NOTE

Symmetrically Homoclinic Orbits for Symmetric Hamiltonian Systems

Shiqing Zhang

Department of Applied Mathematics, Chongqing University, Chongqing 400044,
People’s Republic of China

Submitted by William F. Ames

Received January 12, 1999

In this paper, we study the existence of symmetric homoclinic orbits for first order and second order Hamiltonian systems with some symmetric Hamiltonian functions.

Key Words: symmetry; homoclinic orbits; Hamiltonian systems.

In recent years, many authors [1–3, 5–30, 34, 36–46] have used the variational methods to study the existence and the multiplicity of homoclinic orbits for Hamiltonian systems. In this paper, we will study the existence of a symmetric homoclinic orbit for the first order symmetric Hamiltonian system and the existence of infinitely many odd homoclinic orbits for classical Hamiltonian systems with even potentials.

We are given a C^2 map $H: \mathbb{R}^{2N} \rightarrow \mathbb{R}$, and we consider the associated system of ordinary differential equations

$$\begin{align*}
\dot{x}(t) &= JH'(x) \\
x(\pm \infty) &= 0,
\end{align*}$$

(1.1)

where J denotes the $2N \times 2N$ matrix

$$J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$$

with $J^* = J^{-1} = -J$.
We obtain the following results:

THEOREM 1.1. Assume H satisfies

(H1) $H \in C^2(R^{2N}, R)$
(H2) $H(-p, q) = H(p, q)$, $\forall p, q \in R^N$
(H3) $H_y(0, 0) = 0$
(H4) $H''(0) = 0$
(H5) $\exists \alpha > 2$ such that $\forall x \in R^{2N}$, $\alpha H(x) \leq H'(x)x$
(H6) $\exists k_1 > 0$ such that $\forall x \in R^{2N}$, $H(x) \geq k_1|x|^{\alpha}$
(H7) $\exists k_2 > 0$ such that $\forall x \in R^{2N}$, $|H'(x)| \leq k_2|x|^{-1}$.

Then (1.1) has at least one homoclinic orbit $x = (p, q)$ to the origin which satisfies $p(-t) = -p(t)$ and $q(-t) = q(t)$.

Remark 1. In all published papers, there is a quadratic term for the Hamiltonian function. Here we remove this term.

Remark 2. (H5) implies $H(x) = 0(|x|^2)$ as $|x| \to 0$. (H4) can be canceled out.

THEOREM 1.2. Assume V satisfies

(V1) $V \in C^2(R^n, R)$;
(V2) $V(-x) = V(x)$, $\forall x \in R^n$;
(V3) there is a $\mu > 2$ such that $0 = \mu V(x) \leq x \cdot V'(x)$, $\forall x \in R^n \setminus \{0\}$;
(V4) $V''(0) = 0$.

Then there are infinitely many odd homoclinic orbits for the second order Hamiltonian system:

$$\ddot{x} + V'(x) = 0$$

$$x(\pm \infty) = \dot{x}(\pm \infty) = 0. \quad \text{(1.2)}$$

2. **THE PROOF OF THEOREM 1.1**

Let $W = W^{1,2}(R, R^{2N})$ be the Sobolev space of R^{2N}-valued functions defined on R:

$$E = \{ x = (p, q) \in W | \ p(-t) = -p(t), \ q(-t) = q(t), \ \forall \ t \in R \}. \quad \text{(2.1)}$$

The functional corresponding to the system (1.1) is defined by

$$f(x) = \int_{-\infty}^{\infty} \frac{1}{2}(-\dot{x}, x) \ dt - \int_{-\infty}^{\infty} H(x) \ dt \quad \forall x \in E. \quad \text{(2.2)}$$
Following the ideas of [35, 31–33], we have

Lemma 2.1. Suppose (H1) and (H4) hold. Then \(f \in C^1(E, R) \), and \(x = (p, q) \in E \) is a critical point of \(f \) restricted on \(E \) if and only if it is a \(C^1(R, R^n) \)-solution of \((1.1) \) such that \(p \) is odd and \(q \) even in \(t \).

Proof. (i) By (H1) and (H4), similar to the proof of Coti Zelati and Rabinowitz [26], \(f \in C^1(E, R) \).

