Some properties of the factors of Sturmian sequences ${ }^{\text {th }}$

Wei-Ting Cao ${ }^{\text {a }}$, Zhi-Ying Wen ${ }^{\text {b,* }}$
${ }^{\text {a }}$ University of Illinois, 1409 W. Green Street, Urbana, IL 61801, USA
${ }^{\mathrm{b}}$ Department of Applied Mathematics, School of Sciences, Tsinghua University, Beijing 100084, China

Received 20 December 2001; accepted 5 March 2003
Communicated by D.-Z. Du

Abstract

In this paper, we introduce the singular words of Sturmian sequences, which play an important role in studying the properties of the factors of Sturmian sequence. We also completely determine the powers of the factors, the overlaps of the factors and the structure of the palindromes of the factors. (c) 2003 Elsevier B.V. All rights reserved.


```
MSC: primary 11b85; secondary 68R15
```

Keywords: Sturmian sequence; Singular word; Power; Overlap; Palindrome

1. Introduction

Sturmian sequence, as a kind of aperiodic sequences with minimal language complexity, have been studied for a long time. These sequences are related to many different objects and appear in the mathematical literature under many different names, such as rotation sequences, cutting sequences, Christoffel words, Beatty sequences, characteristic sequences, balanced sequences, and so forth. A clear exposition of early work by J. Bernouli, Christoffel, and A. Markov is given in the book by Venkov [19]. The

[^0]term 'Sturm' was used by Hedlund and Morse [9] in their development of symbolic dynamics. There is much literature about properties of these sequences (see for example Series $[17,8,18])$. From a combinatorial point of view, they have been considered by Brown [5], Séébold [16], Mignosi [14] and Ito and Yasutomi [10] (in particular in relation with iterated morphisms). Sturmian words appear also in ergodic theory, computer graphics and quasi-crystal. For a survey, we refer the readers to Berstel [2] or Lothaire [13].

The main aim of this paper is to study the combinatorial properties of the factors of Sturmian sequences, such as powers of factors, overlaps of factors and the structure of palindrome factors. By using singular words introduced in [20], Wen and Wen studied these properties for a class of Sturmian sequences which are generated by invertible substitutions (see [20,21]). We first introduce the singular words for general Sturmian sequences, then we completely determine the powers of factors, overlaps of factors and the structure of palindrome factors. As we will see, the positive separation property of the singular words plays an important role in the studies. For example, we give a simple proof of the index of Sturmian sequences obtained by Damanik and Lenz [6], which we proved independently in 1998.

This paper is organized as follows. We first give some preliminaries in Section 2. In Section 3, we introduce the standard word A_{n} which is also an important class of factors. Sections 4 and 5 are dedicated to the notions and properties of singular words w_{n} of Sturmian sequence. We establish two decompositions of the Sturmian sequence by singular words, and prove the positive separation property of the singular words. Then in Section 7, by using singular words we study systematically the power of factors, the overlap properties of the factors and the structure of the palindrome factors.

2. Preliminaries

Let $S=\left\{l_{1}, l_{2}, \ldots, l_{k}\right\}$ be an alphabet with k letters $l_{1}, l_{2}, \ldots, l_{k}$. A finite string $u=u_{1} u_{2} u_{3} \ldots u_{n}$ with $u_{i} \in S$ is called a word over S, while an infinite string $u=u_{1} u_{2} u_{3}$ $\ldots u_{n} \ldots$ with $u_{i} \in S$ is called a sequence over S. We denote by S^{*} the set of all words and by S^{ω} the set of all sequences. The concatenation of two words $u=u_{1} u_{2} \cdots u_{r}, v=$ $v_{1} v_{2} \cdots v_{s}$ is defined as $u_{1} u_{2} \cdots u_{r} v_{1} v_{2} \cdots v_{s}$ and denoted by $u v . u^{n}$ is the concatenation of n copies of u. The concatenation of a word and a sequence can be defined similarly. Under the operation of concatenation, S^{*} forms a monoid where the neutral element is the empty word ε. The length of a word w is denoted by $|w|$ and the number of appearances of a letter $l \in S$ in a word w is denoted by $|w|_{l} . L(w)$ denotes the k-dimensional vector $\left(|w|_{l_{1}},|w|_{l_{2}}, \ldots,|w|_{l_{k}}\right)$. We say a word u is a factor of another word w, written $u \prec w$, if there exist two words $v_{1}, v_{2} \in S^{*}$ such that $w=v_{1} u v_{2}$. In this case, we say $\left(\left|v_{1}\right|, u\right)$ is an occurrence of u in w. The occurrence of a word or a sequence in a sequence is defined in a similar way. If $w=u v$, we say u (resp. v) is a left (resp. right) factor of w, written $u \triangleleft w$ (resp. $v \triangleright w$). A word u is a factor of a sequence $F \in S^{\omega}$ if there exist a word v and a sequence F^{\prime} such that $w=v u F^{\prime}$; if $v=\varepsilon$, we say u is a left factor of F, and note $u \triangleleft F$.

Let $w=x_{1} \cdots x_{n}$ and $u=x_{r} x_{r+1} \cdots x_{n} \triangleright w$, we denote by $w v^{-1}$ the word $x_{1} x_{2} \cdots x_{r-1}$. Throughout this paper, the expression $w u^{-1}$ conveys this meaning. We denote by \bar{w} the mirror image of w, that is, $\bar{w}=x_{n} x_{n-1} \cdots x_{2} x_{1}$. If $w=\bar{w}$, the word w will be called a palindrome. The set of all palindromes is denoted by \mathbb{P}. A word $w \in S^{*}$ is called primitive if $w=u^{p} \Rightarrow p=1$. Let $w \in S^{*}$ and $0 \leqslant k<|w|$, we define the k th conjugate of w by $C_{k}(w):=x_{k+1} \cdots x_{|w|} x_{1} x_{2} \cdots x_{k}$. The set of conjugates of w is defined by $C(w):=\left\{C_{k}(w) ; 0 \leqslant k<|w|\right\}$.

The language of length n of a sequence F, denoted by $\Omega_{n}(F)$, is the set of all factors of F of length n. The language of F is defined as $\Omega(F):=\bigcup_{n \geqslant 0} \Omega_{n}(F)$, i.e. the set of all factors of F. The complexity function of F is defined as $p_{n}(F):=\# \Omega_{n}(F)$. A sequence F over an alphabet of 2 letters is called Sturmian if $\# \Omega_{n}(F)=n+1$.

Throughout this paper, we assume $S=\{a, b\}$, an alphabet with 2 letters.
Lemma 1. The conjugates of a primitive word w are all different.
Proof. Let $w=w_{1} \cdots w_{|w|}$. Suppose to the contrary, there exists $0 \leqslant m<n \leqslant|w|-1$ such that $C_{m}(w)=C_{n}(w)$, which means

$$
w_{m+1} \cdots w_{|w|} w_{1} \cdots w_{m}=w_{n+1} \cdots w_{|w|} w_{1} \cdots w_{n}
$$

Let $u_{1}=w_{m+1} \cdots w_{n}$ and $u_{2}=w_{n+1} \cdots w_{|w|} w_{1} \cdots w_{m}$, and we have $u_{1} u_{2}=u_{2} u_{1}$. By Lothaire [12], there exist two integers $p, q>0$ and a word $u_{0} \in S^{*}$ such that $u_{1}=u_{0}^{p}$ and $u_{2}=u_{0}^{q}$, which implies $w=u_{0}^{r}$ with $r \geqslant 2$, contradiction.

A sequence $F \in S^{\omega}$ is called a balanced sequence if for any $w_{1}, w_{2} \prec F$ with $\left|w_{1}\right|$ $=\left|w_{2}\right|$, we have $\|\left. w_{1}\right|_{a}-\left|w_{2}\right|_{a} \mid \leqslant 1$.

Consider a line $y=\theta x+\eta(x \geqslant 0)$ over the plane with θ irrational in \mathbb{R}^{+}and η real. If the line cuts a vertical (resp. horizontal) line, we write letter a (resp. b). If it cuts lines at some lattice point, we write $a b$ or $b a$. The sequence obtained is called a cutting sequence and we note $F_{\theta, \eta}$.

The following theorem says that Sturmian sequence, balanced sequence and cutting sequence are the same thing.

Theorem 1 (Ferenzy [7]). Suppose $F \in S^{\omega}$, then the following assertions are equivalent:

1. F is a Sturmian sequence;
2. F is a cutting sequence;
3. F is a noneventually periodic balanced sequence.

Remark 1. Let $F_{1}, F_{2} \in S^{\omega}$ be two sequences over S. We say that F_{1} and F_{2} have the same language if $\Omega\left(F_{1}\right)=\Omega\left(F_{2}\right)$. This means F_{1} and F_{2} have the same set of factors. If we are only interested in the properties of the factors, we do not distinguish two sequences having the same language. It is easy to prove (see for example [7]) that for any θ and for any $\eta_{1}, \eta_{2}, \Omega\left(F_{\theta, \eta_{1}}\right)=\Omega\left(F_{\theta, \eta_{2}}\right)$. Hence in this paper, we only consider the cutting sequence $F_{\theta}:=F_{\theta, 0}$.

Remark 2. It is easy to see that the sequence $F_{1 / \theta}$ can be obtained by changing the letter a (resp. b) to b (resp. a) in the sequence F_{θ}. So, to analyze the properties of the Sturmain sequence, we only need to consider the case $\theta \in[0,1]$.

3. Standard words and their properties

Damanik and Lenz introduced the standard words by a direct manner (see for example [6]) and obtained some of their properties. We introduce them in this paper from a geometrical view and give some properties (maybe some overlaps with [6]) that will be used later.

Let $\theta \in[0,1]$ be an irrational, and consider the cutting sequence F_{θ} generated by the line $l_{\theta}: y=\theta x(x \geqslant 0)$. A lattice (q, p) on the plane is called an asymptotic point if the vertical distance (or equivalently, the horizontal distance or orthogonal distance) from (q, p) to the line l_{α} is the shortest among the distances from the points whose first coordinate is not greater than q. Such points can be uniquely ordered by the first and the last coordinates. By convention we let $A_{0}:=(1,0)$. Suppose $A_{n}:=\left(q_{n}, p_{n}\right)$ is the nth asymptotic point, and let Q_{n} be the square which contains the foot of the perpendicular from A_{n} to l_{θ}. It is easy to see that the line l_{θ} cuts Q_{n} twice. Reading from the next cutting point of the original to the second cutting point in the square Q_{n}, we get a word which will be called the standard word of order n and denoted also by A_{n}. By convention, we take $A_{0}=a$ and $A_{-1}=b$.

In order to discuss the properties of the sequence of standard words, we collect some important and useful facts about the continued fraction which can be found in [11].

Let irrational $\theta \in(0,1)$ have a continued fraction expansion $\theta=\left[0 ; a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$ with $a_{n} \in \mathbb{N}$, and let p_{n} / q_{n} be its nth convergent which is defined recursively by $p_{n+1}=a_{n+1} p_{n}+p_{n-1}, q_{n+1}=a_{n+1} q_{n}+q_{n-1}$ with $p_{0}=0, q_{0}=1, p_{1}=1$ and $q_{1}=a_{1}$.

Proposition 1. For any irrational $\theta \in(0,1)$, we have the following:
(1) for any $n, m \geqslant 0, p_{2 n} / q_{2 n}<p_{2 n+2} / q_{2 n+2}<\theta<p_{2 m+1} / q_{2 m+1}<p_{2 m-1} / q_{2 m-1}$;
(2) for any $n>0,\left(q_{n}, p_{n}\right)=1$, that is, all convergents are irreducible;
(3) for any rational fraction $\frac{s}{t}$ with $1 \leqslant t<q_{n},|t \theta-s|>\left|q_{n} \theta-p_{n}\right|$.

