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a b s t r a c t

The generalized Adams–Bashforth–Moulton method, often simply called ‘‘the fractional
Adams method’’, is a useful numerical algorithm for solving a fractional ordinary
differential equation: Dα

∗
y(t) = f (t, y(t)), y(k)(0) = y(k)0 , k = 0, 1, . . . , n − 1, where

α > 0, n = dαe is the first integer not less than α, and Dα
∗
y(t) is the αth-order fractional

derivative of y(t) in the Caputo sense. Although error analyses for this fractional Adams
method have been given for (a) 0 < α, Dα

∗
y(t) ∈ C2[0, T ], (b) α > 1, y ∈ C1+dαe[0, T ], (c)

0 < α < 1, y ∈ C2[0, T ], (d) α > 1, f ∈ C3(G), there are still some unsolved problems—
(i) the error estimates for α ∈ (0, 1), f ∈ C3(G), (ii) the error estimates for α ∈ (0, 1),
f ∈ C2(G), (iii) the solution y(t) having some special forms. In this paper, we mainly study
the error analyses of the fractional Adams method for the fractional ordinary differential
equations for the three cases (i)–(iii). Numerical simulations are also included which are in
line with the theoretical analysis.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, the fractional calculus and fractional differential equations have attracted much attention and
increasing interest (see [1–4] and many references cited therein) due to their potential applications in science and
engineering (see the introduction parts of Refs. [5,6]). Here we study a fractional differential equation in the following form:

Dα
∗
y(t) = f (t, y(t)), y(k)(0) = y(k)0 , k = 0, 1, . . . , n− 1, (1.1)

where α > 0 and n := dαe is the first integer not less than α. Dα
∗
y(t) is the αth-order (always fractional) derivative of y(t)

in the Caputo sense, which is defined by

Dα
∗
z(t) =

1
Γ (n− α)

∫ t

0
(t − τ)n−α−1z(n)(τ )dτ , n− 1 < α < n ∈ Z+,

where z(n) denotes the derivative of integer nth order of z.
If we require the function f to be continuous and satisfy a Lipschitz conditionwith respect to the second argument ywith

Lipschitz constant L on a suitable set G, then the initial value problem (1.1) determines a unique solution on some interval
[0, T ], by use of Theorems 2.1 and 2.2 of [7]. Throughout the paper, we always assume that f fulfils the above condition, so
Eq. (1.1) has one and only one solution defined on [0, T ]. This solution solves the following Volterra integral equation:

y(t) =
n−1∑
k=0

y(k)0
tk

k!
+

1
Γ (α)

∫ t

0
(t − u)α−1f (u, y(u))du, t ≤ T . (1.2)
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Now numerical integration of differential equation (1.1) is transformed into numerical quadrature of an associated integral
equation, (1.2).
The fractional Adamsmethod for solving Eq. (1.1) (or (1.2))was first studied byDiethelm, Ford and Freed [5]. Theyworked

on a uniform grid {tj = jh : j = 0, 1, . . . ,N}with some integer N and step length h = T/N , and let yj ≈ y(tj). In detail, their
derived computation scheme is as follows:

yPk+1 =
n−1∑
j=0

t jk+1
j!
y(j)0 +

1
Γ (α)

k∑
j=0

bj,k+1f (tj, yj),

yk+1 =
n−1∑
j=0

t jk+1
j!
y(j)0 +

1
Γ (α)

(
k∑
j=0

aj,k+1f (tj, yj)+ ak+1,k+1f (tk+1, yPk+1)

)
,

(1.3)

where

aj,k+1 =
hα

α(α + 1)
·

(k
α+1
− (k− α)(k+ 1)α) if j = 0,

((k− j+ 2)α+1 + (k− j)α+1 − 2(k− j+ 1)α+1) if 1 ≤ j ≤ k,
1 if j = k+ 1,

and

bj,k+1 =
hα

α
((k+ 1− j)α − (k− j)α) , j = 0, 1, 2, . . . , k.

This computational scheme is very useful and efficient for numerical integration of fractional differential equations. In
particular, it is successfully applied in computing chaotic attractors of fractional systems; for example, see [8].
The remainder of this article is organized as below. In Section 2, we simply recall the main results from [5]. In Section 3,

we further study the error analysis of the fractional Adams scheme (1.3). A numerical example is included which is in line
with the associated theoretical results, in the last section.

2. Known error analyses for the fractional Adams method

In their error analysis, Diethelm et al. applied the following theorem which is attributed to Lubich [9].

Theorem 2.1. (a) Assume that f ∈ C2(G). Define ν1 = d1/αe − 1. Then there exists a function ψ ∈ C1[0, T ] and some
c1, . . . , cν1 ∈ R such that the solution y of (1.1) can be expressed in the form

y(t) = ψ(t)+
ν1∑
ν=1

cν tαν .

(b) Assume that f ∈ C3(G). Define ν1 = d2/αe − 1 and ν2 = d1/αe − 1. Then there exists a function ψ ∈ C2[0, T ] and
some c1, . . . , cν1 ∈ R and d1, . . . , dν2 ∈ R such that the solution y of (1.1) can be expressed in the form

y(t) = ψ(t)+
ν1∑
ν=1

cν tαν +
ν2∑
ν=1

dν t1+αν .

Direct computations lead to Theorems 2.2–2.4 [5].

Theorem 2.2. If y ∈ Cm[0, T ] for some m ∈ N and 0 < α < m, then

Dα
∗
y(t) =

m−dαe−1∑
l=0

y(l+dαe)(0)
Γ (dαe − α + l+ 1)

tdαe−α+l + g(t),

with some function g ∈ Cm−dαe[0, T ]. Moreover, the (m−dαe)th derivative of g satisfies a Lipschitz condition of order dαe−α.
Furthermore, Dα

∗
y ∈ C[0, T ].

