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Abstract

In rough set theory, the approximation quality γ is the traditional measure to evaluate the
classification success of attributes in terms of a numerical evaluation of the dependency properties
generated by these attributes. In this paper we re-interpret the classical γ in terms of a classic measure
based on sets, the Marczewski–Steinhaus metric, and also in terms of “proportional reduction of
errors” (PRE) measures. We also exhibit infinitely many possibilities to define γ -like statistics which
are meaningful in situations different from the classical one, and provide tools to ascertain the
statistical significance of the proposed measures, which are valid for any kind of sample.  2001
Published by Elsevier Science B.V.
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1. Introduction

One of the strengths of rough set theory is the fact that all its parameters are obtained
from the given data:

“The numerical value of imprecision is not pre-assumed, as it is in probability
theory or fuzzy sets—but is calculated on the basis of approximations which are
the fundamental concepts used to express imprecision of knowledge” [9].
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Approximations are measured simply be counting those observations which support the
theoretic assumptions of rough sets and are afterward normalised by the number of all
observations. Although this seems to be straightforward, two questions remain:
• Given two partitions, what is an observationin the problem of approximating a set

(or a partition) by a partition?
• Is there a good reason to use the number of all observations as a normalisation factor?

Are there possibly other meaningful normalisation factors?
We show in this paper that the answers to both questions lead to the result that γ as the
classical rough set evaluation of approximation is one possible instance—but certainly
not the only one. Thus, if γ is used as an approximation quality, this is a (conscious or
unconscious) choice made by the researcher, and not a necessity given by the data.

2. Pawlak’s approximation quality

Throughout this paper, we suppose that U is a finite nonempty set. If X ⊆U , we denote

the relative number |X||U | of elements of X with respect to U by pU(X), or just by p(X), if
U is understood.

Let us recall a few facts about partitions and equivalence relations. Suppose that P is
a partition of U . If x ∈ U , we let P(x) be the class of P containing x , and θP be the
equivalence relation associated with P , i.e.,

xθPy ⇐⇒ P(x)=P(y). (2.1)

We say that P is finer than a partitionR, and write P 	R, if θP ⊆ θR, i.e., if every
class of of R is a union of classes of P . The identity partitionis the partition containing
only singleton sets. It is the finest partition on any nonempty set.

Rough set data analysis (RSDA) [8] is based on the conviction that knowledge about the
world is available only up to a certain granularity, and that granularity can be expressed
mathematically by partitions and their associated equivalence relations.

If Y ⊆ U and P is a partition of U , then the lower approximation(of Y by P) is defined
as

Y P =
⋃
{X ∈ P : X⊆ Y }, (2.2)

and the upper approximationby

Y P =
⋃
{X ∈P : X ∩ Y = ∅}. (2.3)

A pair of the form 〈Y ,Y 〉 is called a rough set. It is easily seen that the upper approximation
is expressible using set complement and lower approximation by

Y P =U \ (−Y )P . (2.4)

The area of uncertaintyor boundary regionis defined as

∂P (Y )= Y P \ Y P . (2.5)

If ∅ =U ′ ⊆U , we let P �U ′ be the restriction of P to U ′, i.e.,

P �U ′ = {X ∩U ′: X ∈P} \ {∅}. (2.6)
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Clearly, P �U ′ partitions U ′, and we have:

Lemma 2.1. LetY ⊆U ′ ⊆U . Then,Y P = Y P�U ′ .

Proof. Suppose Y ⊆ U ′ ⊆U . Then,

x ∈ Y P ⇐⇒ P(x)⊆ Y,
⇐⇒ P(x)∩U ′ ⊆ Y, since Y ⊆U ′,
⇐⇒ P �U ′(x)⊆ Y,
⇐⇒ x ∈ Y P�U ′ ,

which proves the claim. ✷
As a numerical measure of imprecision, Pawlak [8,9] recommends for Y = ∅ the ratio

α(P, Y )= |Y P |
|YP |

(2.7)

called the accuracy measureof Y by P . It expresses the degree of completeness of our
knowledge about Y , given the granularity of P . This measure not only depends on the
approximation of Y , because by (2.4) it depends on the approximation of −Y as well:

α(P, Y )= |Y P |
|Y P | =

|Y P |
|U | \ |(−Y )P | . (2.8)

This is not surprising, and, indeed, a necessity of the rough set view that the world (and
hence, the complement of Y ) is known only up to the granularity given by the classes
of P . As a consequence, it is worth noting that α(P, Y ) can be used in all three steps
of modelling—learning, testing and applying a model—because the rough set 〈Y ,Y 〉 is
properly defined with the knowledge of the set Y in the learning and testing stage, and
without knowing Y in the application stage. This property of α(P, Y ) is seldom observed
in rule generating procedures.

