Gamma(n - \alpha)} \int_0^t (t - \tau)^{n-\alpha-1} z^{(n)}(\tau) d\tau, \quad n - 1 < \alpha < n \in \mathbb{Z}^+, \]

where \(z^{(n)}\) denotes the derivative of integer \(n\)th order of \(z\).

If we require the function \(f\) to be continuous and satisfy a Lipschitz condition with respect to the second argument \(y\) with Lipschitz constant \(L\) on a suitable set \(G\), then the initial value problem (1.1) determines a unique solution on some interval \([0, T]\), by use of Theorems 2.1 and 2.2 of [7]. Throughout the paper, we always assume that \(f\) fulfils the above condition, so Eq. (1.1) has one and only one solution defined on \([0, T]\). This solution solves the following Volterra integral equation:

\[y(t) = \sum_{k=0}^{n-1} y_k^{(k)} + \frac{1}{\Gamma(\alpha)} \int_0^t (t - u)^{\alpha-1} f(u, y(u)) du, \quad t \leq T. \]
Now numerical integration of differential equation (1.1) is transformed into numerical quadrature of an associated integral equation, (1.2).

The fractional Adams method for solving Eq. (1.1) (or (1.2)) was first studied by Diethelm, Ford, and Freed [5]. They worked on a uniform grid \(t_j = jh : j = 0, 1, \ldots, N \) with some integer \(N \) and step length \(h = T/N \), and let \(y_j \approx y(t_j) \). In detail, their derived computation scheme is as follows:

\[
\begin{align*}
 y_{n+1} & = \sum_{j=0}^{n-1} \frac{t_{j+1}^\alpha}{\Gamma(\alpha+1)} \sum_{j=0}^{k} b_{j,k+1} f(t_j, y_j), \\
 y_{n+1} & = \sum_{j=0}^{n-1} \frac{t_{j+1}^\alpha}{\Gamma(\alpha+1)} \left(\sum_{j=0}^{k} a_{j,k+1} f(t_j, y_j) + a_{k+1,k+1} f(t_{k+1}, y_{k+1}^p) \right),
\end{align*}
\]

(1.3)

where

\[
a_{j,k+1} = \frac{h^\alpha}{\alpha(\alpha + 1)} \begin{cases}
 (k^{\alpha+1} - (k - \alpha)(k+1^\alpha) & \text{if } j = 0, \\
 ((k-j+2)^{\alpha+1} + (k-j)^{\alpha+1} - 2(k-j+1)^{\alpha+1}) & \text{if } 1 \leq j \leq k, \\
 1 & \text{if } j = k+1,
\end{cases}
\]

and

\[
b_{j,k+1} = \frac{h^\alpha}{\alpha} \left((k+1 - j)^{\alpha} - (k-j)^{\alpha} \right), \quad j = 0, 1, 2, \ldots, k.
\]

This computational scheme is very useful and efficient for numerical integration of fractional differential equations. In particular, it is successfully applied in computing chaotic attractors of fractional systems; for example, see [8].

The remainder of this article is organized as below. In Section 2, we simply recall the main results from [5]. In Section 3, we further study the error analysis of the fractional Adams scheme (1.3). A numerical example is included which is in line with the associated theoretical results, in the last section.

2. Known error analyses for the fractional Adams method

In their error analysis, Diethelm et al. applied the following theorem which is attributed to Lubich [9].

Theorem 2.1. (a) Assume that \(f \in C^2(G) \). Define \(v_1 = \lceil 1/\alpha \rceil - 1 \). Then there exists a function \(\psi \in C^1[0, T] \) and some \(c_1, \ldots, c_{v_1} \in \mathbb{R} \) such that the solution \(y \) of (1.1) can be expressed in the form

\[
y(t) = \psi(t) + \sum_{v=1}^{v_1} c_v t^{\alpha}.
\]

(b) Assume that \(f \in C^2(G) \). Define \(v_1 = \lceil 2/\alpha \rceil - 1 \) and \(v_2 = \lceil 1/\alpha \rceil - 1 \). Then there exists a function \(\psi \in C^2[0, T] \) and some \(c_1, \ldots, c_{v_2} \in \mathbb{R} \) and \(d_1, \ldots, d_{v_2} \in \mathbb{R} \) such that the solution \(y \) of (1.1) can be expressed in the form

\[
y(t) = \psi(t) + \sum_{v=1}^{v_1} c_v t^{\alpha} + \sum_{v=1}^{v_2} d_v t^{1+\alpha}.
\]

Direct computations lead to Theorems 2.2–2.4 [5].

Theorem 2.2. If \(y \in C^m[0, T] \) for some \(m \in N \) and \(0 < \alpha < m \), then

\[
D_0^\alpha y(t) = \sum_{l=0}^{m-\lceil \alpha \rceil-1} \frac{y^{l+[\alpha]}(0)}{\Gamma(\lceil \alpha \rceil - l + 1)} t^{\lfloor \alpha \rfloor - l + 1} + g(t),
\]

with some function \(g \in C^{m-\lceil \alpha \rceil}[0, T] \). Moreover, the \((m - \lfloor \alpha \rfloor) \) th derivative of \(g \) satisfies a Lipschitz condition of order \(\lfloor \alpha \rfloor - \alpha \). Furthermore, \(D_0^\alpha y \in C[0, T] \).

Theorem 2.3. (a) Let \(z \in C^1[0, T] \). Then,

\[
\left| \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} z(t) \, dt - \sum_{j=0}^{k} b_{j,k+1} z(t_j) \right| \leq \frac{1}{\alpha} \| z' \|_{L^\infty} t_{k+1}^\alpha h.
\]

(b) Let \(z(t) = t^p \) for some \(p \in (0, 1) \). Then,

\[
\left| \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} z(t) \, dt - \sum_{j=0}^{k} b_{j,k+1} z(t_j) \right| \leq C_{\alpha, p} Re t_{k+1}^{\alpha+p-1} h,
\]

where \(C_{\alpha, p} \) is a constant that depends only on \(\alpha \) and \(p \).
Theorem 2.4. (a) If \(z \in C^2[0, T] \) then there is a constant \(C_{\alpha}^{\text{Tr}} \) depending only on \(\alpha \) such that
\[
\left| \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha - 1} z(t) \, dt - \sum_{j=0}^{k+1} a_{j,k+1} z(t_j) \right| \leq C_{\alpha}^{\text{Tr}} \| z' \|_{\infty} t_{k+1}^{\alpha} h^2.
\]

(b) Let \(z \in C^1[0, T] \) and assume that \(z' \) fulfills a Lipschitz condition of order \(\mu \) for some \(\mu \in (0, 1) \). Then, there exist positive constants \(B_{\alpha,\mu} \) and \(M(z, \mu) \) (depending only on \(\alpha \) and \(\mu \), \(z \) and \(\mu \), respectively) such that
\[
\left| \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha - 1} z(t) \, dt - \sum_{j=0}^{k+1} a_{j,k+1} z(t_j) \right| \leq B_{\alpha,\mu} M(z, \mu) t_{k+1}^{\alpha+\mu} h^2.
\]

(c) Let \(z(t) = t^p \) for some \(p \in (0, 2) \) and \(\varrho := \min(2, p + 1) \). Then,
\[
\left| \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha - 1} z(t) \, dt - \sum_{j=0}^{k+1} a_{j,k+1} z(t_j) \right| \leq C_{\alpha,p} t_{k+1}^{\alpha+p-\varrho} h^\varrho,
\]
where \(C_{\alpha,p}^{\text{Tr}} \) is a constant that depends only on \(\alpha \) and \(p \).

On the basis of the above results, the main error estimates derived by Diethelm et al. are listed here.

