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1. Introduction

In recent decades, the fractional calculus and fractional differential equations have attracted much attention and
increasing interest (see [1-4] and many references cited therein) due to their potential applications in science and
engineering (see the introduction parts of Refs. [5,6]). Here we study a fractional differential equation in the following form:

Dy(t) =f(t,y®),  yP©O) =y, k=01,....n-1, (1.1)
where & > 0 and n := [«] is the first integer not less than . Dy(t) is the ath-order (always fractional) derivative of y(t)
in the Caputo sense, which is defined by

1 t
Déz(t) = ﬁ/ (t—0)"1zMW()dr, n—1<a<neZ,
n—o 0

where z™ denotes the derivative of integer nth order of z.

If we require the function f to be continuous and satisfy a Lipschitz condition with respect to the second argument y with
Lipschitz constant L on a suitable set G, then the initial value problem (1.1) determines a unique solution on some interval
[0, T], by use of Theorems 2.1 and 2.2 of [7]. Throughout the paper, we always assume that f fulfils the above condition, so
Eq. (1.1) has one and only one solution defined on [0, T]. This solution solves the following Volterra integral equation:

n—1 tk 1 t
0 =35+ /0 (t — W y@)du, ¢ <T. (12)
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Now numerical integration of differential equation (1.1) is transformed into numerical quadrature of an associated integral
equation, (1.2).

The fractional Adams method for solving Eq. (1.1) (or (1.2)) was first studied by Diethelm, Ford and Freed [5]. They worked
onauniformgrid {t; =jh : j =0, 1,..., N} with some integer N and step length h = T/N, and let y; ~ y(t;). In detail, their
derived computation scheme is as follows:

k
ka Z A 0)+m2bjk+1f(tj i),
j=0

1 tj '
Ykr1 = 202 %yé’) + — @ (Z aj k1S (G, ¥5) + Qg k+1f(tk+1»yk+1))
=

where
he K — (k — a)(k + 1)*) ifj =0,
Qjey1 = (k—j+2T + (k=) —2(k—j+ D) if1<j<Kk
ale+1) |4 ifi=k+1,
and

o

o e e
bt = — (k+1-D" = k=i, j=0.12....k

This computational scheme is very useful and efficient for numerical integration of fractional differential equations. In
particular, it is successfully applied in computing chaotic attractors of fractional systems; for example, see [8].

The remainder of this article is organized as below. In Section 2, we simply recall the main results from [5]. In Section 3,
we further study the error analysis of the fractional Adams scheme (1.3). A numerical example is included which is in line
with the associated theoretical results, in the last section.

2. Known error analyses for the fractional Adams method

In their error analysis, Diethelm et al. applied the following theorem which is attributed to Lubich [9].

Theorem 2.1. (a) Assume that f € C%(G). Define v; = [1/a] — 1. Then there exists a function ¥ < C'[0, T] and some
€1, ..., Cy, € Rsuch that the solution y of (1.1) can be expressed in the form

YO =Y+ Y et
v=1

(b) Assume that f € C3(G). Define v; = [2/a] — 1and v, = [1/a] — 1. Then there exists a function ¥ € C?[0, T] and
somecy,...,c, € Randd, ..., d, € Rsuch that the solutiony of (1.1) can be expressed in the form

YO =9 () + chr““ + Zd (e,
v=1
Direct computations lead to Theorems 2.2-2.4 [5].
Theorem 2.2. If y € C™[0, T] forsomem € N and 0 < o < m, then
Diy(t) = mig‘i] Al
* (o]l —a+1+1)

=0

t(ot] —a+l + g(t),

with some function g € C™~ 110, T]. Moreover, the (m — [«])th derivative of g satisfies a Lipschitz condition of order [o] — c.
Furthermore, D¢y € C[0, T].

Theorem 2.3. (a) Let z € C'[0, T]. Then,

L1 k 1
| = 0 20 = Y bz @) < 212 ltih
0

j=0

Q

(b) Let z(t) = tP for some p € (0, 1). Then,
k

tk+1
_ 1
/0 (terr — D 'z(0)dt — Y bz ()| < CR i h,
j=0

where C(fep is a constant that depends only on « and p.
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Theorem 2.4. (a) If z € C%[0, T] then there is a constant Cgr depending only on « such that

k+1

k41

- 2

’ / (tep1 — D*7'2(O)dE = > ausrz()| < 12 ooty 1.