Theorem 2. The point $\left(q_{n}, p_{n}\right)$ is the nth asymptotic point of the sequence F_{θ} if and only if p_{n} / q_{n} is the nth convergent of the continued fraction of θ.

Proof. Since the successive convergents of θ are also ordered by the numerator and denominator, we need only to prove that (q, p) is an asymptotic point if and only if p / q is a continued fraction convergent. By the definition of the asymptotic point, we see that (q, p) is an asymptotic point if and only if for any $s, t \in \mathbb{N}, 1 \leqslant t<q$, $|q \theta-p|<|t \theta-s|$. Thus by Proposition 1.3, it is equivalent to say that p / q is an convergent of θ.

Proposition 2. Under the above notations, we have for any $n \in \mathbb{N}$
(1) $A_{n-1} \triangleleft A_{n} \triangleleft F_{\theta}$, and $a b \triangleright A_{2 n+1}, b a \triangleright A_{2 n}$;
(2) $d_{n}=a_{n+2} d_{n+1}+d_{n+2}$, where $d_{n}:=\left|p_{n}-q_{n} \theta\right|$ is the vertical distance from the asymptotic point A_{n} to the line l_{θ};
(3) $L\left(A_{n}\right)=\left(p_{n}, q_{n}\right)$ and $\left|A_{n}\right|=p_{n}+q_{n}$;
(4) $\left|A_{n+2}\right|=a_{n+2}\left|A_{n+1}\right|+\left|A_{n}\right|$.

Proof. (1) This follows directly from the definition of the standard words.
(2) By the definition of d_{n} and Proposition 1.1, we have $d_{2 n+1}=p_{2 n+1}-q_{2 n+1} \theta$ and $d_{2 n}=q_{2 n} \theta-p_{2 n}$, and the conclusion follows from the recursive relations of p_{n} and q_{n}.
(3) Because the segment $O A_{n}$ cuts vertical lines p_{n} times and horizontal lines q_{n} times, we get $L\left(A_{n}\right)=\left(p_{n}, q_{n}\right)$, and so $\left|A_{n}\right|=p_{n}+q_{n}$.
(4) The conclusion is from (3) and the recursive relations of p_{n} and q_{n}.

The following theorem gives the recursive relation of the standard words $\left\{A_{n}\right\}_{n} \geqslant 0$ which is very useful for us to further study the properties of Sturmian sequences.

Theorem 3. Let A_{n} be the nth standard word of F_{θ}. Then for any $n \geqslant 0$,

$$
A_{n+1}=A_{n}^{a_{n+1}} A_{n-1} .
$$

Proof. We prove it by induction on n.
The case $n=0,1$ can be checked directly.
By Proposition 2(1) and (4), $\left|A_{n+1}\right|=a_{n+1}\left|A_{n}\right|+\left|A_{n-1}\right|$ and $A_{n-1} \triangleleft A_{n} \triangleleft A_{n+1} \triangleleft F_{\alpha}$, thus for $n \geqslant 2$, we need only to prove that $A_{n}^{a_{n+1}+1} \triangleleft F_{\alpha}$.

First we consider the case $n=2 k$. By Proposition 2.1, $b a \triangleright A_{n}, a b \triangleright A_{n+1}$. Let l_{θ} be the associated line. Consider a_{n+1} lines $l_{i}: y=\theta x+i d_{n}\left(1 \leqslant i \leqslant a_{n+1}\right)$. We denote by S_{i} and $T_{i}\left(1 \leqslant i \leqslant a_{n+1}\right)$, respectively, the intersection points of l_{i} with y-axis and line $x=q_{n}$. We denote the point $\left(q_{n}, q_{n} \theta\right)$ by T_{0}.

Since $A_{n} T_{i-1}=O S_{i}\left(1 \leqslant i \leqslant a_{n+1}\right)$, the cutting sequence starting from T_{i-1} is equal to the cutting sequence starting from S_{i} with the slope θ (here A_{n} is the nth asymptotic point associated with the line l_{θ}). On the other hand, by Proposition 2.2, $O S_{i}=i d_{n}<$ d_{n-1}, which implies that the nth standard word A_{n} is the prefix of the sequence starting from any S_{i}. So there exist words w_{i} such that $w_{0}=A_{n} w_{1}, w_{i}=A_{n} w_{i+1}\left(0 \leqslant i \leqslant a_{n+1}\right)$, which implies $A_{n}^{a_{n+1}+1} \triangleleft F_{\theta}$.

The case of n being odd can be proved in the same way (in this case, we will draw the lines $y=\theta x-i d_{n}$).

From now on, we will always assume that $\alpha, \beta \in S$ and $\alpha \neq \beta$.
The following proposition can be proved easily by induction.
Proposition 3. Let $n \geqslant 0$ and $\beta \triangleright A_{n}$, then

$$
A_{n} A_{n-1}=A_{n-1} A_{n} \beta^{-1} \alpha^{-1} \beta \alpha, \quad A_{n-1} A_{n}=A_{n} A_{n-1} \alpha^{-1} \beta^{-1} \alpha \beta .
$$

The following proposition summarizes some elementary properties of the standard words.

Proposition 4. Let F_{θ} be Sturmian and let A_{n} be the standard words of F_{θ}, then
(1) for any $n \geqslant 0, A_{n} \triangleleft A_{n+1}, A_{n} \triangleright A_{n+2}$;
(2) for any $n \geqslant 0, A_{n}^{2} \prec F_{\theta}, A_{n} A_{n+1} \prec F_{\theta}$;
(3) for any $n, m \in \mathbb{N}, A_{n} A_{m} \prec F_{\theta}$;
(4) $a^{a_{1}+2}$ K F_{θ}, b^{2} 大 F_{θ};
(5) for any $n \geqslant 1, b a^{a_{1}+1} b \triangleright A_{2 n+1}$;
(6) any factor of F_{θ} placed between two adjacent b's is either $a^{a_{1}}$ or $a^{a_{1}+1}$;
(7) for any $n \geqslant 0, A_{n}$ is primitive.

Proof. (1) This is the consequence of Theorem 3.
(2) From Theorem 3, we have

$$
A_{n+3}=A_{n+2}^{a_{n+3}} A_{n+1}=\left(A_{n+1}^{a_{n+2}} A_{n}\right)^{a_{n+3}} A_{n+1}=w_{1} A_{n} A_{n+1}=w_{1} A_{n} A_{n} w_{2} \prec F_{\theta},
$$

where $w_{1}, w_{2} \prec F_{\alpha}$. This implies $A_{n} A_{n+1}, A_{n}^{2} \prec A_{n+3} \prec F_{\theta}$.
(3) If $m \leqslant n$, since $A_{m} \triangleleft A_{n} \triangleleft F_{\theta}$ and $A_{n}^{2} \prec A_{n+3} \triangleleft F_{\theta}$, we get $A_{n} A_{m} \triangleleft A_{n} A_{n} \prec F_{\theta}$.

If $n<m$ and they have the same parity, then $A_{n} \triangleright A_{m}$ by (1), and $A_{n} A_{m} \triangleright A_{m}^{2} \prec F_{\theta}$. If m, n have different parity, the similar discussion shows that $A_{n} A_{m} \triangleright A_{m-1} A_{m} \prec F_{\theta}$.
(4) From (3) we have $b a^{a_{1}} b \triangleright A_{3} A_{1}$ and $A_{3} A_{1} \prec F_{\theta}$. The result follows immediately from the balance property of F_{θ}.
(5) By Theorem 3 and the definitions of $A_{-1}, A_{0}, b a^{a_{1}+1} b \triangleright A_{2} A_{1} \triangleright A_{3} \triangleright A_{2 n+1}$.
(6) This follows from (4), (5) and the balance property of F_{θ}.
(7) If $A_{n}=w^{k}$ for some word w and integer $k>1$, then we have $\left(p_{n}, q_{n}\right)=L\left(A_{n}\right)=$ $L\left(w^{k}\right)=\left(k|w|_{a}, k|w|_{b}\right)$. This contradicts the fact p_{n} / q_{n} being irreducible.

4. Singular words and their properties

In this section we study first two special kinds of factors, and as we will see, they are the powerful tools in the study of the factor properties of Sturmian sequences.

Let $\left\{A_{n}\right\}_{n \geqslant-1}$ be the standard words of the Sturmian sequence F_{θ} and $\beta \triangleright A_{n}$, define

$$
w_{n}:=\alpha A_{n} \beta^{-1}, \quad P_{n}:=\beta A_{n}^{a_{n+1}-1} A_{n-1} \alpha^{-1} .
$$

By Proposition 4, both w_{n} and P_{n} are the factors of F_{θ}. The words w_{n} and P_{n} are called the singular word of order n of F_{θ} and the adjoining word of w_{n}, respectively. Since $A_{-1}=b, A_{0}=a$, we have $w_{-1}=a, w_{0}=b$. For convenience, we take further $A_{-2}=w_{-2}=P_{-1}=\varepsilon$. We denote by $\mathbb{S}:=\mathbb{S}\left(F_{\theta}\right):=\bigcup_{n=-2}^{\infty}\left\{w_{n}\right\}$ the set of all singular words of F_{θ}.

The following lemma illustrates the structure of w_{n} and P_{n}.
Lemma 2. Let $n \geqslant 0$ and $\beta \triangleright A_{n}$, then
(1) $\beta \alpha^{-1} w_{n}=\beta A_{n} \beta^{-1}=w_{n-1} P_{n-1}, w_{n} \alpha^{-1} \beta=P_{n-1} w_{n-1}$;
(2) $w_{n+1}=w_{n-1} P_{n-1} P_{n}=P_{n} P_{n-1} w_{n-1}$;
(3) $P_{n}=\left(w_{n-1} P_{n-1}\right)^{a_{n+1}-1} w_{n-1}$;
(4) $w_{n+1}=\left(w_{n-1} P_{n-1}\right)^{a_{n+1}} w_{n-1}$.

Proof. Since $\beta \triangleright A_{n}$, we have $\alpha \triangleright A_{n-1}$ and $\beta \alpha \triangleright A_{n+1}$.
(1) The case $n=0$ can be checked easily. Suppose $n \geqslant 1$, then by the definitions of w_{n}, P_{n} and Theorem 3, we have

$$
\begin{aligned}
& \beta \alpha^{-1} w_{n}=\beta A_{n} \beta^{-1}=\beta A_{n-1}^{a_{n}} A_{n-2} \beta^{-1}=\beta A_{n-1} \alpha^{-1} \alpha A_{n-1}^{a_{n}-1} A_{n-2} \beta^{-1}=w_{n-1} P_{n-1}, \\
& w_{n} \alpha^{-1} \beta=\beta A_{n-1}^{a_{n}} A_{n-2} \beta^{-1} \alpha^{-1} \beta=\beta A_{n-1}^{a_{n}-1} A_{n-2} A_{n-1} \alpha^{-1}=P_{n-1} w_{n-1} .
\end{aligned}
$$

(2) As in (1), we get

$$
w_{n+1}=\beta A_{n+1} \alpha^{-1}=\beta A_{n}^{a_{n+1}} A_{n-1} \alpha^{-1}=\beta A_{n} \beta^{-1} \beta A_{n}^{a_{n+1}-1} A_{n-1} \alpha^{-1}=w_{n-1} P_{n-1} P_{n} .
$$

(3) The case of $n=0$ can be checked directly. For $n \geqslant 1$, we have

$$
P_{n}=\beta A_{n}^{a_{n+1}-1} A_{n-1} \alpha^{-1}=\left(\beta A_{n} \beta^{-1}\right)^{a_{n+1}-1}\left(\beta A_{n-1} \alpha^{-1}\right)=\left(w_{n-1} P_{n-1}\right)^{a_{n+1}-1} w_{n-1} .
$$

(4) The conclusion follows from (2) and (3).