Suppose that two views of the world are given by the partitions P and R of the
universe U , with associated equivalence relations θP and θR. We assume that a class of
a partition corresponds to a property of its members, and with some abuse of language
we identify the name of a class with the name of the property it signifies. The question
arises how well one partition can be expressed by the other. If a class X of P is a subset
of a class Y of R, then we can be sure that any element of U having property X also has
property Y . In this case, X is called deterministic with respect toR, or just deterministic,
if R is understood. On the other hand, if X intersects the R-classes Y1, . . . , Yk , then we
can only say that each element of X has one of the properties Y1, . . . , Yk .

An often applied measure for this situation is the quality of approximation ofR byP ,
also called the degree of dependency. It is defined by

γ (P,R)=
∑{|Y P |: Y ∈R}

|U | , (2.9)
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and evaluates the deterministic part of the rough set description of R by counting those
elements which can be re-classified to blocks of R with the knowledge given by P (see
Pawlak [9, p. 22], Komorowski et al. [6, p. 17], Pawlak [10, p. 52]).

Since each class of P contained in a class of R corresponds to a deterministic rule
(and vice versa), we see that γ is also the relative number of elements of U which can be
described by deterministic rules.

3. Re-interpretation of the Pawlak approximation quality

A simple statistic for the precision of (deterministic) approximation of Y given P , which
is not affected by the approximation of −Y is

π(P, Y )= |Y P |
|Y | . (3.1)

This is just the relative number of elements in Y which can be approximated by P ; clearly,
π(P, Y )� α(P, Y ). It is important to point out, that π(P, Y ) requires complete knowledge
of Y , whereas α does not, since the latter uses only the rough set 〈Y ,Y 〉. Unlike α(P, Y ),
the precision measure π(P, Y ) can only be applied while learning from data or testing with
data. Obviously, π(P, Y ) cannot be used in an application step such as prediction. Since
this is no drawback for a descriptive measure, we will use π(P, Y ) in the sequel.

In the sequel we shall require a monotony property, the simple proof of which is left to
the reader:

Lemma 3.1. If P1 	P2, thenπ(P1, Y )� π(P2, Y ).

The following example demonstrates how α and π differ: Consider U = {1,2, . . . ,8},
Y = {1,2,3,4}, and two partitions P1, P2 of U shown in Table 1. Since P2 is more
structured in −Y than P1, and α “knows” only rough sets, we have α(P1, Y )� α(P2, Y ).
On the other hand, if we are interested in the precision of the approximation of Y by the
classes of P , then we expect P1 to deliver the better result. For this goal, clearly π is the
better index.

The γ statistic is an aggregate measure of the sets of a partition approximated by another
partition, and therefore, accommodates both points of view—that of “knowing the world
up to P” and that of “approximating Y by P”. Indeed, γ turns out to be a weighted average
of the π as well as of the α statistics: In the first case, for each class Y of R, the quality

Table 1
α and π

U 1 2 3 4 5 6 7 8 α(P, Y ) π(P, Y ) π(P,−Y)
P1 x x x y y y y y 0.375 0.750 0.000

P2 a a b b b c c c 0.400 0.500 0.750

Y * * * *
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of approximation of P with respect to Y is weighted by the cardinality of Y relative to the
number of elements in U , and we obtain

γ (P,R)=
∑
Y∈R

|Y |
|U | · π(P, Y )=

∑
Y∈R

p(Y ) · π(P, Y ). (3.2)

Therefore γ (P,R) is the mean precision of the approximation of R by P . Using α as a
basis, we have

γ (P,R)=
∑
Y∈R

|Y |
|U | · α(P, Y )=

∑
Y∈R

p
(
Y

) · α(P, Y ). (3.3)

Thus, γ (P,R) can also be regarded as the weighted mean of the accuracies of
approximation of the sets Y ∈R by P .

