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Abstract

In this paper, we introduce the singular words of Sturmian sequences, which play an important
role in studying the properties of the factors of Sturmian sequence. We also completely determine
the powers of the factors, the overlaps of the factors and the structure of the palindromes of the
factors.
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1. Introduction

Sturmian sequence, as a kind of aperiodic sequences with minimal language com-
plexity, have been studied for a long time. These sequences are related to many di9erent
objects and appear in the mathematical literature under many di9erent names, such as
rotation sequences, cutting sequences, Christo9el words, Beatty sequences, character-
istic sequences, balanced sequences, and so forth. A clear exposition of early work
by J. Bernouli, Christo9el, and A. Markov is given in the book by Venkov [19]. The
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term ‘Sturm’ was used by Hedlund and Morse [9] in their development of symbolic
dynamics. There is much literature about properties of these sequences (see for example
Series [17,8,18]). From a combinatorial point of view, they have been considered
by Brown [5], SHeHebold [16], Mignosi [14] and Ito and Yasutomi [10] (in particular
in relation with iterated morphisms). Sturmian words appear also in ergodic theory,
computer graphics and quasi-crystal. For a survey, we refer the readers to Berstel [2]
or Lothaire [13].

The main aim of this paper is to study the combinatorial properties of the factors of
Sturmian sequences, such as powers of factors, overlaps of factors and the structure of
palindrome factors. By using singular words introduced in [20], Wen and Wen studied
these properties for a class of Sturmian sequences which are generated by invertible
substitutions (see [20,21]). We Jrst introduce the singular words for general Sturmian
sequences, then we completely determine the powers of factors, overlaps of factors and
the structure of palindrome factors. As we will see, the positive separation property
of the singular words plays an important role in the studies. For example, we give a
simple proof of the index of Sturmian sequences obtained by Damanik and Lenz [6],
which we proved independently in 1998.

This paper is organized as follows. We Jrst give some preliminaries in Section 2.
In Section 3, we introduce the standard word An which is also an important class
of factors. Sections 4 and 5 are dedicated to the notions and properties of singular
words wn of Sturmian sequence. We establish two decompositions of the Sturmian
sequence by singular words, and prove the positive separation property of the singular
words. Then in Section 7, by using singular words we study systematically the power
of factors, the overlap properties of the factors and the structure of the palindrome
factors.

2. Preliminaries

Let S = {l1; l2; : : : ; lk} be an alphabet with k letters l1; l2; : : : ; lk . A Jnite string
u= u1u2u3 : : : un with ui ∈ S is called a word over S, while an inJnite string u= u1u2u3

: : : un : : : with ui ∈ S is called a sequence over S. We denote by S∗ the set of all words
and by S! the set of all sequences. The concatenation of two words u= u1u2 · · · ur; v=
v1v2 · · · vs is deJned as u1u2 · · · urv1v2 · · · vs and denoted by uv. un is the concatena-
tion of n copies of u. The concatenation of a word and a sequence can be deJned
similarly. Under the operation of concatenation, S∗ forms a monoid where the neutral
element is the empty word �. The length of a word w is denoted by |w| and the num-
ber of appearances of a letter l∈ S in a word w is denoted by |w|l. L(w) denotes the
k-dimensional vector (|w|l1 ; |w|l2 ; : : : ; |w|lk ). We say a word u is a factor of another
word w, written u≺w, if there exist two words v1; v2 ∈ S∗ such that w= v1uv2. In
this case, we say (|v1|; u) is an occurrence of u in w. The occurrence of a word or
a sequence in a sequence is deJned in a similar way. If w= uv, we say u (resp. v)
is a left (resp. right) factor of w, written u /w (resp. v .w). A word u is a factor of
a sequence F ∈ S! if there exist a word v and a sequence F ′ such that w= vuF ′; if
v= �, we say u is a left factor of F , and note u / F .
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Let w= x1 · · · xn and u= xrxr+1 · · · xn . w, we denote by wv−1 the word x1x2 · · · xr−1.
Throughout this paper, the expression wu−1 conveys this meaning. We denote by Nw
the mirror image of w, that is, Nw= xnxn−1 · · · x2x1. If w= Nw, the word w will be called
a palindrome. The set of all palindromes is denoted by P. A word w∈ S∗ is called
primitive if w= up ⇒p= 1. Let w∈ S∗ and 06k¡|w|, we deJne the kth conjugate
of w by Ck(w) := xk+1 · · · x|w|x1x2 · · · xk . The set of conjugates of w is deJned by
C(w) := {Ck(w); 06k¡|w|}.

The language of length n of a sequence F , denoted by �n(F), is the set of all
factors of F of length n. The language of F is deJned as �(F) :=

⋃
n¿0 �n(F), i.e.

the set of all factors of F . The complexity function of F is deJned as pn(F) := #�n(F).
A sequence F over an alphabet of 2 letters is called Sturmian if #�n(F) = n + 1.

Throughout this paper, we assume S = {a; b}, an alphabet with 2 letters.

Lemma 1. The conjugates of a primitive word w are all di8erent.

Proof. Let w=w1 · · ·w|w|. Suppose to the contrary, there exists 06m¡n6|w| − 1
such that Cm(w) =Cn(w), which means

wm+1 · · ·w|w|w1 · · ·wm = wn+1 · · ·w|w|w1 · · ·wn:

Let u1 =wm+1 · · ·wn and u2 =wn+1 · · ·w|w|w1 · · ·wm, and we have u1u2 = u2u1. By
Lothaire [12], there exist two integers p; q¿0 and a word u0 ∈ S∗ such that u1 = up0
and u2 = uq0, which implies w= ur0 with r¿2, contradiction.

A sequence F ∈ S! is called a balanced sequence if for any w1; w2 ≺F with |w1|
= |w2|, we have ‖w1|a − |w2|a|61.

Consider a line y= �x +  (x¿0) over the plane with � irrational in R+ and  
real. If the line cuts a vertical (resp. horizontal) line, we write letter a (resp. b). If it
cuts lines at some lattice point, we write ab or ba. The sequence obtained is called a
cutting sequence and we note F�; .

The following theorem says that Sturmian sequence, balanced sequence and cutting
sequence are the same thing.

Theorem 1 (Ferenzy [7]). Suppose F ∈ S!, then the following assertions are equiva-
lent:
1. F is a Sturmian sequence;
2. F is a cutting sequence;
3. F is a noneventually periodic balanced sequence.

Remark 1. Let F1; F2 ∈ S! be two sequences over S. We say that F1 and F2 have the
same language if �(F1) =�(F2). This means F1 and F2 have the same set of factors.
If we are only interested in the properties of the factors, we do not distinguish two
sequences having the same language. It is easy to prove (see for example [7]) that for
any � and for any  1;  2, P(F�; 1 ) = P(F�; 2 ). Hence in this paper, we only consider
the cutting sequence F� :=F�;0.
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Remark 2. It is easy to see that the sequence F1=� can be obtained by changing the
letter a (resp. b) to b (resp. a) in the sequence F�. So, to analyze the properties of
the Sturmain sequence, we only need to consider the case �∈ [0; 1].