Theorem 2.5 (Diethelm–Ford–Freed (DFF) Theorem). (a) Let \(0 < \alpha \) and assume \(D_\alpha^r y(t) \in C^2[0, T] \) for some suitable \(T \). Then,
\[
\max_{0 \leq j \leq N} |y(t_j) - y_j| = \begin{cases} O(h^2) & \text{if } \alpha \geq 1, \\ O(h^{1+\alpha}) & \text{if } \alpha < 1. \end{cases}
\]

(b) Let \(\alpha > 1 \) and assume that \(y \in C^{1+[\alpha]}[0, T] \) for some suitable \(T \),
\[
\max_{0 \leq j \leq N} |y(t_j) - y_j| = O(h^{1+[\alpha]-\alpha}).
\]

(c) Let \(0 < \alpha < 1 \) and assume that \(y \in C^2[0, T] \) for some suitable \(T \). Then, for \(1 \leq j \leq N \) one has
\[
|y(t_j) - y_j| \leq Ct_j^{\alpha-1} \begin{cases} h^{1+\alpha} & \text{if } 0 < \alpha < 0.5, \\ h^{2-\alpha} & \text{if } 0.5 \leq \alpha < 1, \end{cases}
\]
where \(C \) is a constant independent of \(j \) and \(h \). In particular,
\[
\max_{0 \leq j \leq N} |y(t_j) - y_j| = \begin{cases} O(h^{2\alpha}) & \text{if } 0 < \alpha < 0.5, \\ O(h^2) & \text{if } 0.5 \leq \alpha < 1. \end{cases}
\]

Moreover, for every \(\epsilon \in (0, T) \) one has
\[
\max_{t_j \in [\epsilon, T]} |y(t_j) - y_j| = \begin{cases} O(h^{1+\alpha}) & \text{if } 0 < \alpha < 0.5, \\ O(h^{2-\alpha}) & \text{if } 0.5 \leq \alpha < 1. \end{cases}
\]

(d) Let \(\alpha > 1 \). Then, if \(f \in C^3(G) \), one gets
\[
\max_{0 \leq j \leq N} |y(t_j) - y_j| = O(h^3).
\]

3. Further studies on the fractional Adams method

In this section, we start to prove a theorem given below.

Theorem 3.1. Let \(\alpha > 0 \) and assume that \(D_\alpha^r y(t) \in C^r[0, T] \) for \(3 \leq r \in \mathbb{Z}^+ \) and some suitable \(T \). Then,
\[
E[T, f] = y(T) - y_{T/h} = \sum_{j=1}^{r} h^{\alpha+\alpha} \sum_{i=0}^{2T/h+1} c_{j,i,T/h} h^{\alpha r},
\]
in which \(c_{j,i,T/h} \) are coefficients which depend upon \(f \) and \(D_\alpha^r y(t) \) (see Eq. (1.1)).
Proof. Firstly, using the Mean Value Theorem and simple calculations yields
\[y(t_{k+1}) - y_k^p = \frac{1}{\Gamma(\alpha)} \left\{ \int_0^{t_{k+1}} \frac{\Gamma(\alpha - 1)}{\Gamma(\alpha)} f(t, y(t)) \, dt - \sum_{j=0}^{k} b_{j,k+1} f(t_j, y_j) \right\} \]
\[= \frac{1}{\Gamma(\alpha)} \left\{ \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} D^\alpha_x y(t) \, dt - \sum_{j=0}^{k} b_{j,k+1} D^\alpha_x y(t_j) + \sum_{j=0}^{k} b_{j,k+1} f(t_j, y_j)(y(t_j) - y_j) \right\}, \quad (3.1) \]
and
\[y(t_{k+1}) - y_{k+1} = \frac{1}{\Gamma(\alpha)} \left\{ \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} D^\alpha_x y(t) \, dt + a_{k+1,k+1} f(t_{k+1}, y(t_{k+1})) - f(t_{k+1}, y_{k+1}^p) \right\} \]
\[= \frac{1}{\Gamma(\alpha)} \left\{ \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} D^\alpha_x y(t) \, dt - \sum_{j=0}^{k+1} a_{j,k+1} D^\alpha_x y(t_j) - \sum_{j=0}^{k} a_{j,k+1} f(t_j, y_j)(y(t_j) - y_j) + a_{k+1,k+1} f(t_{k+1}, y_{k+1})(y(t_{k+1}) - y_{k+1}^p) \right\}. \quad (3.2) \]
Combining (3.1) and (3.2) we get
\[y(t_{k+1}) - y_{k+1} = \frac{1}{\Gamma(\alpha)} \left\{ \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} D^\alpha_x y(t) \, dt - \sum_{j=0}^{k+1} a_{j,k+1} D^\alpha_x y(t_j) \right. \]
\[+ \sum_{j=0}^{k+1} a_{j,k+1} f(t_j, y_j)(y(t_j) - y_j) + a_{k+1,k+1} f(t_{k+1}, y_{k+1})(y(t_{k+1}) - y_{k+1}^p) \left. \right\}. \quad (3.3) \]
Now, we can rewrite (3.3) as follows:
\[y(t_{k+1}) - y_{k+1} = \frac{1}{\Gamma(\alpha)} \left\{ F_{k+1}[D^\alpha_x y(t)] + a_{k+1,k+1} f(t_{k+1}, y_{k+1}) \frac{1}{\Gamma(\alpha)} E_{k+1}[D^\alpha_x y(t)] \right. \]
\[+ \sum_{j=0}^{k+1} a_{j,k+1} + b_{j,k+1} a_{k+1,k+1} f(t_{k+1}, y_{k+1}) \frac{1}{\Gamma(\alpha)} \right\} f_j(t_j, y_j)(y(t_j) - y_j) \left. \right\} \]
\[= A_{k+1} + \sum_{j=0}^{k+1} B_{j,k+1} (y(t_j) - y_j), \quad (3.4) \]
in which
\[E_{k+1}[D^\alpha_x y(t)] = \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} D^\alpha_x y(t) \, dt - \sum_{j=0}^{k+1} b_{j,k+1} D^\alpha_x y(t_j), \]
\[F_{k+1}[D^\alpha_x y(t)] = \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} D^\alpha_x y(t) \, dt - \sum_{j=0}^{k+1} a_{j,k+1} D^\alpha_x y(t_j), \]
\[A_{k+1} = \frac{1}{\Gamma(\alpha)} \left\{ F_{k+1}[D^\alpha_x y(t)] + a_{k+1,k+1} f(t_{k+1}, y_{k+1}) \frac{1}{\Gamma(\alpha)} E_{k+1}[D^\alpha_x y(t)] \right\}, \]
and
\[B_{j,k+1} = \frac{1}{\Gamma(\alpha)} \left\{ a_{j,k+1} + b_{j,k+1} a_{k+1,k+1} f(t_{k+1}, y_{k+1}) \frac{1}{\Gamma(\alpha)} \right\} f_j(t_j, y_j). \]
Next, we calculate \(E_{k+1}[D^\alpha_x y(t)] \) and \(F_{k+1}[D^\alpha_x y(t)] \). Set \(g(t) = D^\alpha_x y(t) \). Since \(D^\alpha_x y(t) \in C'[0, T] \), we have
\[g(t) = g(0) + g'(0)t + \frac{g''(0)}{2!} t^2 + \cdots + \frac{g^{(r-1)}(0)}{(r-1)!} t^{r-1} + \frac{g^{(r)}(\xi)}{r!} t^r, \quad \xi \in (0, t). \]
By simple calculations, one gets

\[
E_{k+1}[t^m] = \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} t^m dt - \sum_{j=0}^{k} b_{j,k+1} t_j^m
\]

\[
= \sum_{j=0}^{k} \int_{t_j}^{t_{j+1}} (t_{k+1} - t)^{\alpha-1} (t^m - t_j^m) dt
\]

\[
= h^{m+\alpha} \sum_{j=0}^{k} \int_{t_j}^{t_{j+1}} (k + 1 - u)^{\alpha-1} (u^m - j^m) du
\]

\[
= \overline{c}_{m,k} h^{m+\alpha},
\]

using the substitution \(t = hu \) and \(\overline{c}_{m,k} = \sum_{j=0}^{k} \int_{t_j}^{t_{j+1}} (k + 1 - u)^{\alpha-1} (u^m - j^m) du \); thus,

\[
E_{k+1}[g(t)] = g'(0) \overline{c}_{1,k} h^{1+\alpha} + \frac{g''(0)}{2!} \overline{c}_{2,k} h^{2+\alpha} + \ldots + \frac{g^{(r-1)}(0)}{(r-1)!} \overline{c}_{r-1,k} h^{r-1+\alpha} + \frac{g^{(r)}(\xi)}{r!} \overline{c}_{r,k} h^{r+\alpha}
\]

\[
= \sum_{j=1}^{r} \overline{c}_{j,k} h^{j+\alpha}.
\]

(3.5)

Here, \(\overline{c}_{j,k} = \frac{g^{(j)}(0)}{j!} \overline{c}_{j,k} (j < r) \) and \(\overline{c}_{r,k} = \frac{g^{(r)}(\xi)}{r!} \overline{c}_{r,k} \).