Theorem 2.3. (a) Let z ∈ C1[0, T ]. Then,∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k∑
j=0

bj,k+1z(tj)

∣∣∣∣∣ ≤ 1α ‖z ′‖∞tαk+1h.
(b) Let z(t) = tp for some p ∈ (0, 1). Then,∣∣∣∣∣

∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k∑
j=0

bj,k+1z(tj)

∣∣∣∣∣ ≤ CReα,p tα+p−1k+1 h,

where CReα,p is a constant that depends only on α and p.
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Theorem 2.4. (a) If z ∈ C2[0, T ] then there is a constant CTrα depending only on α such that∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k+1∑
j=0

aj,k+1z(tj)

∣∣∣∣∣ ≤ CTrα ‖z ′‖∞tαk+1h2.
(b) Let z ∈ C1[0, T ] and assume that z ′ fulfils a Lipschitz condition of order µ for some µ ∈ (0, 1). Then, there exist positive

constants BTrα,µ and M(z, µ) (depending only on α and µ, z and µ, respectively) such that∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k+1∑
j=0

aj,k+1z(tj)

∣∣∣∣∣ ≤ BTrα,µM(z, µ)tαk+1h1+µ.
(c) Let z(t) = tp for some p ∈ (0, 2) and % := min(2, p+ 1). Then,∣∣∣∣∣

∫ tk+1

0
(tk+1 − t)α−1z(t)dt −

k+1∑
j=0

aj,k+1z(tj)

∣∣∣∣∣ ≤ CTrα,ptα+p−%k+1 h%,

where CTrα,p is a constant that depends only on α and p.

On the basis of the above results, the main error estimates derived by Diethelm et al. are listed here.

Theorem 2.5 (Diethelm–Ford–Freed (DFF) Theorem). (a) Let 0 < α and assume Dα
∗
y(t) ∈ C2[0, T ] for some suitable T . Then,

max
0≤j≤N

|y(tj)− yj| =
{
O(h2) if α ≥ 1,
O(h1+α) ifα < 1.

(b) Let α > 1 and assume that y ∈ C1+dαe[0, T ] for some suitable T . Then,

max
0≤j≤N

|y(tj)− yj| = O(h1+dαe−α).

(c) Let 0 < α < 1 and assume that y ∈ C2[0, T ] for some suitable T . Then, for 1 ≤ j ≤ N one has

|y(tj)− yj| ≤ Ctα−1j ·

{
h1+α if 0 < α < 0.5,
h2−α if 0.5 ≤ α < 1,

where C is a constant independent of j and h. In particular,

max
0≤j≤N

|y(tj)− yj| =
{
O(h2α) if 0 < α < 0.5,
O(h) if 0.5 ≤ α < 1.

Moreover, for every ε ∈ (0, T ) one has

max
tj∈[ε,T ]

|y(tj)− yj| =
{
O(h1+α) if 0 < α < 0.5,
O(h2−α) if 0.5 ≤ α < 1.

(d) Let α > 1. Then, if f ∈ C3(G), one gets

max
0≤j≤N

|y(tj)− yj| = O(h2).

3. Further studies on the fractional Adams method

In this section, we start to prove a theorem given below.

Theorem 3.1. Let α > 0 and assume that Dα
∗
y(t) ∈ C r [0, T ] for 3 ≤ r ∈ Z+ and some suitable T . Then,

E[T , f ] = y(T )− yT/h =
r∑
j=1

hj+α
2T/h+1∑
i=0

cj,i,T/hhiα,

in which cj,i,T/h are coefficients which depend upon f and Dα∗y(t) (see Eq. (1.1)).
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Proof. Firstly, using the Mean Value Theorem and simple calculations yields

y(tk+1)− yPk+1 =
1

Γ (α)

{∫ tk+1

0
(tk+1 − t)α−1f (t, y(t))dt −

k∑
j=0

bj,k+1f (tj, yj)

}

=
1

Γ (α)

{∫ tk+1

0
(tk+1 − t)α−1Dα∗y(t)dt −

k∑
j=0

bj,k+1Dα∗y(tj)+
k∑
j=0

bj,k+1fy(tj, ηj)(y(tj)− yj)

}
, (3.1)

and

y(tk+1)− yk+1 =
1

Γ (α)

{∫ tk+1

0
(tk+1 − t)α−1f (t, y(t))dt + ak+1,k+1(f (tk+1, y(tk+1))− f (tk+1, yPk+1))

}
=

1
Γ (α)

{∫ tk+1

0
(tk+1 − t)α−1Dα∗y(t)dt −

k+1∑
j=0

aj,k+1Dα∗y(tj)

+

k∑
j=0

aj,k+1fy(tj, ηj)(y(tj)− yj)+ ak+1,k+1fy(tk+1, ηk+1)(y(tk+1)− yPk+1)

}
. (3.2)

Combining (3.1) and (3.2) we get

y(tk+1)− yk+1 =
1

Γ (α)

{∫ tk+1

0
(tk+1 − t)α−1Dα∗y(t)dt −

k+1∑
j=0

aj,k+1Dα∗y(tj)

+

k∑
j=0

aj,k+1fy(tj, ηj)(y(tj)− yj)+ ak+1,k+1fy(tk+1, ηk+1)

·
1

Γ (α)

{∫ tk+1

0
(tk+1 − t)α−1Dα∗y(t)dt −

k∑
j=0

bj,k+1Dα∗y(tj)+
k∑
j=0

bj,k+1fy(tj, ηj)(y(tj)− yj)

}}
. (3.3)

Now, we can rewrite (3.3) as follows:

y(tk+1)− yk+1 =
1

Γ (α)

{
Fk+1[Dα∗y(t)] + ak+1,k+1fy(tk+1, ηk+1)

1
Γ (α)

Ek+1[Dα∗y(t)]

+

k∑
j=0

[
aj,k+1 + bj,k+1ak+1,k+1fy(tk+1, ηk+1)

1
Γ (α)

]
fy(tj, ηj)(y(tj)− yj)

}

= Ak+1 +
k∑
j=0

Bj,k+1(y(tj)− yj), (3.4)

in which

Ek+1[Dα∗y(t)] =
∫ tk+1

0
(tk+1 − t)α−1Dα∗y(t)dt −

k∑
j=0

bj,k+1Dα∗y(tj),

Fk+1[Dα∗y(t)] =
∫ tk+1

0
(tk+1 − t)α−1Dα∗y(t)dt −

k+1∑
j=0

aj,k+1Dα∗y(tj),

Ak+1 =
1

Γ (α)

{
Fk+1[Dα∗y(t)] + ak+1,k+1fy(tk+1, ηk+1)

1
Γ (α)

Ek+1[Dα∗y(t)]
}
,

and

Bj,k+1 =
1

Γ (α)

{[
aj,k+1 + bj,k+1ak+1,k+1fy(tk+1, ηk+1)

1
Γ (α)

]
fy(tj, ηj)

}
.