3. Standard words and their properties

Damanik and Lenz introduced the standard words by a direct manner (see for exam-
ple [6]) and obtained some of their properties. We introduce them in this paper from
a geometrical view and give some properties (maybe some overlaps with [6]) that will
be used later.

Let �∈ [0; 1] be an irrational, and consider the cutting sequence F� generated by the
line l� :y= �x (x¿0). A lattice (q; p) on the plane is called an asymptotic point if
the vertical distance (or equivalently, the horizontal distance or orthogonal distance)
from (q; p) to the line l" is the shortest among the distances from the points whose
Jrst coordinate is not greater than q. Such points can be uniquely ordered by the Jrst
and the last coordinates. By convention we let A0 := (1; 0). Suppose An := (qn; pn) is
the nth asymptotic point, and let Qn be the square which contains the foot of the
perpendicular from An to l�. It is easy to see that the line l� cuts Qn twice. Reading
from the next cutting point of the original to the second cutting point in the square
Qn, we get a word which will be called the standard word of order n and denoted
also by An. By convention, we take A0 = a and A−1 = b.

In order to discuss the properties of the sequence of standard words, we collect some
important and useful facts about the continued fraction which can be found in [11].

Let irrational �∈ (0; 1) have a continued fraction expansion �= [0; a1; a2; : : : ; an; : : :]
with an ∈N, and let pn=qn be its nth convergent which is deJned recursively by
pn+1 = an+1pn +pn−1, qn+1 = an+1qn +qn−1 with p0 = 0; q0 = 1, p1 = 1 and q1 = a1.

Proposition 1. For any irrational �∈ (0; 1), we have the following:
(1) for any n; m¿0, p2n=q2n¡p2n+2=q2n+2¡� ¡ p2m+1=q2m+1¡p2m−1=q2m−1;
(2) for any n¿0; (qn; pn) = 1, that is, all convergents are irreducible;
(3) for any rational fraction s

t with 16t¡qn, |t�− s|¿|qn�− pn|.

Theorem 2. The point (qn; pn) is the nth asymptotic point of the sequence F� if and
only if pn=qn is the nth convergent of the continued fraction of �.

Proof. Since the successive convergents of � are also ordered by the numerator and
denominator, we need only to prove that (q; p) is an asymptotic point if and only
if p=q is a continued fraction convergent. By the deJnition of the asymptotic point,
we see that (q; p) is an asymptotic point if and only if for any s; t ∈N, 16t¡q,
|q� − p|¡|t� − s|. Thus by Proposition 1.3, it is equivalent to say that p=q is an
convergent of �.

Proposition 2. Under the above notations, we have for any n∈N
(1) An−1 / An / F�, and ab . A2n+1, ba . A2n;
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(2) dn = an+2dn+1 + dn+2, where dn := |pn − qn�| is the vertical distance from the
asymptotic point An to the line l�;

(3) L(An) = (pn; qn) and |An|=pn + qn;
(4) |An+2|= an+2|An+1| + |An|.

Proof. (1) This follows directly from the deJnition of the standard words.
(2) By the deJnition of dn and Proposition 1.1, we have d2n+1 =p2n+1 −q2n+1� and

d2n = q2n�−p2n, and the conclusion follows from the recursive relations of pn and qn.
(3) Because the segment OAn cuts vertical lines pn times and horizontal lines qn

times, we get L(An) = (pn; qn), and so |An|=pn + qn.
(4) The conclusion is from (3) and the recursive relations of pn and qn.

The following theorem gives the recursive relation of the standard words {An}n¿0

which is very useful for us to further study the properties of Sturmian sequences.

Theorem 3. Let An be the nth standard word of F�. Then for any n¿0,

An+1 = Aan+1
n An−1:

Proof. We prove it by induction on n.
The case n= 0; 1 can be checked directly.
By Proposition 2(1) and (4), |An+1|= an+1|An| + |An−1| and An−1 / An / An+1 / F",

thus for n¿2, we need only to prove that Aan+1+1
n / F".

First we consider the case n= 2k. By Proposition 2.1, ba . An; ab . An+1. Let l� be
the associated line. Consider an+1 lines li :y= �x + idn (16i6an+1). We denote by
Si and Ti (16i6an+1), respectively, the intersection points of li with y-axis and line
x= qn. We denote the point (qn; qn�) by T0.

Since AnTi−1 =OSi (16i6an+1), the cutting sequence starting from Ti−1 is equal to
the cutting sequence starting from Si with the slope � (here An is the nth asymptotic
point associated with the line l�). On the other hand, by Proposition 2.2, OSi = idn¡
dn−1, which implies that the nth standard word An is the preJx of the sequence starting
from any Si. So there exist words wi such that w0 =Anw1, wi =Anwi+1 (06i6an+1),
which implies Aan+1+1

n / F�.
The case of n being odd can be proved in the same way (in this case, we will draw

the lines y= �x − idn).

From now on, we will always assume that "; )∈ S and " 
= ).
The following proposition can be proved easily by induction.

Proposition 3. Let n¿0 and ) .An, then

AnAn−1 = An−1An)−1"−1)"; An−1An = AnAn−1"−1)−1"):

The following proposition summarizes some elementary properties of the standard
words.
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Proposition 4. Let F� be Sturmian and let An be the standard words of F�, then
(1) for any n¿0, An / An+1, An . An+2;
(2) for any n¿0, A2

n ≺F�, AnAn+1 ≺F�;
(3) for any n; m∈N, AnAm ≺F�;
(4) aa1+2�F�, b2�F�;
(5) for any n¿1, baa1+1b . A2n+1;
(6) any factor of F� placed between two adjacent b’s is either aa1 or aa1+1;
(7) for any n¿0, An is primitive.

Proof. (1) This is the consequence of Theorem 3.
(2) From Theorem 3, we have

An+3 =Aan+3
n+2An+1 = (Aan+2

n+1An)an+3An+1 =w1AnAn+1 =w1AnAnw2 ≺F�;

where w1; w2 ≺F". This implies AnAn+1; A2
n ≺An+3 ≺F�.

(3) If m6n, since Am /An / F� and A2
n ≺An+3 / F�, we get AnAm / AnAn ≺F�.

If n¡m and they have the same parity, then An . Am by (1), and AnAm . A2
m ≺F�. If

m; n have di9erent parity, the similar discussion shows that AnAm . Am−1Am ≺F�.
(4) From (3) we have baa1b . A3A1 and A3A1 ≺F�. The result follows immediately

from the balance property of F�.
(5) By Theorem 3 and the deJnitions of A−1; A0, baa1+1b . A2A1 . A3 . A2n+1.
(6) This follows from (4), (5) and the balance property of F�.
(7) If An =wk for some word w and integer k¿1, then we have (pn; qn) =L(An) =

L(wk) = (k|w|a; k|w|b). This contradicts the fact pn=qn being irreducible.

4. Singular words and their properties

In this section we study Jrst two special kinds of factors, and as we will see, they
are the powerful tools in the study of the factor properties of Sturmian sequences.

