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Bab-Ezzouar, Algiers, Algeria
Received 9 May 2012; accepted 30 August 2012

Available online 7 September 2012
KEYWORDS

Basic catalysis;

Benzyl chloride;

Toluene;

Fe–Mg–Al-LDH;

Nanocomposite materials;

Hammett relationship
Abstract The alkylation of toluene, reaction employing benzyl chloride as the alkylating agent

over basic hydrotalcite materials: Fe–Mg–Al-LDH prepared by different synthesis methods, includ-

ing the method of co-precipitation, impregnation and a new method called the method of interca-

lation by anion exchange in the lamellar space of the host structure LDH. Our prepared solids were

characterized by chemical analysis, XRD analysis, BET method and thermogravimetric analysis

(TGA) and tested in the alkylation of toluene by benzyl chloride reaction. Fe–Mg–Al-LDH clay

without or with calcination (at 773 K) has been investigated. The catalyst derived from the hydro-

talcite by its calcination at 773 K shows high catalytic activity for the alkylation of toluene and

other aromatic compounds. The catalytically active species present in the catalyst in its most active

form are the oxides of iron on the catalyst surface.
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Friedel–Crafts alkylations comprise a very important class of

reactions, which are of common use in organic chemistry.
The alkylation of toluene by benzyl chloride is interesting for
the preparation of polyaromatic compounds, which are the

basis of classical organic chemistry and enable the creation
of C–C bonds. In the homogeneous phase, this reaction is
catalyzed at the industrial scale by AlCl3, FeCl3, BF3, ZnCl2
and H2SO4 (Olah, 1973; Commandeur et al., 1991). The new
environmental legislation pushes for the replacement of all li-

quid acids by solid acid catalysts which are environmentally
more friendly catalysts and which lead to minimal pollution
and waste (Clark et al., 1994; Cao et al., 1998). Fe-based acid

solid catalysts are considered to be promising catalysts for the
benzylation of benzene. Among these Fe-based solids we find:
Fe-HZSM-5 (Choudhary et al., 1999), Fe-SBA-15 (Sun et al.,

2006), Fe-MCM-41 (Arafat and Alhamed, 2009), Fe-modified
ZSM-5 and H-b zeolites; Fe2O3 or FeCl3 deposited on micro-,
meso- and macroporous (Choudhary et al., 1999); Fe-containing

mesoporous molecular sieve materials (Hentit et al., 2007;
Benadji et al., 2010; Bachari et al., 2010; Merabti et al., 2010),
and FeCl3 supported on acidic alumina (Salavati-Niasari
et al., 2004) for the alkylation reaction of toluene and other

http://crossmark.crossref.org/dialog/?doi=10.1016/j.arabjc.2012.08.005&domain=pdf
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aromatic compounds. Nevertheless, it remains until now the
discussion on the active sites for reaction. However, the reports
on the use of basic catalysts for the alkylation reactions are

scarce (Ono and Baba, 1997). Among these basic solids, the
layered double hydroxides (LDHs), are the subject of consider-
able interest in recent years because of their electrochemical

properties and anion exchange. Most applications of these
materials are in the field of heterogeneous catalysis due to
the production of different layers of cations and anions in

interlayer by synthetic chemistry. Recently, Choudhary et al.
found that Ga and In–Mg-hydrotalcite anionic clay, after its
first use in the reaction or HCl gas pretreatment, shows very
high activity in the benzylation of toluene even in the presence

of moisture in the reaction mixture (Choudhary et al., 2001,
2002, 2005). Other side, Bachari et al. also found that
Mg–Fe-LDH catalysts show remarkable activities for the

benzylation of aromatics (Tahir et al., 2008).
Without knowing structure–reactivity relation, it is difficult

to synthesize an efficient catalyst for the Friedel–Crafts alkyla-

tions and several efforts have been made to achieve this goal
using different ways for the synthesis of Fe-containing solid
catalysts. In the present work, we report the synthesis of Fe–

Mg–Al-LDH using different ways for iron introduction in
LDH structures such as coprecipitation, impregnation or a
new way by intercalation method of guest anionic iron com-
plexes into host Mg–Al LDH by anionic exchange (Chebout

et al., 2010). Finally, our solids are tested in the alkylation
of toluene with benzyl chloride reaction.