Next, we calculate Ek+1[Dα∗y(t)] and Fk+1[D
α
∗
y(t)]. Set g(t) = Dα

∗
y(t). Since Dα

∗
y(t) ∈ C r [0, T ], we have

g(t) = g(0)+ g ′(0)t +
g ′′(0)
2!
t2 + · · · +

g(r−1)(0)
(r − 1)!

t r−1 +
g(r)(ξ)
r!

t r , ξ ∈ (0, t).
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By simple calculations, one gets

Ek+1[tm] =
∫ tk+1

0
(tk+1 − t)α−1tmdt −

k∑
j=0

bj,k+1tmj

=

k∑
j=0

∫ tj+1

tj
(tk+1 − t)α−1(tm − tmj )dt

= hm+α
k∑
j=0

∫ j+1

j
(k+ 1− u)α−1(um − jm)du

= Cm,khm+α,

using the substitution t = hu and Cm,k =
∑k
j=0

∫ j+1
j (k+ 1− u)α−1(um − jm)du; thus,

Ek+1[g(t)] = g ′(0)C1,kh1+α +
g ′′(0)
2!
C2,kh2+α + · · · +

g(r−1)(0)
(r − 1)!

C r−1,khr−1+α +
g(r)(ξ)
r!

C r,khr+α

=

r∑
j=1

C j,khj+α. (3.5)

Here, C j,k =
g(j)(0)
j! C j,k(j < r) and C r,k =

g(r)(ξ)
r! C r,k.

Fk+1[tm] =
∫ tk+1

0
(tk+1 − t)α−1tmdt −

k+1∑
j=0

aj,k+1tmj

=

k∑
j=0

∫ tj+1

tj
(tk+1 − t)α−1

[
tm − tmj −

1
h
(tmj+1 − t

m
j )(t − tj)

]
dt

= hm+α
k∑
j=0

∫ j+1

j
(k+ 1− u)α−1[um − jm − ((j+ 1)m − jm)(u− j)]du

= Dm,khm+α,

where t = hu and Dm,k =
∑k
j=0

∫ j+1
j (k+ 1− u)α−1[um − jm − ((j+ 1)m − jm)(u− j)]du; therefore,

Fk+1[g(t)] =
g ′′(0)
2!
D2,kh2+α + · · · +

g(r−1)(0)
(r − 1)!

Dr−1,khr−1+α +
g(r)(ξ)
r!

Dr,khr+α =
r∑
j=2

Dj,khj+α. (3.6)

Here, Dj,k =
g(j)(0)
j! Dj,k(j < r) and Dr,k =

g(r)(ξ)
r! Dr,k.

From the expression for Ak+1 (see (3.4)), (3.5) and (3.6), we obtain

Ak+1 =
1

Γ (α)

{
r∑
j=2

Dj,khj+α + ak+1,k+1fy(tk+1, ηk+1)
1

Γ (α)

r∑
j=1

C j,khj+α
}

=

r∑
j=2

1
Γ (α)

Dj,khj+α +
r∑
j=1

hα

Γ (α + 2)
fy(tk+1, ηk+1)

1
Γ (α)

C j,khj+α

=

r∑
j=2

Dj,khj+α +
r∑
j=1

Cj,khj+2α,

in which Cj,k = 1
Γ (α)Γ (α+2) fy(tk+1, ηk+1)C j,k and Dj,k =

1
Γ (α)
Dj,k.

Using the expression for Bj,k+1 (see (3.4)) gives

Bj,k+1 =
1

Γ (α)

{[
aj,k+1 + bj,k+1ak+1,k+1fy(tk+1, ηk+1)

1
Γ (α)

]
fy(tj, ηj)

}
= ej,k+1hα + fj,k+1h2α,
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where

ej,k+1 =
fy(tj, ηj)
Γ (α + 2)

{
(kα+1 − (k− α)(k+ 1)α) if j = 0,
((k− j+ 2)α+1 + (k− j)α+1 − 2(k− j+ 1)α+1) if 1 ≤ j ≤ k,

and

fj,k+1 =
fy(tk+1, ηk+1)fy(tj, ηj)
Γ (α + 1)Γ (α + 2)

((k+ 1− j)α − (k− j)α).

Therefore,

y(tk+1)− yk+1 = Ak+1 +
k∑
j=0

Bj,k+1(y(tj)− yj)

=

r∑
j=2

Dj,khj+α +
r∑
j=1

Cj,khj+2α +
k∑
j=0

(ej,k+1hα + fj,k+1h2α)(y(tj)− yj). (3.7)

Now, we prove the following equality (a compact form of (3.7)) by using mathematical induction:

y(tk+1)− yk+1 =
r∑
j=1

hj+α
2k+1∑
i=0

cj,i,khiα. (3.8)

The coefficients cj,i,k will be given later on.
When k = 0, from (3.7) we have

y(t1)− y1 =
r∑
j=2

Dj,0hj+α +
r∑
j=1

Cj,0hj+2α

=

r∑
j=1

hj+α
{
Dj,0 + Cj,0h(2×0+1)α

}
=

r∑
j=1

hj+α
2×0+1∑
i=0

cj,i,0hiα.

Here D1,k ≡ 0, (k = 0, 1, . . . ,N), cj,0,0 = Dj,0 and cj,1,0 = Cj,0 are used. So (3.8) holds for k = 0.
Assume that the formula (3.8) holds for 1 ≤ j ≤ k − 1; next we show that (3.8) is also satisfied for j = k. According to

(3.7), one has

y(tk+1)− yk+1 =
r∑
l=2

Dl,khl+α +
r∑
l=1

Cl,khl+2α +
k∑
j=1

(ej,k+1hα + fj,k+1h2α)(y(tj)− yj)

=

r∑
l=2

Dl,khl+α +
r∑
j=1

Cj,khj+2α +
k∑
j=1

(ej,k+1hα + fj,k+1h2α)

{
r∑
l=1

hl+α
2j−1∑
i=0

cl,i,j−1hiα
}

=

r∑
l=1

hl+α
{
Dl,k + Cl,khα +

k∑
j=1

ej,k+1
2j−1∑
i=0

cl,i,j−1h(i+1)α +
k∑
j=1

fj,k+1
2j−1∑
i=0

cl,i,j−1h(i+2)α
}
.

