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Abstract

The Grushin plane is a right quotient of the Heisenberg group. Heisenberg geodesics’ projections are solutions of an isoperimetric
problem in the Grushin plane.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

It is a known fact that there is a correspondence between isoperimetric problems in Riemannian surfaces and
sub-Riemannian geometries in three-dimensional manifolds [2,3]. The most significant example is the isoperimetric
problem in the plane, corresponding to the sub-Riemannian geometry of the Heisenberg group H.

We briefly recall this connection following the exposition in [7]. Consider, on the Euclidean plane, the one-form
α = 1

2 (x dy −y dx), which satisfies dα = dx ∧dy and which vanishes on straight lines through the origin. By Stokes’
theorem, the signed area enclosed by a curve γ is

∫
γ

α. Let c : [a, b] → R
2 be a curve. For each s in [a, b], let γs

be the union of the curve c restricted to [a, s], of the segment of straight line joining c(s) with the origin O and of
the segment of straight line joining O with c(a). Let C : [a, b] → R

3 be the curve C(s) = (c(s),
∫
γs

α). The third
coordinate of C(s) is the signed area enclosed by γs . The curve C = (x, y, t) lies in the kernel of the differential form

ω := dt − 1

2
(x dy − y dx).

A path C in three-dimensional space which is obtained in this way is called a horizontal lift of the curve c. More
generally, a horizontal curve is any curve C = (x, y, t) lying in the kernel of ω. A notion of length for horizontal
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curves C = (x, y, t) is defined by setting

ΛH(C) =
∫
C

√
dx2 + dy2,

i.e. the length ΛH(C) of C is the Euclidean length of C’s projection onto the (x, y)-plane. Given points P and Q

in R
3, we define their Carnot–Charathéodory distance dH(P,Q) as the infimum of ΛH(C) as C ranges over the set

C(P,Q) of the horizontal curves joining P and Q. It is easy to see that C(P,Q) is not empty (alternatively, this is a
special case of the non-elementary Chow’s theorem [7]). The Heisenberg group, as metric space, is (R3, dH). In this
context, we write H = R

3.
More geometrically, given a horizontal curve C between two points in H, P = (x1, y1, t1) and Q = (x2, y2, t2), and

considering its projection c on the (x, y)-plane, we have that

(i) ΛH(C) = ΛEuc(c) is the Euclidean length of c and
(ii) A = t2 − t1 is the signed area enclosed between c and the straight segment between (x2, y2) and (x1, y1).

A length minimizing horizontal curve Γ between P and Q, a geodesic of (H, dH), is then the horizontal lift of a
plane curve γ between (x1, y1) and (x2, y2) such that (i) γ , together with the segment between (x2, y2) and (x1, y1),
encloses an area A and (ii) γ has minimal Euclidean length among the curves with property (i). This is (a signed
version of) the classical Dido problem in the plane, and it is well known that its unique solution γ is an arc of a
circle. Hence, the geodesics in (H, dH) are horizontal lifts of circular arcs. See [6,11] and [7] for more on geodesics
in sub-Riemannian geometry.

As an algebraic object, the Heisenberg group H is the Lie group R
3 ≡ C × R endowed with the product

(z, t) · (w, s) = (
z + w, t + s − 1/2 Im(zw )

)
.

The metric dH on H is left invariant: dH(A ·P,A ·Q) = dH(P,Q), whenever P,Q,A ∈ H. When no confusion arises,
we drop the dot “·” in the product. In Section 2 we give a less heuristic definition of dH.

The Grushin plane G is the plane R
2 with coordinates (u, v), endowed, outside the critical line u = 0, with the

Riemannian metric

ds2 = du2 + dv2

u2
.

The metric can be extended continuously across the critical line to a metric dG on R
2. We write G = R

2, when the
latter is endowed with the metric dG. We refer the reader to [5] for a presentation of G. In Section 2 we will recall
some elementary properties of Grushin geometry.