2. Experimental

2.1. Catalysts preparation

2.1.1. Preparation of Mg–Al-LDH and Fe–Mg–AL-LDH by the

co precipitation method

The Mg–Al LDH (Mg/Al = 2) was prepared by coprecipita-
tion at a constant pH (=10) of suitable amounts of Mg

(NO3)2.6H2O (0.2 M) (Aldrich–Chemie), Al (NO3)3.6H2O
(0.1 M) (Aldrich–Chemie) with a 2 M NaOH solution. In or-
der to maintain the pH constant, the addition of the alkaline
solution was controlled by a pH-STAT Titrino (Metrohm)

apparatus. The suspension was aged at 353 K for 17 h. The
precipitate formed was separated by centrifugation, thor-
oughly washed with distilled water (Na < 100 ppm), and dried

overnight at 80 �C. Same steps are followed for Mg–Al–Fe
LDH (Mg/(Al + Fe) = 2) preparation with suitable amounts
of Mg(NO3)2.6H2O (0.2 M), Al(NO3)3.6H2O (0.06 M) and

Fe(NO3)3.9H2O (0.04 M) (Aldrich–Chemie).

2.1.2. Preparation of Fe/Mg–Al-LDH by the impregnation

method

The solid Fe/Mg–Al LDH was prepared by the impregnation
method at constant pH, which is permeated iron by adding a
metal salt Fe (NO3)3.9H2O (0.04 M) (Aldrich–Chemie) to the

solution containing the Mg–Al LDH defined by a molar ratio
of Mg/Al = 2 and Mg/Fe = 5. These two solutions are mixed
for 5 min at room temperature and maintained at a constant
pH value alkaline (pH 10). The precipitate is filtered and the

solid obtained is washed several times with double distilled
water until complete elimination of excess ions in the solid
(NO�3 , Na+, etc.).The impregnated support is then dried in
an oven at 353 K overnight.

2.1.3. Preparation of Fe (citrates)–Mg–Al-LDH by the
intercalation method «LDH hybrid» (organic and inorganic)

Pre-chelation of Fe3+ cation with C6O7H
�3
3 ððcitratesÞ

�3Þ com-
plexing agent was previously performed. For this purpose,

aqueous solutions of Fe (NO3)3.9H2O (0.1 M) and Na3 (ci-
trates) (0.12 M) were mixed according to the stoichiometry
((citrates)3�)/Fe3+ = 1.5/1. Then the pH of the solutions

was increased to ca. 10.5 by adding the required amount of a
0.5 M NaOH solution to obtain [Fe (citrates) OH]� complex.
That led to stable and clear suspensions which have been used

as freshly prepared for intercalation. The solid was prepared
from the host Mg–Al LDH by anionic exchange of the nitrate
ions NO�3 by the anionic Fe3+ cation-containing complexes.

The Mg–Al LDH (3 g) was dispersed in the required amount
(100–150 ml) of a suspension corresponding to 2.5 times the
theoretical anionic exchange capacity (AEC) of the sample
(�3.8 mequi. g�1). The exchange process was performed by

stirring the mixture at room temperature for 18 h. The solid
was then recovered and washed by dispersion and centrifuga-
tion in deionized water, and finally dried at 353 K for 12 h.

2.2. Activation of the samples

The mixed oxides were obtained by calcination of the samples

at 773 K in a dry synthetic air flow (100 ml min�1). The tem-
perature was raised at the rate of 1 �C min�1 up to 773 K,
and then maintained for 4 h.

2.3. Characterization techniques

X-ray powder diffraction (XRD) patterns were recorded on a
Bruker D8 Advance X-ray diffractometer using Cu Ka1 radi-

ation (ka = 1.54184 Å, 40 kV and 50 mA). Data were collected
between 2� and 70� 2h, with a step size of 0.02� and a counting
time of 1 s/step.

Chemical analyses of both as-prepared samples and cal-
cined materials were carried out by inductively coupled plasma
atomic emission spectroscopy (ICP-AES).

Coupled thermogravimetric (TGA) and differential thermal
analysis (DTA) were performed in a Setaram apparatus at a
heating rate of 5 �C min�1, in air, using 40 mg of each sample.

The surfaces of samples were measured using the BET
adsorption. N2 sorption experiments at �77 K were performed
on samples previously calcined at 773 K for 5 h and degassed
at 523 K(10�4 Pa) with a Micromeritics ASAP 2000 instru-

ment. As micropores were always present, the surfaces were
calculated from the t-plot method.