The above formula can also be read as

y(tk+1)− yk+1 =
r∑
l=1

hl+α
{
Dl,k + Cl,khα + e1,k+1

1∑
i=0

cl,i,0h(i+1)α + e2,k+1
3∑
i=0

cl,i,1h(i+1)α + e3,k+1
5∑
i=0

cl,i,2h(i+1)α

+ · · · + ek,k+1
2k−1∑
i=0

cl,i,k−1h(i+1)α + f1,k+1
1∑
i=0

cl,i,0h(i+2)α + f2,k+1
3∑
i=0

cl,i,1h(i+2)α

+ f3,k+1
5∑
i=0

cl,i,2h(i+2)α + f4,k+1
7∑
i=0

cl,i,3h(i+2)α + · · · + fk,k+1
2k−1∑
i=0

cl,i,k−1h(i+2)α
}
.
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Then, we rewrite the above equation as

y(tk+1)− yk+1 =
r∑
l=1

hl+α
{
Dl,k +

(
Cl,k +

k∑
n=1

cl,0,n−1en,k+1

)
hα +

(
k∑
n=1

en,k+1cl,1,n−1 +
k∑
n=1

fn,k+1cl,0,n−1

)
h2α

+

(
k∑
n=2

en,k+1cl,2,n−1 +
k∑
n=1

fn,k+1cl,1,n−1

)
h3α +

(
k∑
n=2

en,k+1cl,3,n−1 +
k∑
n=2

fn,k+1cl,2,n−1

)
h4α

+

(
k∑
n=3

en,k+1cl,4,n−1 +
k∑
n=2

fn,k+1cl,3,n−1

)
h5α + · · ·

+



 k∑
n= i+12

en,k+1cl,i−1,n−1 +
k∑

n= i−12

fn,k+1cl,i−2,n−1

 hiα if i odd k∑
n= i2

en,k+1cl,i−1,n−1 +
k∑
n= i2

fn,k+1cl,i−2,n−1

 hiα if i even

+ · · · + fk,k+1cl,2k−1,k−1h(2k+1)α
}

=

r∑
j=1

hj+α
2k+1∑
i=0

cj,i,khiα (3.9)

in which cj,0,k = Dj,k, cj,1,k = Cj,k +
∑k
n=1 cj,0,n−1en,k+1,

cj,i,k =



k∑
n= i+12

en,k+1cj,i−1,n−1 +
k∑

n= i−12

fn,k+1cj,i−2,n−1 if i = 3, 5, . . . , 2k− 1,

k∑
n= i2

en,k+1cj,i−1,n−1 +
k∑
n= i2

fn,k+1cj,i−2,n−1 if i = 2, 4, . . . , 2k,

and cj,2k+1,k = fk,k+1cj,2k−1,k−1.
It immediately follows from (3.9) that (3.8) does hold for the case j = k. This completes the proof. �

From c1,0,T/h = D1,T/h = 0, we know that (3.8) includes h2+α, h3+α, . . . , hr+α; h1+2α, h1+3α, . . . , h1+(1+2T/h)α; . . . ;
hr+2α, hr+3α, . . . , hr+(1+2T/h)α . So the expansion begins with an h1+2α term for α ∈ (0, 1) whilst it begins with an h2+α
term for α > 1.
In the following, we study the case with α ∈ (0, 1) and f ∈ C3(G) (see DFF Theorem (d) and compare them).
We first set

Ek+1[g(t)] =

∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1g(t)dt −

k∑
j=0

bj,k+1g(tj)

∣∣∣∣∣ ,
and

Fk+1[g(t)] =

∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1g(t)dt −

k+1∑
j=0

aj,k+1g(tj)

∣∣∣∣∣ .
Theorem 3.2. Assume that 0 < α < 1 and f ∈ C3(G); then we have

max
0≤j≤N

|y(tj)− yj| =
{
O(h2α) if 0 < α < 0.5,
O(h) if 0.5 ≤ α < 1;

and

max
tj∈[ε,T ]

|y(tj)− yj| =
{
O(h1+α) if 0 < α < 0.5,
O(h2−α) if 0.5 ≤ α < 1,

for every ε > 0.



1580 C. Li, C. Tao / Computers and Mathematics with Applications 58 (2009) 1573–1588

Proof. Following Theorem 2.1(b), there exists a functionψ ∈ C2[0, T ], and some c1, c2, . . . , cν1 ∈ R and d1, d2, . . . , dν2 ∈ R
such that the solution y of (1.1) has the following form:

y(t) = ψ(t)+
ν1∑
ν=1

cν tνα +
ν2∑
ν=1

dν t1+να

where ν1 = d2/αe − 1 and ν2 = d1/αe − 1.
Hence, by simple calculations we have

Dα
∗
y(t) = Dα

∗
ψ(t)+

ν1∑
ν=1

Γ (να + 1)
Γ (να + 1− α)

cν tνα−α +
ν2∑
ν=1

Γ (να + 2)
Γ (να + 2− α)

dν t1+να−α. (3.10)

Since ψ(t) ∈ C2[0, T ], 0 < α < 1, following from Theorem 2.2, we have

Dα
∗
ψ(t) =

ψ ′(0)
Γ (2− α)

t1−α + g(t), (3.11)

with g ∈ C1[0, T ] and function g ′ satisfies a Lipschitz condition of order (1− α) ∈ (0, 1).
According to Theorem 2.4(b), there exist positive constants BTrα,1−α andM(g, 1− α) such that

Fk+1[g(t)] ≤ BTrα,1−αM(g, 1− α)t
α
k+1h

2−α.

Now, applying DFF theorem (c), we get

Fk+1

[
ψ ′(0)

Γ (2− α)
t1−α

]
≤ CTrα,1−αt

α−1
k+1 h

2−α.