It is known that the Grushin plane G, as metric space, is a quotient of the Heisenberg group, hence, in principle,
there is a relationship between the sub-Riemannian geometry in H and a specific isoperimetric problem in G. In this
note, we investigate more closely this relationship. Indeed, we consider the following two Dido-type problems (see
Theorem 3).

Isoperimetric Problem A. Consider ξ = (a,0), η = (b,0) in G, 0 < a � b. Given 0 < A < +∞, find a bounded
open set Ω in G having as boundary an absolutely continuous curve γ from ξ to η and the straight line from η to ξ ,
such that

(1) ∫
Ω

dudv

u2
= A,

(2) γ has minimal length with respect to the Grushin geometry.

Isoperimetric Problem B. Consider ξ = (a,0), η = (b,0) in G, 0 < a � b. Given 0 < A < +∞, find an absolutely
continuous curve γ from ξ to η and the straight line from η to ξ , for which
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(1)

−
∫
γ

dv

u
= A,

(2) γ has minimal length with respect to the Grushin geometry.

Problem A is a bona fide isoperimetric problem, while Problem B is an “isoperimetric problem for signed areas,”
which is directly related to the geodesics in H. On a formal level the two problems are equivalent by Gauss–Green
formula and we are interested in verifying to what extent they admit the same solution.

The solution of Problems A and B emphasizes the relationship between H and G. We can view G as a quotient
of H, in the following sense. Consider the one-parameter subgroup S = {(τ,0,0): τ ∈ R} ⊂ H. Consider X = S \H =
{SP : P ∈ H}, the class of the right cosets of S , endowed with the quotient metric

dX(SP,SQ) = inf
H,K∈S

dH(HP,KQ). (1)

By left invariance, dX(SP,SQ) = infH∈S dH(HP,Q).
In Theorem 1 below we show that X is isometric to G. The isometry can be realized as follows. We consider the

function Φ : H → G,

(u, v) = Φ(x,y, t) :=
(

y, t − xy

2

)
.

Let P = (x, y, t), the function Φ identifies each coset SP = {(τ,0,0)(x, y, t): τ ∈ R} = {(τ + x, y, t + 1/2τy):
τ ∈ R} with (0, u, v) = SP ∩ {x = 0}, its intersection with the plane x = 0 in H.

The relationship between H and G was already pointed out by Rotschild and Stein [10], who observed that, adding
a dummy variable, two vector fields spanning the horizontal space of a Grushin plane could be seen as the vector
fields spanning the horizontal space of the Heisenberg group. In their paper [10], they developed this observation as
far as proving that any family of vector fields satisfying Hörmander’s condition, by adding new variables and using
an approximation similar to the Euclidean approximation of differentiable manifolds, locally leads to a nilpotent
Lie group. This enabled them to use geometric and analytic tools from Lie group theory in the study of general
Hörmander’s vector fields.

Isoperimetric Problems A and B are different from the isoperimetric problem in the Grushin plane recently solved
by Monti and Morbidelli in [9]. Generalizing the results in [4], they solve the isoperimetric problem for a class of
Grushin-like structures. Let α � 0. For smooth domains Ω in the (u, v)-plane, the problem they consider is that of
minimizing the functional∫

∂Ω

(
v̇2(t) + u2α(t)u̇2(t)

)1/2
dt

over the domains such that
∫
Ω

dudv = A is fixed. The isoperimetric problem we have considered does not belong to
this family.

The relationship between H and G is explained in Theorem 1 below. Isoperimetric Problem B is solved in Corollary
2, and Isoperimetric Problem A is solved in Theorem 3.

2. Heisenberg and Grushin

Among the left-invariant metrics on H, we consider the Carnot–Charathéodory metric on H. Let z = x + iy.
Consider the left invariant vector fields

X = ∂

∂x
− 1/2y

∂

∂t
; Y = ∂

∂y
+ 1/2x

∂

∂t
.