\[
F_{k+1}[t^m] = \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} t^m dt - \sum_{j=0}^{k} a_{j,k+1} t_j^m
\]

\[
= \sum_{j=0}^{k} \int_{t_j}^{t_{j+1}} \left(t_{k+1} - t \right)^{\alpha-1} \left[t^m - t_j^m - \frac{1}{h} (t_{j+1} - t_j)(t - t_j) \right] dt
\]

\[
= h^{m+\alpha} \sum_{j=0}^{k} \int_{t_j}^{t_{j+1}} (k + 1 - u)^{\alpha-1} [u^m - j^m - (j + 1)^m - j^m (u - j)] du
\]

\[
= \overline{d}_{m,k} h^{m+\alpha},
\]

where \(t = hu \) and \(\overline{d}_{m,k} = \sum_{j=0}^{k} \int_{t_j}^{t_{j+1}} (k + 1 - u)^{\alpha-1} [u^m - j^m - (j + 1)^m - j^m (u - j)] du \); therefore,

\[
F_{k+1}[g(t)] = \frac{g'(0)}{2!} \overline{d}_{2,k} h^{2+\alpha} + \ldots + \frac{g^{(r-1)}(0)}{(r-1)!} \overline{d}_{r-1,k} h^{r-1+\alpha} + \frac{g^{(r)}(\xi)}{r!} \overline{d}_{r,k} h^{r+\alpha} = \sum_{j=2}^{r} \overline{d}_{j,k} h^{j+\alpha}.
\]

(3.6)

Here, \(\overline{d}_{j,k} = \frac{g^{(j)}(0)}{j!} \overline{d}_{j,k} (j < r) \) and \(\overline{d}_{r,k} = \frac{g^{(r)}(\xi)}{r!} \overline{d}_{r,k} \).

From the expression for \(A_{k+1} \) (see (3.4)), (3.5) and (3.6), we obtain

\[
A_{k+1} = \frac{1}{\Gamma(\alpha)} \left\{ \sum_{j=2}^{r} \overline{c}_{j,k} h^{j+\alpha} + a_{k+1,k+1} \int_{t_{k+1}} f(t_{k+1}, \eta_{k+1}) \frac{1}{\Gamma(\alpha)} \sum_{j=1}^{r} \overline{c}_{j,k} h^{j+\alpha} \right\}
\]

\[
= \sum_{j=2}^{r} \frac{1}{\Gamma(\alpha)} \overline{c}_{j,k} h^{j+\alpha} + \sum_{j=1}^{r} \frac{h^{\alpha}}{\Gamma(\alpha + 2)} f_j(t_{k+1}, \eta_{k+1}) \frac{1}{\Gamma(\alpha)} \overline{c}_{j,k} h^{j+\alpha}
\]

\[
= \sum_{j=2}^{r} D_j h^{j+\alpha} + \sum_{j=1}^{r} C_j h^{j+2\alpha},
\]

in which \(C_j = \frac{1}{\Gamma(\alpha + 2)} \int_{t_j}^{t_{j+1}} f_j(t_{k+1}, \eta_{k+1}) \overline{c}_{j,k} \) and \(D_j = \frac{1}{\Gamma(\alpha)} \overline{D}_{j,k} \).

Using the expression for \(B_{j,k+1} \) (see (3.4)) gives

\[
B_{j,k+1} = \frac{1}{\Gamma(\alpha)} \left\{ \int_{t_{j+1}} f_j(t_{k+1}, \eta_{k+1}) \frac{1}{\Gamma(\alpha)} \right\} f_j(t_j, \eta_j)
\]

\[
= e_{j,k+1} h^{\alpha} + f_j h^{2\alpha},
\]
where
\[
e_{j,k+1} = \frac{f_j(t_j, \eta_j)}{\Gamma(\alpha + 2)} \sum_{k=0}^{\infty} \frac{(k\alpha+1 - (k - \alpha)(k + 1)^\alpha)}{(k\alpha+1 - (k - j + 1)^\alpha + (k - j)^\alpha + 1)} (k - j + 1)^\alpha + (k - j)^\alpha - 2(k - j + 1)^\alpha + (k - j)^\alpha)
\]
if \(j = 0 \),
and
\[
f_{j,k+1} = \frac{f_j(t_{k+1}, \eta_{k+1})f_j(t_j, \eta_j)}{\Gamma(\alpha + 1)\Gamma(\alpha + 2)} (k + 1)^\alpha - (k)^\alpha.
\]
Therefore,
\[
y(t_{k+1}) - y_{k+1} = A_{k+1} + \sum_{j=0}^{k} B_{j,k+1}(y(t_j) - y_j)
\]
\[
= \sum_{j=2}^{r} D_{j,k}h^{j+\alpha} + \sum_{j=1}^{r} C_{j,k}h^{j+2\alpha} + \sum_{j=0}^{k} (e_{j,k+1}h^\alpha + f_{j,k+1}h^{2\alpha})(y(t_j) - y_j).
\]
(3.7)
Now, we prove the following equality (a compact form of (3.7)) by using mathematical induction:
\[
y(t_{k+1}) - y_{k+1} = \sum_{j=1}^{r} h^{j+\alpha} \sum_{i=0}^{2k+1} c_{j,i,k}h^i.
\]
(3.8)
The coefficients \(c_{j,i,k} \) will be given later on.
When \(k = 0 \), from (3.7) we have
\[
y(t_1) - y_1 = \sum_{j=2}^{r} D_{j,0}h^{j+\alpha} + \sum_{j=1}^{r} C_{j,0}h^{j+2\alpha}
\]
\[
= \sum_{j=1}^{r} h^{j+\alpha} \left(D_{j,0} + C_{j,0}h^{2\times 2\times 1}\right)
\]
\[
= \sum_{j=1}^{r} h^{j+\alpha} \sum_{i=0}^{2\times 2\times 1} c_{j,i,0}h^i.
\]
Here \(D_{1,k} \equiv 0 \), \((k = 0, 1, \ldots, N) \), \(c_{j,0,0} = D_{j,0} \) and \(c_{j,1,0} = C_{j,0} \) are used. So (3.8) holds for \(k = 0 \).
Assume that the formula (3.8) holds for \(1 \leq j \leq k - 1 \); next we show that (3.8) is also satisfied for \(j = k \). According to (3.7), one has
\[
y(t_{k+1}) - y_{k+1} = \sum_{j=2}^{r} D_{j,k}h^{j+\alpha} + \sum_{j=1}^{r} C_{j,k}h^{j+2\alpha} + \sum_{j=1}^{k} (e_{j,k+1}h^\alpha + f_{j,k+1}h^{2\alpha})(y(t_j) - y_j)
\]
\[
= \sum_{j=2}^{r} D_{j,k}h^{j+\alpha} + \sum_{j=1}^{r} C_{j,k}h^{j+2\alpha} + \sum_{j=1}^{k} \left(e_{j,k+1}h^\alpha + f_{j,k+1}h^{2\alpha} \right) \left(\sum_{i=0}^{2\times 1} c_{j,i,k}h^i \right)
\]
\[
= \sum_{j=1}^{r} h^{j+\alpha} \left(D_{j,k} + C_{j,k}h^\alpha + \sum_{i=0}^{2\times 1} c_{j,i,k}h^\alpha \right) + \sum_{j=1}^{k} \left(f_{j,k+1} + f_{j,k+1}h^{2\alpha} \right) \sum_{i=0}^{2\times 1} c_{j,i,k}h^i.
\]
The above formula can also be read as
\[
y(t_{k+1}) - y_{k+1} = \sum_{j=1}^{r} h^{j+\alpha} \left(D_{j,k} + C_{j,k}h^\alpha \right) + \sum_{i=0}^{2\times 1} c_{j,i,k}h^\alpha + \sum_{i=0}^{2\times 1} c_{j,i,k}h^\alpha + \sum_{i=0}^{2\times 1} c_{j,i,k}h^\alpha \right) + \sum_{j=1}^{k} \left(f_{j,k+1} + f_{j,k+1}h^{2\alpha} \right) \sum_{i=0}^{2\times 1} c_{j,i,k}h^i.
\]
Then, we rewrite the above equation as

\[
y(t_{k+1}) - y_{k+1} = \sum_{j=1}^{r} \left(D_{j,k} + \sum_{n=1}^{k} c_{j,0,n-1} e_{n,k+1} \right) h^n + \sum_{n=1}^{k} f_{n,k+1} c_{j,1,n-1} h^n + \sum_{n=1}^{k} f_{n,k+1} c_{j,0,n-1} h^n + \sum_{n=2}^{k} f_{n,k+1} c_{j,1,n-1} h^{2n} + \sum_{n=2}^{k} f_{n,k+1} c_{j,1,n-1} h^{2n} + \cdots
\]

in which \(c_{j,0,0} = D_{j,k}, c_{j,1,k} = c_{j,k} + \sum_{n=1}^{k} c_{j,0,n-1} e_{n,k+1} \),

\[
c_{j,i,k} = \begin{cases}
\sum_{n=1}^{k} e_{n,k+1} c_{j,i-1,n-1} + \sum_{n=1}^{k} f_{n,k+1} c_{j,i-2,n-1} & \text{if } i = 3, 5, \ldots, 2k-1, \\
\sum_{n=\frac{k}{2}}^{k} e_{n,k+1} c_{j,i-1,n-1} + \sum_{n=\frac{k}{2}}^{k} f_{n,k+1} c_{j,i-2,n-1} & \text{if } i = 2, 4, \ldots, 2k,
\end{cases}
\]

and \(c_{j,2k+1,k} = f_{k,k+1} c_{j,2k-1,k} \).