Thus, from (3.11) we have

Fk+1[Dα∗ψ(t)] ≤ 2max{B
Tr
α,1−αM(g, 1− α)t

α
k+1h

2−α, CTrα,1−αt
α−1
k+1 h

2−α
} ≤ CTr1 t

α−1
k+1 h

2−α. (3.12)

Also by Theorem 2.4(c), one has

Fk+1

[
ν1∑
ν=1

Γ (αν + 1)
Γ (αν + 1− α)

cν tαν−α
]
≤

ν1∑
ν=2

Γ (αν + 1)
Γ (αν + 1− α)

|cν |Fk+1[tαν−α]

≤

ν1∑
ν=2

Γ (αν + 1)
Γ (αν + 1− α)

|cν |CTrα,αν−αt
α+αν−α−σν
k+1 hσν

≤ CTr2 t
α−1
k+1 h

α+1, (3.13)

where σν = min(2, αν − α + 1). Similarly,

Fk+1

[
ν2∑
ν=1

Γ (να + 2)
Γ (να + 2− α)

dν t1+να−α
]
≤

ν2∑
ν=1

Γ (να + 2)
Γ (να + 2− α)

|dν |Fk+1[t1+αν−α]

≤

ν2∑
ν=1

Γ (να + 2)
Γ (να + 2− α)

|dν |CTrα,1+αν−α,ν t
α−1
k+1 h

2

≤ CTr3 t
α−1
k+1 h

2. (3.14)

From (3.12) to (3.14), it follows that

Fk+1[Dα∗y(t)] ≤ 3max{C
Tr
1 t

α−1
k+1 h

2−α, CTr2 t
α−1
k+1 h

α+1, CTr3 t
α−1
k+1 h

2
}

≤ C2tα−1k+1

{
hα+1 if 0 < α < 0.5,
h2−α if 0.5 ≤ α < 1.

Next, we estimate Ek+1[Dα∗y(t)]. By the same reasoning, one has

Ek+1[g(t)] ≤
1
α
‖g ′‖∞tαk+1h, (3.15)

and

Ek+1

[
ν2∑
ν=1

Γ (να + 2)
Γ (να + 2− α)

dν t1+να−α
]
≤

ν2∑
ν=1

Γ (να + 2)
Γ (να + 2− α)

|dν |Ek+1[t1+αν−α]

≤ CRe1 t
α
k+1h. (3.16)
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From Theorem 2.3(b), one gets

Ek+1

[
ψ ′(0)

Γ (2− α)
t1−α

]
≤ CRe2 h, (3.17)

and

Ek+1

[
ν1∑
ν=1

Γ (αν + 1)
Γ (αν + 1− α)

cν tαν−α
]
≤

ν1∑
ν=1

Γ (αν + 1)
Γ (αν + 1− α)

|cν |Ek+1[tαν−α]

≤

ν1∑
ν=1

Γ (αν + 1)
Γ (αν + 1− α)

|cν |CReαν−αt
α+αν−α−1
k+1 h

≤ CRe3 t
α−1
k+1 h. (3.18)

Combining (3.10) and (3.15)–(3.18) leads to

Ek+1[Dα∗y(t)] ≤ 4max
{
1
α
‖g ′‖∞tαk+1h, C

Re
1 t

α
k+1h, C

Re
2 h, C

Re
3 t

α−1
k+1 h

}
≤ C1tα−1k+1 h.

Thus, we have

Ek+1[Dα∗y(t)] ≤ C1t
α−1
k+1 h,

and

Fk+1[Dα∗y(t)] ≤ C2t
α−1
k+1

{
hα+1 if 0 < α < 0.5
h2−α if 0.5 ≤ α < 1

= C2tα−1k+1 h
κ ,

in which κ = min(1+ α, 2− α).
Next, we show the following formula holds for sufficiently small h:

|y(tj)− yj| ≤ Ctα−1j hq, (q = min(1+ α, 2− α)) (3.19)

for all j ∈ {0, 1, . . . ,N}, where C is a suitable constant.
Here, we again usemathematical induction to show that (3.19) holds. In view of the given initial condition, the induction

basis (j = 0) is pre-assumed. Suppose that (3.19) is true for j = 0, 1, . . . , k for k ≤ N − 1. Nowwe prove that the inequality
also holds for j = k+ 1. To do this, we first look at the error of the predictor yPk+1. By construction of the predictor we find
that

|y(tk+1)− yPk+1| =
1

Γ (α)

∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1f (t, y(t))−

k∑
j=0

bj,k+1f (tj, yj)

∣∣∣∣∣
≤

1
Γ (α)

∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1Dα∗y(t)dt −

k∑
j=0

bj,k+1Dα∗y(tj)

∣∣∣∣∣+ 1
Γ (α)

k∑
j=0

bj,k+1|f (tj, y(tj)− f (tj, yj))|

≤
C1tα−1k+1

Γ (α)
h+

1
Γ (α)

k∑
j=1

bj,k+1L|y(tj)− yj| ≤
C1tα−1k+1

Γ (α)
h+

1
Γ (α)

k∑
j=1

bj,k+1LCtα−1j hq. (3.20)

On the basis of the bound (3.20) for the predictor error we begin to determine the corrector error. For j = k+ 1,

|y(tk+1)− yk+1| =
1

Γ (α)

∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1f (t, y(t))−

k∑
j=0

aj,k+1f (tj, yj)− ak+1,k+1f (tk+1, yPk+1)

∣∣∣∣∣
≤

1
Γ (α)

∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1Dα∗y(t)dt −

k+1∑
j=0

aj,k+1Dα∗y(tj)

∣∣∣∣∣
+

k∑
j=0

aj,k+1|f (tj, y(tj)− f (tj, yj))| +
1

Γ (α)
ak+1,k+1|f (tk+1, y(tk+1)− f (tk+1, yPk+1))|

≤
C2tα−1k+1

Γ (α)
hκ +

CL
Γ (α)

hq
k∑
j=1

aj,k+1tα−1j + ak+1,k+1
L

Γ (α)

(
C1tα−1k+1

Γ (α)
h+

1
Γ (α)

k∑
j=1

bj,k+1LCtα−1j hq
)
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=
C2tα−1k+1

Γ (α)
hκ + ak+1,k+1

C1L
Γ 2(α)

tα−1k+1 h

+
CL
Γ (α)

hq
k∑
j=1

aj,k+1tα−1j + ak+1,k+1
CL2

Γ 2(α)
hq

k∑
j=1

bj,k+1tα−1j . (3.21)

We now estimate terms of form
∑k−1
j=1 aj,k+1t

α−1
j and

∑k−1
j=1 bj,k+1t

α−1
j . By the Mean Value Theorem again we have

0 ≤ aj,k+1 =
hα

α(α + 1)
((k− j+ 2)α+1 + (k− j)α+1 − 2(k− j+ 1)α+1)

≤ chα(k− j)α−1,

0 ≤ bj,k+1 =
hα

α
((k+ 1− j)α − (k− j)α) ≤ hα(k− j)α−1

for 1 ≤ j ≤ k − 1, where the constant c is independent of j and k, respectively, so the problem reduces to finding a bound
for Sk = hα+α−1

∑k−1
j=1 j

α−1(k− j)α−1.