Let {An}n¿−1 be the standard words of the Sturmian sequence F� and ) .An, deJne

wn := "An)−1; Pn := )Aan+1−1
n An−1"−1:

By Proposition 4, both wn and Pn are the factors of F�. The words wn and Pn are
called the singular word of order n of F� and the adjoining word of wn, respectively.
Since A−1 = b; A0 = a, we have w−1 = a; w0 = b. For convenience, we take further
A−2 =w−2 =P−1 = �. We denote by S :=S(F�) :=

⋃∞
n=−2{wn} the set of all singular

words of F�.
The following lemma illustrates the structure of wn and Pn.

Lemma 2. Let n¿0 and ) .An, then
(1) )"−1wn = )An)−1 =wn−1Pn−1, wn"−1)=Pn−1wn−1;
(2) wn+1 =wn−1Pn−1Pn =PnPn−1wn−1;
(3) Pn = (wn−1Pn−1)an+1−1wn−1;
(4) wn+1 = (wn−1Pn−1)an+1wn−1.
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Proof. Since ) .An, we have " . An−1 and )" . An+1.
(1) The case n= 0 can be checked easily. Suppose n¿1, then by the deJnitions of

wn, Pn and Theorem 3, we have

)"−1wn = )An)−1 = )Aan
n−1An−2)−1 = )An−1"−1"Aan−1

n−1 An−2)−1 = wn−1Pn−1;

wn"−1) = )Aan
n−1An−2)−1"−1) = )Aan−1

n−1 An−2An−1"−1 = Pn−1wn−1:

(2) As in (1), we get

wn+1 = )An+1"−1 = )Aan+1
n An−1"−1 = )An)−1)Aan+1−1

n An−1"−1 = wn−1Pn−1Pn:

(3) The case of n= 0 can be checked directly. For n¿1, we have

Pn = )Aan+1−1
n An−1"−1 = ()An)−1)an+1−1()An−1"−1) = (wn−1Pn−1)an+1−1wn−1:

(4) The conclusion follows from (2) and (3).

By induction, we can easily get the following corollary.

Corollary 1. For any n¿−1, wn, Pn ∈P, that is, all words wn and Pn are palindromes.

Corollary 2. The left and right factors of length |An−2k | of wn are wn−2k .

Proof. This follows directly from the fact that wn−2 /wn, wn−2 .wn by Lemma 2.4.

Proposition 5. Let An be the nth standard word of F� and C(An) the set of the
conjugates of An, then

(1) For 06k¡|An|, Ck(An) is either a palindrome or a product of two palin-
dromes. Moreover, for 06k6|An−1| − 1, Ck(An) = uPn−1v with vu=wn−1; and for
|An−1|6k6|An| − 1, Ck(An) = uwn−1v with vu=Pn−1.

C|An|−1(An) =wn−1Pn−1; C|An−1|−1(An) =Pn−1wn−1:

(2) All elements of C(An) are di8erent.
(3) C(An) =C(An), where C(An) = { Nw; w∈C(An)}.
(4) �|An|(AnAn) =C(An).
(5) wn =∈C(An).
(6) �|An| =C(An) ∪ wn.
(7) �|An| =�|An|.
(8) For any n¿2, �|An|(An−1An) =wn ∪{Ck(An); 06k6|An−1| − 2}. In particular,

as a factor, wn appears only once in An−1An.

Proof. (1) By Lemma 2(1), C|An|−1(An) =wn−1Pn−1, which is a product of two palin-
dromes by Corollary 1. It is easy to see that a conjugate of a product of two palindromes
is either a palindrome or a product of two palindromes.

Since |An−1|= |wn−1|, the second follows directly.
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(2) By Proposition 4(7), the word An is primitive, hence the conclusion follows from
Lemma 1.

(3) By (1), for any 06k¡|An|, Ck(An) is either a palindrome, or a product of two
palindromes. If Ck(An) is a palindrome, then Ck(An) =Ck(An)∈C(An); if Ck(An) is a
product of two palindromes, then there exist u; v∈P such that Ck(An) = uv. Thus

Ck(An) = uv= vu=Ck+|u|(An)∈C(An):

This proves C(An)⊂C(An), the reverse inclusion can be proved in the same way.
(4) It is obvious.
(5) By Proposition 2(3) and the deJnition of wn, we have L(wn) = (pn−1; qn+1) or

(pn + 1; qn − 1). On the other hand, for any 06k¡|An|, L(Ck(An)) =L(An) = (pn; qn).
The conclusion follows.

(6) Since F� is Sturmian, #�|An|(F�) = |An| + 1. Thus by (2) and (5), we have
�|An| =C(An) ∪ {wn}.

(7) The conclusion follows from (3) and Corollary 1.
(8) Assume ") . An, then by Proposition 3, An−1An =AnAn−1"−1)−1") and AnAn−1 /

AnAn. Therefore the Jrst p= |An−1|−2 factors of length |An| belong to C(An), the last
factor of length |An| is An, and the (|An−1| − 1)th factor is wn.

From the above, we conclude that any factor of F� of length |An| must be contained
either in An−1An or in AnAn. By Proposition 5, we can see that the set of factors of F�
of length |An| consists of conjugates of An and the singular word wn. The discussions
below will show that, as a factor, the singular word wn has some special properties.

Proposition 6. Let wn be the singular word of order n of F�, then
(1) for any n¿1, we have

L(wn) =
{

(pn + 1; qn − 1) if n is odd;
(pn − 1; qn + 1) otherwise;

(2) wn�wn+1;
(3) for any n¿1; w2n+1 = aa1+1uaa1+1; w2n = bvb, where u; v∈P;
(4) for any n¿2; 16k¡|An|; Ck(wn)�F�, i.e., any proper conjugation of wn is

not a factor of F�;
(5) for any n¿2; wn is not a product of two palindromes;
(6) for any n¿2; wn is primitive;
(7) for any n¿0; wn

2�F�.

Proof. (1) If n is odd, then b . An, so L(wn) =L(aAnb−1) = (pn + 1; qn − 1); the case
of n being even can be proved in the same way.

(2) Notice that by the deJnition of the singular words and Theorem 3, we have

wn+1 = "An+1)−1 = "Aan+1
n An−1)−1 ≺Aan+1+3

n :

So if wn ≺wn+1, then wn ≺wn+1 ≺Aan+1+3
n , which yields wn ∈C(An), and contradicts

Proposition 5(5).
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(3) From Proposition 4(5), aa1+1b . A2n+1 and ba . A2n. This gives the equalities of
the conclusion. The words u and v are palindromes since wn is a palindrome.

(4) From (3), any proper conjugation of wn contains either b2 or aa1+2 as its factor.
But Proposition 4(4) says neither b2 nor aa1+2 is a factor of F�, contradiction.

(5) Assume that wn = uv, u; v∈P. Since wn ∈P, wn =wn = Nv Nu= vu, thus wn =
C|u|(wn) which contradicts (4).