By induction, we can easily get the following corollary.
Corollary 1. For any $n \geqslant-1, w_{n}, P_{n} \in \mathbb{P}$, that is, all words w_{n} and P_{n} are palindromes.
Corollary 2. The left and right factors of length $\left|A_{n-2 k}\right|$ of w_{n} are $w_{n-2 k}$.
Proof. This follows directly from the fact that $w_{n-2} \triangleleft w_{n}, w_{n-2} \triangleright w_{n}$ by Lemma 2.4.

Proposition 5. Let A_{n} be the nth standard word of F_{θ} and $C\left(A_{n}\right)$ the set of the conjugates of A_{n}, then
(1) For $0 \leqslant k<\left|A_{n}\right|, C_{k}\left(A_{n}\right)$ is either a palindrome or a product of two palindromes. Moreover, for $0 \leqslant k \leqslant\left|A_{n-1}\right|-1, C_{k}\left(A_{n}\right)=u P_{n-1} v$ with $v u=w_{n-1}$; and for $\left|A_{n-1}\right| \leqslant k \leqslant\left|A_{n}\right|-1, C_{k}\left(A_{n}\right)=u w_{n-1} v$ with $v u=P_{n-1}$.

$$
C_{\left|A_{n}\right|-1}\left(A_{n}\right)=w_{n-1} P_{n-1}, \quad C_{\left|A_{n-1}\right|-1}\left(A_{n}\right)=P_{n-1} w_{n-1} .
$$

(2) All elements of $C\left(A_{n}\right)$ are different.
(3) $C\left(A_{n}\right)=\overline{C\left(A_{n}\right)}$, where $\overline{C\left(A_{n}\right)}=\left\{\bar{w} ; w \in C\left(A_{n}\right)\right\}$.
(4) $\Omega_{\left|A_{n}\right|}\left(A_{n} A_{n}\right)=C\left(A_{n}\right)$.
(5) $w_{n} \notin C\left(A_{n}\right)$.
(6) $\Omega_{\left|A_{n}\right|}=C\left(A_{n}\right) \cup w_{n}$.
(7) $\overline{\Omega_{\left|A_{n}\right|}}=\Omega_{\left|A_{n}\right|}$.
(8) For any $n \geqslant 2, \Omega_{\left|A_{n}\right|}\left(A_{n-1} A_{n}\right)=w_{n} \cup\left\{C_{k}\left(A_{n}\right) ; 0 \leqslant k \leqslant\left|A_{n-1}\right|-2\right\}$. In particular, as a factor, w_{n} appears only once in $A_{n-1} A_{n}$.

Proof. (1) By Lemma 2(1), $C_{\left|A_{n}\right|-1}\left(A_{n}\right)=w_{n-1} P_{n-1}$, which is a product of two palindromes by Corollary 1. It is easy to see that a conjugate of a product of two palindromes is either a palindrome or a product of two palindromes.

Since $\left|A_{n-1}\right|=\left|w_{n-1}\right|$, the second follows directly.
(2) By Proposition 4(7), the word A_{n} is primitive, hence the conclusion follows from Lemma 1.
(3) By (1), for any $0 \leqslant k<\left|A_{n}\right|, C_{k}\left(A_{n}\right)$ is either a palindrome, or a product of two palindromes. If $C_{k}\left(A_{n}\right)$ is a palindrome, then $\overline{C_{k}\left(A_{n}\right)}=C_{k}\left(A_{n}\right) \in C\left(A_{n}\right)$; if $C_{k}\left(A_{n}\right)$ is a product of two palindromes, then there exist $u, v \in \mathbb{P}$ such that $C_{k}\left(A_{n}\right)=u v$. Thus

$$
\overline{C_{k}\left(A_{n}\right)}=\overline{u v}=v u=C_{k+|u|}\left(A_{n}\right) \in C\left(A_{n}\right)
$$

This proves $\overline{C\left(A_{n}\right)} \subset C\left(A_{n}\right)$, the reverse inclusion can be proved in the same way.
(4) It is obvious.
(5) By Proposition 2(3) and the definition of w_{n}, we have $L\left(w_{n}\right)=\left(p_{n}-1, q_{n}+1\right)$ or $\left(p_{n}+1, q_{n}-1\right)$. On the other hand, for any $0 \leqslant k<\left|A_{n}\right|, L\left(C_{k}\left(A_{n}\right)\right)=L\left(A_{n}\right)=\left(p_{n}, q_{n}\right)$. The conclusion follows.
(6) Since F_{θ} is Sturmian, $\# \Omega_{\left|A_{n}\right|}\left(F_{\theta}\right)=\left|A_{n}\right|+1$. Thus by (2) and (5), we have $\Omega_{\left|A_{n}\right|}=C\left(A_{n}\right) \cup\left\{w_{n}\right\}$.
(7) The conclusion follows from (3) and Corollary 1.
(8) Assume $\alpha \beta \triangleright A_{n}$, then by Proposition 3, $A_{n-1} A_{n}=A_{n} A_{n-1} \alpha^{-1} \beta^{-1} \alpha \beta$ and $A_{n} A_{n-1} \triangleleft$ $A_{n} A_{n}$. Therefore the first $p=\left|A_{n-1}\right|-2$ factors of length $\left|A_{n}\right|$ belong to $C\left(A_{n}\right)$, the last factor of length $\left|A_{n}\right|$ is A_{n}, and the $\left(\left|A_{n-1}\right|-1\right)$ th factor is w_{n}.

From the above, we conclude that any factor of F_{θ} of length $\left|A_{n}\right|$ must be contained either in $A_{n-1} A_{n}$ or in $A_{n} A_{n}$. By Proposition 5, we can see that the set of factors of F_{θ} of length $\left|A_{n}\right|$ consists of conjugates of A_{n} and the singular word w_{n}. The discussions below will show that, as a factor, the singular word w_{n} has some special properties.

Proposition 6. Let w_{n} be the singular word of order n of F_{θ}, then
(1) for any $n \geqslant 1$, we have

$$
L\left(w_{n}\right)= \begin{cases}\left(p_{n}+1, q_{n}-1\right) & \text { if } n \text { is odd }, \\ \left(p_{n}-1, q_{n}+1\right) & \text { otherwise }\end{cases}
$$

(2) w_{n} 大 w_{n+1};
(3) for any $n \geqslant 1, w_{2 n+1}=a^{a_{1}+1} u a^{a_{1}+1}, w_{2 n}=b v b$, where $u, v \in \mathbb{P}$;
(4) for any $n \geqslant 2, \quad 1 \leqslant k<\left|A_{n}\right|, C_{k}\left(w_{n}\right) \nless F_{\theta}$, i.e., any proper conjugation of w_{n} is not a factor of F_{θ};
(5) for any $n \geqslant 2, w_{n}$ is not a product of two palindromes;
(6) for any $n \geqslant 2, w_{n}$ is primitive;
(7) for any $n \geqslant 0, w_{n}{ }^{2} \nless F_{\theta}$.

Proof. (1) If n is odd, then $b \triangleright A_{n}$, so $L\left(w_{n}\right)=L\left(a A_{n} b^{-1}\right)=\left(p_{n}+1, q_{n}-1\right)$; the case of n being even can be proved in the same way.
(2) Notice that by the definition of the singular words and Theorem 3, we have

$$
w_{n+1}=\alpha A_{n+1} \beta^{-1}=\alpha A_{n}^{a_{n+1}} A_{n-1} \beta^{-1} \prec A_{n}^{a_{n+1}+3} .
$$

So if $w_{n} \prec w_{n+1}$, then $w_{n} \prec w_{n+1} \prec A_{n}^{a_{n+1}+3}$, which yields $w_{n} \in C\left(A_{n}\right)$, and contradicts Proposition 5(5).
(3) From Proposition 4(5), $a^{a_{1}+1} b \triangleright A_{2 n+1}$ and $b a \triangleright A_{2 n}$. This gives the equalities of the conclusion. The words u and v are palindromes since w_{n} is a palindrome.
(4) From (3), any proper conjugation of w_{n} contains either b^{2} or $a^{a_{1}+2}$ as its factor. But Proposition 4(4) says neither b^{2} nor $a^{a_{1}+2}$ is a factor of F_{θ}, contradiction.
(5) Assume that $w_{n}=u v, u, v \in \mathbb{P}$. Since $w_{n} \in \mathbb{P}, w_{n}=\overline{w_{n}}=\bar{v} \bar{u}=v u$, thus $w_{n}=$ $C_{|u|}\left(w_{n}\right)$ which contradicts (4).
(6) Suppose that w_{n} is not primitive, then there exists an integer $p \geqslant 2$ such that $w_{n}=u^{p} . w_{n} \in \mathbb{P}$ implies $u \in \mathbb{P}$ which implies further that w_{n} is the product of two palindromes, contradiction.
(7) Notice that $w_{0}^{2}=b^{2}$ and $w_{1}^{2}=a^{2 a_{1}+2}, w_{0}^{2}, w_{1}^{2} \nless F_{\theta}$ by Proposition 4(4).

Now suppose $n \geqslant 2$. If $w_{n}^{2} \prec F_{\alpha}$, then $C\left(w_{n}\right)$ will be the factors of F_{θ}, this contradicts (4).

A factor $w \prec F_{\theta}$ is called a special word of F_{θ} if both $w a$ and $w b$ are factors of F_{θ}. The special words introduced first by Berstel [3] for studying the factor properties of Fibonacci sequence. Since $\Omega_{n}\left(F_{\theta}\right)=n+1$, there exists a unique special word of F_{θ} of length n. The following theorem determines all special words.

Theorem 4. Let $w \prec F_{\theta}$. Then w is a special word if and only if there exists $n \in \mathbb{N}$ such that $w \triangleleft \bar{A}_{n}$.

Proof. Since $w \triangleleft \bar{A}_{n} \Leftrightarrow \bar{w} \triangleright A_{n}$, the conclusion of the part "only if" follows from Propositions 2(1) and 4(3). The part "if" is thus from the uniqueness of the special word for any length.

5. Decompositions of Sturmian sequence by singular words

In this section, we will be able to establish two different decompositions of Sturmian sequence F_{θ} by singular words and their adjoining words which will be used to study the properties of the factors of F_{θ}.

Lemma 3. Let $\alpha \triangleright A_{n+1}$, then

$$
\begin{aligned}
& A_{n+1}=\left(\prod_{i=0}^{n} P_{i}\right) \alpha, \\
& w_{n+1}=\beta \prod_{i=0}^{n} P_{i}, \\
& w_{2 n+2}=\prod_{i=n}^{0}\left(w_{2 i} P_{2 i}\right)^{a_{2 i+2}} w_{0}, \quad w_{2 n+1}=\prod_{i=n}^{0}\left(w_{2 i-1} P_{2 i-1}\right)^{a_{2 i+1}} w_{-1} .
\end{aligned}
$$

Proof. Since $\alpha \triangleright A_{n+1}, \beta \triangleright A_{n}$. By Theorem 3 and the definition of P_{n}, we get

$$
A_{n+1} \alpha^{-1}=A_{n}^{a_{n+1}} A_{n-1} \alpha^{-1}=A_{n} \beta^{-1}\left(\beta A_{n}^{a_{n+1}-1} A_{n-1} \alpha^{-1}\right)=A_{n} \beta^{-1} P_{n}
$$

Repeating the above discussion, we get finally

$$
A_{n+1} \alpha^{-1}=A_{0} a^{-1} P_{0} P_{1} \cdots P_{n}=\prod_{i=0}^{n} P_{i} .
$$

Since $w_{n+1}=\beta A_{n+1} \alpha^{-1}$, the second equality follows immediately. Similar arguments show that

$$
\begin{aligned}
w_{2 n+2} & =b A_{2 n+2} a^{-1}=b A_{2 n+1}^{a_{2 n+1}} A_{2 n} a^{-1} \\
& =\left(b A_{2 n+1} b^{-1}\right)^{a_{2 n+2}} b A_{2 n} a^{-1}=\left(w_{2 n} P_{2 n}\right)^{a_{2 n+2}} w_{2 n} \\
& =\prod_{i=n}^{0}\left(w_{2 i} P_{2 i}\right)^{a_{2 i+2}} w_{0},
\end{aligned}
$$

The fourth equality can be obtained in the same way.
From Proposition 2, we know that for any $n \in \mathbb{N}, A_{n} \triangleleft F_{\theta}$. This fact combined with Lemma 3 gives the following decomposition of F_{θ} with respect to P_{i}.