Sk ≤ hα+α−1
∫ k

0
xα−1(k− x)α−1dx = hα+α−1kα+α−1

∫ 1

0
tα−1(1− t)α−1dt

= B(α, α)tα+α−1k ≤ 2B(α, α)tα+α−1k+1 = Btα+α−1k+1 ≤ BTαtα−1k+1 . (3.22)

It immediately follows from (3.21) and (3.22) that

|y(tk+1)− yk+1| ≤
C2tα−1k+1

Γ (α)
hκ + ak+1,k+1

C1L
Γ 2(α)

tα−1k+1 h+
CL
Γ (α)

hq
k∑
j=1

aj,k+1tα−1j + ak+1,k+1
CL2

Γ 2(α)
hq

k∑
j=1

bj,k+1tα−1j

≤

{
C2
Γ (α)

hκ−q +
C1L

Γ (α)Γ (α + 2)
h1+α−q +

CL
Γ (α)

(
cBTα + 2

2αhα

α(α + 1)

)
+

CL2hα

Γ (α)Γ (α + 2)

(
BTα +

2α+1hα

α

)}
tα−1k+1 h

q
≤ Ctα−1k+1 h

q,

where ak+1,k+1 = hα
α(α+1) , ak,k+1 ≤

2α+1hα
α(α+1) , bk,k+1 =

hα
α
, tk+1 ≤ T and ( k

k+1 )
α−1
≤ 2 are used. Therefore, this completes

(3.19).
Furthermore, we deduce

max
0≤j≤N

|y(tj)− yj| =
{
O(h2α) if 0 < α < 0.5,
O(h) if 0.5 ≤ α < 1;

and for arbitrary ε > 0 then with tj ∈ [ε, T ],

|y(tj)− yj| ≤ Cεα−1
{
hα+1 if 0 < α < 0.5,
h2−α if 0.5 ≤ α < 1;

or

max
tj∈[ε,T ]

|y(tj)− yj| =
{
O(h1+α) if 0 < α < 0.5,
O(h2−α) if 0.5 ≤ α < 1.

The proof is thus finished. �

From Theorem 2.1(b), the condition of this theorem implies y(t) ∈ C[0, T ] but y(t) does not lie in C1[0, T ], let alone
y(t) 6∈ C2[0, T ]. Compared to DFF Theorem (c), the condition here is weaker but the same results hold.
In the following, we give a lemma.

Lemma 3.3. If ψ ∈ C1[0, T ], 0 < α < 1, then

Ek+1

[∫ t

0
(t − τ)−αψ ′(τ )dτ

]
≤

2
α(1− α)

‖ψ ′‖tαk+1h
1−α,
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and

Fk+1

[∫ t

0
(t − τ)−αψ ′(τ )dτ

]
≤

A
1− α

‖ψ ′‖∞tαk+1h
1−α,

where A is a constant independent of k and h.

Proof. Using the expressions for Ek+1, we have

Ek+1

[∫ t

0
(t − τ)−αψ ′(τ )dτ

]
=

∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1

∫ t

0
(t − τ)−αψ ′(τ )dτdt −

k∑
j=0

bj,k+1

∫ tj

0
(tj − τ)−αψ ′(τ )dτ

∣∣∣∣∣
=

∣∣∣∣∣ k∑
j=0

∫ tj+1

tj

{∫ t

0
(t − τ)−αψ ′(τ )dτ −

∫ tj

0
(tj − τ)−αψ ′(τ )dτ

}
(tk+1 − t)α−1dt

∣∣∣∣
≤

k∑
j=0

∫ tj+1

tj

∣∣∣∣∫ t

0
(t − τ)−αψ ′(τ )dτ −

∫ tj

0
(tj − τ)−αψ ′(τ )dτ

∣∣∣∣ (tk+1 − t)α−1dt.∣∣∣∣∫ t

0
(t − τ)−αψ ′(τ )dτ −

∫ tj

0
(tj − τ)−αψ ′(τ )dτ

∣∣∣∣
≤ ‖ψ ′‖∞

(∫ tj

0
(tj − τ)−αdτ −

∫ tj

0
(t − τ)−αdτ +

∫ t

tj
(t − τ)−αdτ

)

≤
1

1− α
‖ψ ′‖∞

(
t1−αj + (t − tj)1−α − t1−α + (t − tj)1−α

)
≤

2
1− α

‖ψ ′‖∞(t − tj)1−α ≤
2

1− α
‖ψ ′‖∞h1−α.

So, one has

Ek+1

[∫ t

0
(t − τ)−αψ ′(τ )dτ

]
≤

2
1− α

‖ψ ′‖∞h1−α
k∑
j=0

∫ tj+1

tj
(tk+1 − t)α−1dt

=
2

1− α
‖ψ ′‖∞h1−α

∫ tk+1

0
(tk+1 − t)α−1dt =

2
α(1− α)

‖ψ ′‖∞tαk+1h
1−α.

Applying the expression for Fk+1 gives

Fk+1

[∫ t

0
(t − τ)−αψ ′(τ )dτ

]
=

∣∣∣∣∣
∫ tk+1

0
(tk+1 − t)α−1

∫ t

0
(t − τ)−αψ ′(τ )dτdt −

k+1∑
j=0

aj,k+1

∫ tj

0
(tj − τ)−αψ ′(τ )dτ

∣∣∣∣∣
=

∣∣∣∣∣ k∑
j=0

∫ tj+1

tj
(tk+1 − t)α−1

{∫ t

0
(t − τ)−αψ ′(τ )dτ

−

∫ tj

0
(tj − τ)−αψ ′(τ )dτ −

1
h

[∫ tj+1

0
(tj+1 − τ)−αψ ′(τ )dτ −

∫ tj

0
(tj − τ)−αψ ′(τ )dτ

]
(t − tj)

}
dt
∣∣∣∣

≤

k∑
j=0

∫ tj+1

tj
(tk+1 − t)α−1

∣∣∣∣∫ t

0
(t − τ)−αψ ′(τ )dτ

−

∫ tj

0
(tj − τ)−αψ ′(τ )dτ −

1
h

[∫ tj+1

0
(tj+1 − τ)−αψ ′(τ )dτ −

∫ tj

0
(tj − τ)−αψ ′(τ )dτ

]
(t − tj)

∣∣∣∣ dt.
By tedious calculations, one gets∣∣∣∣∫ t

0
(t − τ)−αψ ′(τ )dτ −

∫ tj

0
(tj − τ)−αψ ′(τ )dτ

−
1
h

[∫ tj+1

0
(tj+1 − τ)−αψ ′(τ )dτ −

∫ tj

0
(tj − τ)−αψ ′(τ )dτ

]
(t − tj)