0 i
Jj=0

(b) Let z € C'[0, T] and assume that z' fulfils a Lipschitz condition of order u for some u € (0, 1). Then, there exist positive
constants Bgr . and M(z, w) (depending only on « and u, z and p, respectively) such that

1 k+1
f (tepr — D*7'2()dt = > ajuarz()| < BY Mz, g b

0 i
Jj=0

(c) Let z(t) = tP for some p € (0, 2) and ¢ := min(2, p + 1). Then,

g1 k+1 N
_ otp
/ (tepr — D* 'z(t)de — Z ajk+12(6) | < Cgfpfkﬂp “he,
0 —
Jj=0

where COT[,‘I7 is a constant that depends only on « and p.

On the basis of the above results, the main error estimates derived by Diethelm et al. are listed here.

Theorem 2.5 (Diethelm-Ford-Freed (DFF) Theorem). (a) Let 0 < « and assume DYy(t) € C?[0, T] for some suitable T. Then,

Lo Jom» ifa=1,
Jnax @) =yl = {om”"‘) ifor < 1.

(b) Let o > 1 and assume that y € C'*1®1[0, T] for some suitable T. Then,
max |y(t) — y;| = O(h'*1e1=%).
0<j<N
(c) Let 0 < o < 1 and assume that y € C?[0, T] for some suitable T. Then, for 1 < j < N one has

Rt if0<a <05,

N — vl < et
(@) =yl = {h” if05<a<1,

where C is a constant independent of j and h. In particular,

max [y(;) — y;l =

O(h**) if0 <o < 0.5,
0<j<N

Oo(h) ifo5<a<l.
Moreover, for every € € (0, T) one has

_ o™ ifo<a <05,
[max (&) —yjl = {O(hz_a) f05<a<1

(d) Let o > 1. Then, if f € C3(G), one gets

max |y(t) — yj| = O(h?).
0<j<N

3. Further studies on the fractional Adams method
In this section, we start to prove a theorem given below.

Theorem 3.1. Let « > 0 and assume that D*y(t) € C'[0, T] for 3 < r € Z" and some suitable T. Then,

ro 2/ha '
E[T,fl=y(T) —yrm = Zhﬁa Z cii/mh™,
= i—0

in which ¢; ; /i are coefficients which depend upon f and D3 y(t) (see Eq. (1.1)).
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Proof. Firstly, using the Mean Value Theorem and simple calculations yields

p 1 fet1 i k
Y1) = Yip1 = @) fo (tge1 — O f(t, y(t))dt — ;bj,k+]f(tj,yj)
1 k1
= % / (tkr1 — O IDay(t)dt — ij k1 DLy () + Z bikiify @G, M) —y)t,  (3.1)
0
and
1 L1
Y(te1) — Yrr1 = @ / (trr — O (6, Y(E)AE 4+ Gt e (F (G, Y (Greg1)) — F (Eegrs yiﬂ))}
0
1 L1 k+1
= @) /O (tk1 — t)an‘jy(t)dt — ]:ZO a; k+1D%y(4)
k
+ D G fy (G ) 6 = ¥)) + G fy 1, Mer) O (Bieyr) — yﬁﬂ)} . (32)
j=0

Combining (3.1) and (3.2) we get

1 g1 k+1
Y(lier) = Yier1 = < / (teyr — D“7'DIY(0)dE — Y~ a441DEY ()
(a) 0 j=0

k
+ D G tfy (G 1) G 6) = 3) + G e tfy Gt Tegr)

=0
1 k41
[ - o Do - S by D)+ 3 by )~y L (33)
I'(e) | Jo =0 Jj=0
Now, we can rewrite (3.3) as follows:
1 1
Y(tes1) — Yir1 = @ {Fk+l[D YOI + Qe ks 1fy Gty M) —— @ Ex1[DSy(0)]
k
+ Z [aj k1 B k1 Tt ke 1y (B 15 Mk 1) e ):|fy(f;a )W) — )}
Jj=
k
= A1+ ) B 0(5) — ¥, (34)
=0

in which

tk+1 k
BlDY©) = [ (s = 07 DEYOE = D B DV ),
0

=0
tet1 k+1
Rl = [ 1 =0 D08 = 3 aDye),
=0
A1 = L {Fk+1[ V(O] + e k1 fy 1y Mier1) —— ! Ey41[D5 }’(f)]}
I'(a) (@)
and
Bjky1 = ; {|:a] k1 + bj k1 Qe 1 k1 fy (Gt M) =— i|fy(tj, 771)} .
I'(a) (@)
Next, we calculate Ex1[D%y(t)] and Fy1[DSy(t)]. Set g(t) = D¢y(t). Since DSy(t) € C'[0, T], we have
50 =50 +5Or+ ey g0 8O o0,