The vector fields X and Y do not commute. Indeed, [X,Y ] = ∂
∂t

. This fact is central to the theory of Carnot groups,
of which the Heisenberg group is the simplest nontrivial example.
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An absolutely continuous curve (in the Euclidean sense) γ : I → H is horizontal if γ̇ (s) = a(s)Xγ (s) +b(s)Yγ (s) ∈
Span{Xγ(s), Yγ (s)} for almost all s ∈ I . The space HP H = Span{XP ,YP } is called the horizontal space at P . The
H-length of γ , ΛH(γ ), is the Euclidean length of γ ’s vertical projection onto the z-plane,

ΛH(γ ) =
∫
I

√
a2(ξ) + b2(ξ) dξ.

Let P and Q be two points in H. The Carnot–Charathéodory distance between P and Q, dH(P,Q), is the infimum
of the H-lengths of the horizontal curves joining P and Q. Since the notion of horizontal curve and of H-length are
left invariant, the Carnot–Charathéodory distance is left invariant. Equivalently, dH is the distance associated with the
Carnot–Charathéodory metric making {XP ,YP } into an orthonormal basis for HP H, for all P ∈ H.

The Grushin plane G is endowed with the vector fields

U = ∂u and V = −u∂v.

The Grushin metric outside the critical line u = 0 is the Riemannian metric ds2 making U and V into a orthonormal
basis for the tangent space,

ds2 = du2 + dv2

u2
.

The metric can be extended across the critical line u = 0 as a Carnot–Charathèodory metric, since [U,V ] = −∂v 
= 0.
As already mentioned in the Introduction, by means of the length element ds2 one can compute the G-length ΛG(γ )

of a horizontal curve γ : J → G,

ΛG(γ ) =
∫
J

√
u̇2(ξ) + v̇2(ξ)

u2(ξ)
dξ.

A curve is horizontal if it is absolutely continuous in the Euclidean sense and it has locally finite length with respect
to the metric ds2. In the usual way, the notion of G-length leads to the geodesic metric dG.

The following theorem explains the metric and algebraic relationship between H and G.

Theorem 1. Let S be a one-parameter subgroup of H. If S = Z is the center of H, then S \ H is isometric to the
Euclidean plane R

2. If S is any other one-parameter subgroup, then S \ H is isometric to G.

The center Z of H is the real line trough the origin generated by the vector field ∂
∂t

.

Proof. The case S = Z is trivial, the isometry being f : (z, t) �→ z. The case S 
= Z can be reduced to S = {S(τ ) =
(τ,0,0): τ ∈ R}. Since the latter case is the one we are interested in, we omit the details of the reduction. Let
S · P ∈ S \ H be a right translate of S . The subgroup S has a unique intersection with the plane {x = 0} in H. Then,
we can identify S \ H with R

2, the identification being ϕ : S · (0, u, v) �→ (u, v).
The map Ψ : R

3 → H,

Ψ : (τ, u, v) �→ S(τ )(0, u, v) = (τ, u, v + 1/2τu) = (x, y, t), (2)

is an analytic change of variables in H. We introduce new coordinates [·] in H:

(x, y, t) = Ψ (τ,u, v) =: [τ,u, v]. (3)

The natural projection π : H → S \H becomes ϕ ◦π : [τ,u, v] �→ (u, v). Recall from the Introduction that X is S \H,
endowed with the quotient distance (1).

The theorem is proved if the following holds.

Claim. The map ϕ : X → G is a surjective isometry.

In the new variables, the vector fields X and Y become

X = ∂τ − u∂v, Y = ∂u. (4)
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Their push-forward by π are

ϕ∗π∗X = −u∂v = V, ϕ∗π∗Y = ∂u = U.