∣∣∣∣
≤

∣∣∣∣∫ tj

0

[
(t − τ)−α − (tj − τ)−α −

1
h
((tj+1 − τ)−α − (tj − τ)−α)(t − tj)

]
ψ ′(τ )dτ

∣∣∣∣
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+

∣∣∣∣∣
∫ t

tj

[
(t − τ)−α −

1
h
(tj+1 − τ)−α(t − tj)

]
ψ ′(τ )dτ

∣∣∣∣∣+
∣∣∣∣1h
∫ tj+1

t
(tj+1 − τ)−α(t − tj)ψ ′(τ )dτ

∣∣∣∣
≤

1
1− α

‖ψ ′‖∞

{∣∣∣∣−(t − tj)1−α + t1−α − t1−αj −
1
h
(t − tj)[−(tj+1 − tj)1−α + t1−αj+1 − t

1−α
j ]

∣∣∣∣
+

∣∣∣∣(t − tj)1−α − 1h (t − tj)[−(tj+1 − t)1−α + (tj+1 − tj)1−α]
∣∣∣∣+ 1h (tj+1 − t)1−α(t − tj)

}
≤

1
1− α

‖ψ ′‖∞

{
t1−α − t1−αj −

1
h
(t1−αj+1 − t

1−α
j )(t − tj)

+ ((t − tj)1−α − h−α(t − tj))+ (t − tj)1−α − h−α(t − tj)+
2
h
(tj+1 − t)1−α(t − tj)

}
=

1
1− α

‖ψ ′‖∞

{
t1−α − t1−αj −

1
h
(t1−αj+1 − t

1−α
j )(t − tj)

+ 2[h−1(tj+1 − t)1−α(t − tj)+ (t − tj)1−α − h−α(t − tj)]
}

≤
1

1− α
‖ψ ′‖∞

{
t1−α − t1−αj −

1
h
(t1−αj+1 − t

1−α
j )(t − tj)+ 4h1−α

}
.

Utilizing the above inequalities and Theorem 2.4(c), we have

Fk+1

[∫ t

0
(t − τ)−αψ ′(τ )dτ

]
≤

1
1− α

‖ψ ′‖∞

{
Fk+1[t1−α] + 4h1−α

k∑
j=0

∫ tj+1

tj
(tk+1 − t)α−1dt

}

≤
1

1− α
‖ψ ′‖∞

{
CTrα,1−αt

α−1
k+1 h

2−α
+
4
α
tαk+1h

1−α
}
≤

A
1− α

‖ψ ′‖∞tαk+1h
1−α.

The proof is completed. �

If we weaken the smooth condition of f in Theorem 3.2, we get the following results.

Theorem 3.4. Let 0 < α < 1. Then, if f ∈ C2(G),

max
tj∈[ε,T ]

|y(tj)− yj| = O(h1−α),

for every ε > 0, and

max
0≤j≤N

|y(tj)− yj| = O(1).

Proof. Since f ∈ C2(G), using Theorem 2.1(a) we have

y(t) =
ν1∑
ν=1

cν tαν + ψ(t),

in which ν1 = d1/αe − 1, ψ(t) ∈ C1[0, T ].
Now, using the Caputo fractional derivative definition yields

Dα
∗
y(t) =

ν1∑
ν=1

Γ (αν + 1)
Γ (αν + 1− α)

cν tαν−α +
1

Γ (1− α)

∫ t

0
(t − τ)−αψ ′(τ )dτ . (3.23)

Set g(t) = 1
Γ (1−α)

∫ t
0 (t − τ)

−αψ ′(τ )dτ . Next we estimate Ek+1[g(t)] and Fk+1[g(t)].

Ek+1[g(t)] =
1

Γ (1− α)
Ek+1

[∫ t

0
(t − τ)−αψ ′(τ )dτ

]
≤

1
Γ (1− α)

2
α(1− α)

‖ψ ′‖tαk+1h
1−α

=
2

αΓ (2− α)
‖ψ ′‖tαk+1h

1−α. (3.24)
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Also,

Fk+1[g(t)] =
1

Γ (1− α)
Fk+1

[∫ t

0
(t − τ)−αψ ′(τ )dτ

]
≤

A
Γ (2− α)

‖ψ ′‖∞tαk+1h
1−α

≤
A

Γ (2− α)
‖ψ ′‖∞tαk+1h

1−α. (3.25)

From Theorem 2.4(b) we have

Ek+1

[
ν1∑
ν=1

Γ (αν + 1)
Γ (αν + 1− α)

cν tαν−α
]
≤

ν1∑
ν=1

Γ (αν + 1)
Γ (αν + 1− α)

|cν |Ek+1[tαν−α]

≤

ν1∑
ν=1

Γ (αν + 1)
Γ (αν + 1− α)

|cν |CReα,αν−αt
α+αν−α−1
k+1 h

≤ CRetα−1k+1 h, (3.26)

and from Theorem 2.4(c) we have

Fk+1

[
ν1∑
ν=1

Γ (αν + 1)
Γ (αν + 1− α)

cν tαν−α
]
≤

ν1∑
ν=2

Γ (αν + 1)
Γ (αν + 1− α)

|cν |Fk+1[tαν−α]

≤

ν1∑
ν=2

Γ (αν + 1)
Γ (αν + 1− α)

|cν |CTrα,αν−αt
α+αν−α−σν
k+1 hσν

≤ CTrtα−1k+1 h
α+1, (3.27)

where σν = min(2, αν − α + 1).
Thus, from (3.23), (3.24) and (3.26) we get

Ek+1[Dα∗y(t)] ≤ 2max
{

2
αΓ (2− α)

‖ψ ′‖tαk+1h
1−α, CRetα−1k+1 h

}
≤ C1tα−1k+1 h

1−α, (3.28)

and from (3.23), (3.25) and (3.27) we also get

Fk+1[Dα∗y(t)] ≤ 2max
{

A
Γ (2− α)

‖ψ ′‖tαk+1h
1−α, CTrtα−1k+1 h

α+1
}

≤ C2tα−1k+1 h
1−α. (3.29)

Now, by using (3.28) and (3.29) and by almost the same reasoning as for Theorem 3.2, we obtain

|y(tj)− yj| ≤ Ctα−1j hq, (q = min(1, 1− α)).