2.4. Catalytic testing

The alkylation reactions over our catalysts were carried out in
a magnetically stirred glass reactor (25 cm3) fitted with a reflux

condenser, having a low dead volume, mercury thermometer
and arrangement for continuously bubbling moisture-free
nitrogen N2 (flow rate = 30 cm3 min�1) through the liquid

reaction mixture, at the following reaction conditions: reaction
mixture = 15 ml of moisture-free liquid aromatic compound



Figure 1 XRD pattern of Mg–Al LDH(a); Mg–Al–Fe LDH(b);

Mg–Fe–Al-LDH(c); Fe (citrates)–Mg–Al LDH (d) samples (\:

NO3–LDH, +: Fe (citrates)-LDH).
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(or 2.5 ml of moisture-free aromatic compound mixed with
12.5 ml of moisture-free solvent) + 1.0 ml of benzyl chloride,
amount of catalyst = 0.1 g, and reaction tempera-

ture = 353 K. The reaction was started by heating the reaction
mixture containing toluene, benzyl chloride, and n-pentadecane
to the reaction temperature then injecting the catalyst in the

reactor. Measuring quantitatively, the HCl evolved in the reac-
tion by acid–base titration (by absorbing the HCl carried by
N2 in a 0.1 M NaOH solution containing phenolphthalein

indicator) followed the course of the reaction. The polybenzyl
chloride (which is formed by the condensation of benzyl chlo-
ride) was isolated from the reaction mixture by the procedure
given by Choudhary et al. (2000). In all the cases, the major

product formed was mainly Benzyl toluene compound along
with Poly-benzyl toluene as side product depending upon the
condition used. Samples were analyzed periodically on a gas

chromatograph (HP-6890) equipped with a FID detector and
a capillary column RTX-1 (30 m · 0.32 nm i.d.). The products
were also identified by GC-MS (HP-5973) analysis.

3. 3-Results and discussion

3.1. Structure and composition

The XRD patterns of the as-prepared samples are shown in

Fig. 1. The patterns of Mg–Al-LDH, Mg–Fe–Al-LDH and
Fe/Mg–Al-LDH are characteristic of LDH structure (Chebout
et al., 2010). The diffraction peaks can be indexed in a hexag-

onal unit cell with R-3m rhombohedral symmetry. The sharp
and symmetric diffraction peaks at 2h, 9.92� and 19.90� are as-
cribed to (003) and (006) planes. The corresponding interlayer
spacing d003 is near to 0.8 nm for the our three samples, is con-

sistent with Mg/Al molar ratio close to two in the brucite-like
layers and the presence of NO�3 as charge compensating an-
ions. The absence of the iron characteristic peaks in the Fe/

Mg–Al–LDH is can be to the good dispersion of the last on
the LDH surface. The values of a parameter, which represents
the average distance between the cations within the layers, ob-

tained from the position of the (110) diffraction line
(a = 2 \ d110), are comparable, we notice the difference in
the value of a parameter between coprecipitated samples
(0.3 nm (Mg–Al-LDH); 0.2 nm (Mg–Fe–Al-LDH)); this con-

firms the change in the composition of LDH layers with
Fe3+ presence. The XRD pattern of Fe (citrates)–Mg–Al-LDH
shows broader and less intense reflection peaks which reveal

an important decrease of crystallinity. The position of the
(003) reflection corresponding to a d003 value of 1.92 nm
shows that, compared to the host LDH, the interlayer distance

increases due to the intercalation of the citrate-containing
Table 1 Theoretical molar ratios and experimental molar ratios of

Samples Mg/Al theoretical

molar ratios

Mg/Al e

molar ra

Mg–Al-LDH 2 1.96 � 2

Mg–Fe–AL-LDH 3.33 3.5

Fe/Mg–Al-LDH 2 1.98 � 2

Fe (citrates)–Mg–

Al-LDH

2 2.2
complexes. The value of the d003 distance is in agreement with
those reported in the literature for Ni(citrates)–Mg–Al-LDH
(d003 � 1.20 nm) Cavani et al., 1991; Gerardin et al., 2005,