(ii) Suppose \(x \in E \) is a critical point of \(f \) on \(E \). Then there holds

\[
\int_{-\infty}^{\infty} \left(-J\dot{x} \cdot y - H'(x) \cdot y \right) \, dt = 0, \quad \forall y \in E. \tag{2.3}
\]

By (H1), \(H' \in C^1(W^{1,2}, W^{1,2}) \). (H2) and (H3) imply \(H'(0) = 0 \). By \(x \in W^{1,2}(R, R^{2n}) \) and the regularity theorem on composition mappings, we have \(u \equiv H'(x(\cdot)) \in W^{1,2}(R, R^{2n}) \) and \(u \in E \); that is, \(u = (u_1, u_2) \) satisfies

\[
u_1(-t) = -u_1(t) \quad \text{and} \quad u_2(-t) = u_2(t). \tag{2.4}
\]

We consider the boundary value problem of the linear system,

\[
\dot{z}(t) = Ju, \quad z(\pm \infty) = 0, \tag{2.5}
\]

which possesses a unique solution \(Z(t) \in C^1(R, R^{2n}) \) and is given by

\[
Z(t) = J \cdot \int_{-\infty}^{t} u(s) \, ds, \quad \forall t \in R. \tag{2.6}
\]

By (2.4) and (2.6) we know that

\[
Z(t) = (Z_1(t), Z_2(t)) = \left(-\int_{-\infty}^{t} u_2(s) \, ds, \int_{-\infty}^{t} u_1(s) \, ds \right)
\]

satisfies

\[
Z_1(-t) = -Z_1(t), \quad Z_2(-t) = Z_2(t). \tag{2.7}
\]

By (2.6) and \(u \in W^{1,2}(R, R^{2n}) \) we know \(Z \in W^{2,2}(R, R^{2n}) \).

From (2.5) we obtain that for \(\forall y \in E \) there holds

\[
\int_{-\infty}^{\infty} \left(-J\dot{Z} \cdot y - H'(x) \cdot y \right) \, dt = 0. \tag{2.8}
\]

Combining with (2.3) yields

\[
\int_{-\infty}^{\infty} J(\dot{x} - \dot{Z}) \cdot y \, dt = 0, \quad \forall y \in E. \tag{2.9}
\]
By (2.3) and (2.6) we have \(x \in W^{2,2}(R, R^{2n}) \), \(Z \in W^{2,2}(R, R^{2n}) \). So
\[
\tilde{y} = J(\tilde{x} - \tilde{Z}) \in W^{1,2}(R, R^{2n}).
\] (2.10)

Set \(x = (x_1, x_2) \), \(Z = (Z_1, Z_2) \); then
\[
\tilde{y} = J(\tilde{x} - \tilde{Z}) = (\tilde{Z}_2 - \tilde{x}_2, \tilde{x}_1 - \tilde{Z}_1) = (\tilde{y}_1, \tilde{y}_2).
\]
Then
\[
\tilde{y}_1(-t) = -\tilde{y}_1(t), \quad \tilde{y}_2(-t) = \tilde{y}_2(t). \quad (2.11)
\]

Hence \(\tilde{y} \in E \).

In (2.9), we can set \(y = \tilde{y} \) to obtain
\[
\int_{-\infty}^{\infty} |\tilde{x} - \tilde{Z}|^2 \, dt = 0. \quad (2.12)
\]

Hence
\[
x(t) - Z(t) \equiv \text{constant}, \quad \forall t \in R. \quad (2.13)
\]
By \(x(\pm \infty) = Z(\pm \infty) = 0 \), we know
\[
x(t) - Z(t) = 0.
\]
Thus \(x(t) = Z(t) \in C^1(R, R^n) \) and is a solution of (1.1) by (2.5). Now the proof of Theorem 1.1 is similar to that of Hofer and Wysocki [29].

3. THE PROOF OF THEOREM 1.2

Let \(W = W^{1,2}(R, R^n) \), which has the usual norm \((\int_{-\infty}^{\infty} (|\dot{q}|^2 + |q|^2))^{1/2} \)
which is equivalent to the norm
\[
\|q\| = \left(\int_{-\infty}^{\infty} |\dot{q}|^2 \, dt + |q(0)|^2 \right)^{1/2}. \quad (3.1)
\]

The functional corresponding to the system (1.2) \(f(x) \) is defined by
\[
f(x) = \int_{-\infty}^{\infty} \left[\frac{1}{2} |\dot{x}|^2 - V(x) \right] \, dt, \quad \forall x \in W. \quad (3.2)
\]