It immediately follows from (3.9) that (3.8) does hold for the case \(j = k \). This completes the proof. \(\square \)

From \(c_{1,0,T/h} = D_{1,T/h} = 0 \), we know that (3.8) includes \(h^{2+\alpha}, h^{3+\alpha}, \ldots, h^{\alpha} ; h^{1+2\alpha}, h^{1+3\alpha}, \ldots, h^{1+(1+2T/h)\alpha} ; \ldots ; h^{r+2\alpha}, h^{r+3\alpha}, \ldots, h^{r+(1+2T/h)\alpha} \). So the expansion begins with an \(h^{1+2\alpha} \) term for \(\alpha \in (0, 1) \) whilst it begins with an \(h^{2+\alpha} \) term for \(\alpha > 1 \).

In the following, we study the case with \(\alpha \in (0, 1) \) and \(f \in C^3(G) \) (see DFF Theorem (d) and compare them).

We first set

\[
E_{k+1}[g(t)] = \left| \int_{0}^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} g(t) dt - \sum_{j=0}^{k} b_{j,k+1} g(t_j) \right|,
\]

and

\[
F_{k+1}[g(t)] = \left| \int_{0}^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} g(t) dt - \sum_{j=0}^{k+1} d_{j,k+1} g(t_j) \right|.
\]

Theorem 3.2. Assume that \(0 < \alpha < 1 \) and \(f \in C^3(G) \); then we have

\[
\max_{0 \leq j \leq N} |y(t_j) - y_j| = \begin{cases}
O(h^{2\alpha}) & \text{if } 0 < \alpha < 0.5, \\
O(h) & \text{if } 0.5 \leq \alpha < 1;
\end{cases}
\]

and

\[
\max_{t \in [\epsilon, T]} |y(t_j) - y_j| = \begin{cases}
O(h^{1+\alpha}) & \text{if } 0 < \alpha < 0.5, \\
O(h^{2-\alpha}) & \text{if } 0.5 \leq \alpha < 1,
\end{cases}
\]

for every \(\epsilon > 0 \).
Proof. Following Theorem 2.1(b), there exists a function \(\psi \in C^2[0,T] \), and some \(c_1, c_2, \ldots, c_{v_1} \in \mathbb{R} \) and \(d_1, d_2, \ldots, d_{v_2} \in \mathbb{R} \) such that the solution \(y \) of (1.1) has the following form:

\[
y(t) = \psi(t) + \sum_{v_1=1}^{v_1} c_v t^{\nu_{v_1}} + \sum_{v_2=1}^{v_2} d_v t^{1+\nu_{v_2}}
\]

where \(v_1 = \lceil 2/\alpha \rceil - 1 \) and \(v_2 = \lceil 1/\alpha \rceil - 1 \).

Hence, by simple calculations we have

\[
D^\alpha_s y(t) = D^\alpha_s \psi(t) + \sum_{v_1=1}^{v_1} \frac{\Gamma(\nu_{v_1} + 1)}{\Gamma(\nu_{v_1} + 1 - \alpha)} c_v t^{\nu_{v_1} - \alpha} + \sum_{v_2=1}^{v_2} \frac{\Gamma(\nu_{v_2} + 2)}{\Gamma(\nu_{v_2} + 2 - \alpha)} d_v t^{1+\nu_{v_2} - \alpha}.
\]

(3.10)

Since \(\psi(t) \in C^2[0,T] \), \(0 < \alpha < 1 \), following from Theorem 2.2, we have

\[
D^\alpha_s \psi(t) = \frac{\psi'(0)}{\Gamma(2 - \alpha)} t^{1-\alpha} + g(t),
\]

(3.11)

with \(g \in C^1[0,T] \) and function \(g' \) satisfies a Lipschitz condition of order \((1 - \alpha) < 0,1 \).

According to Theorem 2.4(b), there exist positive constants \(B_{\alpha,1-\alpha} \) and \(M(g, 1 - \alpha) \) such that

\[
F_{k+1}[g(t)] \leq B_{\alpha,1-\alpha}^T M(g, 1 - \alpha) t_{k+1}^{\alpha} h^{2-\alpha}.
\]

Now, applying DFF theorem (c), we get

\[
F_{k+1} \left[\frac{\psi'(0)}{\Gamma(2 - \alpha)} t^{1-\alpha} \right] \leq C_{\alpha,1-\alpha}^T t_{k+1}^{\alpha - 1} h^{2 - \alpha}.
\]

Thus, from (3.11) we have

\[
F_{k+1} [D^\alpha_s \psi(t)] \leq 2 \max \{ B_{\alpha,1-\alpha}^T M(g, 1 - \alpha) t_{k+1}^{\alpha} h^{2 - \alpha}, C_{\alpha,1-\alpha}^T t_{k+1}^{\alpha - 1} h^{2 - \alpha} \} \leq C_{\alpha,1-\alpha}^T t_{k+1}^{\alpha - 1} h^{2 - \alpha}.
\]

(3.12)

Also by Theorem 2.4(c), one has

\[
\begin{align*}
F_{k+1} \left[\sum_{v_1=1}^{v_1} \frac{\Gamma(\nu_{v_1} + 1)}{\Gamma(\nu_{v_1} + 1 - \alpha)} c_v t^{\nu_{v_1} - \alpha} \right] &\leq \sum_{v_1=2}^{v_1} \frac{\Gamma(\nu_{v_1} + 1)}{\Gamma(\nu_{v_1} + 1 - \alpha)} |c_v| F_{k+1}[t^{\nu_{v_1} - \alpha}] \\
&\leq \sum_{v_1=2}^{v_1} \frac{\Gamma(\nu_{v_1} + 1)}{\Gamma(\nu_{v_1} + 1 - \alpha)} |c_v| C_{\alpha,1-\alpha}^T t_{k+1}^{\alpha + \nu_{v_1} - \alpha} t_{k+1}^{\alpha - 1} h^{\nu_{v_1}} \\
&\leq C_{\alpha,1-\alpha}^T t_{k+1}^{\alpha - 1} h^{\nu_{v_1}}.
\end{align*}
\]

(3.13)

where \(\sigma_v = \min(2, \alpha \nu_{v_1} - \alpha + 1) \). Similarly,

\[
\begin{align*}
F_{k+1} \left[\sum_{v_1=1}^{v_2} \frac{\Gamma(\nu_{v_2} + 2)}{\Gamma(\nu_{v_2} + 2 - \alpha)} d_v t^{1+\nu_{v_2} - \alpha} \right] &\leq \sum_{v_2=1}^{v_2} \frac{\Gamma(\nu_{v_2} + 2)}{\Gamma(\nu_{v_2} + 2 - \alpha)} |d_v| F_{k+1}[t^{1+\nu_{v_2} - \alpha}] \\
&\leq \sum_{v_2=1}^{v_2} \frac{\Gamma(\nu_{v_2} + 2)}{\Gamma(\nu_{v_2} + 2 - \alpha)} |d_v| C_{\alpha,1-\alpha}^T t_{k+1}^{\alpha + \nu_{v_2} - \alpha} t_{k+1}^{\alpha - 1} h^2 \\
&\leq C_{\alpha,1-\alpha}^T t_{k+1}^{\alpha - 1} h^2.
\end{align*}
\]

(3.14)