2008. The values of the parameter are comparable with the
host Mg–Fe–Al-LDH and the Fe (citrates)–Mg–Al-LDH
(a = 0.3 nm). This suggests that the Mg/Al molar ratios are

similar. The elemental analyses of the samples are reported
in Table 1. The results show that the molar ratios of M2+/M3+

hydrotalcites are in good agreement with those calculated tak-

ing into account the initial concentrations of salts (theoretical
ratio M2+/M3+ = 2). The Mg/Al molar ratio increases
slightly for the intercalated Fe (citrates)–Mg–Al-LDH. This
can be considered as a consequence of the possible chelation

of Al3+ by citrate. Actually it is easier to complex Al than
Mg (Choudhary et al., 2002).
M2+/M3+.

xperimental

tios

Mg/Fe theoretical

molar ratios

Mg/Fe experimental

molar ratios

– –

5 5.4

5 –

5 4.6



Figure 2 Thermal behavior of materials is followed by TGA/DTA: (a) Mg–Al-LDH; (b) Mg–Fe–Al-LDH; (c) Fe/Mg–Al-LDH; (d) Fe

(citrates)–Mg–Al-LDH.
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Thermal behavior of materials is followed by TGA/DTA
presented in Fig. 2. All the synthesized LDH exhibited two-

step decomposition upon heating under air. The first step oc-
curred at temperatures up to 220–250 �C and accounted for
an 8–12.0% weight loss due to the desorption of physisorbed
water and to the release of structural water. The second step

took place at 350–500 �C, which was due to LDH dehydroxy-
lation (forming water as product) and decomposition of
incorporated anions. The observed loss in sample weight was

about 25–33% for conventionally synthesized Mg–Al-LDH,
Mg–Fe–Al-LDH and Fe/Mg–Al-LDH, for materials prepared
via pre-chelation of Fe with citrate the lost weight is 31%. An

interesting feature can be seen upon comparison of differential
thermogravimetry (Fig. 2 DTA/d) is the presence of two
endothermic peaks in the second loss for the Fe (citrates)
intercalated LDH, according to the given literature (Wang

et al., 2007), these two peaks are respectively attributed to
the liberation of both water and carbon dioxide, then to the
liberation of CO2 only.

The BET results for Mg–Al-LDH, Mg–Fe–Al-LDH and Fe
(citrates)–Mg–Al-LDH are shown in Table 2. All solids show
diameter pores between 25 and 500 Å. Moreover, the distribu-

tion of pore radius is between: 50 Å < d< 500 Å, this con-
firms that these solids are mesoporous materials. Fe
(citrates)–Mg–Al-LDH shows a higher surface area compared

to Mg–Al–LDH, Mg–Fe–Al-LDH and Fe/Mg–Al-LDH. The
Table 2 Textural analysis results.

Samples Surface

spécifiques

(m2/g)

Rayon de pore

(A�)

Mg–Al-LDH 185 120

Fe–Mg–Al-LDH 188 50

Fe/Mg–Al-LDH 176 85

Fe (citrates)–Mg–Al-(LDH) 203 180
reason is that when complex molecules are incorporated into
the LDH layers, the expansion took place (i.e. increase in basal

spacing from 0.8 nm to 1.92 nm). As a consequence of which
the surface area of Fe (citrates)–Mg–Al-LDH increases from
to 202 m2/g.

The mixed oxides obtained after thermal decomposition of

the nanocomposite at 773 K exhibit XRD pattern characteris-
tics of the periclase-like structure.

3.2. Catalytic results

3.2.1. Effect of the addition of iron by different synthesis

methods to the catalytic performance of the solid Mg–Al-LDH

We studied the effect of the iron addition by three synthesis
methods, namely: co precipitation, impregnation and interca-

lation. Table 3 reports the results of this study. The results
show that the iron catalysts are more active than the catalyst
Mg–Al-LDH uncalcined (nc). Furthermore, the catalyst Fe (ci-
trates)–Mg–Al-LDHnc prepared by the method of intercala-

tion, has a constant apparent highest speed compared to the
other two solids prepared by other synthesis methods. In addi-
tion, we also find that these catalysts control the selectivity

ortho/para of this reaction. Indeed, a similar distribution of
isomers was found for the catalyst FeCl3 tested in the same
reaction (Choudhary et al., 2005). The order of decreasing

activity for the four solids is: Fe (citrates)–Mg–Al-
LDHnc > Fe–Mg–Al-LDHnc > Fe/Mg–Al-LDHnc > Mg–
Al-LDHnc.