(6) Suppose that wn is not primitive, then there exists an integer p¿2 such that
wn = up:wn ∈P implies u∈P which implies further that wn is the product of two palin-
dromes, contradiction.

(7) Notice that w2
0 = b2 and w2

1 = a2a1+2, w2
0 ; w

2
1�F� by Proposition 4(4).

Now suppose n¿2. If w2
n ≺F", then C(wn) will be the factors of F�, this contradicts

(4).

A factor w≺F� is called a special word of F� if both wa and wb are factors of F�.
The special words introduced Jrst by Berstel [3] for studying the factor properties of
Fibonacci sequence. Since �n(F�) = n+ 1, there exists a unique special word of F� of
length n. The following theorem determines all special words.

Theorem 4. Let w≺F�. Then w is a special word if and only if there exists n∈N
such that w / NAn.

Proof. Since w / NAn ⇔ Nw .An, the conclusion of the part “only if ” follows from Propo-
sitions 2(1) and 4(3). The part “if ” is thus from the uniqueness of the special word
for any length.

5. Decompositions of Sturmian sequence by singular words

In this section, we will be able to establish two di9erent decompositions of Sturmian
sequence F� by singular words and their adjoining words which will be used to study
the properties of the factors of F�.

Lemma 3. Let " . An+1, then

An+1 =
(

n∏
i=0

Pi

)
";

wn+1 = )
n∏

i=0
Pi;

w2n+2 =
0∏

i=n
(w2iP2i)a2i+2w0; w2n+1 =

0∏
i=n

(w2i−1P2i−1)a2i+1w−1:

Proof. Since " . An+1; ) . An. By Theorem 3 and the deJnition of Pn, we get

An+1"−1 = Aan+1
n An−1"−1 = An)−1()Aan+1−1

n An−1"−1) = An)−1Pn:
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Repeating the above discussion, we get Jnally

An+1"−1 = A0a−1P0P1 · · ·Pn =
n∏

i=0
Pi:

Since wn+1 = )An+1"−1, the second equality follows immediately. Similar arguments
show that

w2n+2 = bA2n+2a−1 = bAa2n+2
2n+1A2na−1

= (bA2n+1b−1)a2n+2bA2na−1 = (w2nP2n)a2n+2w2n

=
0∏

i=n
(w2iP2i)a2i+2w0;

The fourth equality can be obtained in the same way.

From Proposition 2, we know that for any n∈N, An / F�. This fact combined with
Lemma 3 gives the following decomposition of F� with respect to Pi.

Theorem 5. F� =
∏+∞

i=0 Pi.

Now we introduce another decomposition of F�. With this decomposition, we will
establish a “positive separation” property of the singular words which, as we will see,
is a powerful tool in studying the combinatorial properties of the factors.

Let - : S→ S∗ be a mapping with -(a) = u and -(b) = v, which we also denote by
-= (u; v). Let F = x1x2 · · · xn ∈ S∗, and we deJne -(F) = -(x1)-(x2) · · · -(xn); i.e. the
word -(F) obtained by replacing the letters a and b in F by the words u and v,
respectively. We also denote by F(u; v) the word -(F). For F ∈ S!, we can deJne
-(F) in the same way.

Assume that �= [0; a1; a2; : : : ; an; : : :] is the continued fraction expansion of the irra-
tional � and let rn := rn(�) := [0; an+1; an+2; : : :]. Then an + rn is the nth remainder of �.

Theorem 6. With the above notations, we have
(1) for any n¿1, F� =Frn(An; An−1);
(2) for any n¿1,

F" =
(

n∏
i=0

Pi

)
Frn+2((wnPn)an+2−1wnwn+1; wnPn):

Proof. (1) Let Rk be the kth standard word of Frn , then we need only to prove

An+k = Rk(An; An−1): (*)

We prove equality (*) by induction on k.
The cases k =−1 and 0 are trivial.
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Suppose that (*) is true for any positive integers less than k, then

An+k+1 = Aan+k+1
n+k An+k−1 = Ran+k+1

k (An; An−1)Rk−1(An; An−1) = Rk+1(An; An−1):

The Jrst and the third equalities are due to Theorem 3 and the second equality is due
to the hypotheses of induction. This completes the proof of conclusion (1).

(2) Suppose ) .An, then

F� = Frn+2(An+2; An+1) = Frn+2(A
an+2
n+1An; An+1)

= An+1Frn+2(A
an+2−1
n+1 AnAn+1; An+1)

= An+1"−1Frn+2("A
an+2−1
n+1 An)−1)An+1"−1; "An+1"−1)

=
(

n∏
i=0

Pi

)
Frn+2(Pn+1wn+1; wnPn)

=
(

n∏
i=0

Pi

)
Frn+2((wnPn)an+2−1wnwn+1; wnPn):

The Jrst two equalities are due to (1) and Theorem 3, respectively. The third and the
fourth equalities can be checked by the deJnition of F(u; v), and the last two equalities
come from Lemmas 2 and 3(1).

The decomposition in Theorem 6(2) is called the composition of F" with respect to
the singular words of order n.

By Lemma 3 and Theorem 6(2),

)F� =wn+1Frn+2((wnPn)an+2−1wnwn+1; wnPn)

=
∞∏
i=1

ti (∗);

where t2i =wn; t2i+1 =wn+1 or Pn. This shows )F� is the concatenation of inJnitely
many copies of wn; wn+1; Pn. So for a Jxed n, there are inJnite many occurrences of
wn in F�. We denote by wn; k the kth occurrence of wn indicated by (*) above, i.e.
wn; k = (

∑2k−1
i=1 |ti| − 1; wn). Let W(n) := {wn; k}k¿1. Now we are going to prove that

wn occurs nowhere else except at wn; k , i.e. W(n) contains all occurrences of wn in F�.
Suppose to the contrary, some occurrence of wn equals none of wn; k . Then wn occurs

in the “middle” of the following concatenations which appear in (*) above:
1. Pnwn; 2. wnPn; 3. wn+1wn; 4. wnwn+1;
5. wnPnwn (if |Pn|¡|wn|); 6. Pn (if |wn|6|Pn|)

The following lemma shows that cannot happen.

Lemma 4. For any n¿0, we have
(1) wn�Pn; Pn�wn.

This implies wn could not be a pre<x of (1), (3), (6), or a su=x of (2), (4), (6).
(2) Assume z= xy= u1u2u3 ≺F�, where one of x; y is wn, the other is Pn or wn+1,

is one of the <rst 4 words de<ned above with 0¡|u1|¡|x|; 0¡|u3|¡|y|, then u2 =∈S.
This implies wn could not be situated in the middle of the (1)–(4).
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(3) Assume z=wnPnwn = u1u2u3 with 0¡|u1|; |u3|¡|wn|. Then u2 =∈S.
This implies wn could not be situated in the middle of (5).

Proof. (1) By Lemma 3(1),
∏n

i=0 Pi =An+1"−1 = )−1wn+1. By Proposition 6(2),
wn�wn+1, which implies wn�

∏n
i=0 Pi.