Theorem 5. $F_{\theta}=\prod_{i=0}^{+\infty} P_{i}$.
Now we introduce another decomposition of F_{θ}. With this decomposition, we will establish a "positive separation" property of the singular words which, as we will see, is a powerful tool in studying the combinatorial properties of the factors.

Let $\pi: S \rightarrow S^{*}$ be a mapping with $\pi(a)=u$ and $\pi(b)=v$, which we also denote by $\pi=(u, v)$. Let $F=x_{1} x_{2} \cdots x_{n} \in S^{*}$, and we define $\pi(F)=\pi\left(x_{1}\right) \pi\left(x_{2}\right) \cdots \pi\left(x_{n}\right)$; i.e. the word $\pi(F)$ obtained by replacing the letters a and b in F by the words u and v, respectively. We also denote by $F(u, v)$ the word $\pi(F)$. For $F \in S^{\omega}$, we can define $\pi(F)$ in the same way.

Assume that $\theta=\left[0 ; a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$ is the continued fraction expansion of the irrational θ and let $r_{n}:=r_{n}(\theta):=\left[0 ; a_{n+1}, a_{n+2}, \ldots\right]$. Then $a_{n}+r_{n}$ is the nth remainder of θ.

Theorem 6. With the above notations, we have
(1) for any $n \geqslant 1, F_{\theta}=F_{r_{n}}\left(A_{n}, A_{n-1}\right)$;
(2) for any $n \geqslant 1$,

$$
F_{\alpha}=\left(\prod_{i=0}^{n} P_{i}\right) F_{r_{n+2}}\left(\left(w_{n} P_{n}\right)^{a_{n+2}-1} w_{n} w_{n+1}, w_{n} P_{n}\right) .
$$

Proof. (1) Let R_{k} be the k th standard word of $F_{r_{n}}$, then we need only to prove

$$
\begin{equation*}
A_{n+k}=R_{k}\left(A_{n}, A_{n-1}\right) \tag{*}
\end{equation*}
$$

We prove equality (*) by induction on k.
The cases $k=-1$ and 0 are trivial.

Suppose that $\left({ }^{*}\right)$ is true for any positive integers less than k, then

$$
A_{n+k+1}=A_{n+k}^{a_{n+k+1}} A_{n+k-1}=R_{k}^{a_{n+k+1}}\left(A_{n}, A_{n-1}\right) R_{k-1}\left(A_{n}, A_{n-1}\right)=R_{k+1}\left(A_{n}, A_{n-1}\right) .
$$

The first and the third equalities are due to Theorem 3 and the second equality is due to the hypotheses of induction. This completes the proof of conclusion (1).
(2) Suppose $\beta \triangleright A_{n}$, then

$$
\begin{aligned}
F_{\theta} & =F_{r_{n+2}}\left(A_{n+2}, A_{n+1}\right)=F_{r_{n+2}}\left(A_{n+1}^{a_{n+2}} A_{n}, A_{n+1}\right) \\
& =A_{n+1} F_{r_{n+2}}\left(A_{n+1}^{a_{n+2}-1} A_{n} A_{n+1}, A_{n+1}\right) \\
& =A_{n+1} \alpha^{-1} F_{r_{n+2}}\left(\alpha A_{n+1}^{a_{n+2}-1} A_{n} \beta^{-1} \beta A_{n+1} \alpha^{-1}, \alpha A_{n+1} \alpha^{-1}\right) \\
& =\left(\prod_{i=0}^{n} P_{i}\right) F_{r_{n+2}}\left(P_{n+1} w_{n+1}, w_{n} P_{n}\right) \\
& =\left(\prod_{i=0}^{n} P_{i}\right) F_{r_{n+2}}\left(\left(w_{n} P_{n}\right)^{a_{n+2}-1} w_{n} w_{n+1}, w_{n} P_{n}\right) .
\end{aligned}
$$

The first two equalities are due to (1) and Theorem 3, respectively. The third and the fourth equalities can be checked by the definition of $F(u, v)$, and the last two equalities come from Lemmas 2 and 3(1).

The decomposition in Theorem 6(2) is called the composition of F_{α} with respect to the singular words of order n.

By Lemma 3 and Theorem 6(2),

$$
\begin{aligned}
\beta F_{\theta} & =w_{n+1} F_{l_{n+2}}\left(\left(w_{n} P_{n}\right)^{a_{n+2}-1} w_{n} w_{n+1}, w_{n} P_{n}\right) \\
& =\prod_{i=1}^{\infty} t_{i} \quad(*),
\end{aligned}
$$

where $t_{2 i}=w_{n}, t_{2 i+1}=w_{n+1}$ or P_{n}. This shows βF_{θ} is the concatenation of infinitely many copies of w_{n}, w_{n+1}, P_{n}. So for a fixed n, there are infinite many occurrences of w_{n} in F_{θ}. We denote by $w_{n, k}$ the k th occurrence of w_{n} indicated by (*) above, i.e. $w_{n, k}=\left(\sum_{i=1}^{2 k-1}\left|t_{i}\right|-1, w_{n}\right)$. Let $\mathbb{W}(n):=\left\{w_{n, k}\right\}_{k} \geqslant 1$. Now we are going to prove that w_{n} occurs nowhere else except at $w_{n, k}$, i.e. $\mathbb{W}(n)$ contains all occurrences of w_{n} in F_{θ}.

Suppose to the contrary, some occurrence of w_{n} equals none of $w_{n, k}$. Then w_{n} occurs in the "middle" of the following concatenations which appear in (*) above:

1. $P_{n} w_{n}$; 2. $w_{n} P_{n}$; 3. $w_{n+1} w_{n} ; 4 . w_{n} w_{n+1}$;
2. $w_{n} P_{n} w_{n}$ (if $\left.\left|P_{n}\right|<\left|w_{n}\right|\right) ;$ 6. P_{n} (if $\left|w_{n}\right| \leqslant\left|P_{n}\right|$)

The following lemma shows that cannot happen.
Lemma 4. For any $n \geqslant 0$, we have
(1) $w_{n} \nless P_{n} ; P_{n}$ 大 w_{n}.

This implies w_{n} could not be a prefix of (1), (3), (6), or a suffix of (2), (4), (6).
(2) Assume $z=x y=u_{1} u_{2} u_{3} \prec F_{\theta}$, where one of x, y is w_{n}, the other is P_{n} or w_{n+1}, is one of the first 4 words defined above with $0<\left|u_{1}\right|<|x|, 0<\left|u_{3}\right|<|y|$, then $u_{2} \notin \mathbb{S}$. This implies w_{n} could not be situated in the middle of the (1)-(4).
(3) Assume $z=w_{n} P_{n} w_{n}=u_{1} u_{2} u_{3}$ with $0<\left|u_{1}\right|,\left|u_{3}\right|<\left|w_{n}\right|$. Then $u_{2} \notin \mathbb{S}$.

This implies w_{n} could not be situated in the middle of (5).
Proof. (1) By Lemma 3(1), $\prod_{i=0}^{n} P_{i}=A_{n+1} \alpha^{-1}=\beta^{-1} w_{n+1}$. By Proposition 6(2), $w_{n} \nless w_{n+1}$, which implies $w_{n} \nless \prod_{i=0}^{n=0} P_{i}$.

If $a_{n+1}=1, P_{n}=w_{n-1} \nless w_{n}$. If $a_{n} \geqslant 2,\left|P_{n}\right|>\left|w_{n}\right|$. This proves $P_{n} \nless w_{n}$.
(2) We only prove the case $z=P_{n} w_{n}$; the other four cases can be proved in the same way.

Let $z=P_{n} w_{n}$ and $\beta \alpha \triangleright A_{n}$, then $\alpha \beta \triangleright A_{n-1}$. By the definitions of A_{n}, w_{n}, P_{n}, we have

$$
z=u_{1} u_{2} u_{3}=P_{n} w_{n}=\alpha A_{n}^{a_{n+1}-1} A_{n-1} \beta^{-1} \beta A_{n} \alpha^{-1}=\alpha A_{n}^{a_{n+1}-1} A_{n-1} A_{n} \alpha^{-1} .
$$

We now prove $u_{2} \notin \mathbb{S}$.
(i) Since $\left|u_{2}\right|<\left|P_{n} w_{n}\right|=\left|w_{n+1}\right|, u_{2} \neq w_{n+1}$.
(ii) Notice that

$$
u_{2} \prec \alpha^{-1} P_{n} w_{n} \beta^{-1}=A_{n}^{a_{n+1}-1} A_{n-1} A_{n} \alpha^{-1} \beta^{-1}=A_{n}^{a_{n+1}-1} A_{n} A_{n-1} \beta^{-1} \alpha^{-1} \prec A_{n}^{a_{n+1}+1},
$$

where the second equality follows from Proposition 3. By Proposition 6(4), $w_{n} \notin C\left(A_{n}\right)$, thus $u_{2} \neq w_{n}$.
(iii) Now we prove that for any $-1 \leqslant i<n, u_{2} \neq w_{i}$. Suppose that $\left|u_{2}\right|=\left|w_{i}\right|=\left|A_{i}\right|$, $-1 \leqslant i<n$. If $i=n-2 k$, then

$$
A_{n-2 k} A_{n-2 k-1} \beta^{-1} \triangleright P_{n}, \beta A_{n-2 k} \alpha^{-1} \triangleleft w_{n},
$$

but $\left|u_{1}\right|<\left|P_{n}\right|$, so

$$
u_{2} \prec A_{n-2 k} A_{n-2 k-1} A_{n-2 k} \beta^{-1} \alpha^{-1} \prec A_{n-2 k}^{3}
$$

hence, $u_{2} \in C\left(A_{n-2 k}\right)$. Since $w_{n-2 k} \notin C\left(A_{n-2 k}\right), u_{2} \neq w_{n-2 k}$.
If $i=n-2 k-1$, we can get in the same way as above $u_{2} \prec A_{n-2 k-1}^{3}$ and so $u_{2} \neq w_{n-2 k-1}$.
(3) This follows from (1).

Let $F=x_{1} x_{2} \cdots x_{n} \cdots \in A^{\omega}$ and $u=x_{n} x_{n+1} \cdots x_{n+s-1}, v=x_{n+m} \cdots x_{n+m+t-1}$ two factors of F. We say that the occurrences (n, u) and $(n+m, v)$ are positively separated in F if $m>s$ and we call the word $x_{n+s} \cdots x_{n+m-1}$ the separating factor of the two occurrences; otherwise (if $m \leqslant s$), we say the occurrences of u and v are not positively separated.