From (3.12) to (3.14), it follows that

\[
F_{k+1}[D^\alpha_s y(t)] \leq 3 \max \{ C_{\alpha,1-\alpha}^T t_{k+1}^{\alpha - 1} h^{2 - \alpha}, C_{\alpha,1-\alpha}^T t_{k+1}^{\alpha - 1} h^2, C_{\alpha,1-\alpha}^T t_{k+1}^{\alpha - 1} h^2 \}
\]

\[
\leq C_{\alpha,1-\alpha}^T \begin{cases} t_{k+1}^{\alpha - 1} h^{2 - \alpha} & \text{if } 0 < \alpha < 0.5, \\ t_{k+1}^{\alpha - 1} h^2 & \text{if } 0.5 \leq \alpha < 1. \end{cases}
\]

Next, we estimate \(E_{k+1}[D^\alpha_s y(t)] \). By the same reasoning, one has

\[
E_{k+1}[g(t)] \leq \frac{1}{\alpha} \| g' \|_\infty t_{k+1}^{-\alpha} h.
\]

(3.15)

and

\[
E_{k+1} \left[\sum_{v_1=1}^{v_2} \frac{\Gamma(\nu_{v_1} + 2)}{\Gamma(\nu_{v_1} + 2 - \alpha)} d_v t^{1+\nu_{v_1} - \alpha} \right] \leq \sum_{v_2=1}^{v_2} \frac{\Gamma(\nu_{v_2} + 2)}{\Gamma(\nu_{v_2} + 2 - \alpha)} |d_v| E_{k+1}[t^{1+\nu_{v_2} - \alpha}] \\
\leq C_{\alpha,1-\alpha}^T t_{k+1}^{\alpha} h.
\]

(3.16)
From Theorem 2.3(b), one gets

\[E_{k+1} \left[\frac{\psi'(t)}{\Gamma(2-\alpha)} t^{1-\alpha} \right] \leq C_2^2 h, \]

(3.17)

and

\[E_{k+1} \left[\sum_{v=1}^{\infty} \frac{\Gamma(\alpha v + 1)}{\Gamma(\alpha v + 1 - \alpha)} c_v t^{\alpha v-\alpha} \right] \leq \sum_{v=1}^{\infty} \frac{\Gamma(\alpha v + 1)}{\Gamma(\alpha v + 1 - \alpha)} |c_v| E_{k+1}[t^{\alpha v-\alpha}] \]
\[\leq \sum_{v=1}^{\infty} \frac{\Gamma(\alpha v + 1)}{\Gamma(\alpha v + 1 - \alpha)} |c_v| c_{\text{Re}}^2 \alpha^\alpha - a - 1 h \]
\[\leq c_{\text{Re}}^2 \alpha^\alpha - 1 h. \]

(3.18)

Combining (3.10) and (3.15)–(3.18) leads to

\[E_{k+1}[D^\alpha_\ast y(t)] \leq 4 \max \left\{ \frac{1}{\alpha} \|g’\|_{\infty} t_{k+1}^\alpha h, c_{11}^\alpha t_{k+1}^\alpha h, c_2^\alpha h, c_{3}^\alpha t_{k+1} \right\} \]
\[\leq C_{11}^\alpha t_{k+1}^\alpha h. \]

Thus, we have

\[E_{k+1}[D^\alpha_\ast y(t)] \leq C_{11}^\alpha t_{k+1}^\alpha h, \]

and

\[F_{k+1}[D^\alpha_\ast y(t)] \leq C_{22}^\alpha t_{k+1}^\alpha \left\{ \begin{array}{ll}
\frac{h^{\alpha+1}}{h^{\alpha-\alpha}} & \text{if } 0 < \alpha < 0.5 \\
\frac{h^{\alpha+1}}{h^{\alpha-\alpha}} & \text{if } 0.5 \leq \alpha < 1 = C_{22}^\alpha t_{k+1}^\alpha h^\kappa \end{array} \right. \]

in which \(\kappa = \min(1 + \alpha, 2 - \alpha) \).

Next, we show the following formula holds for sufficiently small \(h \):

\[|y(t_f) - y| \leq C t^\alpha - 1 h^q, \quad (q = \min(1 + \alpha, 2 - \alpha)) \]

(3.19)

for all \(j \in \{0, 1, \ldots, N\} \), where \(C \) is a suitable constant.

Here, we again use mathematical induction to show that (3.19) holds. In view of the given initial condition, the induction basis \(j = 0 \) is pre-assumed. Suppose that (3.19) is true for \(j = 0, 1, \ldots, k \) for \(k \leq N - 1 \). Now we prove that the inequality also holds for \(j = k + 1 \). To do this, we first look at the error of the predictor \(y_{k+1}^\alpha \). By construction of the predictor we find that

\[|y(t_{k+1}) - y_{k+1}^\alpha| = \frac{1}{\Gamma(\alpha)} \left| \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} f(t, y(t)) - \sum_{j=0}^{k} b_{j,k+1} f(t_j, y_j) \right| \]
\[\leq \frac{1}{\Gamma(\alpha)} \left| \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} D^\alpha_\ast y(t) dt - \sum_{j=0}^{k} b_{j,k+1} D^\alpha_\ast y(t_j) \right| + \frac{1}{\Gamma(\alpha)} \sum_{j=0}^{k} b_{j,k+1} |f(t_j, y(t_j) - f(t_j, y_j))| \]
\[\leq C_{11}^\alpha t_{k+1}^\alpha h + \frac{1}{\Gamma(\alpha)} \sum_{j=1}^{k} b_{j,k+1} L \|y(t_j) - y_j\| \leq C_{11}^\alpha t_{k+1}^\alpha h + \frac{1}{\Gamma(\alpha)} \sum_{j=1}^{k} b_{j,k+1} LC_t^\alpha - 1 h^q. \]

(3.20)

On the basis of the bound (3.20) for the predictor error we begin to determine the corrector error. For \(j = k + 1 \),

\[|y(t_{k+1}) - y_{k+1}| = \frac{1}{\Gamma(\alpha)} \left| \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} f(t, y(t)) - \sum_{j=0}^{k} a_{i,k+1} f(t_j, y_j) - a_{k+1,k+1} f(t_{k+1}, y_{k+1}^\alpha) \right| \]
\[\leq \frac{1}{\Gamma(\alpha)} \left| \int_0^{t_{k+1}} (t_{k+1} - t)^{\alpha-1} D^\alpha_\ast y(t) dt - \sum_{j=0}^{k+1} a_{i,k+1} D^\alpha_\ast y(t_j) \right| \]
\[+ \sum_{j=0}^{k+1} a_{j,k+1} |f(t_j, y(t_j) - f(t_j, y_{k+1}^\alpha))| + \frac{1}{\Gamma(\alpha)} a_{k+1,k+1} |f(t_{k+1}, y_{k+1} - f(t_{k+1}, y_{k+1}^\alpha))| \]
\[\leq C_{22}^\alpha t_{k+1}^\alpha h^\kappa + \frac{C L}{\Gamma(\alpha)} h^q \sum_{j=1}^{k} a_{j,k+1} t_j^\alpha - 1 + a_{k+1,k+1} \frac{L}{\Gamma(\alpha)} \left(C_{11}^\alpha t_{k+1}^\alpha h + \frac{1}{\Gamma(\alpha)} \sum_{j=1}^{k} b_{j,k+1} LC_t^\alpha - 1 h^q \right). \]
In the following, we give a lemma.