If an+1 = 1; Pn =wn−1�wn. If an¿2; |Pn|¿|wn|. This proves Pn�wn.
(2) We only prove the case z=Pnwn; the other four cases can be proved in the same

way.
Let z=Pnwn and )" . An, then ") . An−1. By the deJnitions of An, wn; Pn, we have

z = u1u2u3 = Pnwn = "Aan+1−1
n An−1)−1)An"−1 = "Aan+1−1

n An−1An"−1:

We now prove u2 =∈S.
(i) Since |u2|¡|Pnwn|= |wn+1|, u2 
=wn+1.
(ii) Notice that

u2 ≺ "−1Pnwn)−1 = Aan+1−1
n An−1An"−1)−1 = Aan+1−1

n AnAn−1)−1"−1 ≺ Aan+1+1
n ;

where the second equality follows from Proposition 3. By Proposition 6(4), wn =∈C(An),
thus u2 
=wn.

(iii) Now we prove that for any −16i¡n, u2 
=wi. Suppose that |u2|= |wi|= |Ai|;
−16i¡n. If i= n− 2k, then

An−2kAn−2k−1)−1 . Pn; )An−2k"−1 /wn;

but |u1|¡|Pn|, so

u2 ≺An−2kAn−2k−1An−2k)−1"−1 ≺A3
n−2k

hence, u2 ∈C(An−2k). Since wn−2k =∈C(An−2k), u2 
=wn−2k .
If i= n − 2k − 1, we can get in the same way as above u2 ≺A3

n−2k−1 and so
u2 
=wn−2k−1.

(3) This follows from (1).

Let F = x1x2 · · · xn · · · ∈A! and u= xnxn+1 · · · xn+s−1; v= xn+m · · · xn+m+t−1 two fac-
tors of F . We say that the occurrences (n; u) and (n + m; v) are positively separated
in F if m¿s and we call the word xn+s · · · xn+m−1 the separating factor of the two
occurrences; otherwise (if m6s), we say the occurrences of u and v are not positively
separated.

Let {(pn; un)}n¿1 be a Jnite or inJnite sequence of occurrences of factors of F . We
say that the sequence {(pn; un)}n¿1 is positively separated in F if any two adjacent
occurrences (pn; un) and (pn+1; un+1) are positively separated. Let {(pn; un)}n¿1 be
a positively separated sequence in F and let vn ≺F be the separating factor situated
between un and un+1 (by convention, v0 is the factor before u1). We call the sequence
of occurrences {pn + |un|; vn} of separating factors {vn}n¿0 the separating sequence
with respect to the sequence {(pn; un)}n¿1.
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From Theorem 6 and Lemma 4, we get immediately

Theorem 7. Let n∈N be <xed. Then
(1) W(n) = {wn; k}k¿1 is the sequence of occurrences of wn in F�;
(2) the sequence W(n) is positively separated in F� (we say also that the singular

word wn is positively separated);
(3) the separating sequence with respect to W(n) consists of the words Pn and wn+1

(except for v0 :=
∏n

i=0 Pi = )−1wn+1).

The following corollary also follows directly from Lemma 4.

Corollary 3. Let F� =
∏+∞

i=0 Pi be the decomposition of F�, and wn ≺F� be a singular
word of order n, then every wn must be completely contained in some Pi.

Corollary 4. Let u≺F" with |An|¡|u|6|An+1| for some n¿0. Suppose that w≺ u is
a singular word of the highest order contained in u, then
(1) w must be one of the following four singular words: wn−2; wn−1; wn; wn+1;
(2) if w=wn−2, then w appears in u exactly an times; if w=wn−1, then w may

appear in u from one to an+1 times; if w=wn or wn+1, then w appears exactly
once in u.

Proof. (1) The restriction on the length of u shows w can take one of the words of
wn−2, wn−1, wn, and wn+1.

Since |wn+2|¿|An+1|¿|u|, w 
=wn+2. Now suppose w=wn−3. Consider the decom-
position of F" by singular words of order n− 3 and notice that |u|¿|An|, and we can
see that wn−3 appears in u at least an−1 times. Thus from Theorem 6(2), u will contain
either one wn−2 or one wn−1, and this contradicts maximality of w in u.

(2) If w=wn−2, then
(i) the separating factor between two adjacent occurrences of wn−2 in u must be Pn−2,

otherwise wn−1 will appear in u which contradicts the maximality w in u;
(ii) wn−2 appears in u at most an times, otherwise wn appear in u;
(iii) wn−2 appears in u at least an times since u¿|An|;

so from (i) to (iii), wn−2 appears in u exactly an times.
The other three cases can be proved by the same argument.

Now we discuss the factor Pn. By an analogous analysis to wn with known facts
wn−1 ≺Pn, wn−1�wn and Pn�wn, we see that Pn is located between two adjacent wn

as a separating factor, or inside some wn+1, or in the “middle” of the following seven
words:

1. Pnwn; 2. wnPn; 3. PnwnPn; 4. Pnwnwn+1; 5. wnwn+1; 6. wn+1wn; 7. wn+1wnPn.
The following lemma shows that none of above seven cases could happen.

Lemma 5. Suppose z is one of the above seven words. Let z= u1u2u3; 0¡|u1|¡|B1|,
0¡|u3|¡|B2|, where B1; B2 denote the left and right factor of z, respectively, with
|B1| + |B2|6|z| ( for example, in the <rst case, B1 =Pn; B2 =wn), then u2 
=Pn.
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Proof. We only prove the Jrst case, the other cases can be proved in the same way.
Assume z=Pnwn and u2 =Pn. We know by Lemma 2(3) that wn−1 is a right factor

of u2 =Pn. This means wn−1 must be in the “middle” of Pnwn or contained in wn. The
Jrst case contradicts Lemma 4(2) and the second case contradicts Proposition 6(2).

Remark 3. Above discussions and Lemma 5 shows that Pn appears in F� either as a
factor either between two adjacent wn as a separating word, or contained in some wn+1.
In the latter case, the Pn is both the suUx and the preJx of wn+1 from Lemma 2(2).

6. Combinatorial properties of the factors of the Sturmian sequence

In this section, we discuss the combinatorial properties of the factors of the Sturmian
sequence, such as the power of the factors, overlap property of the factors, and the
structure of the palindrome factor. As we will see, the positive separation property of
the singular words will play an important role in these studies.

6.1. Power of the factors of Sturmian sequence

Theorem 8. Let F� be a Sturmian sequence with �= [0; a0; a1; : : : ; an; : : :]. We have
the following facts:

(1) for any n¿1, w2
n �F�;

(2) for any n¿1 and 06k¡|An|, (Ck(An))an+1+1 ≺F�;
(3) for any n¿1 and 06k6|An−1| − 2, (Ck(An))an+1+2 ≺F�;
(4) for any n¿1 and |An−1| − 2¡k¡|An|, (Ck(An))an+1+2�F�;
(5) for any n¿1 and 06k¡|An|, (Ck(An))an+1+3�F�;
(6) let u≺F� with |An|¡|u|¡|An+1| for some n¿0. If wn ≺ u, then u2�F�;
(7) let u≺F� with |An|¡|u|¡|An+1| for some n¿0. If wn� u and u 
=Ck(An)t ,

06k6|An|− 1, 26t6an+1, then u2 ≺F� if and only if u= u1(wn−1Pn−1)kwn−1u2 with
u2u1 =wn and 06k6an+1 − 2; 16|u1|; |u2|6|An| − 1;

(8) let u≺F� with |An|¡|u|¡|An+1| for some n¿0. If wn� u and u 
=Ck(An)t ,
06k6|An| − 1, 26t6an+1, then u3�F�;

(9) let u≺F� with |An|¡|u|¡|An+1| for some n¿0, then uan+1+3�F�.