Let $\left\{\left(p_{n}, u_{n}\right)\right\}_{n \geqslant 1}$ be a finite or infinite sequence of occurrences of factors of F. We say that the sequence $\left\{\left(p_{n}, u_{n}\right)\right\}_{n \geqslant 1}$ is positively separated in F if any two adjacent occurrences $\left(p_{n}, u_{n}\right)$ and $\left(p_{n+1}, u_{n+1}\right)$ are positively separated. Let $\left\{\left(p_{n}, u_{n}\right)\right\}_{n \geqslant 1}$ be a positively separated sequence in F and let $v_{n} \prec F$ be the separating factor situated between u_{n} and u_{n+1} (by convention, v_{0} is the factor before u_{1}). We call the sequence of occurrences $\left\{p_{n}+\left|u_{n}\right|, v_{n}\right\}$ of separating factors $\left\{v_{n}\right\}_{n \geqslant 0}$ the separating sequence with respect to the sequence $\left\{\left(p_{n}, u_{n}\right)\right\}_{n \geqslant 1}$.

From Theorem 6 and Lemma 4, we get immediately
Theorem 7. Let $n \in \mathbb{N}$ be fixed. Then
(1) $\mathbb{W}(n)=\left\{w_{n, k}\right\}_{k \geqslant 1}$ is the sequence of occurrences of w_{n} in F_{θ};
(2) the sequence $\mathbb{W}(n)$ is positively separated in F_{θ} (we say also that the singular word w_{n} is positively separated);
(3) the separating sequence with respect to $\mathbb{W}(n)$ consists of the words P_{n} and w_{n+1} (except for $v_{0}:=\prod_{i=0}^{n} P_{i}=\beta^{-1} w_{n+1}$).

The following corollary also follows directly from Lemma 4.
Corollary 3. Let $F_{\theta}=\prod_{i=0}^{+\infty} P_{i}$ be the decomposition of F_{θ}, and $w_{n} \prec F_{\theta}$ be a singular word of order n, then every w_{n} must be completely contained in some P_{i}.

Corollary 4. Let $u \prec F_{\alpha}$ with $\left|A_{n}\right|<|u| \leqslant\left|A_{n+1}\right|$ for some $n \geqslant 0$. Suppose that $w \prec u$ is a singular word of the highest order contained in u, then
(1) w must be one of the following four singular words: $w_{n-2}, w_{n-1}, w_{n}, w_{n+1}$;
(2) if $w=w_{n-2}$, then w appears in u exactly a_{n} times; if $w=w_{n-1}$, then w may appear in u from one to a_{n+1} times; if $w=w_{n}$ or w_{n+1}, then w appears exactly once in u.

Proof. (1) The restriction on the length of u shows w can take one of the words of w_{n-2}, w_{n-1}, w_{n}, and w_{n+1}.

Since $\left|w_{n+2}\right|>\left|A_{n+1}\right| \geqslant|u|, w \neq w_{n+2}$. Now suppose $w=w_{n-3}$. Consider the decomposition of F_{α} by singular words of order $n-3$ and notice that $|u|>\left|A_{n}\right|$, and we can see that w_{n-3} appears in u at least a_{n-1} times. Thus from Theorem 6(2), u will contain either one w_{n-2} or one w_{n-1}, and this contradicts maximality of w in u.
(2) If $w=w_{n-2}$, then
(i) the separating factor between two adjacent occurrences of w_{n-2} in u must be P_{n-2}, otherwise w_{n-1} will appear in u which contradicts the maximality w in u;
(ii) w_{n-2} appears in u at most a_{n} times, otherwise w_{n} appear in u;
(iii) w_{n-2} appears in u at least a_{n} times since $u>\left|A_{n}\right|$;
so from (i) to (iii), w_{n-2} appears in u exactly a_{n} times.
The other three cases can be proved by the same argument.
Now we discuss the factor P_{n}. By an analogous analysis to w_{n} with known facts $w_{n-1} \prec P_{n}, w_{n-1} \nless w_{n}$ and $P_{n} \nless w_{n}$, we see that P_{n} is located between two adjacent w_{n} as a separating factor, or inside some w_{n+1}, or in the "middle" of the following seven words:

1. $P_{n} w_{n}$; 2. $w_{n} P_{n}$; 3. $P_{n} w_{n} P_{n}$; 4. $P_{n} w_{n} w_{n+1}$; 5. $w_{n} w_{n+1}$; 6. $w_{n+1} w_{n}$; 7. $w_{n+1} w_{n} P_{n}$.

The following lemma shows that none of above seven cases could happen.
Lemma 5. Suppose z is one of the above seven words. Let $z=u_{1} u_{2} u_{3}, 0<\left|u_{1}\right|<\left|B_{1}\right|$, $0<\left|u_{3}\right|<\left|B_{2}\right|$, where B_{1}, B_{2} denote the left and right factor of z, respectively, with $\left|B_{1}\right|+\left|B_{2}\right| \leqslant|z|$ (for example, in the first case, $B_{1}=P_{n}, B_{2}=w_{n}$), then $u_{2} \neq P_{n}$.

Proof. We only prove the first case, the other cases can be proved in the same way.
Assume $z=P_{n} w_{n}$ and $u_{2}=P_{n}$. We know by Lemma 2(3) that w_{n-1} is a right factor of $u_{2}=P_{n}$. This means w_{n-1} must be in the "middle" of $P_{n} w_{n}$ or contained in w_{n}. The first case contradicts Lemma 4(2) and the second case contradicts Proposition 6(2).

Remark 3. Above discussions and Lemma 5 shows that P_{n} appears in F_{θ} either as a factor either between two adjacent w_{n} as a separating word, or contained in some w_{n+1}. In the latter case, the P_{n} is both the suffix and the prefix of w_{n+1} from Lemma 2(2).

6. Combinatorial properties of the factors of the Sturmian sequence

In this section, we discuss the combinatorial properties of the factors of the Sturmian sequence, such as the power of the factors, overlap property of the factors, and the structure of the palindrome factor. As we will see, the positive separation property of the singular words will play an important role in these studies.

6.1. Power of the factors of Sturmian sequence

Theorem 8. Let F_{θ} be a Sturmian sequence with $\theta=\left[0 ; a_{0}, a_{1}, \ldots, a_{n}, \ldots\right]$. We have the following facts:
(1) for any $n \geqslant 1, w_{n}^{2} \nless F_{\theta}$;
(2) for any $n \geqslant 1$ and $0 \leqslant k<\left|A_{n}\right|,\left(C_{k}\left(A_{n}\right)\right)^{a_{n+1}+1} \prec F_{\theta}$;
(3) for any $n \geqslant 1$ and $0 \leqslant k \leqslant\left|A_{n-1}\right|-2,\left(C_{k}\left(A_{n}\right)\right)^{a_{n+1}+2} \prec F_{\theta}$;
(4) for any $n \geqslant 1$ and $\left|A_{n-1}\right|-2<k<\left|A_{n}\right|,\left(C_{k}\left(A_{n}\right)\right)^{a_{n+1}+2} \nless F_{\theta}$;
(5) for any $n \geqslant 1$ and $0 \leqslant k<\left|A_{n}\right|,\left(C_{k}\left(A_{n}\right)\right)^{a_{n+1}+3} 大 F_{\theta}$;
(6) let $u \prec F_{\theta}$ with $\left|A_{n}\right|<|u|<\left|A_{n+1}\right|$ for some $n \geqslant 0$. If $w_{n} \prec u$, then $u^{2} \nless F_{\theta}$;
(7) let $u \prec F_{\theta}$ with $\left|A_{n}\right|<|u|<\left|A_{n+1}\right|$ for some $n \geqslant 0$. If $w_{n} \nless u$ and $u \neq C_{k}\left(A_{n}\right)^{t}$, $0 \leqslant k \leqslant\left|A_{n}\right|-1,2 \leqslant t \leqslant a_{n+1}$, then $u^{2} \prec F_{\theta}$ if and only if $u=u_{1}\left(w_{n-1} P_{n-1}\right)^{k} w_{n-1} u_{2}$ with $u_{2} u_{1}=w_{n}$ and $0 \leqslant k \leqslant a_{n+1}-2,1 \leqslant\left|u_{1}\right|,\left|u_{2}\right| \leqslant\left|A_{n}\right|-1$;
(8) let $u \prec F_{\theta}$ with $\left|A_{n}\right|<|u|<\left|A_{n+1}\right|$ for some $n \geqslant 0$. If $w_{n} \nless u$ and $u \neq C_{k}\left(A_{n}\right)^{t}$, $0 \leqslant k \leqslant\left|A_{n}\right|-1,2 \leqslant t \leqslant a_{n+1}$, then $u^{3} 大 F_{\theta}$;
(9) let $u \prec F_{\theta}$ with $\left|A_{n}\right|<|u|<\left|A_{n+1}\right|$ for some $n \geqslant 0$, then $u^{a_{n+1}+3} \nless F_{\theta}$.

Proof. (1) This is due to the positive separation property of singular words (in fact, we have shown this in Proposition 6(7)).
(2) Since $A_{n+1} A_{n} \triangleleft A_{n+2}$, and $A_{n} A_{n+2} \prec F_{\theta}, A_{n} A_{n+1} A_{n} \prec F_{\theta}$ by Proposition 4(3). So Theorem 3 and Proposition 3 imply that $A_{n}^{a_{n+1}+1} A_{n} A_{n-1} \alpha^{-1} \beta^{-1} \alpha \beta \prec F_{\theta}$. Thus, $A_{n}^{a_{n+1}+2}$ $\beta^{-1} \prec F_{\theta}$. Hence, for any $0 \leqslant k \leqslant\left|A_{n}\right|-1$, we have $\left(C_{k}\left(A_{n}\right)\right)^{a_{n+1}+1} \prec A_{n}^{a_{n+1}+2} \beta^{-1} \prec F_{\theta}$.
(3) As in (2), $A_{n}^{a_{n+1}+2} A_{n-1} \alpha^{-1} \beta^{-1} \prec F_{\theta}$. Since $A_{n-1} \triangleleft A_{n}$, we have for $0 \leqslant k \leqslant\left|A_{n-1}\right|-$ 2, $C_{k}\left(A_{n}\right)^{a_{n+1}+2} \prec F_{\theta}$.
(4) Let $\left|A_{n-1}\right|-1 \leqslant k \leqslant\left|A_{n}\right|-1$. By Proposition $5(1), C_{k}\left(A_{n}\right)=v_{1} w_{n-1} v_{2}$ with $v_{2} v_{1}=P_{n-1}$. So if $C_{k}\left(A_{n}\right)^{a_{n+1}+2} \prec F_{\theta}$, then

$$
\left(w_{n-1} v_{2} v_{1}\right)^{a_{n+1}+1} w_{n-1}=\left(w_{n-1} P_{n-1}\right)^{a_{n+1}+1} w_{n-1} \prec C_{k}\left(A_{n}\right)^{a_{n+1}+2} \prec F_{\theta} .
$$

But by Lemma 2(4), we have $w_{n+1}=\left(w_{n-1} P_{n-1}\right)^{a_{n+1}} w_{n-1}$. So w_{n+1} appears twice in the word $\left(w_{n-1} P_{n-1}\right)^{a_{n+1}+1} w_{n-1}$, which contradicts the positive separation property of w_{n+1}.
(5) The conclusion can be obtained by the same discussion as in (4).
(6) Assume $w_{n} \prec u$ with $\left|A_{n}\right|<|u|<\left|A_{n+1}\right|$ and $u^{2} \prec F_{\theta}$. Let $u=v_{1} w_{n} v_{2}$, then $u^{2}=$ $v_{1} w_{n} v_{2} v_{1} w_{n} v_{2} \prec F_{\theta}$. From Theorem 7, the length of the word between two w_{n} is at least $\left|P_{n}\right|$, i.e. $\left|v_{2} v_{1}\right| \geqslant\left|P_{n}\right|$, so $|u| \geqslant\left|w_{n}\right|+\left|P_{n}\right|=\left|A_{n+1}\right|$, which contradicts our hypothesis $|u|<\left|A_{n+1}\right|$.
(7) Suppose that w is the singular word of the maximum order appearing in u. Corollary 4 implies that w will be one of the following four words: w_{n+1}, w_{n}, w_{n-1} and w_{n-2}. By the hypotheses, $w \neq w_{n+1}$ and $u \neq w_{n}$, so w must be w_{n-1} or w_{n-2}.