Yao [12] connects rough set approximation with a classic distance measure based on
sets, called Marczewski–Steinhaus metric[7] (MZ), which is defined by

MZ(X,Y )= |X ∪ Y | − |X ∩ Y ||X ∪ Y | .

The indices above can be redefined using MZ as

α(P,X) = 1−MZ
(
XP ,X

P)
,

π(P,X) = 1−MZ
(
XP ,X

)
,

γ (P,R) = 1−MZ

( ⋃
X∈R

XP ,
⋃
X∈R

XP
)
= 1−MZ

( ⋃
X∈R

XP ,U
)
.

This is a mathematically elegant reinterpretation, and MZ itself has the nice properties of
a metric. Nevertheless, it has the disadvantage that it is not clear which model assumptions
are needed to state that the proposed fraction is as a meaningful expression.

In the work of Hildebrand et al. [3,4], the idea of empirical evaluation of a theory
(in terms of a formal logic) was formulated by introducing a system of measures called
proportional reduction of errors(PRE) measures. They have shown that most of the
commonly used descriptive statistics have a PRE interpretation, and that this interpretation
brings to the fore the important characteristics of the statistic. The idea behind the PRE
approach is to count the number of errors, i.e., events which should not be observed in
terms of an assumed theory, and to compare the result with an “expected number of errors”,
given a suitable benchmark model:

γPRE =



1− number of observed errors

number of expected errors
, if number of expected errors = 0,

0, otherwise.

(3.4)

We use the convention that 1− 0
0 = 0, because if there is no error, the error reduction can

only be 0.
If our theory says that “X and Y are the same sets”, then every element in (X ∪ Y ) \

(X ∩ Y ) can be regarded as an error for this statement. In this sense, we can interpret MZ
as an “error fraction” by

MZ(X,Y )= |X ∪ Y | − |X ∩ Y ||X ∪ Y | − |∅| ,
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Table 2
Measures, approximation errors, and expected approximation errors

Measure Approximation error Expected approximation error

α(P, Y ) Y
P \ Y P = Boundary of Y Y P = Upper bound of Y

π(P, Y ) Y \ Y P = Indeterministic cases of Y Y = All elements in Y

γ (P,R) U \⋃
Y∈R Y P = Indeterministic cases of U U = All elements

where the denominator addresses the worst case X ∩ Y = ∅ as a benchmark model. Using
this interpretation for the re-interpreted measures we obtain the combination of errors and
expected errors given in Table 2.

As these measures are instances of the MZ metric, we see that they are PRE measures,
based on the assumption of a maximal error rate for the benchmark model. In case of α,
the elements outside the lower approximation but inside the upper approximation are
considered errors, and these errors are compared with a maximum number of errors, which
is assumed to be the number of elements in the upper approximation. This occurs exactly
in the worst case, namely, when the lower approximation is empty. In case of π , the
computation of the error rate assumes that the set X can been described by the data; up
to this difference, the construction of the PRE-measure π is the same as the construction
of α.

4. More PRE measures for rough sets

The idea of a PRE measure is to answer the question how much better a given model
fits—in terms of percentage of error reduction—than a “straw man” benchmark model.
We have shown, that rough set based parameters such as γ are PRE measures, when a
worst-case benchmark error model is used; therefore, these indices are upper bounds for
suitable PRE measures in that situation, and can be regarded as optimistic measures for
error reduction. In this section we will show that it is possible to result in more reasonable
estimations for the parameters of interest.

We start with variables X,Y (which may be thought of as sets of attributes of an
information system), which generate equivalence relations and partitions in the usual way:
If s, t ∈U , then

sθXt ⇐⇒ X(s)=X(t). (4.1)

We denote by PX the partition belonging to θX , and likewise, we define θY and PY . To
avoid trivialities, we assume that |PY |� 2.