By (1), to prove that dX(S · P,S · Q) = dG(ϕ(S · P),ϕ(S · Q)), for any S · P,S · Q ∈ S \ H, it is enough to show
that any horizontal curve in G has a horizontal lift in H. Indeed, let γ : [0,1] → G be an horizontal curve. The curve
γ̃ : [0,1] → H, is a horizontal lift of γ if it is a horizontal curve and ϕ ◦ π(γ̃ ) = γ . From the definition of intrinsic
length, ΛH(γ̃ ) = ΛG(γ ), and the equality of Carnot–Charathéodory distances follows immediately.

We are only left with the proof of the existence of the lift. Let γ (s) = (u(s), v(s)) be a horizontal curve in G,
s ∈ [0,1]. Define γ̃ (s) := [τ(s), u(s), v(s)] and

τ(s) = τ0 −
s∫

0

v̇(ξ)

u(ξ)
dξ, (5)

with τ0 arbitrary. Since γ is horizontal,

ΛG(γ ) =
1∫

0

(
u̇(ξ)2 +

(
v̇(ξ)

u(ξ)

)2)1/2

dξ

is finite, hence the integral in (5) is well defined. Differentiating (5), and recalling (4), we obtain that

˙̃γ = u̇Y − v̇

u
X,

belongs to the horizontal space at [τ,u, v] almost everywhere. �
The critical line of G, {u = 0}, corresponds to the class of the cosets SP which lie in some horizontal plane. Indeed,

a line τ �→ S(τ )P = (τ, u, v + 1/2τu) = (x, y, t) is horizontal if dS(τ )P
dτ

(τ ) ∈ HS(τ )P H. On the other hand,

dS(τ )P

dτ
(τ) = ∂x + 1/2y∂t ,

which is a horizontal vector exactly when u = y = 0. Hence, the union of the critical lines of the form SP , SP being
a critical point in G, is the plane y = 0 in H.

With the coordinates introduced in (3), Theorem 1 and its proof can be interpreted in terms of Problem B. Indeed,
formula (5) links the solution of Problem B to lifting curves in G to H.

Corollary 2. Let (a,0) and (b,0) be two points in G, as in Problem B. Let Γ be the geodesic from [0, a,0] to [A,b,0]
in H. The solution of Problem B is the curve ϕ ◦ π(Γ ).

We now turn to Problem A. We stress, again, this can not be immediately reduced to a formal lifting procedure,
since here we are not dealing with signed areas anymore. The main problem is that the projection onto G of a simple
curve in H might have self-intersections.

Theorem 3. Consider now two points in G, ξ = (a,0) and η = (b,0), 0 < a � b. Let 0 < A < +∞ and Γ be the
geodesic from [0, a,0] to [A,b,0] in H. Suppose that A is such that Γ does not intersect the plane [τ,0, v]

Then, the solution of Problem A is the curve ϕ ◦ π(Γ ).

Remark that there exist bounded open sets Ω in G, such that A = ∫
Ω

dudv

u2 = +∞ and ∂Ω is a horizontal curve
having finite G-length. Indeed, let a = b. For any ε > 0 we can find Ω for which A = +∞ and ΛG(∂Ω) = 2a + ε and
one cannot have ε = 0. It suffices to consider the product of intervals Ω = [−η,a] × [0, η2], where η is the positive
solution to η2 + aη − aε = 0.

Remark 4. Let a = b = 1 in Theorem 3. The assumptions of Theorem 3 are satisfied for A ∈ (0,A0], where A0 is the
unique positive number with the following property. There is a circle c0 = ∂D0 in the (x, y)-plane such that
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(i) c0 passes through (0,0) and (0,A0);
(ii) c0 is tangent to the line y = −1;

(iii) the area of D0 ∩ {(x, y): y < 0} is A0.