So, if ε ∈ (0, T ] and tj ∈ [ε, T ], then

|y(tj)− yj| ≤ Ctα−1j h1−α ≤ Cεα−1hq,

or

max
tj∈[ε,T ]

|y(tj)− yj| = O(h1−α),

and

max
0≤j≤N

|y(tj)− yj| = O(1).

The proof is completed. �

According to Theorems 2.1, 3.2 and 3.4, the smooth condition of ψ(t) plays an important role in error estimates. If this
term is removed, what will happen? We will give an answer.
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Theorem 3.5. Suppose that the solution y of (1.1) is expressed in the form

y(t) =
ν0∑
ν=0

cν tαν, (3.30)

in which ν0 ∈ Z+, with the constants c1, c2, . . . , cν0 ∈ R. Then, for ε ∈ (0, T ],

max
tj∈[ε,T ]

|y(tj)− yj| =
{
O(h2) if 1 < α,

O(h1+α) if 0 < α < 1,

and moreover,

max
0≤j≤N

|y(tj)− yj| =
{
O(h2) if 1 < α,

O(h2α) if 0 < α < 1.

Proof. Using (3.30) and the Caputo fractional derivative definition yields

Dα
∗
y(t) =

ν0∑
ν=1

Γ (να + 1)
Γ (να + 1− α)

cν tνα−α. (3.31)

If α > 1, it follows from (3.31) and Theorems 2.3 and 2.4 that

Ek+1[Dα∗y(t)] ≤
ν0∑
ν=1

Γ (να + 1)
Γ (να + 1− α)

|cν |Ek+1[tνα−α] ≤ C1tαk+1h, (3.32)

and

Fk+1[Dα∗y(t)] ≤
ν0∑
ν=1

Γ (να + 1)
Γ (να + 1− α)

|cν |Fk+1[tνα−α] ≤ C2t
2(α−1)
k+1 h2. (3.33)

Now, by using (3.32) and (3.33) and Lemma 3 in [5], we get

|y(tj)− yj| ≤ Chq, (q = min(2, 1+ α)).

So

max
0≤j≤N

|y(tj)− yj| = O(h2).

If 0 < α < 1, by almost the same reasoning, we again have

Ek+1[Dα∗y(t)] ≤
ν0∑
ν=1

Γ (να + 1)
Γ (να + 1− α)

|cν |Ek+1[tνα−α] ≤ C3tα−1k+1 h, (3.34)

and

Fk+1[Dα∗y(t)] ≤
ν0∑
ν=1

Γ (να + 1)
Γ (να + 1− α)

|cν |Fk+1[tνα−α] ≤ C4tα−1k+1 h
α+1. (3.35)

By using (3.34) and (3.35) and by almost the same proof as for Theorem 3.2, we obtain

|y(tj)− yj| ≤ C5tα−1hq, (here q = 1+ α).

So, for arbitrary ε > 0 and tj ∈ [ε, T ],

|y(tj)− yj| ≤ C5εα−1h1+α;

i.e.,

max
tj∈[ε,T ]

|y(tj)− yj| = O(h1+α);

and for 0 ≤ j ≤ N ,

|y(tj)− yj| ≤ Ch2α.

This ends the proof. �
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Table 1
Error for Eq. (4.1) with 0 < α < 1, taken at t = 1.

h α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

1/10 −1.38(−2) −4.73(−3) −2.71(−3) −1.82(−3) −1.31(−3)
1/20 −5.29(−3) −1.62(−3) −8.36(−4) −5.15(−4) −3.36(−4)
1/40 −2.21(−3) −5.70(−4) −2.67(−4) −1.49(−4) −8.74(−5)
1/80 −9.16(−4) −2.05(−4) −8.81(−5) −4.44(−5) −2.29(−5)
1/160 −3.79(−4) −7.55(−5) −2.95(−5) −1.33(−5) −6.07(−6)
1/320 −1.58(−4) −2.82(−5) −1.01(−5) −4.04(−6) −1.61(−6)

EOC 1.26 1.42 1.55 1.72 1.91

Compared to DFF Theorem (b) (the case with α > 1 and y ∈ Cdαe+1[0, T ]), here the order of the estimate is much higher
but y ∈ Cdαe−1[0, T ], except for the special form of y(t). The error estimates are actually the posterior estimates. A more
general case relating to the posterior error estimates is given below.

Theorem 3.6. Suppose that the solution y of (1.1) is expressed in the form

y(t) =
ν0∑
ν=0

c0,ν tαν +
ν1∑
ν=1

c1,ν t1+αν +
ν2∑
ν=1

c2,ν t2+αν + · · · +
νl∑
ν=1

cl,ν t l+αν, (3.36)

in which ν0, ν1, ν2, . . . , νl, l ∈ Z+, all c0,ν, c1,ν, . . . , cl,ν are real numbers. Then, for ε ∈ (0, T ],

max
tj∈[ε,T ]

|y(tj)− yj| =
{
O(h2) if 1 < α,

O(h1+α) if 0 < α < 1,

and moreover,

max
0≤j≤N

|y(tj)− yj| =
{
O(h2) if 1 < α,

O(h2α) if 0 < α < 1.

The proof of this theorem is the same as that of Theorem 3.5 and so is omitted here. It is worthy of note that the last l
terms on the right hand side of Eq. (3.36) cannot begin with ν = 0; otherwise, the above conclusion does not hold yet. For
example, if α ∈ (0, 1) and the second term on the right hand side of (3.36) begins with ν = 0, then the error estimate is the
same as that of Theorem 3.2. Those cases can be considered in the same manner, so they are left out of this article.

4. A numerical example

In this section we present a numerical example to illustrate the error bounds derived above.

Example 1.

Dα
∗
y(t) = −y(t)+

1
Γ (5− α)

t4−α, α ∈ (0, 1), y(0) = 1. (4.1)

Its exact solution is

y(t) = t4Eα,5(−tα)+ Eα(−tα),

where

Eα,β(z) =
∞∑
0

zk

Γ (αk+ β)
, Eα(z) = Eα,1(z).

In Table 1 we show the errors of the Adams method at the point t = 1 for various step sizes and α. In each case, the
leftmost column stands for the step length, while the following columns give the error of our scheme at t = 1. The last
row states the experimental order of convergence (called ‘‘EOC’’ for brevity). As usual, the notation −1.38(−2) indicates
−1.38× 10−2, etc.
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