Proof. (1) This is due to the positive separation property of singular words (in fact,
we have shown this in Proposition 6(7)).

(2) Since An+1An / An+2, and AnAn+2 ≺F�, AnAn+1An ≺F� by Proposition 4(3). So
Theorem 3 and Proposition 3 imply that Aan+1+1

n AnAn−1"−1)−1")≺F�. Thus, Aan+1+2
n

)−1≺F�. Hence, for any 06k6|An| − 1, we have (Ck(An))an+1+1 ≺Aan+1+2
n )−1 ≺F�.

(3) As in (2), Aan+1+2
n An−1"−1)−1 ≺F�. Since An−1 / An, we have for 06k6|An−1|−

2, Ck(An)an+1+2 ≺F�.
(4) Let |An−1| − 16k6|An| − 1. By Proposition 5(1), Ck(An) = v1wn−1v2 with

v2v1 =Pn−1. So if Ck(An)an+1+2 ≺F�, then

(wn−1v2v1)an+1+1wn−1 = (wn−1Pn−1)an+1+1wn−1 ≺Ck(An)an+1+2 ≺F�:



W.-T. Cao, Z.-Y. Wen / Theoretical Computer Science 304 (2003) 365–385 379

But by Lemma 2(4), we have wn+1 = (wn−1Pn−1)an+1wn−1. So wn+1 appears twice in
the word (wn−1Pn−1)an+1+1wn−1, which contradicts the positive separation property of
wn+1.

(5) The conclusion can be obtained by the same discussion as in (4).
(6) Assume wn ≺ u with |An|¡|u|¡|An+1| and u2 ≺F�. Let u= v1wnv2, then u2 =

v1wnv2v1wnv2 ≺F�. From Theorem 7, the length of the word between two wn is at
least |Pn|, i.e. |v2v1|¿|Pn|; so |u|¿|wn|+ |Pn|= |An+1|, which contradicts our hypothesis
|u|¡|An+1|.

(7) Suppose that w is the singular word of the maximum order appearing in u.
Corollary 4 implies that w will be one of the following four words: wn+1; wn; wn−1

and wn−2. By the hypotheses, w 
=wn+1 and u 
=wn, so w must be wn−1 or wn−2.
We prove Jrst the part “if ”.
Assume Jrst w=wn−2, and by Corollary 4, wn−2 appears in u exactly an times.

Since wn−1 does not occur in u, all separating words of wn−2 in u are Pn−2. So we
have

u= v1(wn−2Pn−2)an−1wn−2v2 = v1Pn−1v2:

We have the following two facts:
(i) |v1|; |v2|¡|An−1|. Otherwise, |v1|¿|An−1|, and wn−1 . v1 or wn−2Pn−2 . v1. The

Jrst contradicts the fact wn−1 does not occur in u and the second contradicts the fact
that wn−2 only appears an times.

(ii) |v1v2|¿|An−1| since |u|= |Pn−1| + |v2v1|¿|An|= |Pn−1| + |An−1|.
By hypothesis

u2 = v1(wn−2Pn−2)an−1wn−2v2v1(wn−2Pn−2)an−1wn−2v2 ≺ F�;

the word v2v1 is the word between two wn−2. But |An−1|¡|v2v1|¡2|An−1| by (i) and
(ii), we must have that v2v1 =Pn−2wn−2Pn−2, thus (wn−2Pn−2)an+1wn−2 ≺ u2 ≺F�, which
contradicts the positively separation property of wn( = (wn−2Pn−2)anwn−2). This proves
w 
=wn−2.

Now we assume w=wn−1. Since wn� u, all separating words in u with respect
to wn−1 are Pn−1, and we can write u= v1(wn−1Pn−1)s1wn−1v2 for some s1¿0 with
wn−1� v1; wn−1� v2. By the hypotheses,

u2 = v1(wn−1Pn−1)s1wn−1v2v1(wn−1Pn−1)s1wn−1v2 ≺ F�;

thus v2v1 is situated between two wn−1.
If v2v1 does not contain wn, it must contain only Pn−1 and wn−1, which gives v2v1

= (Pn−1wn−1)s2Pn−1 for some s2¿0. So C|v1|u= (wn−1Pn−1)s1+s2+1 = )−1As1+s2+1
n ),

where the second equality is due to Lemma 2(1). Hence there exists 06k6|An−1|− 1
such that u= (Ck(An))t , which contradicts the hypotheses.

So we must have v2v1 contains wn. Consequently, it contains only one such word,
otherwise u¿|An+1|. Hence by similar discussion as above, we have v2v1 =(Pn−1wn−1)s3

wn(wn−1Pn−1)s4 .
Since wn� u, then u= u1(wn−1Pn−1)s1+s2+s4wn−1u2 and u2u1 =w; 06s1 + s2 + s46

an+1 − 2. This Jnishes the proof of the “if ” part.
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Now we prove in the following the “only if ” part.
Assume u= u1(wn−1Pn−1)kwn−1u2 with u2u1 =wn and 06k6an+1−2; 16|u1|; |u2|6

|An| − 1. Then

u2 = u1(wn−1Pn−1)kwn−1wn(wn−1Pn−1)kwn−1u2 ≺PnwnPn ≺F�:

(8) Suppose that u3 ≺F�, then u2 ≺F�. By conclusion (7), u= u1(wn−1Pn−1)kwn−1u2

with u2u1 =wn and 06k6an+1 − 2, therefore wn(wn−1Pn−1)kwn−1wn ≺ u3 ≺F�. The
positive separating property of wn shows |(wn−1Pn−1)kwn−1|¿|Pn|. Hence k¿an+1 − 1
by Lemma 2(3), and this is a contradiction.

(9) This follows from conclusions (6)–(8).

Remark 4. Theorem 8(2) shows that, although each conjugation of the standard word
An appears in F" inJnitely many times, the conjugates are not necessary to be positively
separated. This is an essential di9erence between singular words and standard words.

Now we study the highest order of the repetition in the Sturmain sequence.
Let r¿1 be a rational, we say the sequence F ∈ S! contains a repetition of order

r, if there exist two factors z; x≺F such that

z / x[r]+1 and
|z|
|x| = r:

In this case we write z= xr (note that xr is well deJned if and only if k|x| is an
integer). Above deJnition is equivalent to that z= (uv)[r]u with |u|=(|u| + |v|) = {r}.