r—1n! r!
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By simple calculations, one gets

tit1 ) k
Eq[t™] = f (tepr — ) t™dt — ij.kﬁt}“
0

=

ko rhin ;
=Y f (tesr — O (™ — tMdt
=),

j+1
h'"“‘Z/ k+1—w* @™ —j™du
J

= Cm,khm+a»
using the substitution t = hu and Cp, = Z]"(:o ff“(k +1—w* @™ — j™du; thus,

r=D0)_
h2+a+"+i7§)3rlhr l+a+

g (0) g" )(é‘ )¢ e

Exalg(t)] = g'(0)Cy h'™ + =——
r = .
=Y bt
=

Here, Cj = (0) Cix(j <r)and Crx (r)(é)fr,k.

tht1 k+1

Fealt™ = / (tepr — O Te™dt — E aj k1t
0 —
j=0

k Gi+1 o 1
= Z/ (tyr1 — O [t"’ — t]."' — H(tj"ll — tjm)(t - tj)} dt
j=0 "4

j+1

= pmte Z/ (k1= % [ — 7 = (G + D™ = ™)t — )
i
— Dm’khm_HI,
where t = huand D, = Z}‘:O fjo(k +1—w ™ —j™ — (G+ D™ — j™ (u — j)]du; therefore,

g" ")~

_ e, & (5) ACS
Feaal8(O1 = =5 P Do ™ oo S D 4 SED = ) Dy

g"(0)
|

= Doy= . = O &)=
Here, Dj,k =£ j!(O)Dj,k(] < T') and Dr,k = girl(é) Dr,k~
From the expression for A, (see (3.4)), (3.5) and (3.6), we obtain

1
Aip1 = Dj ™ +a ties1, Gt
= T Z ik Qe ke fy (e le+1)r( )Z ik

r

1 _
ZF( )ka +ZF( +2)ﬁ/( b1 Mies1) 75— ( ) i

— ZDj,tha + Z ijkh;‘+2a,
j=2 j=1

in which Gk = F57arafy (i1, M) Creand Dy = 7555 Dje
Using the expression for B; ;11 (see (3.4)) gives

1
Bjk+1 = T@ {[GJ k1 7+ bj k1 Gert ke 1y (Gt 15 77k+1)F( ):|f3/(tjv 771)}

o 20
= € k+1h” + fjx1h™,

1577

(3.5)
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where
et = m{(1<a+1._(k:+o§)(k+1)‘f)a+1 o @fj:q,
F@+2) [(k=j+2" + k=) =20 =j+ D* if1<j<k
and
fan =SB R - -
Therefore,

k
Y(ter1) = Yiyr = Acir + B 1 (0(6) — )
j=0

r r k
= Y DT Y Gl + ) (e + fan P (G) — ). (37)
j=2 j=1 j=0

Now, we prove the following equality (a compact form of (3.7)) by using mathematical induction:

2k+1

V(1) — Yir1 = ZHM Z Giixh®. (3.8)

The coefficients ¢; ; , will be given later on.
When k = 0, from (3.7) we have

r r
yt) —y1 = ZDj,oH+a + ch,ohlﬂa

j=2 j=1
r
— Zhj+a {Dj,o + ijoh(2><0+l)oz}
j=1
2x04+1

=3y
Here D1, =0, (k=0,1,...,N), o0 = Djoandcj 1,0 = G are used. So (3.8) holds for k = 0.

Assume that the formula (3.8) holds for 1 < j < k — 1; next we show that (3.8) is also satisfied for j = k. According to
(3.7), one has

V(1) — Yir1 = ZDI e+ Z Cxh™ + Z(ej kr1h® + f ) (G) — ¥))

=2 I=1 j=1

2j—1
= ZDHW+chw+2“+2<ejk+1h + il ){Zh’”Zq i m‘*}
2j—1 2j—1
= ZhHa le"'clkh +Zej I<+1ZC11] 1h(,+])a+2f]k+lzclu 1h(1+2)a}~
=1

The above formula can also be read as

r 1 3 5
z . , .
V(1) — Yir1 = Z R Dy + Ceh® + eq k1 Z ioh™D +eg ks Z i th™% + €341 Z ciht e
— i=0 i=0 i=0