3.2.2. Reaction kinetics

The kinetic data for the toluene alkylation reaction in excess of
toluene (stoichiometric ratio Tol/BzCl = 15) over the Fe (ci-

trates)–Mg–Al-LDH calcined at 773 K (Fe-Mg-Al-LDH-773)
catalyst could be fitted well to a pseudo-first-order rate law:
log[1/1 � x] = (ka/2.303) (t � t0), where ka is the apparent
first-order rate constant, x the fractional conversion of benzyl



Table 3 Catalytic activities of Fe–Mg–Al-LDH catalysts prepared by different synthesis methods.

Catalysts Timea

(min)

Selectivity (%) benzyl toluene (BTol) (%) Apparent rate constant

Ka (·103 min�1)

Isomer distribution

Benzyl

toluene

Poly-benzyl

toluene

o-BTol m-BTol p-BTol

Mg–Al-LDH nc 220 83.4 16.6 10.9 38.0 2.2 43.2

Fe/Mg–Al-LDH nc 160 88.7 11.3 22.3 40.7 2 3 45.7

Fe–Mg–Al-LDH nc 110 99.6 0.4 32.6 46.1 2.5 51.0

Fe (citrates)–Mg–Al-LDH 90 99.8 0.2 36.8 46.2 2.5 51.1

a Time required for total conversion of benzyl chloride.

Table 4 Catalytic activities of Fe (citrates)–Mg–Al-LDH-873 catalyst at different temperatures: 333, 343 and 353 K.

Temperature (K) Timea (min) Selectivity benzyl toluene (%) (BTol) (%) Apparent rate constant

Ka (·103 min�1)

Isomer distribution

Benzyl toluene Poly-benzyl toluene o-BTol m-BTol p-BTol

333 20.2 100 – 144.3 46.3 2.5 51.2

343 16.3 100 – 189.9 45.3 2.5 52.2

353 12.5 99.6 0.4 249.0 44.2 2.4 53.0

a Time required for total conversion of benzyl chloride.

Table 5 Influence of the stoichiometric ratio between toluene and benzyl chloride for the benzylation of benzene at 353 K over Fe

(citrates)–Mg–Al-LDH-873 catalyst.

Toluene/benzyl

chloride ratio

Timea (min) Selectivity benzyl toluene (BTol) (%) Apparent rate constant

Ka (·103 min�1)

Isomer distribution

Benzyl toluene Poly-benzyl toluene o-BTol m-BTol p-BTol

5 19.9 84.7 15.3 143.9 38.7 2.0 44.0

15 12.5 99.6 0.4 249.0 44.2 2.4 53.0

a Time required for total conversion of benzyl chloride.

Table 6 Reaction rates for substituted benzenes.

Substrates R Apparent rate

constant Ka (·103 min�1)

Benzene H 260.0

Toluene CH3 249.0

P-xylene 2 CH3 240.2

Anisole OCH3 191.0

S332 S. Kerchiche et al.
chloride, t the reaction time and t0 the induction period corre-
sponding to the time required for reaching equilibrium temper-

ature. A plot of log[1/1 � x] as a function of the time gives a
linear plot over a large range of benzyl chloride conversions.

The effect of temperature reaction on the rate was studied

by conducting the reaction at 333, 343, and 353 K under the
standard reaction conditions (stoichiometric ratio Tol/
BzCl = 15 and 0.1 g catalyst). The results showed that the cat-

alytic performances of our catalyst increased strongly with the
reaction temperature (Table 4). By contrast, the selectivity to
benzyl toluene remains approximately constant while conduct-
ing the reaction at 343, 348, and 353 K under the standard

reaction conditions (stoichiometric ratio Tol/BzCl = 15 and
0.1 g catalyst). The estimated activation energy thus obtained
was 20.7 kJ mol/l. In fact, this value can probably suggest that

no interference of diffusional limitations exists. Two Tol/BzCl
ratios have been investigated. The results obtained are re-
ported in Table 5 .It appears that the stoichiometric ratio be-

tween toluene and benzyl chloride has a strong influence on
the selectivity to benzyl toluene. With a low ratio, the second-
ary reaction to poly-benzyl toluene was favored. Results show-
ing the influence of different substituent groups attached to the

aromatic benzene nucleus on the conversion of benzyl chloride
in the alkylation of corresponding substituted benzenes at
353 K over the Fe (citrates)–Mg–Al-LDH-773 catalyst are pre-

sented in Table 6. According to the classical mechanism of the
Friedel–Crafts type acid catalyzed alkylation reaction, the
alkylation of an aromatic compound is easier if one or more
electron donating groups are present in the aromatic ring.(Olah,