In Theorem 3, the assumption that Γ does not intersect the plane [τ,0, v] means that the projection γ0 := ϕ ◦π(Γ )

of Γ onto G does not intersect the critical line u = 0. An interesting problem could be that of finding extremal
problems involving curves in G which cross the critical line. A possibility is that of considering in Problem B the
functional∫

γ

dv

|u| ,

which corresponds, via Gauss–Green Theorem, to a signed area form: sign(u)

u2 dudv. This approach is related to that
of [1], where the authors consider surfaces S endowed with Grushin-like metrics and with area forms which change
sign when crossing the critical curves of S. This device allows them to obtain a Gauss–Bonnet formula, overcoming
the problem of divergent integrals.

Another possibility is that of introducing in our Isoperimetric Problem A a term which compensates for the singu-
larity on the critical line.

We plan to return on this topic in future work.
The proof of Theorem 3 mainly consists in an application of the Gauss–Green formula. First, we need two lemmata.

Lemma 5. Let Ω be a bounded open set in G, having as boundary an horizontal curve γ = ∂Ω and let ε > 0. Let
Ωε = Ω ∩ {|u| > ε} and lε = ∂Ωε \ ∂Ω , which is the union of open intervals in the lines {u = ±ε}. If

∫
Ω

dudv

u2 < ∞
then

lim
ε→0

ΛG(lε) = 0. (6)

Proof. First we recall that, by definition of horizontal curve, we have ΛG(∂Ω) < ∞. By the dominated convergence
theorem,

lim
ε→0

ΛG

(
∂Ω ∩ {|u| < ε

}) = ΛG

(
∂Ω ∩ {|u| = 0

}) = 0.

The last equality depends on the fact that, for horizontal curves γ = (u, v), we have ΛG(γ ) = ∫ √
u̇2 + v̇2

u2 dσ . Hence,
it must be γ̇ = 0, a.e. on {u = 0}. The lemma is proved if

ΛG(lε) � ΛG

(
∂Ω ∩ {|u| < ε

})
. (7)

Consider l+ε = lε ∩ {u = ε} and Ω+ = Ω ∩ {u > 0}. For each η ∈ l+ε , consider the half line sη originating from η and
moving to u = 0, parallel to the u-axis. Notice that sη ∩ ∂Ω ∩ {u > 0} 
= ∅, a.e. η ∈ l+ε , since otherwise Ω+ would be
such that

∫
Ω

dudv

u2 = ∞; let F+
ε := {η ∈ l+ε : sη ∩ ∂Ω ∩ {u > 0} 
= ∅}. Let

Ψ : ∂Ω ∩ {0 < u < ε} → l+ε .

The set ∂Ω ∩ {0 < u < ε} = ⋃
j ∂Ωj is the countable union of open arcs γj : (αj ,βj ) → ∂Ωj , j ∈ N. The map Ψ

decreases the ΛG-length:
∑

j

∫ βj

αj

√
u̇2 + v̇2

u2 dσ �
∑

j

∫ βj

αj

√
v̇2

ε2 dσ � ΛG(l+ε − F); hence (7) holds. �
Lemma 6. Let Ω be a bounded open set in G having as (oriented) boundary the horizontal closed curve γ starting
from ξ = (a,0) in G−{u = 0} and let 0 <

∫
Ω

dudv

u2 < +∞. Then, the Gauss–Green formula holds on γ for the 1-form
dv
u

, ∫
γ

dv

u
= −

∫
Ω

dudv

u2
. (8)
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Proof. Let lε and Ωε as in Lemma 5. Then,∫
∂Ωε

dv

u
= −

∫
Ωε

dudv

u2
.