2k—
2
+ - ekt Z Clik—1h D% + fi ks ZClzoh(1+ "t fo et ZCn 1R+
i=0 i=0 i=0
2k—1

+ f3k41 Z CLi2h™2% + fa Z ish™2 + o+ i Z Cik—1h*

i=0 i=0 i=0
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Then, we rewrite the above equation as

r k k k
I+ 2
Y(ter1) — Vi1 = Zh “IDi+ | Gk + ch.o,n—len,k+1) h* + Zen,k+lcl,1,n—l + an,k+lcl,0,n—1 h=
=1 n=1 n=1 n=1
k k k k
3 4
(D enkriciana + > farsrciinct |1+ (Y enkricanat + Y fassiCianot | h*
n=2 n=1 n=2 n=2
k k
5
+ Zen,k+lcl,4,n71 + an,l<+lcl,3.n—1 P4

n=3 n=2

k k
i o
Z €nkt+1CLi—1,n—1 + Z fak+1CLizan—1 | B ifiodd

it —i=1
=3 ==

k k

ior iFa
E en,k+lcl,i71,n71+2 Jk1Ci—2,n—1 | B if i even
n=1 1

2 =3
241
+ o+ fiokp1Cok—1k—1h® >a}

2k+1

r
= E hﬁ_a E Cj,i,khm (39)
j=1 i=0
. . k
in which Gjok = Dj’k, Gk = Cj,k + Zn:l Gj,0,n—1€n,k+1,

k k
E enk+1G,i-1,n-1 + E fak+16Gi—an—1  ifi=3,5,...,2k—1,

n= 2

Gik =1 & k
Z enk+1Gji—1,n—1 + an,kqtlcj,ifz,nf] ifi=2,4,...,2k,

_i _i
n=3 n=3

and ¢ ok41,k = fi k416, 2k—1,k—1-
It immediately follows from (3.9) that (3.8) does hold for the case j = k. This completes the proof. O

From ci0rn = Dirm = 0, we know that (3.8) includes h?te, p3+e . prte; pl+2e pit8e - plr+2l/he.
prt2e pride o pr+(+2T/he gq the expansion begins with an h'1t2¢ term for « € (0, 1) whilst it begins with an h?t®

term for o > 1.
In the following, we study the case with @ € (0, 1) and f € C3(G) (see DFF Theorem (d) and compare them).
We first set

le+1 k
Ecnilg(®)] = / (et — D 'g(OdE — 3 byierg(©)
0

j=0

and

1 k+1
Fenlg®l = | [ (6 = 07 2O = Y aiueng(®)].
0 .

j=0

Theorem 3.2. Assume that 0 < « < 1and f € C3(G); then we have

max |y(t;) — y;l =

O(h**) if0<a < 0.5,
0<j<N

O(h) ifo5<a<l;
and

o(h'™) if0<a <0.5,

o> ifo5<a <1,

t —yil =
;E%N“” Yil {

forevery e > 0.
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Proof. Following Theorem 2.1(b), there exists a function ¢ € C2[0, T],and somecy, C3, . . ., ¢, €Randdy, dy,...,d,, €R
such that the solution y of (1.1) has the following form:

V1 %)
YO =YO) + )+ dt
v=1 v=1

where vy = [2/a] —lTand v, = [1/a] — 1.
Hence, by simple calculations we have

L I'(va+1) 2. I'(va+2)
DSy(t) = D%y (t —_— "¢ — =ttt 3.10
1y(©) *‘/’(”;r(m+1_a) ;F(W+2_a) (3.10)
Since ¥ (t) € C%[0,T],0 < « < 1, following from Theorem 2.2, we have
v
Diy(t) = —————t' " 4+ g(t), 3.11
VO= 5w g(t) (3.11)
with g € C'[0, T] and function g’ satisfies a Lipschitz condition of order (1 — «) € (0, 1).
According to Theorem 2.4(b), there exist positive constants Bzrl _g and M(g, 1 — &) such that
Fialg(©)] < By, M(g, 1 — ety h*~.
Now, applying DFF theorem (c), we get
v o
Fiet |:F(2_a)fl CoTzrl I S
Thus, from (3.11) we have
Ferr[DSW ()] < 2max{B) ;_ M(g, 1 — )ty (B>~ Co o ti ' i) < g he e (3.12)
Also by Theorem 2.4(c), one has
A T(av+1) A T(av+1)
F tO(\) o < c F th*Ot
k1 [;F(av—i—l—a) ZF(ozv—i—l )|v|k+1[ ]
AT 1
< Z (O[V+ ) | v|C;'raU atk_H)w a— D'Vho'v
~ 'lov+1—a)
< Gt et (3.13)
where 0, = min(2, v — « + 1). Similarly,
2 [(va+2) 2. '(va+2)
F —— gt | < dy|Fgq[£1T0V ™
|5 a2 S D ot
2. I'(va+2) ™ 12
= gmm oG 1 sav—anwlipn
< CTrtk_thZ (3.14)
From (3.12) to (3.14), it follows that
Fea[DEy(D)] < 3maX{CTrtk+1h2 ¢ CTrtk+1ha+] CTrtk+11h2}
! if0<a < 0.5
a—1 )
= Gl {h” if0.5 <a < 1.
Next, we estimate Ey1[DSy(t)]. By the same reasoning, one has
1
Exiilg®)] = allg/lloot,‘i‘ﬂh, (3.15)
and
2 '(va+2) 2. '(va +2)
E dvt1+va¢—w < dv E tH—av—a
[;F(m+2_a) © 3 D )