1973) Hence, the order for the rate of alkylation for the
aromatic compound is expected as follows: anisole >
p-xylene > toluene > benzene. But, what is observed in the

present case is totally opposite to that expected according to
the classical mechanism. The first-order rate constant for the
alkylation of toluene and substituted benzenes is in the follow-

ing order: benzene > toluene > p-xylene > anisole. This indi-
cates that, for this catalyst, the reaction mechanism is different
from that of the classical acid catalyzed alkylation reactions.
In fact, the probable redox mechanism for the activation of

both benzyl chloride and toluene by these catalysts leading
to the alkylation of toluene reaction is proposed:

m£–CH2ClþMnþ ! m£–CH2Clþ� þMðn�mÞþ



Table 7 Effect of recycling of the Fe (citrates)–Mg–Al-LDH-873 catalyst in the alkylation of toluene with benzyl chloride at 353 K.

Timea (min) Selectivity benzyl toluene(BTol) (%) Apparent rate constant

Ka (·103 min�1)

Isomer distribution

Benzyl toluene Poly-benzyl toluene o-BTol m-BTol p-BTol

Fresh 12.5 99.6 0.4 249.0 44.2 2.4 53.0

First reuse 13.1 99.2 0.8 241.3 44.0 2.2 53.0

Second reuse 13.6 97.9 2.1 240.9 43.2 1.3 53.4

a Time required for total conversion of benzyl chloride.
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m£–CH2Clþ� ! m£–CHþ2 þmCl�

Mðn�mÞþ þmCl� !Mnþ þmCl�

where M = Fe; n= 3 and m = 1

R–C6H4–H
þ þ£–CHþ2 ! R–C6H4CH2–£þHþ

Hþ þ Cl� ! HCl

The redox mechanism is similar to that proposed earlier for the

toluene alkylation reactions (Brio et al., 2001; Choudhary
et al., 2002). Moreover, in order to rule out the influence of ste-
ric effect on the rate of reaction, we have applied the Taft rela-
tion (March, 1985) According to this relation, when a steric

effect influences the reaction, there is a linear relation between
the rate and the parameter Es values considered to be represen-
tative of the size of the substituting group of the studied aro-

matic compounds. Using the Es parameter tabulated by
Charton (Charton, 1975) we have shown that such a relation
did not exist.

3.2.3. Recycling of the catalysts

The stability of the catalysts has been studied by running the
reaction successively with the same catalysts Fe (citrates)–

Mg–Al-LDH-773 under the same conditions without any
regeneration between two runs. The reaction was first run un-
der the standard conditions (toluene-to-benzyl chloride ratio

of 15, 353 K) to the complete conversion of benzyl chloride.
Then, after a period of 10 min, another quantity of benzyl
chloride was introduced in the reaction mixture leading to
the same toluene-to-benzyl chloride ratio. After the achieve-

ment of the second run, the same protocol was repeated a sec-
ond time. The results, presented in Table 7, showed that the
catalyst could be used several times in the toluene alkylation

process without a significant change of its catalytic activity.

4. Conclusion

In conclusion, Fe (citrates)–Mg–Al-LDH catalysts show amaz-
ing activities for the alkylation of aromatics. The mechanism
involves a redox step at the reaction initiation. This gives a

greater independence to the effect of substituents, and these
catalysts can, therefore, be used with substrates of low reactiv-
ity. Indeed, the catalytic activity increases with increase in the

calcination temperature, this is probably due to the formation
of the metal oxide Fe2O3 phase. A comparison between the
behaviors of the different mixed oxides allows to conclude that
the cations dispersion into the mixed oxides govern the basicity

of the samples. Therefore, the LDH hybrid route appears very
efficient to obtain highly basic mixed oxides by improving cat-
ions dispersion.

References

Arafat, A., Alhamed, Y., 2009. J. Porous Mater. 16, 565.

Bachari, K., Touileb, A., Saadi, A., Halliche, D., Cherifi, O., 2010. J.

Porous Mater. 17, 573.