We now estimate terms of form \(\sum_{j=1}^{k-1} a_{j,k+1} t_j^{\alpha-1} \) and \(\sum_{j=1}^{k-1} b_{j,k+1} t_j^{\alpha-1} \). By the Mean Value Theorem again we have

\[
0 \leq a_{j,k+1} = \frac{h^\alpha}{\alpha(\alpha + 1)} ((k-j + 2)^{\alpha+1} + (k-j)^{\alpha+1} - 2(k-j+1)^{\alpha+1}) \\
\leq c h^\alpha (k-j)^{\alpha-1},
\]

\[
0 \leq b_{j,k+1} = \frac{h^\alpha}{\alpha} ((k + 1 - j)^{\alpha} - (k-j)^{\alpha}) \leq h^\alpha (k-j)^{\alpha-1}
\]

for \(1 \leq j \leq k-1 \), where the constant \(c \) is independent of \(j \) and \(k \), respectively, so the problem reduces to finding a bound for \(S_k = h^{\alpha+\alpha-1} \sum_{j=1}^{k-1} j^{-1}(k-j)^{\alpha-1} \).

\[
S_k \leq h^{\alpha+\alpha-1} \int_0^k x^{-\alpha} (k-x)^{-\alpha} dx = h^{\alpha+\alpha-1} k^\alpha \alpha \int_0^1 t^{-1} \alpha(1-t)^{-\alpha} dt
\]

\[
= B(\alpha, \alpha) t_k^{\alpha+\alpha-1} \leq 2 B(\alpha, \alpha) t_k^{\alpha+\alpha-1} = B t_k^{\alpha+\alpha-1} \leq B T t_k^{\alpha+\alpha-1}.
\] (3.22)

It immediately follows from (3.21) and (3.22) that

\[
|y(t_{k+1}) - y_{k+1}| \leq \frac{C_2 t^{\alpha-1}_k}{\Gamma(\alpha)} h^\alpha + a_{k+1,k+1} \frac{C_1 L}{\Gamma^2(\alpha)} t^{\alpha-1}_k h + \frac{CL}{\Gamma(\alpha)} h^\alpha \sum_{j=1}^{k-1} a_{j,k+1} t_j^{\alpha-1} + a_{k+1,k+1} \frac{CL^2}{\Gamma^2(\alpha)} h^\alpha \sum_{j=1}^{k-1} b_{j,k+1} t_j^{\alpha-1}
\]

\[
\leq \left[\frac{C_2}{\Gamma(\alpha)} h^{\alpha-q} + \frac{C_1 L}{\Gamma(\alpha)} h^{1+\alpha-q} + \frac{CL}{\Gamma(\alpha)} \left(c B T^{\alpha} + \frac{2^\alpha h^\alpha}{\alpha(\alpha + 1)} \right) \right] t_k^{\alpha-1} h^\alpha \leq C t_k^{\alpha-1} h^\alpha,
\]

where \(a_{k+1,k+1} = \frac{h^{\alpha}}{\alpha(\alpha + 1)} \), \(a_{k+1,k+1} \leq \frac{h^{\alpha+1} h}{\alpha(\alpha + 1)} \), \(b_{k,k+1} = \frac{h^{\alpha}}{\alpha} \), \(t_k \leq T \) and \((\frac{k}{k+1})^{\alpha-1} \leq 2 \) are used. Therefore, this completes (3.19).

Furthermore, we deduce

\[
\max_{0 \leq t \leq N} |y(t) - y_j| = \begin{cases} O(h^{2\alpha}) & \text{if } 0 < \alpha < 0.5, \\ 0(h) & \text{if } 0.5 \leq \alpha < 1. \end{cases}
\]

and for arbitrary \(\epsilon > 0 \) then with \(t_j \in [\epsilon, T] \),

\[
|y(t_j) - y_j| \leq C \epsilon \alpha^{-1} \begin{cases} h^{\alpha+1} & \text{if } 0 < \alpha < 0.5, \\ h^{2-\alpha} & \text{if } 0.5 \leq \alpha < 1; \end{cases}
\]

or

\[
\max_{t_j \in [\epsilon, T]} |y(t_j) - y_j| = \begin{cases} O(h^{1+\alpha}) & \text{if } 0 < \alpha < 0.5, \\ O(h^{2-\alpha}) & \text{if } 0.5 \leq \alpha < 1. \end{cases}
\]

The proof is thus finished. \(\Box \)

From Theorem 2.1(b), the condition of this theorem implies \(y(t) \in C[0, T] \) but \(y(t) \) does not lie in \(C^1[0, T] \), let alone \(y(t) \notin C^2[0, T] \). Compared to DFF Theorem (c), the condition here is weaker but the same results hold.

In the following, we give a lemma.

Lemma 3.3. If \(\psi \in C^1[0, T] \), \(0 < \alpha < 1 \), then

\[
E_{k+1} \left[\int_0^t (t - \tau)^{-\alpha} \psi'(\tau) d\tau \right] \leq \frac{2}{\alpha(1-\alpha)} \| \psi' \| t_k^{\alpha} h^{1-\alpha},
\]
and
\[F_{k+1} \left[\int_0^t (t - \tau)^{-\alpha} \psi'(\tau) d\tau \right] \leq \frac{A}{1 - \alpha} \| \psi' \|_\infty t_{k+1}^{\alpha} h^{1-\alpha}, \]
where \(A \) is a constant independent of \(k \) and \(h \).

Proof. Using the expressions for \(E_{k+1} \), we have
\[
E_{k+1} \left[\int_0^t (t - \tau)^{-\alpha} \psi'(\tau) d\tau \right] = \left| \int_0^{t_{k+1}} (t_{k+1} - t)^{-\alpha-1} \int_0^t (t - \tau)^{-\alpha} \psi'(\tau) d\tau dt - \sum_{j=0}^k b_{j+1} \int_0^{t_j} (t - t_j)^{-\alpha-1} \psi'(\tau) d\tau \right|
\]
\[
= \sum_{j=0}^k \int_{t_j}^{t_{j+1}} \left| \int_0^t (t - \tau)^{-\alpha} \psi'(\tau) d\tau - \int_{t_j}^{t_{j+1}} (t - t_j)^{-\alpha} \psi'(\tau) d\tau \right| (t_{k+1} - t)^{-\alpha-1} dt
\]
\[
\leq \sum_{j=0}^k \int_{t_j}^{t_{j+1}} \left| \int_0^t (t - \tau)^{-\alpha} \psi'(\tau) d\tau - \int_{t_j}^{t_{j+1}} (t - t_j)^{-\alpha} \psi'(\tau) d\tau \right| (t_{k+1} - t)^{-\alpha-1} dt.
\]

So, one has
\[
E_{k+1} \left[\int_0^t (t - \tau)^{-\alpha} \psi'(\tau) d\tau \right] \leq \frac{2}{1 - \alpha} \| \psi' \|_\infty h^{1-\alpha} \sum_{j=0}^k \int_{t_j}^{t_{j+1}} (t_{k+1} - t)^{-\alpha-1} dt
\]
\[
= \frac{2}{1 - \alpha} \| \psi' \|_\infty h^{1-\alpha} \int_0^{t_{k+1}} (t_{k+1} - t)^{-\alpha-1} dt = \frac{2}{\alpha(1 - \alpha)} \| \psi' \|_\infty t_{k+1}^{\alpha} h^{1-\alpha}.
\]

Applying the expression for \(F_{k+1} \) gives
\[
F_{k+1} \left[\int_0^t (t - \tau)^{-\alpha} \psi'(\tau) d\tau \right] = \left| \int_0^{t_{k+1}} (t_{k+1} - t)^{-\alpha-1} \int_0^t (t - \tau)^{-\alpha} \psi'(\tau) d\tau dt - \sum_{j=0}^{k+1} d_{j+1} \int_0^{t_j} (t_j - t)^{-\alpha} \psi'(\tau) d\tau \right|
\]
\[
= \sum_{j=0}^k \int_{t_j}^{t_{j+1}} (t_{k+1} - t)^{-\alpha-1} \left\{ \int_0^t (t - \tau)^{-\alpha} \psi'(\tau) d\tau \right. - \frac{1}{h} \left[\int_0^{t_{j+1}} (t_{j+1} - t)^{-\alpha} \psi'(\tau) d\tau - \int_0^{t_j} (t - t_j)^{-\alpha} \psi'(\tau) d\tau \right] (t - t_j) \right\} dt
\]
\[
\leq \sum_{j=0}^k \int_{t_j}^{t_{j+1}} (t_{k+1} - t)^{-\alpha-1} \left| \int_0^t (t - \tau)^{-\alpha} \psi'(\tau) d\tau \right. - \frac{1}{h} \left[\int_0^{t_{j+1}} (t_{j+1} - t)^{-\alpha} \psi'(\tau) d\tau - \int_0^{t_j} (t - t_j)^{-\alpha} \psi'(\tau) d\tau \right] (t - t_j) \right| dt.
\]

By tedious calculations, one gets
\[
\left| \int_0^t (t - \tau)^{-\alpha} \psi'(\tau) d\tau - \int_0^{t_j} (t_j - t)^{-\alpha} \psi'(\tau) d\tau \right|
\]
\[
= \frac{1}{h} \left[\int_0^{t_{j+1}} (t_{j+1} - t)^{-\alpha} \psi'(\tau) d\tau - \int_0^{t_j} (t_j - t)^{-\alpha} \psi'(\tau) d\tau \right] (t - t_j)
\]
\[
\leq \left| \int_0^{t_j} (t - \tau)^{-\alpha} - (t_j - \tau)^{-\alpha} - \frac{1}{h} (t_{j+1} - t)^{-\alpha} - (t_j - \tau)^{-\alpha} (t - t_j) \right| \psi'(\tau) d\tau
\]
Let \(\text{Theorem 2.4} \) in which 1584

The proof is completed.