IA

crety, h. (3.16)
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From Theorem 2.3(b), one gets

Iﬂ/(O) 1— Re
E ———t Y| < G°h, 3.17
| T - =G (3.17)
and
E _vzl F(Ol\) + 1) tau a | vzl (O“) + ) | |E [taufot]
e ——— e —— C
YU Tavtl—a) ST tl-—a
2 v+1
=D a1 Ot
= 'ov+1—a)
= G h. (3.18)
Combining (3.10) and (3.15)—(3.18) leads to
1
E1[D2y(0)] < 4max{&||g/||oot,‘j‘+lh, cfeey, h, C%h, Cieed ) h}
< C]l’,i:]]h.
Thus, we have
Er1[DSy(0)] < Citg'h,
and
! if0<a <05 1
Fer1[DSy(®)] < Gotg ! {hz"‘ 05 <a<1— = Gteq h*,
in which k = min(1 + «, 2 — «).
Next, we show the following formula holds for sufficiently small h:
Y@ —yl < e, (@ = min(1+ .2 — @) (3.19)
forallj € {0, 1, ..., N}, where C is a suitable constant.
Here, we again use mathematical induction to show that (3.19) holds. In view of the given initial condition, the induction
basis (j = 0) is pre-assumed. Suppose that (3.19) is true forj = 0, 1, ..., kfor k < N — 1. Now we prove that the inequality

also holds for j = k + 1. To do this, we first look at the error of the predictor yj, 1- By construction of the predictor we find
that

k1 k
V(1) = Vsl = —— (tirr — D F(EY©) = Y b f (6, )
I (a) =
! ! o d bj b
< — t —t D¢y(t)dt — DS y(t t t) — f(t,
= Fo /0 (tipr — ' DEy (D) Z e DY) + o )Z s lf (6, Y (85) — F (5, 9))
Gyt k Gt 1< .
- Gl basaLly() —yjl < —<H bj 1 LCEY "R (3.20)

T T4 ST T4

On the basis of the bound (3.20) for the predictor error we begin to determine the corrector error. Forj = k + 1,

k

1 lier1 3
1y (tes1) = Vil = @ / (tierr — D YO) = Y Gaestf G, 1) = G G, Yy o)
0 =0
1 eyt k+1
=< m f (tep1 — ) lDa.V(t)dt Za] k+1D y()
0

k 1
+ Z aj k1 1f (&, y (&) — f (&, y)| + e )ak-H ket lf W Y1) — F(trerts Vir))!
=0

<Cztlg+11K Za PRI L C1tk+1 h+ 1 ib‘ e
= T@) F() k11 kH’kHF(oe) () () = j k+1LLL
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Gty

GL
<+1 K a 1
——h a
(@) + et 1k+1 75 (a) b1
mhq E Gty Yt e 1_,2( )h E bj k1t (3.21)

We now estimate terms of form Z}:f aj k1 t;"_] and Z}:ll bj k41 t]f’_l. By the Mean Value Theorem again we have

h* . . .
0=<ajr1 = m((k —j+ 2T+ k=t =20k —j+ D)
< ch(k— )"

o

h No N\ o o —
0 = by = —(k+1-p% = (k=) < h*(k—J) !

for1<j<k-1, where the constant c is independent of j and k, respectively, so the problem reduces to finding a bound
for Sk _ ha+oz 12 a 1(’( ])Ot 1

k 1
o= hWH/ Xk —x*"ldx = h°‘+"“1ka+a_1/ 71 (1 — )% ldt
0 0

= B(a, o)ty ™! < 2B(a, )t = Brg T < BTty (3.22)