According to (2.9), the approximation quality in classical rough set theory is perfect if
γ (PX,PY )= 1, i.e., if

(∀K ∈ PX) (∃L ∈PY ) K ⊆ L. (4.2)

We say that an equivalence classK ∈ PX counts towards an error, if

(∀L ∈PY ) K ⊆ L (4.3)
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holds. The error functionERR :PX→{�,⊥} is now defined by

ERR(K,PY )=
{�, if (4.3) is true,

⊥, otherwise.
(4.4)

Because a PRE measure is defined with respect to an expectation value, the definition
of a suitable random variable χ is necessary; therefore, we assume that PX is drawn at
random from a set χ(P) of partitions. On this basis, PRE measures in RSDA can now be
defined by

γPRE(PX,PY )= 1−
∑
K∈PX and ERR(K,PY )=� |K|

EPX∈χ(P)[
∑
K∈PX and ERR(K,PY )=� |K|]

. (4.5)

Observe that the “error classes” are weighted with the number of elements they contain.
This is necessary, since it is enough for one element to “fail” to discard the whole class.

Obviously, there are different PRE measures which differ in computation of the expected
value in the denominator of γPRE (= the normalisation parameter), or by the assumptions
about the structure of χ(P).

If we regard the classical γ as a PRE measure, then

γ =
∑
K∈PX and ERR(K,PY )=⊥ |K|

|U | = 1−
∑
K∈PX and ERR(K,PY )=� |K|

|U | ,

which implies that

EPX∈χ(P)
[ ∑
K∈PXand ERR(K,PY )=�

|K|
]
= |U |. (4.6)

This is only possible if γ (PX,PY ) = 0 for each PX ∈ χ(P). A suitable random model
χ therefore consists of (any number of) partitions from which no deterministic rule can
be derived with respect to the dependent variable. The problem with this result is that the
admissible PX partitions can only be determined after the data are drawn.

Since there is only one partition which contains no deterministic classes for any PY
with at least two elements, namely, the one element partition PX = {U}, an a-priori model
that describes γ as a PRE measure must be based on this partition, and therefore, χ(P)
contains {U} as its sole element. Therefore, neither the possible a-posteriori nor the a-priori
benchmark model take into account the structure of the empirical PX—which must of
course be known if we want to perform a PRE description.

The description of approximation quality in terms of an error reduction measure offers
some insights into the relevant statistical properties of the representation of the data. As
shown above, the γ index is not very informative in this sense, because the baseline model
for measuring the error reduction is a rather artificial one. A PRE measure with a standard
baseline model can be a valuable supplement to the standard measure of approximation
quality.

In order to estimate the expectation of errors based on random assignment, we will use
randomisation procedures similar to those which we have proposed in [2] for the evaluation
of the statistical significance of rough set rules. Randomisation procedures are particularly
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suitable to RSDA since they do not require outside information; in particular, it is not
assumed that the data under discussion are a representative sample.

Suppose that Σ is the set of all permutations of U . If σ ∈Σ and P is a partition of U ,
we let

Pσ = {
σ [K]: K ∈P

}
, (4.7)

where σ [K] = {σ(x): x ∈ K}. Observe that Pσ preserves the class sizes of P . We now
assume the null hypothesis to be

H0: “Objects are randomly assigned to classes”.

The value

p
(
γ (PX,PY ) |H0

) := |{γ (Pσ
X,PY ): σ ∈Σ and γ (Pσ

X,PY )� γ (PX,PY )}|
|U |! (4.8)

measures the statistical significance of the observed approximation quality. If p(γ (PX,
PY )|H0) is low, traditionally below 5%, then the approximation quality is deemed
significant, and the (statistical) hypothesis “the value γ (PX,PY ) is due to chance” can
be rejected.

With a similar random assignment procedure as a benchmark, we can estimate the
expectation of errors using the randomised γ (Pσ

X,PY ) by

E
[
γ (PX,PY )

]= 1

|U |! ·
∑
σ∈Σ

γ
(
Pσ
X,PY

)
and

E[number of errors] = |U | − |U | · E[
γ (PX,PY )

]
.