Utilizing the above inequalities and Theorem 2.4(c), we have

\[
F_{k+1} \left[\int_0^t (t - \tau)^{-\alpha} \psi'(\tau) \, d\tau \right] \leq \frac{1}{1 - \alpha} \| \psi' \|_\infty \left\{ F_{k+1}[t^{1-\alpha}] + 4h^{1-\alpha} \sum_{j=0}^k \int_{t_j}^{t_{j+1}} (t_{k+1} - t_j)^{\alpha-1} \, dt \right\} \\
\leq \frac{1}{1 - \alpha} \| \psi' \|_\infty \left\{ C_{\alpha,1} t_{k+1}^{\alpha-1} h^2 - \frac{4}{\alpha} t_{k+1}^{\alpha-1} h^{1-\alpha} \right\} \leq \frac{A}{1 - \alpha} \| \psi' \|_\infty t_{k+1} \alpha h^{1-\alpha}.
\]

The proof is completed. \(\square \)

If we weaken the smooth condition of \(f \) in Theorem 3.2, we get the following results.

Theorem 3.4. Let \(0 < \alpha < 1 \). Then, if \(f \in C^2(G) \),

\[
\max_{\tau \in [e, T]} \| y(t) - y_j \| = O(h^{1-\alpha}),
\]

for every \(\epsilon > 0 \), and

\[
\max_{0 \leq j \leq N} \| y(t) - y_j \| = O(1).
\]

Proof. Since\(f \in C^2(G) \), using Theorem 2.1(a) we have

\[
y(t) = \sum_{v=1}^{v_1} c_v t^{\alpha_v} + \psi(t),
\]

in which \(v_1 = [1/\alpha] - 1 \), \(\psi(t) \in C^1[0, T] \).

Now, using the Caputo fractional derivative definition yields

\[
D^\alpha_v y(t) = \sum_{v=1}^{v_1} \frac{\Gamma(\alpha_v + 1)}{\Gamma(\alpha_v + 1 - \alpha)} c_v t^{\alpha_v - \alpha} + \frac{1}{\Gamma(1 - \alpha)} \int_0^t (t - \tau)^{-\alpha} \psi'(\tau) \, d\tau.
\]

(3.23)

Set \(g(t) = \frac{1}{\Gamma(1 - \alpha)} \int_0^t (t - \tau)^{-\alpha} \psi'(\tau) \, d\tau \).

Next we estimate \(E_{k+1}[g(t)] \) and \(F_{k+1}[g(t)] \).

\[
E_{k+1}[g(t)] = \frac{1}{\Gamma(1 - \alpha)} E_{k+1} \left[\int_0^t (t - \tau)^{-\alpha} \psi'(\tau) \, d\tau \right] \\
\leq \frac{1}{\Gamma(1 - \alpha)} \frac{2}{\alpha(1 - \alpha)} \| \psi' \|_{k+1} t_{k+1}^{\alpha-1} h^{1-\alpha} \\
= \frac{2}{\alpha \Gamma(2 - \alpha)} \| \psi' \|_{k+1} t_{k+1}^{\alpha-1} h^{1-\alpha}.
\]

(3.24)
Also,
\[
F_{k+1}[g(t)] = \frac{1}{\Gamma(1-\alpha)} F_{k+1} \left[\int_0^t (t - \tau)^{-\alpha} \psi'(\tau) d\tau \right]
\]
\[
\leq \frac{A}{\Gamma(2-\alpha)} \| \psi' \|_{\infty} t_{k+1}^{\alpha} h^{1-\alpha}
\]
\[
\leq \frac{A}{\Gamma(2-\alpha)} \| \psi' \|_{\infty} t_{k+1}^{\alpha} h^{1-\alpha}.
\]

(3.25)

From Theorem 2.4(b) we have
\[
E_{k+1} \left[\sum_{v=1}^{V_1} \frac{\Gamma(\alpha v + 1)}{\Gamma(\alpha v + 1 - \alpha)} c_{v,\nu} t_{k+1}^{\alpha v - \alpha} \right] \leq \sum_{v=1}^{V_1} \frac{\Gamma(\alpha v + 1)}{\Gamma(\alpha v + 1 - \alpha)} |c_v| E_{k+1}[t_{k+1}^{\alpha v - \alpha}]
\]
\[
\leq \sum_{v=1}^{V_1} \frac{\Gamma(\alpha v + 1)}{\Gamma(\alpha v + 1 - \alpha)} |c_v| C_{Re} \nu^{\alpha v - \alpha - 1} h t_{k+1}^{\alpha v - \alpha}
\]
\[
\leq C_{Re} \nu^{\alpha v - \alpha - 1} h, \quad \text{(3.26)}
\]

and from Theorem 2.4(c) we have
\[
F_{k+1} \left[\sum_{v=1}^{V_1} \frac{\Gamma(\alpha v + 1)}{\Gamma(\alpha v + 1 - \alpha)} c_{v,\nu} t_{k+1}^{\alpha v - \alpha} \right] \leq \sum_{v=2}^{V_1} \frac{\Gamma(\alpha v + 1)}{\Gamma(\alpha v + 1 - \alpha)} |c_v| F_{k+1}[t_{k+1}^{\alpha v - \alpha}]
\]
\[
\leq \sum_{v=2}^{V_1} \frac{\Gamma(\alpha v + 1)}{\Gamma(\alpha v + 1 - \alpha)} |c_v| C_{Re} \nu^{\alpha v - \alpha - 1} \nu h t_{k+1}^{\alpha v - \alpha - 1}
\]
\[
\leq C_{Re} \nu^{\alpha v - \alpha - 1} h, \quad \text{(3.27)}
\]

where \(\sigma_v = \min(2, \alpha v - \alpha + 1) \).

Thus, from (3.23), (3.24) and (3.26) we get
\[
E_{k+1}[D_t^\alpha y(t)] \leq 2 \max \left\{ \frac{2}{\alpha \Gamma(2-\alpha)} \| \psi' \|_{\infty} t_{k+1}^{\alpha} h^{1-\alpha}, C_{Re} t_{k+1}^{\alpha v - \alpha - 1} h \right\}
\]
\[
\leq C_1 t_{k+1}^{\alpha v - \alpha - 1} h^{1-\alpha}, \quad \text{(3.28)}
\]

and from (3.23), (3.25) and (3.27) we also get
\[
F_{k+1}[D_t^\alpha y(t)] \leq 2 \max \left\{ \frac{A}{\Gamma(2-\alpha)} \| \psi' \|_{\infty} t_{k+1}^{\alpha} h^{1-\alpha}, C_{Re} t_{k+1}^{\alpha v - \alpha - 1} h^{1-\alpha} \right\}
\]
\[
\leq C_2 t_{k+1}^{\alpha v - \alpha - 1} h^{1-\alpha}. \quad \text{(3.29)}
\]

Now, by using (3.28) and (3.29) and by almost the same reasoning as for Theorem 3.2, we obtain
\[
|y(t_j) - y_j| \leq C t_j^{\alpha - 1} h^q, \quad (q = \min(1, 1 - \alpha)).
\]

So, if \(\epsilon \in (0, T) \) and \(t_j \in [\epsilon, T] \), then
\[
|y(t_j) - y_j| \leq C t_j^{\alpha - 1} h^{1-\alpha} \leq C \epsilon^{\alpha - 1} h^q,
\]

or
\[
\max_{t_j \in [\epsilon, T]} |y(t_j) - y_j| = O(h^{1-\alpha})
\]

and
\[
\max_{0 \leq j \leq N} |y(t_j) - y_j| = O(1).
\]

The proof is completed. \(\square \)

According to Theorems 2.1, 3.2 and 3.4, the smooth condition of \(\psi(t) \) plays an important role in error estimates. If this term is removed, what will happen? We will give an answer.
Theorem 3.5. Suppose that the solution \(y \) of (1.1) is expressed in the form
\[
y(t) = \sum_{v=0}^{v_0} c_v t^{\nu v},
\]
(3.30)
in which \(v_0 \in \mathbb{Z}^+ \), with the constants \(c_1, c_2, \ldots, c_{v_0} \in \mathbb{R} \). Then, for \(\epsilon \in (0, T] \),
\[
\max_{t_j \in [\epsilon, T]} |y(t_j) - y_j| = \begin{cases} O(h^2) & \text{if } 1 < \alpha, \\ O(h^{1+\alpha}) & \text{if } 0 < \alpha < 1, \end{cases}
\]
and moreover,
\[
\max_{0 \leq j \leq N} |y(t_j) - y_j| = \begin{cases} O(h^2) & \text{if } 1 < \alpha, \\ O(h^{2\alpha}) & \text{if } 0 < \alpha < 1. \end{cases}
\]