It immediately follows from (3.21) and (3.22) that

et | GL o A < cL?
[yt 1) — Vi1l < o )h + Q1 ki1 =5 ) te W+ —— T Za] k1t " Gkt —— (@) Zb] k16
C GL CL 2%h*
<12 pip — 1 ptea g (BT 42—
INGY) ') (a+2) I'(a) ale+1)
CLZhot 20t+1hoz
(BT + ——— ) p ¢ n% < ce e,
')l +2) o
where Gy 1 kr1 = a(g—il),ak_kﬂ < ﬂ:l’f)bk kb1 = ;, tee1 < T and (k+1)"‘ 1 < 2 are used. Therefore, this completes

(3.19).
Furthermore, we deduce

max [y(t) — yi| = oO(h**) if0 <a < 0.5,
o W =Y = om) " ifos<a < 1;

and for arbitrary € > 0 then with t; € [¢, T],

! if0 <« < 0.5,

t) —yil < Ce*! :
y(6) -yl = Ce {hza ifo5 <o <1;
or

o(h'**) if0 <« < 0.5,

max () —yjl = {o(hz“") if0.5 <a < 1.

tile,T]
The proof is thus finished. O

From Theorem 2.1(b), the condition of this theorem implies y(t) € C[0, T] but y(t) does not lie in C'[0, T], let alone
y(t) & C?[0, T]. Compared to DFF Theorem (c), the condition here is weaker but the same results hold.
In the following, we give a lemma.

Lemma3.3. If € C'[0,T],0 < a < 1, then

‘ / 2 / o -
Ejet1 |:f0 t—0)"Y (T)dfi| =< m”l/f ||tk+1hl )
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and
t A
— / 1—
Fiet1 |:/ (t—1) al/f,(f)df:| =< ﬁ”lﬁ looterih %,
0 _

where A is a constant independent of k and h.

Proof. Using the expressions for Ej 1, we have

t
Ei41 [/ (t - r)‘“w’(r)dr]
0

fes1 t k g
/ (ties1 — t)‘“/ (t =)™y (r)drdt — ij,m/ G — o) "Y' (0dr
0 0 0

=0

Gi+1 t 4
/ U (t — 7)Y/ (t)dr — / (t; — r)‘“w’(r)dr} (ter — O 'de
j=0 "4 0 0

Zk /tj+1
j=0 V1

Jj=

k

(tesr — 0¥ 'dt.

IA

/ (t — )y (D)dr — / (6 — oy (n)de
0 0

t ti
/ (t =)™ "Y' (v)dr — /J(tj — ) Y/ (r)dr
0 0

i ] ¢
= ¥l (/ (; —7)%de —/ (t—7)~%de +/ (t— r)“"dr)
0 0 4
1
= 7”10/”00 (5‘170[ + (t — tj)l_a — tl_” + (t — tj)l—a)

1—«o

IA

2 , _ 2 _
—— ¥ lloo(t — ) < —— ¥/ lloch" .
11—« 11—«

So, one has

E41 |:/ (t— T)al//,(f)df]
0

IA

2 , ] koo .
o Y [ e - o
¢ =0 /4

2 , 1 te+1 .
Yl / (teer — 071t =
1—« 0

2 , -
m”‘ﬂ llootip i %

Applying the expression for Fy, 1 gives

k+1

¢ tht ¢ g
Fit1 [/0 (t—r)“"w/(r)dr} = ‘fo (1 —t)“‘1/0 (t—t)‘“w’(r)drdt—Zaj.szo (G — o) “Y'(ndr
j=0

k bi+1 t
> -0 { | e-orevmer

j=0 Y4 0

b 1 bi+1 gl

- /0 (rj—r)“w’u)dr—[ /0 (61— )y (t)dr — fo (q—r)%//(r)dr] (r—t;)}dt

h
ko[t
<> f (tepr — 0
j=0 Y1

b 1 bi+1 b
_/ (t — 1)~y (r)dr — H [/ (i1 — 7)Y/ ()dT — / t — r)aw/(r)dr] t—t)
0 0 0

/ (t — )y (D)dr
0

dt.