Let
\[
\tilde{E} = \{ x \in W | x(-t) = -x(t), \forall t \in R \}. \quad (3.3)
\]
Then \tilde{E} is a closed subspace of W and, therefore, is a Hilbert space. By $x(-t) = -x(t)$ we have $x(0) = 0$. Hence we have

$$||x|| = \left(\int_{-\infty}^{\infty} |\dot{x}|^2 dt \right)^{1/2}, \quad \forall x \in \tilde{E}. \quad (3.4)$$

Following the ideas of [31–33, 35], we have

Lemma 3.1. Suppose (V1), (V2), and (V4) hold. Then $f \in C^1(\tilde{E}, R)$, and $x \in \tilde{E}$ is a critical point of f restricted on \tilde{E} if and only if it is an odd $C^2(R, R^n)$-solution of (1.2).

Proof. (i) By (V1), (V4), and [26], we know $f \in C^1(\tilde{E}, R)$.

(ii) Suppose $x \in \tilde{E}$ is a critical point of f on \tilde{E}. Then there holds

$$\int_{-\infty}^{\infty} (\dot{x}y - V'(x) \cdot y) dt = 0, \quad \forall y \in \tilde{E}. \quad (3.5)$$

By (V1), we have $w = V'(x(\cdot), t) \in C(R, R^n)$. Furthermore, by (V1), $V'' \in C^1(R^n \times R, R)$ and $x \in W^{1,2}(R, R^n)$. By (V2), we have $V'(0) = 0$. So by the regular theorem about the composition mapping we have $w \in W^{1,2}(R, R^n)$.

The boundary value problem of the linear system

$$\ddot{q} + w = 0$$

$$q(\pm \infty) = \dot{q}(\pm \infty) = 0 \quad (3.6)$$

possesses a unique solution $Q \in C^2(R, R^n)$ and

$$\int_{S_1}^{S} \dot{Q}(\tau) d\tau = \int_{S_1}^{S} w(\tau) d\tau, \quad \forall S, S_1 \in R \quad (3.7)$$

$$\dot{Q}(S) - \dot{Q}(S_1) = -\int_{S_1}^{S} w(\tau) d\tau, \quad \forall S, S_1 \in R. \quad (3.8)$$

Because $\lim_{t_1 \to -\infty} Q(S_1) = 0$, so $\int_{-\infty}^{S} w(\tau) d\tau$ exists and

$$-\int_{-\infty}^{S} w(\tau) d\tau = \dot{Q}(S) \quad (3.9)$$

$$-\int_{t_1}^{t} \left(\int_{-\infty}^{S} W(\tau) d\tau \right) ds = Q(t) - Q(t_1), \quad \forall t_1, t \in R. \quad (3.10)$$
Because \(\lim_{t \to -\infty} Q(t) = 0 \), so \(-\int_{-\infty}^{t} \int_{-\infty}^{S} w(\tau) \, d\tau \, ds \) exists and
\[
Q(t) = -\int_{-\infty}^{t} \int_{-\infty}^{S} w(\tau) \, d\tau \, ds. \tag{3.11}
\]
So \(Q \in C^{2}(R, R^{n}) \).
Since \(w \) is odd, so is \(Q \). By \(Q(\pm \infty) = \hat{Q}(\pm \infty) = 0 \), we know \(Q \in \hat{E} \).
From (3.6) we obtain that for \(\forall y \in \hat{E} \) there holds
\[
\int_{-\infty}^{\infty} (\hat{Q} \dot{y} - V'(x) \cdot y) \, dt = 0. \tag{3.12}
\]
Combining with (3.5) yields
\[
\int_{-\infty}^{\infty} (\dot{x} - \hat{Q}) \cdot \dot{y} \, dt = 0, \quad \forall y \in \hat{E}. \tag{3.13}
\]
Letting \(y = x - Q \), by the fact \(x(0) = Q(0) = 0 \) we obtain
\[
|\dot{x}(t) - Q(t)| \leq \int_{0}^{t} \left| \dot{x}(s) - \hat{Q}(s) \right| \, ds \leq \sqrt{t} \| \dot{x} - \hat{Q} \|_{L^{2}} = 0, \quad \forall t \in R. \tag{3.14}
\]
Thus \(x = Q \in C^{2}(R, R^{n}) \) and is a solution of (1.2) by (3.6).
Now the proof of Theorem 1.2 follows from Lemma 3.1 and the arguments of Coti Zelati-Rabinowitz [26].

REFERENCES

20. B. Buffoni and E. Sere, A global condition for quasi random behavior in a class of conservative systems, preprint.