The right-hand side tends to − ∫
Ω

dudv

u2 as ε → 0. Equation (8) follows by the dominated convergence theorem applied

to
∫
γ∩{|u|>ε}

dv
u

. In fact,∣∣∣∣
∫

γ∩{|u|>ε}

dv

u

∣∣∣∣ � ΛG

(
γ ∩ {|u| > ε

})
� ΛG(γ ) < ∞

and, from (6),

ΛG(lε) =
∣∣∣∣
∫
lε

dv

u

∣∣∣∣ → 0;

this proves the lemma. �
Proof of Theorem 3. We use the notation of Theorem 1. Consider points E = [0, a,0] and F = [A,b,0] in H.
Observe that ξ = ϕ ◦ π(E) and η = ϕ ◦ π(F). Since A > 0, the straight line joining E and F is not a vertical line
in H, hence there exists a unique minimizing geodesic Γ in H between E and F (see [7] and [8]). Let

γ0 = ϕ ◦ π(Γ )

be its projection onto G. Since Γ does not intersect the plane [τ,0, v], then γ0 does not intersect the line u = 0 in G,
hence it is a horizontal curve from ξ to η.

Consider an open set Ω in G having as boundary the union of a horizontal curve γ1 from ξ to η and the straight
line returning from η to ξ , and such that A = ∫

Ω
dudv

u2 . Let Γ1 be the horizontal lift of γ1 to H. By Lemma 6, Γ1 joins
E and F in H:∫

γ1

dv

u
=

∫
∂Ω

dv

u
= −

∫
Ω

dudv

u2
= A.

Hence, ΛH(Γ1) � ΛH(Γ ), i.e., ΛG(γ1) � ΛG(γ0).
The curve γ0, then, is the solution of Problem A provided it is the oriented boundary of an open set in G. This

amounts to showing that γ0 does not have self-intersections, i.e. that ϕ ◦ π is injective on Γ . This is done in Lemma 7
below. �
Lemma 7. Let Γ be the minimizing geodesic in H between E = [0, a,0] and F = [A,b,0]. With the notation of
Theorem 1, the map ϕ ◦ π : H → G is injective on Γ ∪L′, where L′ is the straight line joining [A,a,0], [A,b,0].

Proof. By symmetry we can always assume b � a. The problem is invariant under the intrinsic dilations of G,
δh(u, v) = (hu,h2v), hence we can consider the case a = 1, so that L′ be the segment of horizontal straight line
joining [A,b,0] and [A,1,0] H. Lemma 7 reduces to showing that the map ϕ ◦ π : H → G is injective on Γ ∪L′.

For (x, y, t) ∈ H, let L(x,y,t) be the left translation in H by (x, y, t): L(x,y,t)(x1, y1, t1) := (x, y, t) · (x1, y1, t1).
We change the Heisenberg coordinates back to the usual ones by (2) and we left-translate by [0,1,0] = (0,1,0) to

the origin.
We have to show that the map

f = ϕ ◦ π ◦ L(0,1,0)

is injective on the curve Υ ∪L, where

Υ = L(0,−1,0)Γ, L= L(0,−1,0)L′.

We denote by K the endpoint of Υ other than O , K = (A,b − 1,Ab+1 ).
2
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If (x, y, t) = L(0,−1,0) ◦ Ψ (τ,u, v), then

(x, y, t) =
(

τ,u − 1, v + τ(u + 1)

2

)
.

Observe that, if f (P ) = f (Q), then P and Q have the same y-coordinate. More precisely, f (P ) = f (Q) if and only
if P and Q belong to the same element from the sheaf of straight lines projecting H on G. The lines of the sheaf have
the form

�(u,v) : τ �→
(

τ,u − 1, v + τ(u + 1)

2

)
. (9)

We have to consider two cases.

Case 1. The points P 
= Q belong to Υ . They have the same y-coordinate and we assume that P is the one with
smaller x-coordinate. We show that f (P ) = f (Q) leads to a contradiction.

Let Σ be the curve obtained by joining the arc of Υ from O to P , the segment [P,Q] and, finally, the arc of Υ

between Q and K . Consider now a new curve Ξ = Ξ1 ∪Ξ2 ∪Ξ3, where the Ξj ’s are defined as follows. The curve Ξ1
is the arc of Υ from O to P . The curve Ξ2 is the horizontal straight line having speed X(P ) = ∂x − y

2 ∂t = (1,0,− y
2 ),

starting at Q and ending at Q̃, where Q and Q̃ belong to the same vertical line. The curve Ξ3 is the vertical translation
Υ̃ of the geodesic Υ which starts at Q̃ and ends at K̃ , the point of Υ̃ lying on the vertical of K . A vertical translation
of a curve in H is a curve obtained by a left translation of an element of the center Z.