By tedious calculations, one gets

[e=o @ - [ owma
0 0

1

Gi+1 b
—h[ / (11 — )/ (0)dr — f (rj—r)“w%r)dr] (t— 1)
0 0

=

i 1
/ [(f - =G-0)" = E((tj+l -0 = (G- - fj)] ¥/ (v)dr
0
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t 1 1 b1
+ / [(r—r)“—h<tj+1—r)“<r—rj)] (o) +‘h / (b1 — D (t — )Y/ (1)de

J

1 — — —a 1 — —a —a
< ¥l ‘—(t—tj)‘ T T (= (G — ) T G 5

-t - f<r =41 — 0 + (G1 — )]

1 1-a
+ o == 1)

1
= T Wl 07— - (r,L{’ — 7t — 1)
2
(=) =R ) F =) = B ) + 3 (G — O - t,-)]
1 / 11—« —o 11—«
Zm”l/fnoo {t = (fj+1 - )t —t)
+ 200 (G — O — )+ (E— )T — Rt - tj)]}

1 —a - — —o
smllw/lloo{tl —f = (r,L{”—t} “)(t — t) + 4h' }

Utilizing the above inequalities and Theorem 2.4(c), we have

t
i [[ (t—r)%’(r)dr] ||w||oc{m1[l “]+4h1-‘*Z/
0

1 4 _
1 a _a||‘///||oo [Cgll atk+11h2 “ *tl(é-lh] a} =

G+

IA

(terr — D) 1dt}

IA

A _
< T W ot
The proof is completed. O

If we weaken the smooth condition of f in Theorem 3.2, we get the following results.

Theorem 3.4. Let 0 < o < 1. Then, if f € C(G),

t) —yi| = O(h'™“
[rg[ev;]ly(ﬂ yil (h"™),

forevery e > 0, and

max |y(t) — y;| = 0(1).
0<j<N
Proof. Since f € C2(G), using Theorem 2.1(a) we have
V1
YO =)t + (),
v=1

in which v; = [1/a] — 1, ¥ (t) € C'[0, T].
Now, using the Caputo fractional derivative definition yields

" . A Mav+1) I o
Setg(t) = ﬁ fot(t — 17)"*y/(r)dt. Next we estimate E, 1[g(t)] and Fy1[g(t)].
1 t
Er1lg(®)] = mEHl [/ (t— T)“W/(T)df]
- 0
1

2
< / o hlfot
T I'l—a)a(l—a) 1Y

2
= ———||Y/|Ier h e 3.24
al (2 —a) 197Nt (3.24)
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Also,

1 t
Feplg(®)] = kaH |:/ (t— T)alff/(f)dfi|
- 0

< ’ e hlfot
< ooy ¥ It

< ’ ta hl—a' 3.25
< g oV It (3.25)

From Theorem 2.4(b) we have

1 Mav+1) 1 av+1) B
Ey41 |:Z ot | < Z )|Cu|Ek+1[fw “]

— F(av—i—l—a) = av+1-—
A Tav+1) R
< e t+o{v o— ]h
_;F(Oﬂ)-f—l )lV o,av—o k+
< c®g'h, (3.26)

and from Theorem 2.4(c) we have

2 Tav+1) A Tav+1)
F T v 7T e lF fov—a
k1 [;F(av—f-l—a) v F(av—}-l—a)' [Feal ]

IA
i

2 Tav+1 o
< 3 el 5
= lav+1-— o)

< Tttt (3.27)
k+1

where o, = min(2, av — o + 1).
Thus, from (3.23), (3.24) and (3.26) we get
(VAT i C"etﬁ‘;fh}

Er[DSy(0)] < Zmax{om—z)o

Citg'h' e, (3.28)

and from (3.23), (3.25) and (3.27) we also get

IA

o A o 1—o T Tpa+1
Fe 1 [DSy(0)] < ZmaX{mllw’llkah O h
< Czt,‘f+llh] « (3.29)

Now, by using (3.28) and (3.29) and by almost the same reasoning as for Theorem 3.2, we obtain
y(@&) —yl < ¥~ 'h?, (g =min(1,1 - a)).
So,ife € (0, T]and tj € [€, T], then
(&) —yjl < Ct¥ TR < ce*Mhd,
or

max |y(t) —y;| = 0(h'~®),
ti€le,T]

and
max |y(t;) — yj| = 0(1).
0<j<N
The proof is completed. O

According to Theorems 2.1, 3.2 and 3.4, the smooth condition of v/ (t) plays an important role in error estimates. If this
term is removed, what will happen? We will give an answer.
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Theorem 3.5. Suppose that the solution y of (1.1) is expressed in the form

Vo
YO =Y ot (3.30)
v=0
in which vy € Z, with the constants ¢y, ¢y, . . ., cy, € R Then, for € € (0, T],

0(h?) if1<a,
t) —vi| =
gma, (&) =l {O(h”“) fO<a<l,

and moreover,

‘ L Jom® if1<a,
Orgas)ﬁ] |y(tj) y]| - [O(hZa) lfO <o < 1.