Benadji, S., Eloy, P., Leonard, A., Su, B.L., Bachari, K., Rabia, C.,

2010. Micropor. Mesopor. Mater. 130, 103.

Brio, K., Bekassy, S., Agai, V., Figueras, F., 2001. J. Mol. Catal. A:

Chem. 151, 179.

Cao, J., He, N., Li, C., Dong, J., Xu, Q., 1998. Mesopor. Mol. Siev.

117, 461.

Cavani, F., Trifiro, F., Vaccari, A., 1991. Catal. Today 11, 173.

Charton, B., 1975. J. Am. Chem. Soc. 97, 1552.

Chebout, R., Tichit, D., Layrac, G., Barama, A., Coq, B., Cota, I.,

Ramirez, R.E., Medina, F., 2010. Solid-State Sci. 12, 1013–1017.

Choudhary, V.R., Jana, S.K., Kiran, B.P., et al., 1999. Catal. Lett. 59,

217.

Choudhary, V.R., Jana, S.K., Kiran, B.P., 2000. Catal. Lett. 64, 223.

Choudhary, V.R., Jana, S.K., Narkhede, V.S., 2001. Catal. Commun.

2, 331.

Choudhary, V.R., Jana, S.K., Narkhede, V.S., 2002. Appl. Catal. A:

Gen. 235, 207.

Choudhary, V.R., Jana, S.K., 2002. J. Mol. Catal. A: Chem. 180, 267.

Choudhary, V.R., Jha, R., Narkhede, V.S., 2005. J. Mol. Catal. A:

Chem. 239, 76.

Clark, J.H., Cullen, S.R., Barlow, S.J., Bastock, T.W., 1994. J. Chem.

Soc.: Perkin Trans. 2, 1117.

Commandeur, R., Berger, N., Jay, P., Kervenal, J., 1991. Process of

Preparation of Dieletric Fluids. European Patent 0422 986.

Gerardin, C., Kostadinova, D., Sanson, N., Coq, B., Tichit, D., 2005.

Chem. Mater. 17, 6473.

Gerardin, C., Kostadinova, D., Coq, B., Tichit, D., 2008. Chem.

Mater. 20, 2086.

Hentit, H., Bachari, K., Ouali, M.S., Womes, M., Benaichouba, B.,

Jumas, J.C., 2007. J. Mol. Catal. A: Chem. 275, 158.

March, J., 1985. Avanced Organic Chemistry, third ed. Wiley/

Interscience, New York.

Merabti, R., Bachari, K., Halliche, D., Rassoul, Z., Saadi, A., 2010.

React. Kinet. Mech. Catal. 101, 195.

Olah, G.A., 1973. Friedel–Crafts Chemistry. Wiley/Interscience, New

York.

Ono, Y., Baba, T., 1997. Catal. Today 38, 321.

Salavati-Niasari, M., Hasanalian, J., Najafian, H., 2004. J. Mol. Catal.

A: Chem. 209, 209.

Sun, Y., Walspurger, S., Tessonnier, J., et al., 2006. Appl. Catal. A

300, 1.

Tahir, N., Abdelelssadek, Z., Halliche, D., Saadi, A., Chebout, R.,

Cherifi, O., Bachari, K., 2008. Surf. Interf. Anal. 40 (3–4), 254–258.

Wang, L.Y., Wu, G.Q., Evans, D.G., 2007. Mater. Chem. Phys. 104,

133.


	New way for iron introduction in LDH matrix  used as catalysts for Friedel–Crafts reactions
	1 Introduction
	2 Experimental
	2.1 Catalysts preparation
	2.1.1 Preparation of Mg–Al-LDH and Fe–Mg–AL-LDH by the co precipitation method
	2.1.2 Preparation of Fe/Mg–Al-LDH by the impregnation method
	2.1.3 Preparation of Fe (citrates)–Mg–Al-LDH by the intercalation method «LDH hybrid» (organic and inorganic)

	2.2 Activation of the samples
	2.3 Characterization techniques
	2.4 Catalytic testing

	3 3-Results and discussion
	3.1 Structure and composition
	3.2 Catalytic results
	3.2.1 Effect of the addition of iron by different synthesis methods to the catalytic performance of the solid Mg–Al-LDH
	3.2.2 Reaction kinetics
	3.2.3 Recycling of the catalysts


	4 Conclusion
	References