We prove first the part "if".
Assume first $w=w_{n-2}$, and by Corollary $4, w_{n-2}$ appears in u exactly a_{n} times. Since w_{n-1} does not occur in u, all separating words of w_{n-2} in u are P_{n-2}. So we have

$$
u=v_{1}\left(w_{n-2} P_{n-2}\right)^{a_{n}-1} w_{n-2} v_{2}=v_{1} P_{n-1} v_{2} .
$$

We have the following two facts:
(i) $\left|v_{1}\right|,\left|v_{2}\right|<\left|A_{n-1}\right|$. Otherwise, $\left|v_{1}\right| \geqslant\left|A_{n-1}\right|$, and $w_{n-1} \triangleright v_{1}$ or $w_{n-2} P_{n-2} \triangleright v_{1}$. The first contradicts the fact w_{n-1} does not occur in u and the second contradicts the fact that w_{n-2} only appears a_{n} times.
(ii) $\left|v_{1} v_{2}\right|>\left|A_{n-1}\right|$ since $|u|=\left|P_{n-1}\right|+\left|v_{2} v_{1}\right|>\left|A_{n}\right|=\left|P_{n-1}\right|+\left|A_{n-1}\right|$.

By hypothesis

$$
u^{2}=v_{1}\left(w_{n-2} P_{n-2}\right)^{a_{n}-1} w_{n-2} v_{2} v_{1}\left(w_{n-2} P_{n-2}\right)^{a_{n}-1} w_{n-2} v_{2} \prec F_{\theta},
$$

the word $v_{2} v_{1}$ is the word between two w_{n-2}. But $\left|A_{n-1}\right|<\left|v_{2} v_{1}\right|<2\left|A_{n-1}\right|$ by (i) and (ii), we must have that $v_{2} v_{1}=P_{n-2} w_{n-2} P_{n-2}$, thus ($\left.w_{n-2} P_{n-2}\right)^{a_{n}+1} w_{n-2} \prec u^{2} \prec F_{\theta}$, which contradicts the positively separation property of $w_{n}\left(=\left(w_{n-2} P_{n-2}\right)^{a_{n}} w_{n-2}\right)$. This proves $w \neq w_{n-2}$.

Now we assume $w=w_{n-1}$. Since $w_{n} \nless u$, all separating words in u with respect to w_{n-1} are P_{n-1}, and we can write $u=v_{1}\left(w_{n-1} P_{n-1}\right)^{s_{1}} w_{n-1} v_{2}$ for some $s_{1} \geqslant 0$ with $w_{n-1} \nless v_{1}, w_{n-1} \nless v_{2}$. By the hypotheses,

$$
u^{2}=v_{1}\left(w_{n-1} P_{n-1}\right)^{s_{1}} w_{n-1} v_{2} v_{1}\left(w_{n-1} P_{n-1}\right)^{s_{1}} w_{n-1} v_{2} \prec F_{\theta},
$$

thus $v_{2} v_{1}$ is situated between two w_{n-1}.
If $v_{2} v_{1}$ does not contain w_{n}, it must contain only P_{n-1} and w_{n-1}, which gives $v_{2} v_{1}$ $=\left(P_{n-1} w_{n-1}\right)^{s_{2}} P_{n-1}$ for some $s_{2} \geqslant 0$. So $C_{\left|v_{1}\right|} u=\left(w_{n-1} P_{n-1}\right)^{s_{1}+s_{2}+1}=\beta^{-1} A_{n}^{s_{1}+s_{2}+1} \beta$, where the second equality is due to Lemma 2(1). Hence there exists $0 \leqslant k \leqslant\left|A_{n-1}\right|-1$ such that $u=\left(C_{k}\left(A_{n}\right)\right)^{t}$, which contradicts the hypotheses.

So we must have $v_{2} v_{1}$ contains w_{n}. Consequently, it contains only one such word, otherwise $u \geqslant\left|A_{n+1}\right|$. Hence by similar discussion as above, we have $v_{2} v_{1}=\left(P_{n-1} w_{n-1}\right)^{s_{3}}$ $w_{n}\left(w_{n-1} P_{n-1}\right)^{s_{4}}$.

Since $w_{n} \nless u$, then $u=u_{1}\left(w_{n-1} P_{n-1}\right)^{s_{1}+s_{2}+s_{4}} w_{n-1} u_{2}$ and $u_{2} u_{1}=w, 0 \leqslant s_{1}+s_{2}+s_{4} \leqslant$ $a_{n+1}-2$. This finishes the proof of the "if" part.

Now we prove in the following the "only if" part.
Assume $u=u_{1}\left(w_{n-1} P_{n-1}\right)^{k} w_{n-1} u_{2}$ with $u_{2} u_{1}=w_{n}$ and $0 \leqslant k \leqslant a_{n+1}-2,1 \leqslant\left|u_{1}\right|,\left|u_{2}\right| \leqslant$ $\left|A_{n}\right|-1$. Then

$$
u^{2}=u_{1}\left(w_{n-1} P_{n-1}\right)^{k} w_{n-1} w_{n}\left(w_{n-1} P_{n-1}\right)^{k} w_{n-1} u_{2} \prec P_{n} w_{n} P_{n} \prec F_{\theta} .
$$

(8) Suppose that $u^{3} \prec F_{\theta}$, then $u^{2} \prec F_{\theta}$. By conclusion (7), $u=u_{1}\left(w_{n-1} P_{n-1}\right)^{k} w_{n-1} u_{2}$ with $u_{2} u_{1}=w_{n}$ and $0 \leqslant k \leqslant a_{n+1}-2$, therefore $w_{n}\left(w_{n-1} P_{n-1}\right)^{k} w_{n-1} w_{n} \prec u^{3} \prec F_{\theta}$. The positive separating property of w_{n} shows $\left|\left(w_{n-1} P_{n-1}\right)^{k} w_{n-1}\right| \geqslant\left|P_{n}\right|$. Hence $k \geqslant a_{n+1}-1$ by Lemma 2(3), and this is a contradiction.
(9) This follows from conclusions (6)-(8).

Remark 4. Theorem 8(2) shows that, although each conjugation of the standard word A_{n} appears in F_{α} infinitely many times, the conjugates are not necessary to be positively separated. This is an essential difference between singular words and standard words.

Now we study the highest order of the repetition in the Sturmain sequence.
Let $r>1$ be a rational, we say the sequence $F \in S^{\omega}$ contains a repetition of order r, if there exist two factors $z, x \prec F$ such that

$$
z \triangleleft x^{[r]+1} \quad \text { and } \quad \frac{|z|}{|x|}=r .
$$

In this case we write $z=x^{r}$ (note that x^{r} is well defined if and only if $k|x|$ is an integer). Above definition is equivalent to that $z=(u v)^{[r]} u$ with $|u| /(|u|+|v|)=\{r\}$.

Define the free index $\mathbf{F I}(F)$ of the sequence F as follows:

$$
\mathbf{F I}(F)=\sup \{r \in \mathbb{Q}: F \text { contains a repetition of order } r\} .
$$

The following theorem is proved by Damanik and Lenz [6] (for the related results, see also Berstel [4], Mignosi and Pirillo [15] and Vandeth [22]). Here we give a simple proof of this result using singular words.

Theorem 9. Suppose that $\theta=\left[0 ; a_{1}, a_{2}, \ldots\right]$ is the continued fraction expansion of θ. Then

$$
\mathbf{F I}\left(F_{\theta}\right)=2+\sup _{n \geqslant 0}\left\{a_{n+1}+\frac{\left|A_{n-1}\right|-2}{\left|A_{n}\right|}\right\} .
$$

Proof. For any factor $u \prec F_{\theta}$, define the index of u by $\operatorname{ind}(u)=\max \left\{r \in \mathbb{Q}: u^{r} \prec F_{\theta}\right\}$, which yields immediately $\mathbf{F I}\left(F_{\theta}\right)=\sup _{u \prec F_{\theta}} \operatorname{ind}(u)$.

By Proposition 4(4), ind $(b)=1$; since $\left|A_{-1}\right|=\left|A_{0}\right|=1$, ind $(a)=1+a_{1}=2+\left(a_{1}+\right.$ $\left.\left(\left|A_{-1}\right|-2\right) /\left|A_{0}\right|\right)$. Suppose $\left|A_{n}\right|<|u|<\left|A_{n+1}\right|$ for some $n \geqslant 0$. If $u=C_{k}\left(A_{n}\right)^{t}$ for some t, then $\operatorname{ind}(u)=(1 / t) \operatorname{ind}\left(C_{k}\left(A_{n}\right)\right)$; if $u \neq C_{k}\left(A_{n}\right)^{t} \quad\left(0 \leqslant k \leqslant\left|A_{n}\right|-1,2 \leqslant t \leqslant a_{n+1}\right)$, then $\operatorname{ind}(u)<3$ from Theorem 8(7) and (8). So we only need to consider the word u of length $\left|A_{n}\right|$ for some n. If $u=w_{n}$ is a singular word, $\operatorname{ind}(u)<2$ since $w_{n}^{2} \nless F_{\theta}$. Now fix $n \geqslant 1$ and we are going to determine $\max \left\{\operatorname{ind}(u): u=C_{k}\left(A_{n}\right)\right.$ for some $\left.k\right\}$. In fact, we only need to find the maximum length of the word $x \prec F_{\theta}$ which is a factor of the
infinite sequence $A_{n}^{\omega}:=A_{n} A_{n} A_{n} \cdots$. Since the singular word w_{n} is not a conjugate of A_{n}, w_{n} is not a factor of x. By Theorem 7, w_{n} is positively separated by the separating words P_{n} and w_{n+1}. So the possible maximum length of x is $\left|A_{n}\right|+\left|A_{n+1}\right|+\left|A_{n}\right|-2$. In this case $x=\alpha^{-1} w_{n} w_{n+1} w_{n} \alpha^{-1}$ with α the first letter of w_{n}. So by Theorem 3 and Proposition 3, we get

$$
\begin{aligned}
x & =\alpha^{-1} w_{n} w_{n+1} w_{n} \alpha^{-1} \\
& =A_{n} A_{n+1} A_{n} \beta^{-1} \alpha^{-1}=A_{n}^{a_{n+1}+1} A_{n-1} A_{n} \beta^{-1} \alpha^{-1} \\
& =A_{n}^{a_{n+1}+2} A_{n-1} \alpha^{-1} \beta^{-1}=A_{n}^{2+a_{n+1}+\frac{\left|A_{n-1}\right|-2}{\left|A_{n}\right|}},
\end{aligned}
$$

which yields the conclusion of the theorem.
Remark 5. (1) It is easy to see that the above theorem is also true for $\theta>1$. (In this case we will take the continued fraction expression of θ as $\left[a_{1} ; a_{2}, \ldots, a_{n}, \ldots\right]$.)
(2) Denote c_{μ} the Sturmian sequence $\left\{\chi_{[1-\mu, 1)}(n \mu \bmod 1)\right\}_{n \geqslant 1}$. Then $F_{\theta}=\pi\left(c_{\mu}\right)$ if and only if $\mu=\theta /(1+\theta)$, where π is projection: $\pi(0)=a, \pi(1)=b$.