Now,

γPRE(PX,PY ) = 1− |U | − |U | · γ (PX,PY )
|U | − |U | · E[γ (PX,PY )] (4.9)

= γ (PX,PY )− E[γ (PX,PY )]
1− E[γ (PX,PY )] (4.10)

is our desired PRE measure of approximation quality, using 0
0

def= 0 for the degenerate case.
The PRE measure has negative values, if the observed number of errors (approximation

quality) is above (below) the number of errors (approximation quality) which can be
achieved by random. Furthermore, it is straightforward to see that γPRE is not monotone
decreasing with⊇: If PX consists only of singletons, γ (PX,PY )= E[γ (PX,PY )] = 1 and
therefore γPRE(PX,PY )= 0, if PY consists of at least 2 classes. This maximal dissociation
of classical γ and γPRE relies on the fact that the interpretation of the approximation of PY
by singletons in PX is totally different in the respective measures. Whereas in classical γ
the singletons are the best case, because they are part of the lower approximation, the same
singletons are part of the lower approximation for every randomised partition as well. This
reduces the denominator of γPRE, and may lead to such dramatic differences in a situation
with many singletons in PX.
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The hypothesis of the benchmark given in (4.8) is not the only possibility. If we suppose
that an assignment of objects x1, . . . , xn is trivial or irrelevant, a further simple hypothesis
is given by

H ∗0 : “Objects are randomly assigned to classes up to the objects x1, . . . , xn”.

This hypothesis fixes the elements x1, . . . , xn, and allows randomisation for the other
elements. Note that

p
(
γ (PX,PY ) |H ∗0

)
� p

(
γ (PX,PY ) |H0

)
and

γPRE
(
PX,PY |H0

)
� γPRE

(
PX,PY |H ∗0

)
,

which means that it is harder to achieve significant results and high γPRE values.
Other randomisation schemes or even weighting schemes for different randomisations

are possible, but one has to take care that the benchmark model makes sense in the situation
under consideration.

The computation of the expectation of the distribution of γPRE without simulation is
quite costly. However, a short hand correction can be done easily, if we use the fact that
a singleton class in Pσ

X is never an error class for any σ . If s is the number of singletons
of PX , then

|U | − s � E[number of errors] = |U | · (1− E
[
γ (PX,PY )

])
. (4.11)

Let ps = s
|U | , and

γ ∗ = γ1 − ps
1− ps . (4.12)

Proposition 4.1. γ � γ ∗ � γPRE.

Proof. Note that γ1, γ
∗ and γPRE are functions of γ of the form

f (z)=


γ − z
1− z , if z = 1,

0, otherwise,
(4.13)

where

z=




0, for γ ,

ps, for γ ∗,
E
[
γ (PX,PY )

]
, for γPRE.

(4.14)

If ps = 1 or E[γ (PX,PY )] = 1, then γ = 1 and γ ∗ = γPRE = 0 by our previous remarks.
Otherwise, looking at the derivative

df (z)

dz
= γ − 1

(1− z)2 � 0, (4.15)

of f (z), we see that f (z) is monotonically decreasing for 0 � z � 1. By (4.11),
E[γ (PX,PY )]� ps � 0, whence the claim follows. ✷
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The value of γ is therefore an upper bound for a PRE measure of approximation quality,
and γ ∗ is a “quick-and-dirty” measure in between γ and γPRE.

Another interpretation makes γ ∗ even more interesting: In every rule system which is
used for a descriptive purpose we can distinguish among two types of “trueness”:

(1) Conditional “trueness”, which means that there is the possibility of counter-
examples.

(2) Tautologies, i.e., rules which are true in any model. These are exactly the ones which
arise from singleton classes.

In terms of description, γ ∗ seems the optimal measure, because it is built by assuming that
tautologies can by expected to be part in any benchmark model, and it provides additional
and interesting information about the approximation quality.

5. Cube measures

Up to now, the paper has dealt with the variation of normalisation factors for expressing
measures of interest for rough approximation and precision. In this section we will vary
the theme “observation”, because before counting the number of valid “observations”, one
needs to reflect on what the “observations” actually should be.

If P is a partition of U and 1 � k, we let

Pk =
k times︷ ︸︸ ︷

P × · · · ×P,
= {X1× · · · ×Xk: Xi ∈ P},
= {

P(x1)× · · · ×P(xk): xi ∈ U
}
.

Clearly, Pk is a partition of Uk , and its corresponding equivalence is described by

!xθPk !y ⇐⇒ Pk
(!x)=Pk

(!y)
⇐⇒ (∀1 � i � k) P(xi)=P(yi).