DeJne the free index FI(F) of the sequence F as follows:

FI(F) = sup{r ∈Q: F contains a repetition of order r}:
The following theorem is proved by Damanik and Lenz [6] (for the related results,

see also Berstel [4], Mignosi and Pirillo [15] and Vandeth [22]). Here we give a simple
proof of this result using singular words.

Theorem 9. Suppose that �= [0; a1; a2; : : :] is the continued fraction expansion of �.
Then

FI(F�) = 2 + sup
n¿0

{
an+1 +

|An−1| − 2
|An|

}
:

Proof. For any factor u≺F�, deJne the index of u by ind(u) = max{r ∈Q: ur ≺F�},
which yields immediately FI(F�) = supu≺F� ind(u).

By Proposition 4(4), ind(b) = 1; since |A−1|= |A0|= 1, ind(a) = 1 + a1 = 2 + (a1 +
(|A−1| − 2)=|A0|). Suppose |An|¡|u|¡|An+1| for some n¿0. If u=Ck(An)t for some
t, then ind(u) = (1=t)ind(Ck(An)); if u 
=Ck(An)t (06k6|An| − 1; 26t6an+1), then
ind(u)¡3 from Theorem 8(7) and (8). So we only need to consider the word u of
length |An| for some n. If u=wn is a singular word, ind(u)¡2 since w2

n �F�. Now
Jx n¿1 and we are going to determine max{ind(u): u=Ck(An) for some k}. In fact,
we only need to Jnd the maximum length of the word x≺F� which is a factor of the
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inJnite sequence A!
n :=AnAnAn · · ·. Since the singular word wn is not a conjugate of

An, wn is not a factor of x. By Theorem 7, wn is positively separated by the separating
words Pn and wn+1. So the possible maximum length of x is |An| + |An+1| + |An| − 2.
In this case x= "−1wnwn+1wn"−1 with " the Jrst letter of wn. So by Theorem 3 and
Proposition 3, we get

x = "−1wnwn+1wn"−1

= AnAn+1An)−1"−1 = Aan+1+1
n An−1An)−1"−1

= Aan+1+2
n An−1"−1)−1 = A

2+an+1+
|An−1|−2

|An|
n ;

which yields the conclusion of the theorem.

Remark 5. (1) It is easy to see that the above theorem is also true for �¿1. (In this
case we will take the continued fraction expression of � as [a1; a2; : : : ; an; : : :].)

(2) Denote c2 the Sturmian sequence {3[1−2;1)(n2mod 1)}n¿1. Then F� = -(c2) if
and only if 2= �=(1 + �), where - is projection: -(0) = a; -(1) = b.

If �= [0; a1; a2; : : : ; an; : : :]¡1, then �=(1+�) = 1=(1+1=�) = [0; a1 +1; a2; : : : ; an; : : :];
if �= [a1; a2; : : : ; an; : : :]¿1, then �=(1+�) = [0; 1; a1; a2; : : : ; an; : : :]. Thus, a simple com-
putation shows the equivalence between the result in [6] and Theorem 9.

From Theorem 9, we get immediately

Corollary 5. Suppose that F� is a Sturmian sequence. Then

sup{p; ∃w≺F� such that wp ≺F�}= max
{

1 + a1; 2 + sup
n¿2

{an}
}
:

In particular, if supn¿1{an}=∞, then for any k ∈N, there exists a factor w≺F�
such that wk ≺F�.

Example 1 (Mignosi and Pirillo [15], Wen Zhi-Xiong and Wen Zhi-Ying [21]). Let
�=

√
5−1
2 = [0; 1; 1; 1; : : :] be the golden number, then FI(F�) = 5+

√
5

2 , and for any
factor u≺F�, u4�F�.

6.2. Overlap property of the factors

Suppose u≺F ∈ S!. If there exist words x; y and z such that u= xy=yz and
u∗(y) := uz= xyz≺F , then we say that the word u have overlap with the overlap
factor y (or overlap length |y|), and the word u∗(y) is called the overlap of u with
the overlap factor y. We denote by O(F) :=O the set of factors of F having overlap.
The structure of O for the Fibonacci sequence and the Morse sequence have been
studied, respectively, in [21] and [1].
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From Theorem 7, we have

Proposition 7. For any n¿1, wn has no overlap.

Lemma 6. Let u≺F� with |An|¡|u|6|An+1| for some n¿0. Then wn� u if and only
if u≺ "−1wnwn+1wn"−1 with " /wn.

Proof. By Theorem 7, if wn� u, u is a factor of either "−1wnPnwn"−1 or "−1wnwn+1

wn"−1. By Lemma 2(1), "−1wnPn = )−1wn+1, which means

"−1wnPnwn"−1 = )−1wn+1wn"−1 ≺ "−1wnwn+1wn"−1:

On the other hand, if u≺ "−1wnwn+1wn"−1, then wn� u from the positive separation
property of wn, and the result follows.

Lemma 7. Let w= "−1wnwn+1wn"−1 with " /wn. If u≺w with |An|¡|u|6|An+1| and
u 
=wn+1, then u has overlap.

Proof. From Lemma 2(1) and (4), we have

w = "−1wnwn+1wn"−1 = )−1(wn−1Pn−1)an+1+2wn−1)−1:

By Lemma 6, wn� u. From the hypotheses of the lemma, we see that if u contains
the word wn−1, then it contains the words wn−1 at most an+1 times.

(i) Suppose u contains words wn−1 for i times (16i6an+1) and u= s2(wn−1Pn−1)i−1

wn−1t1. Then s2 . )−1wn−1Pn−1 and t1 / Pn−1wn−1)−1, where s2; t1 may be �. Let wn−1

Pn−1 = s1s2, Pn−1wn−1 = t1t2, then

u= s2(wn−1Pn−1)i−1wn−1t1
= (s2s1)(s2(wn−1Pn−1)i−2wn−1t1)

= (s2(wn−1Pn−1)i−2wn−1t1)(t2t1);

so u= xy=yz with x= s2s1, y= s2(wn−1Pn−1)i−2wn−1t1 and z= t2t1. Hence to prove
that u has overlap, it suUces to prove that ut2t1 ≺F∞. In fact,

ut2t1 = s2(wn−1Pn−1)i−1wn−1t1t2t1 = s2(wn−1Pn−1)iwn−1t1
≺ )−1wn−1Pn−1((wn−1Pn−1)iwn−1)Pn−1wn−1)−1 ≺ w ≺ F�:

(ii) Suppose u contains no copies of wn−1. Because |u|¿|wn|, u= sPn−1t≺wn−1Pn−1

wn−1, s . )−1wn−1, t / wn−1)−1, hence |s|+ |t|¿|wn−1|. This means there exists a word
v0, such that t = t′v0; s= v0s′; wn−1 = t′v0s′, and u= v0s′Pn−1t′v0 with h|u|¿|v0s′Pn−1t′|.
Since

us′Pn−1t′v0 = v0s′Pn−1t′v0s′Pn−1t′v0

= v0s′Pn−1t′u = sPn−1wn−1Pn−1t
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≺ )−1wn−1Pn−1wn−1Pn−1wn−1)−1

≺w;

which shows that u has overlap with overlap factor v0.