If $\theta=\left[0 ; a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]<1$, then $\theta /(1+\theta)=1 /(1+1 / \theta)=\left[0 ; a_{1}+1, a_{2}, \ldots, a_{n}, \ldots\right]$; if $\theta=\left[a_{1} ; a_{2}, \ldots, a_{n}, \ldots\right]>1$, then $\theta /(1+\theta)=\left[0 ; 1, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$. Thus, a simple computation shows the equivalence between the result in [6] and Theorem 9.

From Theorem 9, we get immediately
Corollary 5. Suppose that F_{θ} is a Sturmian sequence. Then

$$
\sup \left\{p ; \exists w \prec F_{\theta} \text { such that } w^{p} \prec F_{\theta}\right\}=\max \left\{1+a_{1}, 2+\sup _{n \geqslant 2}\left\{a_{n}\right\}\right\} .
$$

In particular, if $\sup _{n \geqslant 1}\left\{a_{n}\right\}=\infty$, then for any $k \in \mathbb{N}$, there exists a factor $w \prec F_{\theta}$ such that $w^{k} \prec F_{\theta}$.

Example 1 (Mignosi and Pirillo [15], Wen Zhi-Xiong and Wen Zhi-Ying [21]). Let $\theta=\frac{\sqrt{5}-1}{2}=[0 ; 1,1,1, \ldots]$ be the golden number, then $\mathbf{F I}\left(F_{\theta}\right)=\frac{5+\sqrt{5}}{2}$, and for any factor $u \prec F_{\theta}, u^{4} \nless F_{\theta}$.

6.2. Overlap property of the factors

Suppose $u \prec F \in S^{\omega}$. If there exist words x, y and z such that $u=x y=y z$ and $u^{*}(y):=u z=x y z \prec F$, then we say that the word u have overlap with the overlap factor y (or overlap length $|y|$), and the word $u^{*}(y)$ is called the overlap of u with the overlap factor y. We denote by $\mathbb{O}(F):=\mathbb{C}$ the set of factors of F having overlap. The structure of \mathbb{C} for the Fibonacci sequence and the Morse sequence have been studied, respectively, in [21] and [1].

From Theorem 7, we have
Proposition 7. For any $n \geqslant 1, w_{n}$ has no overlap.
Lemma 6. Let $u \prec F_{\theta}$ with $\left|A_{n}\right|<|u| \leqslant\left|A_{n+1}\right|$ for some $n \geqslant 0$. Then w_{n} 大 u if and only if $u \prec \alpha^{-1} w_{n} w_{n+1} w_{n} \alpha^{-1}$ with $\alpha \triangleleft w_{n}$.

Proof. By Theorem 7, if $w_{n} \nless u, u$ is a factor of either $\alpha^{-1} w_{n} P_{n} w_{n} \alpha^{-1}$ or $\alpha^{-1} w_{n} w_{n+1}$ $w_{n} \alpha^{-1}$. By Lemma 2(1), $\alpha^{-1} w_{n} P_{n}=\beta^{-1} w_{n+1}$, which means

$$
\alpha^{-1} w_{n} P_{n} w_{n} \alpha^{-1}=\beta^{-1} w_{n+1} w_{n} \alpha^{-1} \prec \alpha^{-1} w_{n} w_{n+1} w_{n} \alpha^{-1} .
$$

On the other hand, if $u \prec \alpha^{-1} w_{n} w_{n+1} w_{n} \alpha^{-1}$, then w_{n} 大u from the positive separation property of w_{n}, and the result follows.

Lemma 7. Let $w=\alpha^{-1} w_{n} w_{n+1} w_{n} \alpha^{-1}$ with $\alpha \triangleleft w_{n}$. If $u \prec w$ with $\left|A_{n}\right|<|u| \leqslant\left|A_{n+1}\right|$ and $u \neq w_{n+1}$, then u has overlap.

Proof. From Lemma 2(1) and (4), we have

$$
w=\alpha^{-1} w_{n} w_{n+1} w_{n} \alpha^{-1}=\beta^{-1}\left(w_{n-1} P_{n-1}\right)^{a_{n+1}+2} w_{n-1} \beta^{-1} .
$$

By Lemma $6, w_{n} \nless u$. From the hypotheses of the lemma, we see that if u contains the word w_{n-1}, then it contains the words w_{n-1} at most a_{n+1} times.
(i) Suppose u contains words w_{n-1} for i times $\left(1 \leqslant i \leqslant a_{n+1}\right)$ and $u=s_{2}\left(w_{n-1} P_{n-1}\right)^{i-1}$ $w_{n-1} t_{1}$. Then $s_{2} \triangleright \beta^{-1} w_{n-1} P_{n-1}$ and $t_{1} \triangleleft P_{n-1} w_{n-1} \beta^{-1}$, where s_{2}, t_{1} may be ε. Let w_{n-1} $P_{n-1}=s_{1} s_{2}, P_{n-1} w_{n-1}=t_{1} t_{2}$, then

$$
\begin{aligned}
u & =s_{2}\left(w_{n-1} P_{n-1}\right)^{i-1} w_{n-1} t_{1} \\
& =\left(s_{2} s_{1}\right)\left(s_{2}\left(w_{n-1} P_{n-1}\right)^{i-2} w_{n-1} t_{1}\right) \\
& =\left(s_{2}\left(w_{n-1} P_{n-1}\right)^{i-2} w_{n-1} t_{1}\right)\left(t_{2} t_{1}\right),
\end{aligned}
$$

so $u=x y=y z$ with $x=s_{2} s_{1}, y=s_{2}\left(w_{n-1} P_{n-1}\right)^{i-2} w_{n-1} t_{1}$ and $z=t_{2} t_{1}$. Hence to prove that u has overlap, it suffices to prove that $u t_{2} t_{1} \prec F_{\infty}$. In fact,

$$
\begin{aligned}
u t_{2} t_{1} & =s_{2}\left(w_{n-1} P_{n-1}\right)^{i-1} w_{n-1} t_{1} t_{2} t_{1}=s_{2}\left(w_{n-1} P_{n-1}\right)^{i} w_{n-1} t_{1} \\
& \prec \beta^{-1} w_{n-1} P_{n-1}\left(\left(w_{n-1} P_{n-1}\right)^{i} w_{n-1}\right) P_{n-1} w_{n-1} \beta^{-1} \prec w \prec F_{\theta} .
\end{aligned}
$$

(ii) Suppose u contains no copies of w_{n-1}. Because $|u|>\left|w_{n}\right|, u=s P_{n-1} t \prec w_{n-1} P_{n-1}$ $w_{n-1}, s \triangleright \beta^{-1} w_{n-1}, t \triangleleft w_{n-1} \beta^{-1}$, hence $|s|+|t|>\left|w_{n-1}\right|$. This means there exists a word v_{0}, such that $t=t^{\prime} v_{0}, s=v_{0} s^{\prime}, w_{n-1}=t^{\prime} v_{0} s^{\prime}$, and $u=v_{0} s^{\prime} P_{n-1} t^{\prime} v_{0}$ with $h|u|>\left|v_{0} s^{\prime} P_{n-1} t^{\prime}\right|$. Since

$$
\begin{aligned}
u s^{\prime} P_{n-1} t^{\prime} v_{0} & =v_{0} s^{\prime} P_{n-1} t^{\prime} v_{0} s^{\prime} P_{n-1} t^{\prime} v_{0} \\
& =v_{0} s^{\prime} P_{n-1} t^{\prime} u=s P_{n-1} w_{n-1} P_{n-1} t
\end{aligned}
$$

$$
\begin{aligned}
& \prec \beta^{-1} w_{n-1} P_{n-1} w_{n-1} P_{n-1} w_{n-1} \beta^{-1} \\
& \prec w,
\end{aligned}
$$

which shows that u has overlap with overlap factor v_{0}.
Theorem 10. Let $u \prec F_{\theta}$ with $\left|A_{n}\right|<|u| \leqslant\left|A_{n+1}\right|$ and $u \neq w_{n+1}$. Then

$$
u \notin \mathbb{O} \Leftrightarrow w_{n} \prec u .
$$

Proof. Suppose that $w_{n} \prec u$ and u has overlap. Then w_{n} will appear twice in the overlap of u. By Theorem 7, any word between two adjacent singular words w_{n} must be either P_{n} or w_{n+1}, and it follows that $|u|>\left|w_{n+1}\right|$. This contradiction proves that u has no overlap and we prove the implication $w_{n} \prec u \Rightarrow u \notin \mathbb{O}$. The opposite implication $u \notin \mathbb{O} \Rightarrow w_{n} \prec u$ follows directly from Lemmas 6 and 7 .

Remark 6. If a word $w \prec F_{\theta}$ has overlap, then the overlap factor does not need to be unique. For example, let $a_{n+1}=2$, and let

$$
w:=\beta^{-1}\left(w_{n-1} P_{n-1}\right)^{4} w_{n-1} \beta^{-1}=\alpha^{-1} w_{n} w_{n+1} w_{n} \alpha^{-1} \prec F_{\alpha} .
$$

Then the word $u=\beta^{-1}\left(w_{n-1} P_{n-1}\right)^{2} w_{n-1} \beta^{-1}$ has two overlaps w and $w^{\prime}:=u \beta P_{n-1} w_{n-1}$ β^{-1}, and the corresponding overlap factors are $\beta P_{n-1} w_{n-1} \beta^{-1}$ and $\beta\left(P_{n-1} w_{n-1}\right)^{2} \beta^{-1}$, respectively.

Corollary 6. Let F_{θ} be a Sturmian sequence. We have the following:
(1) for any $n \geqslant 1$ and $0 \leqslant k \leqslant\left|A_{n-1}\right|-2, C_{k}\left(A_{n}\right)^{a_{n+1}+1} \in \mathbb{O}$;
(2) for any $n \geqslant 1$ and $\left|A_{n-1}\right|-1 \leqslant k \leqslant\left|A_{n}\right|-1, C_{k}\left(A_{n}\right)^{a_{n+1}+1} \notin \mathbb{O}$;
(3) for any $n \geqslant 1,0 \leqslant k \leqslant\left|A_{n-1}\right|-2$, and $a_{n+2} \geqslant 2, C_{k}\left(A_{n}\right)^{a_{n+1}+2} \notin \mathbb{O}$;
(4) for any $n \geqslant 1,0 \leqslant k \leqslant\left|A_{n-1}\right|-2$, and $a_{n+2}=1, C_{k}\left(A_{n}\right)^{a_{n+1}+2} \in \mathbb{O}$.