Proof. Using (3.30) and the Caputo fractional derivative definition yields
\[
D_0^\alpha y(t) = \sum_{v=1}^{v_0} \frac{\Gamma(v\alpha + 1)}{\Gamma(v\alpha + 1 - \alpha)} c_v t^{v\alpha - \alpha}.
\]
(3.31)
If \(\alpha > 1 \), it follows from (3.31) and Theorems 2.3 and 2.4 that
\[
E_{k+1}[D_0^\alpha y(t)] \leq \sum_{v=1}^{v_0} \frac{\Gamma(v\alpha + 1)}{\Gamma(v\alpha + 1 - \alpha)} |c_v| E_{k+1}[t^{v\alpha - \alpha}] \leq C_1 t_k^{\alpha h},
\]
(3.32)
and
\[
F_{k+1}[D_0^\alpha y(t)] \leq \sum_{v=1}^{v_0} \frac{\Gamma(v\alpha + 1)}{\Gamma(v\alpha + 1 - \alpha)} |c_v| F_{k+1}[t^{v\alpha - \alpha}] \leq C_2 t_k^{2(\alpha - 1) h^2}.
\]
(3.33)
Now, by using (3.32) and (3.33) and Lemma 3 in [5], we get
\[
|y(t_j) - y_j| \leq C h^q, \quad (q = \min(2, 1 + \alpha)).
\]
So
\[
\max_{0 \leq j \leq N} |y(t_j) - y_j| = O(h^2).
\]
If \(0 < \alpha < 1 \), by almost the same reasoning, we again have
\[
E_{k+1}[D_0^\alpha y(t)] \leq \sum_{v=1}^{v_0} \frac{\Gamma(v\alpha + 1)}{\Gamma(v\alpha + 1 - \alpha)} |c_v| E_{k+1}[t^{v\alpha - \alpha}] \leq C_3 t_k^{\alpha - 1} h^\alpha,
\]
(3.34)
and
\[
F_{k+1}[D_0^\alpha y(t)] \leq \sum_{v=1}^{v_0} \frac{\Gamma(v\alpha + 1)}{\Gamma(v\alpha + 1 - \alpha)} |c_v| F_{k+1}[t^{v\alpha - \alpha}] \leq C_4 t_k^{\alpha - 1} h^{\alpha + 1}.
\]
(3.35)
By using (3.34) and (3.35) and by almost the same proof as for Theorem 3.2, we obtain
\[
|y(t_j) - y_j| \leq C_5 t_k^{\alpha - 1} h^q, \quad (\text{here } q = 1 + \alpha).
\]
So, for arbitrary \(\epsilon > 0 \) and \(t_j \in [\epsilon, T] \),
\[
|y(t_j) - y_j| \leq C_5 \epsilon^{\alpha - 1} h^{1+\alpha};
\]
i.e.,
\[
\max_{t_j \in [\epsilon, T]} |y(t_j) - y_j| = O(h^{1+\alpha});
\]
and for \(0 \leq j \leq N \),
\[
|y(t_j) - y_j| \leq C_6 h^{2\alpha}.
\]
This ends the proof. \(\square \)
Table 1
Error for Eq. (4.1) with \(0 < \alpha < 1\), taken at \(t = 1\).

<table>
<thead>
<tr>
<th>(h)</th>
<th>(\alpha = 0.1)</th>
<th>(\alpha = 0.3)</th>
<th>(\alpha = 0.5)</th>
<th>(\alpha = 0.7)</th>
<th>(\alpha = 0.9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/10</td>
<td>1.33(−2)</td>
<td>4.73(−3)</td>
<td>2.71(−3)</td>
<td>1.82(−3)</td>
<td>1.31(−3)</td>
</tr>
<tr>
<td>1/20</td>
<td>5.29(−3)</td>
<td>1.62(−3)</td>
<td>8.36(−4)</td>
<td>5.15(−4)</td>
<td>3.36(−4)</td>
</tr>
<tr>
<td>1/40</td>
<td>2.21(−3)</td>
<td>5.70(−4)</td>
<td>2.67(−4)</td>
<td>1.49(−4)</td>
<td>0.87(−5)</td>
</tr>
<tr>
<td>1/80</td>
<td>9.16(−4)</td>
<td>2.05(−4)</td>
<td>8.81(−5)</td>
<td>4.44(−5)</td>
<td>2.29(−5)</td>
</tr>
<tr>
<td>1/160</td>
<td>3.79(−4)</td>
<td>7.55(−5)</td>
<td>2.95(−5)</td>
<td>1.33(−5)</td>
<td>0.61(−6)</td>
</tr>
<tr>
<td>1/320</td>
<td>1.58(−4)</td>
<td>2.82(−5)</td>
<td>1.01(−5)</td>
<td>0.40(−6)</td>
<td>0.16(−6)</td>
</tr>
<tr>
<td>EOC</td>
<td>1.26</td>
<td>1.42</td>
<td>1.55</td>
<td>1.72</td>
<td>1.91</td>
</tr>
</tbody>
</table>

Compared to DFF Theorem (b) (the case with \(\alpha > 1\) and \(y \in C^{[\alpha]}[0, T]\)), here the order of the estimate is much higher but \(y \in C^{[\alpha]−1}[0, T]\), except for the special form of \(y(t)\). The error estimates are actually the posterior estimates. A more general case relating to the posterior error estimates is given below.

Theorem 3.6. Suppose that the solution \(y\) of (1.1) is expressed in the form

\[
y(t) = \sum_{v=0}^{v_0} c_{0,v} t^v + \sum_{v=1}^{v_1} c_{1,v} t^{1+\alpha v} + \sum_{v=1}^{v_2} c_{2,v} t^{2+\alpha v} + \cdots + \sum_{v=1}^{v_l} c_{l,v} t^{l+\alpha v},
\]

(3.36)

in which \(v_0, v_1, v_2, \ldots, v_l \in \mathbb{Z}^+\), all \(c_{0,v}, c_{1,v}, \ldots, c_{l,v}\) are real numbers. Then, for \(\epsilon \in (0, T)\),

\[
\max_{t \in [\epsilon, T]} |y(t) - y_j| = \begin{cases} O(h^2) & \text{if } 1 < \alpha, \\ O(h^{1+\alpha}) & \text{if } 0 < \alpha < 1, \end{cases}
\]

and moreover,

\[
\max_{0 \leq j \leq N} |y(t_j) - y_j| = \begin{cases} O(h^2) & \text{if } 1 < \alpha, \\ O(h^{2\alpha}) & \text{if } 0 < \alpha < 1. \end{cases}
\]

The proof of this theorem is the same as that of Theorem 3.5 and so is omitted here. It is worthy of note that the last \(l\) terms on the right hand side of Eq. (3.36) cannot begin with \(v = 0\); otherwise, the above conclusion does not hold yet. For example, if \(\alpha \in (0, 1)\) and the second term on the right hand side of (3.36) begins with \(v = 0\), then the error estimate is the same as that of Theorem 3.2. Those cases can be considered in the same manner, so they are left out of this article.

4. A numerical example

In this section we present a numerical example to illustrate the error bounds derived above.

Example 1.

\[
D_\alpha^s y(t) = -y(t) + \frac{1}{\Gamma(5 - \alpha)} t^{4-\alpha}, \quad \alpha \in (0, 1), y(0) = 1.
\]

(4.1)

Its exact solution is

\[
y(t) = t^4 E_{\alpha,5}(-t^\alpha) + E_{\alpha}(-t^\alpha),
\]

where

\[
E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}, \quad E_{\alpha}(z) = E_{\alpha,1}(z).
\]

In Table 1 we show the errors of the Adams method at the point \(t = 1\) for various step sizes and \(\alpha\). In each case, the leftmost column stands for the step length, while the following columns give the error of our scheme at \(t = 1\). The last row states the experimental order of convergence (called “EOC” for brevity). As usual, the notation \(-1.38(−2)\) indicates \(-1.38 \times 10^{-2}\), etc.

Acknowledgements

The authors wish to thank the anonymous reviewers of this article for their careful reading and providing relevant suggestions for correction.
References