Theorem 10. Let u≺F� with |An|¡|u|6|An+1| and u 
=wn+1. Then

u =∈O ⇔ wn ≺ u:

Proof. Suppose that wn ≺ u and u has overlap. Then wn will appear twice in the overlap
of u. By Theorem 7, any word between two adjacent singular words wn must be
either Pn or wn+1, and it follows that |u|¿|wn+1|. This contradiction proves that u
has no overlap and we prove the implication wn ≺ u⇒ u =∈O. The opposite implication
u =∈O⇒ wn ≺ u follows directly from Lemmas 6 and 7.

Remark 6. If a word w≺F� has overlap, then the overlap factor does not need to be
unique. For example, let an+1 = 2, and let

w := )−1(wn−1Pn−1)4wn−1)−1 = "−1wnwn+1wn"−1 ≺F":

Then the word u= )−1(wn−1Pn−1)2wn−1)−1 has two overlaps w and w′ := u)Pn−1wn−1

)−1, and the corresponding overlap factors are )Pn−1wn−1)−1 and )(Pn−1wn−1)2)−1,
respectively.

Corollary 6. Let F� be a Sturmian sequence. We have the following:
(1) for any n¿1 and 06k6|An−1| − 2, Ck(An)an+1+1 ∈O;
(2) for any n¿1 and |An−1| − 16k6|An| − 1, Ck(An)an+1+1 =∈O;
(3) for any n¿1, 06k6|An−1| − 2, and an+2¿2, Ck(An)an+1+2 =∈O;
(4) for any n¿1, 06k6|An−1| − 2, and an+2 = 1, Ck(An)an+1+2 ∈O.

Proof. (1) First, we have |An+1|¡|Aan+1+1
n |¡|An+2|. If 06k6|An−1|−2, then by Propo-

sition 5(1) we can write that Ck(An) = uPn−1v with vu=wn−1 and |u|; |v|¡|wn−1|. Now

Ck(An)an+1+1 = (uPn−1v)an+1+1 = uPn−1(wn−1Pn−1)an+1−1wn−1Pn−1v;

but we also have wn+1 = (wn−1Pn−1)an+1wn−1. The positive separation property of wn−1

shows wn+1�Ck(An)an+1+1 and the result follows from Theorem 10.
(2) If |An−1| − 16k6|An| − 1, then Ck(An) = uwn−1v and vu=Pn−1, which implies

Ck(An)an+1+1 = u(wn−1Pn−1)an+1wn−1v= uwn+1v.
(3) In this case, |An+1|¡|Aan+1+2

n |¡|An+2| and we can show that wn+1 ≺Ck(An)an+1+2

in the same way as above.
(4) We have in this case |An+2|¡|Aan+1+2

n |¡|An+3|. Since wn+2 is not a factor of
Ck(An)an+1+2, we have Ck(An)an+1+2 ∈O by Theorem 10.
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6.3. The Palindrome factors

In this subsection, we study the structures of the palindrome factors of Sturmian
sequences. We recall the following basic facts: both wn and Pn are palindromes; wn is
positively separated by the separating factors wn+1 and Pn; the words wn−1Pn−1 and wn

di9er merely by the Jrst letter; Pn /wn and Pn .wn.

Lemma 8. Let u≺F� with |An|¡|u|6|An+1| for some n¿0. If wn� u and Pn� u,
then u≺wn+1.

Proof. Since wn� u, u≺ "−1wnwn+1wn"−1 from Lemma 6. Because |u|6|An+1|, we
have either u≺ "−1wnwn+1 or u≺wn+1wn"−1. First suppose u≺ "−1wnwn+1. Then
Lemma 2(1), we have

u ≺ "−1wnwn+1 = )−1(wn−1Pn−1)an+1+1wn−1 ≺ (wn−1Pn−1)an+1+1wn−1:

Since Pn = (wn−1Pn−1)an+1−1wn−1� u, we have u≺ (wn−1Pn−1)an+1wn−1 =wn+1.
The case u≺wn+1wn"−1 can be proved similarly.

Theorem 11. Let u∈P with |An|¡|u|6|An+1| for some n¿0, then u≺F� if and only
if u is one of the following forms:

(1) u= xwn Nx with x . Pn and |x|6 1
2 |Pn|;

(2) u= xPn Nx with x .wn and |x|6 1
2 |wn|;

(3) u= x(wn−1Pn−1)kwn−1 Nx, where x . Pn−1, 06k6an+1 −1. Moreover if k = 0 then
|x|¿ 1

2 |Pn−1|;
(4) u= x(Pn−1wn−1)kPn−1 Nx, where x .wn−1, 06k6an+1 −1. Moreover if k = 0 then

|x|¿ 1
2 |wn−1|.

Proof. The part “if ” is ready to check by noting that PnwnPn ≺F� and wnPnwn ≺F� for
any n∈N.

Now suppose u∈P is a factor of F" with |An|¡|u|6|An+1| for some n¿0.
(i) Suppose wn ≺ u, and we write u= xwny. Then x is a right factor of either Pn or

wn+1 by Theorem 7(3) Since |x|6|u|−|wn|¡|An+1|−|wn|= |Pn| and Pn is a right factor
of wn+1, we get x . Pn. In the same way y /Pn. Since u∈P, u= Nu= xwny= Nywn Nx. The
positive separation property of wn shows that wn has only one occurrence in u. So we
have Ny= x which yields |x|= |y|¡ 1

2 |Pn|. Conclusion (1) is proved.
(ii) Suppose Pn ≺ u, u 
=wn+1 and write u= xPny. We conclude x .wn. In fact, by

noting that wn−1 / Pn, and |x|6|u| − |Pn|6|An+1| − |Pn|= |wn|= |wn−1Pn−1|, we have
that either x .wn or x .wn−1Pn−1 due to the positive separation property of wn−1. Since
u 
=wn+1, x 
=wn−1Pn−1, we have x.)−1wn−1Pn−1 = "−1wn by Lemma 2(1), and further
x .wn. In the same way y /wn. But wn−1�wn, so wn−1� x and wn−1�y. Since u∈P,
u= Nu= xPny= NyPn Nx. Above analysis shows wn−1� Nx and wn−1� Ny. Because wn−1 is
both left factor and right factor of Pn, we have Ny= x by the positive separation property
of wn−1. We prove thus assertion (2) of the theorem.

Now if neither (i) nor (ii) holds, then u≺wn+1 by Lemma 8. By using the fact
wn+1 = (wn−1Pn−1)an+1wn−1, and by an almost same discussion as above, we get the
assertions either (3) or (4), which Jnishes the proof of the theorem.
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From Theorems 10 and 11, we get

Corollary 7. Let u≺F� with |An|¡|u|6|An+1| for some n¿0, then u is a palindrome
without overlap if and on if u= xwn Nx with x . Pn and |x|6 1

2 |Pn|.
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