Proof. (1) First, we have $\left|A_{n+1}\right|<\left|A_{n}^{a_{n+1}+1}\right|<\left|A_{n+2}\right|$. If $0 \leqslant k \leqslant\left|A_{n-1}\right|-2$, then by Proposition 5(1) we can write that $C_{k}\left(A_{n}\right)=u P_{n-1} v$ with $v u=w_{n-1}$ and $|u|,|v|<\left|w_{n-1}\right|$. Now

$$
C_{k}\left(A_{n}\right)^{a_{n+1}+1}=\left(u P_{n-1} v\right)^{a_{n+1}+1}=u P_{n-1}\left(w_{n-1} P_{n-1}\right)^{a_{n+1}-1} w_{n-1} P_{n-1} v,
$$

but we also have $w_{n+1}=\left(w_{n-1} P_{n-1}\right)^{a_{n+1}} w_{n-1}$. The positive separation property of w_{n-1} shows $w_{n+1} \nless C_{k}\left(A_{n}\right)^{a_{n+1}+1}$ and the result follows from Theorem 10 .
(2) If $\left|A_{n-1}\right|-1 \leqslant k \leqslant\left|A_{n}\right|-1$, then $C_{k}\left(A_{n}\right)=u w_{n-1} v$ and $v u=P_{n-1}$, which implies $C_{k}\left(A_{n}\right)^{a_{n+1}+1}=u\left(w_{n-1} P_{n-1}\right)^{a_{n+1}} w_{n-1} v=u w_{n+1} v$.
(3) In this case, $\left|A_{n+1}\right|<\left|A_{n}^{a_{n+1}+2}\right|<\left|A_{n+2}\right|$ and we can show that $w_{n+1} \prec C_{k}\left(A_{n}\right)^{a_{n+1}+2}$ in the same way as above.
(4) We have in this case $\left|A_{n+2}\right|<\left|A_{n}^{a_{n+1}+2}\right|<\left|A_{n+3}\right|$. Since w_{n+2} is not a factor of $C_{k}\left(A_{n}\right)^{a_{n+1}+2}$, we have $C_{k}\left(A_{n}\right)^{a_{n+1}+2} \in \mathbb{O}$ by Theorem 10.

6.3. The Palindrome factors

In this subsection, we study the structures of the palindrome factors of Sturmian sequences. We recall the following basic facts: both w_{n} and P_{n} are palindromes; w_{n} is positively separated by the separating factors w_{n+1} and P_{n}; the words $w_{n-1} P_{n-1}$ and w_{n} differ merely by the first letter; $P_{n} \triangleleft w_{n}$ and $P_{n} \triangleright w_{n}$.

Lemma 8. Let $u \prec F_{\theta}$ with $\left|A_{n}\right|<|u| \leqslant\left|A_{n+1}\right|$ for some $n \geqslant 0$. If $w_{n} \nless u$ and $P_{n} \nless u$, then $u \prec w_{n+1}$.

Proof. Since $w_{n} \nless u, u \prec \alpha^{-1} w_{n} w_{n+1} w_{n} \alpha^{-1}$ from Lemma 6. Because $|u| \leqslant\left|A_{n+1}\right|$, we have either $u \prec \alpha^{-1} w_{n} w_{n+1}$ or $u \prec w_{n+1} w_{n} \alpha^{-1}$. First suppose $u \prec \alpha^{-1} w_{n} w_{n+1}$. Then Lemma 2(1), we have

$$
u \prec \alpha^{-1} w_{n} w_{n+1}=\beta^{-1}\left(w_{n-1} P_{n-1}\right)^{a_{n+1}+1} w_{n-1} \prec\left(w_{n-1} P_{n-1}\right)^{a_{n+1}+1} w_{n-1} .
$$

Since $P_{n}=\left(w_{n-1} P_{n-1}\right)^{a_{n+1}-1} w_{n-1} \nless u$, we have $u \prec\left(w_{n-1} P_{n-1}\right)^{a_{n+1}} w_{n-1}=w_{n+1}$.
The case $u \prec w_{n+1} w_{n} \alpha^{-1}$ can be proved similarly.
Theorem 11. Let $u \in \mathbb{P}$ with $\left|A_{n}\right|<|u| \leqslant\left|A_{n+1}\right|$ for some $n \geqslant 0$, then $u \prec F_{\theta}$ if and only if u is one of the following forms:
(1) $u=x w_{n} \bar{x}$ with $x \triangleright P_{n}$ and $|x| \leqslant \frac{1}{2}\left|P_{n}\right|$;
(2) $u=x P_{n} \bar{x}$ with $x \triangleright w_{n}$ and $|x| \leqslant \frac{1}{2}\left|w_{n}\right|$;
(3) $u=x\left(w_{n-1} P_{n-1}\right)^{k} w_{n-1} \bar{x}$, where $x \triangleright P_{n-1}, 0 \leqslant k \leqslant a_{n+1}-1$. Moreover if $k=0$ then $|x|>\frac{1}{2}\left|P_{n-1}\right|$;
(4) $u=x\left(P_{n-1} w_{n-1}\right)^{k} P_{n-1} \bar{x}$, where $x \triangleright w_{n-1}, 0 \leqslant k \leqslant a_{n+1}-1$. Moreover if $k=0$ then $|x|>\frac{1}{2}\left|w_{n-1}\right|$.

Proof. The part "if" is ready to check by noting that $P_{n} w_{n} P_{n} \prec F_{\theta}$ and $w_{n} P_{n} w_{n} \prec F_{\theta}$ for any $n \in \mathbb{N}$.

Now suppose $u \in \mathbb{P}$ is a factor of F_{α} with $\left|A_{n}\right|<|u| \leqslant\left|A_{n+1}\right|$ for some $n \geqslant 0$.
(i) Suppose $w_{n} \prec u$, and we write $u=x w_{n} y$. Then x is a right factor of either P_{n} or w_{n+1} by Theorem 7(3) Since $|x| \leqslant|u|-\left|w_{n}\right|<\left|A_{n+1}\right|-\left|w_{n}\right|=\left|P_{n}\right|$ and P_{n} is a right factor of w_{n+1}, we get $x \triangleright P_{n}$. In the same way $y \triangleleft P_{n}$. Since $u \in \mathbb{P}, u=\bar{u}=\overline{x w_{n} y}=\bar{y} w_{n} \bar{x}$. The positive separation property of w_{n} shows that w_{n} has only one occurrence in u. So we have $\bar{y}=x$ which yields $|x|=|y|<\frac{1}{2}\left|P_{n}\right|$. Conclusion (1) is proved.
(ii) Suppose $P_{n} \prec u, u \neq w_{n+1}$ and write $u=x P_{n} y$. We conclude $x \triangleright w_{n}$. In fact, by noting that $w_{n-1} \triangleleft P_{n}$, and $|x| \leqslant|u|-\left|P_{n}\right| \leqslant\left|A_{n+1}\right|-\left|P_{n}\right|=\left|w_{n}\right|=\left|w_{n-1} P_{n-1}\right|$, we have that either $x \triangleright w_{n}$ or $x \triangleright w_{n-1} P_{n-1}$ due to the positive separation property of w_{n-1}. Since $u \neq w_{n+1}, x \neq w_{n-1} P_{n-1}$, we have $x \triangleright \beta^{-1} w_{n-1} P_{n-1}=\alpha^{-1} w_{n}$ by Lemma 2(1), and further $x \triangleright w_{n}$. In the same way $y \triangleleft w_{n}$. But $w_{n-1} \nless w_{n}$, so $w_{n-1} \nless x$ and $w_{n-1} \nless y$. Since $u \in \mathbb{P}$, $u=\bar{u}=\overline{x P_{n} y}=\bar{y} P_{n} \bar{x}$. Above analysis shows $w_{n-1} \nless \bar{x}$ and $w_{n-1} \nless \bar{y}$. Because w_{n-1} is both left factor and right factor of P_{n}, we have $\bar{y}=x$ by the positive separation property of w_{n-1}. We prove thus assertion (2) of the theorem.

Now if neither (i) nor (ii) holds, then $u \prec w_{n+1}$ by Lemma 8. By using the fact $w_{n+1}=\left(w_{n-1} P_{n-1}\right)^{a_{n+1}} w_{n-1}$, and by an almost same discussion as above, we get the assertions either (3) or (4), which finishes the proof of the theorem.

From Theorems 10 and 11, we get
Corollary 7. Let $u \prec F_{\theta}$ with $\left|A_{n}\right|<|u| \leqslant\left|A_{n+1}\right|$ for some $n \geqslant 0$, then u is a palindrome without overlap if and on if $u=x w_{n} \bar{x}$ with $x \triangleright P_{n}$ and $|x| \leqslant \frac{1}{2}\left|P_{n}\right|$.

Acknowledgements

The authors thank Prof. J.-P. Allouche who showed us Refs. [6,22], and Dr. Bo Tan for the useful discussions and a simplified proof of Theorem 9. The second author thanks The Morning-Side Center of Mathematics for their partial support.

References

[1] J.-P. Allouche, J. Peyriere, Wen Zhi-Xiong, Wen Zhi-Ying, Some properties of the Hankel determinant associated with the Thue-Morse sequences, Ann Inst. Fourier 48 (1) (1998) 1-27.
[2] J. Berstel, Recent results in Sturmian words, in: J. Dassow, A. Salomaa (Eds.), Developments in Language Theory, World Scientific, Singapore, 1966, pp. 13-24.
[3] J. Berstel, Mot de Fibonacci, Séminaire d'informatique théorique, L.I.T.P., Paris, Année 1980/1981, pp. 57-78.
[4] J. Berstel, On the Ondex of Sturmian Words, Jewels are Forever, Springer, Berlin, 1999, pp. 287-294.
[5] Tom C. Brown, A characterization of the quadratic irrationals, Canad. Math. Bull. 34 (1991) 36-41.
[6] D. Damanik, D. Lenz, The index of Sturmian sequences, preprint.
[7] S. Ferenzy, Symbolic Dynamics, CIMPA Summer School Lectures, 1996.
[8] A.S. Fraenkel, M. Mushkin, U. Tassa, Determination of $\lfloor n \theta\rfloor$ by its sequence of differences, Canad. Math. Bull. 21 (1978) 441-446.
[9] G.A. Hedlund, M. Morse, Sturmian sequences, Amer. J. Math. 61 (1940) 1-42.
[10] S. Ito, S. Yasutomi, On continued fractions, substitutions and characteristic sequences, Japan. J. Math. 16 (1990) 287-306.
[11] A.Ya. Khintchine, Continued Fractions, P. Noordhoff, Groningen, 1963, pp. 31-33.
[12] M. Lothaire, Combinatorics on words, in: Encyclopedia of Mathematics and its Applications, Vol. 17, Addison-Wesley, Reading, MA, 1983.
[13] M. Lothaire, Algebraic combinatorics on words, Cambridge Univ. Press, Cambridge, 2002.
[14] F. Mignosi, On the number of factors of Sturmian words, Theoret. Comput. Sci. 82 (1991) 71-84.
[15] F. Mignosi, G. Pirillo, Repetitions of Fibonacci infinite word, RAIRO Inform. Theor. Appl. 26 (1992) 199-204.
[16] P. Séébold, Fibonacci morphisms and Sturmian words, Theoret. Comput. Sci. 88 (1991) 367-384.
[17] C. Series, The Geometry of Markoff numbers, Math. Intell. 7 (1985) 20-29.
[18] K.B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canad. Math. Bull. 19 (1976) 473-482.
[19] B.A. Venkov, Elementary Number Theory, Wolter-Noordhoff, Groningen, 1970.
[20] Wen Zhi-Xiong, Wen Zhi-Ying, Some studies of factors of infinite words generated by invertible substitution, in: A. Barlotti, M. Delest, R. Pinzani (Eds.), Proc. Fifth Conf. Formal Power Series and Algebraic Combinatorics, 1993, pp. 455-466.
[21] Wen Zhi-Xiong, Wen Zhi-Ying, Some properties of the singular words of the Fibonacci word, European J. Combin. 15 (1994) 587-598.
[22] D. Vandeth, Sturmian words and words with a critical exponent, Theoret. Comput. Sci. 242 (2000) 283-300.

[^0]: ${ }^{2}$ Supported by the Special Funds for Major State Basic Research Projects of China.

 * Corresponding author.

 E-mail addresses: wcao1@uiuc.edu (W.-T. Cao), zwen@math.tsinghua.edu.cn, wenzy@tsinghua.edu.cn (Z.-Y. Wen).