Denote by c the circular arc obtained as the orthogonal projection of Υ onto the plane t = 0. Let D be region
bounded by c and �, the projection of L onto the t = 0 plane. Then, K̃ = (A,b − 1,B), where B is the area of the
portion of D lying above the line y = u − 1.

Since the difference of the t-coordinates between points in Υ and Υ̃ is constant, then

t (Q) − t (Q̃) = A − B.

We have another way to compute this difference of areas. Let P ′ and Q′ be, respectively, the vertical projections of P

and Q onto the plane t = 0 and let p their Euclidean distance. We know the slope of the straight lines joining P with
Q and Q̃, respectively, hence we can compute

t (Q) − t (Q̃) =
(

1 + u

2
− 1 − u

2

)
p = up,

which gives, together with the previous equality,

up = A − B. (10)

We show now that this equation only holds in the trivial cases p = 0 or u = 1.
From now on, we work on the Euclidean plane t = 0 in H. The u coordinate gives the signed distance from the line

m having equation y = u − 1, to the line y = −1. The latter is mapped by f onto the critical line u = 0 in G. The line
m intercepts on c the chord [P ′,Q′], having length p � 0. Then, up is the signed area of the rectangle R having as
side [P ′,Q′] and having the opposite side on the line y = −1. If u < 0, then, since A − B � 0, Eq. (10) is impossible
unless p = 0. If u � 0, A − B is the area between m and c.

We have two subcases, according to the segment [P ′,Q′] having y-coordinate smaller or greater than the y-
coordinate of c’s center. The former case is readily seen to be impossible, since the circular segment is strictly
contained in the rectangle R.

Consider now the second case. Consider R0, a rectangle like R, corresponding to the value u = 1 (i.e. one of the
sides of R0 has endpoints (0,0) and (A,0) and the area of R0 is A). Consider now the following planar regions (see
Fig. 1 below): E0 = D ∩ {(x, y): 0 � x � A}; E1 = R0 \ E0; E2 = D \ E0; E3 = R \ D; E4, the intersection of the
half-plane y � u − 1 with E2 \ R; E5 = R ∩ D; E6 = R0 ∩ D. Finally, let Aj be the Euclidean area of Ej .

Since

A1 + A0 � A1 + A6 = A = A2 + A0,

A3 + A5 = pu = A − B = A4 + A5,
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Fig. 1.

we have A1 � A2, A3 = A4. On the other hand, by inclusion,

A1 < A3 and A4 < A2,

which implies A1 < A2. Contradiction. Hence, pu > A − B .

Case 2. Suppose now that P ∈ υ , Q ∈ L and let P ′, Q′ be their projections onto the t = 0 plane, respectively. P ′ and
Q′ have the same y-coordinate and the x-coordinate of P ′ is larger that of Q′. Let D be as in Case 1. The area of D

is A. Let B be the area of the portion of D lying below the line [OP ′], E be the area of the portion of D lying
between the line [OP ′] and [P ′Q′] and let C = A − B − E be the area of the remaining part of D. Let Ξ1 and Ξ2 be
defined as in Case 1. Ξ1 ∪ Ξ2 is horizontal, hence the t-coordinate of its endpoint Q̃ is B + E. On the other hand, the
t-coordinate of Q is A = B + E + C and that of P is B .

Let p > 0 be the Euclidean distance between Q′ and P ′. Similarly to Case 1, we compute

0 < C = A − (B + E) = t (Q) − t (Q̃) =
(

1 + u

2
− 1 − u

2

)
(−p) = −up < 0,

absurd. �
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