Proof. Using (3.30) and the Caputo fractional derivative definition yields

O a4+ 1)
D2y(t) = ——, t" 3.31
0 ;F(voH—l—oc) (331)

If @ > 1, it follows from (3.31) and Theorems 2.3 and 2.4 that

0 va+1)
Er 1 [D2y()] < —F |6, |E VT < Gt 4 h, 3.32
k1 [DEY (O] _;F(m+1_a)|cv| el < Gty (332)
and
O I'va+1) _ 1)y
Fep[DZy(0)] < oo 1= )lcv|Fk+1[t”°‘ “1< G (3.33)

v=1
Now, by using (3.32) and (3.33) and Lemma 3 in [5], we get
ly(t) —yil < Ch?, (¢ =min(2, 1+ a)).
So
max |y() — ¥l = o(h?).

If0 < @ < 1, by almost the same reasoning, we again have

0 'va+1)
EeralD2y(D] < Y ——————c,[Egat™ ] < Gt h, (334)
~Trvae+1-a) ‘
and
O 'va+1) ]
Fen[DIY(0] < ) ——————c [Fea[6"7*] < Gt he . (3.35)
* —~ Tva+1-a)

By using (3.34) and (3.35) and by almost the same proof as for Theorem 3.2, we obtain
y(t) =yl < Cst*'h?,  (hereq =1+ a).
So, for arbitrary € > O and ¢ € [¢, T],

ly(t;) — yj| < Cse* TR,

t) —yi| = O(h'**);
tj‘?[?_,’%] ly(&) — y;l (h'™)

andfor0 <j <N,
(&) —y;l < Ch*®.
This ends the proof. O
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Table 1

Error for Eq. (4.1) with0 < o < 1, takenatt = 1.

h a=0.1 a=03 a =05 a=0.7 a=0.9
1/10 —1.38(—2) —4.73(—3) —2.71(-3) —1.82(—3) —1.31(—3)
1/20 —5.29(—3) —1.62(—3) —8.36(—4) —5.15(—4) —3.36(—4)
1/40 —2.21(—3) —5.70(—4) —2.67(—4) —1.49(—4) —8.74(—5)
1/80 —9.16(—4) —2.05(—4) —8.81(—5) —4.44(—5) —2.29(—5)
1/160 —3.79(—4) —7.55(—5) —2.95(—5) —1.33(—5) —6.07(—6)
1/320 —1.58(—4) —2.82(—5) —1.01(-5) —4.04(—6) —1.61(—6)
EOC 1.26 1.42 1.55 1.72 1.91

Compared to DFF Theorem (b) (the case with o > 1andy e C'®1+1[0, T]), here the order of the estimate is much higher
buty e C1=1[0, T], except for the special form of y(t). The error estimates are actually the posterior estimates. A more
general case relating to the posterior error estimates is given below.

Theorem 3.6. Suppose that the solution y of (1.1) is expressed in the form

Vo V1 ] i
YO =Y cout™ + Y it Y o T Y gt (3.36)
v=0 v=1 v=1 v=1
in which vy, v, va, ..., v,l € Zt, dll ¢y, €10, - . ., 1, are real numbers. Then, for € € (0, T],

o(h?) if1<a,

m t) —yil = ;
[max ly(&) =yl {O(hw) ifO<a<1,

and moreover,

o) ifl<a,

onglias)lsl ly(t) —yil = {O(hza) fo<a<1.

The proof of this theorem is the same as that of Theorem 3.5 and so is omitted here. It is worthy of note that the last [
terms on the right hand side of Eq. (3.36) cannot begin with v = 0; otherwise, the above conclusion does not hold yet. For
example, if @ € (0, 1) and the second term on the right hand side of (3.36) begins with v = 0, then the error estimate is the
same as that of Theorem 3.2. Those cases can be considered in the same manner, so they are left out of this article.

4. A numerical example
In this section we present a numerical example to illustrate the error bounds derived above.

Example 1.
Dy(t) = —y(t) + ér“*a, a € (0,1),y(0) =1. (4.1)
I'G—ow
Its exact solution is
() = t*Eq5(—t*) + Eq(—t%),

where

ol k

z
Eqp(2) = ; F(T‘Fﬁ)’ Ey(2) = Ey,1(2).

In Table 1 we show the errors of the Adams method at the point t = 1 for various step sizes and «. In each case, the
leftmost column stands for the step length, while the following columns give the error of our scheme at t = 1. The last
row states the experimental order of convergence (called “EOC” for brevity). As usual, the notation —1.38(—2) indicates
—1.38 x 1072, etc.
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