The kth cube relation generated byP is defined as

CkP =
⋃
Y∈P

Y k. (5.1)

Note that C1
P = U , C2

P = θP , and, in general, CkP ⊆
⋃

Pk .
For later use, let us look at the approximation of a cube Y k by the partition Pk:

Lemma 5.1. For eachY ⊆U , 1 � k,

( Y P )
k = Y k Pk and

(
Y P

)k = Y k Pk

. (5.2)

Proof.

〈x1, . . . , xk〉 ∈ (Y P )
k ⇐⇒ (∀1 � i � k) xi ∈ Y P

⇐⇒ (∀1 � i � k) P(xi)⊆ Y
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⇐⇒ P(x1)× · · · ×P(xk)⊆ Y k
⇐⇒ 〈x1, . . . , xk〉 ∈ Y k Pk ,

〈x1, . . . , xk〉 ∈
(
Y P)k ⇐⇒ (∀1 � i � k) P(xi)∩ Y = ∅

⇐⇒ P(x1)× · · · ×P(xk)∩ Y k = ∅
⇐⇒ 〈x1, . . . , xk〉 ∈ Y k Pk

. ✷
Corollary 5.2. π(P, Y )k = π(Pk, Y k) andα(P, Y )k = α(Pk, Y k).

Just like the classical γ , a cube-γ index can be defined in three equivalent ways:

γk(P,R) =
∑
Y∈R

|Yk|
|CkR|

(5.3)

=
∑
Y∈R

|Y k|
|CkR|

· π(
Pk, Y k

)
(5.4)

=
∑
Y∈R

|Yk|
|CkR|

· α(
Pk, Y k

)
. (5.5)

Note that

γ1(P,R) = γ (P,R),

γ2(P,R) =
∑
Y∈R

|Y 2|
|θR| ·

|Y 2
P2 |

|Y 2| =
∑
Y∈R

|Y 2
P2 |

|θR| .

Furthermore, observing that {Y k: Y ∈R} partitions CkR, and using Lemma 2.1, we obtain

γk(P,R)=
∑
Y∈R

|Y k|
|CkR|

· π(
Pk � CkR, Y

k
)= γ (

Pk � CkR,
{
Y k: Y ∈R

})
. (5.6)

With Corollary 5.2 and some basic arithmetic, we can rewrite (5.3) as

γk(P,R)=
∑
Y∈R

|Y |k∑
Y∈R |Y |k

· π(P, Y )k =
∑
Y∈R

|Y |k∑
Y∈R |Y |k

· α(P, Y )k. (5.7)

If we want to compare γk(P,R) for different values of k, we have to consider the different
dimensions of the k-cubes. This can be done by using

gk(P,R)= k
√
γk(P,R). (5.8)

The value gk is the length of an edge of a k-dimensional cube of size γk in one dimension,
and therefore, gk-values can be compared for different dimensions k. The gk measures
can be interpreted analogous to Minkowski norms: If k = 1, the statistic looks at one
dimensional “cubes” with the consequence that the approximation is measured per element.
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Table 3

U 1 2 3 4 5 6 7 8 γ1(Pi , d) γ2(Pi , d) g2(Pi , d)

d A A A A B B C C

P1 1 1 1 2 2 3 3 3 0.375 0.375 0.612

P2 1 1 2 2 2 3 2 5 0.400 0.250 0.500

The larger we choose k, the higher becomes the weight of the larger categories in R for
the description of the approximation quality using P .

Consider the example given in Table 3.
The values of γj (Pi , d) show a dissociation: The value of γ1 votes for P2, whereas

γ2 votes for P2. The difference of P1 and P2 is that the latter consistently approximates
more elements, but P1 consistently approximates more pairs of elements of the equivalence
relation θd . This is due to the fact that the approximation of P1 is concentrated in one
class (A) of θd .

But does it matter? The answer is that P2 is preferred over P1, if the application context
requires rules of the form

(∀x ∈U) [
fq(x)= vq ⇒ fd(x)= vd

]
, (5.9)

whereas P1 should be preferred to P2 if the application context considers rules such as

(∀(x, y) ∈ U2)
[
fq(x)= fq(y)⇒ fd(x)= fd(y)

]
. (5.10)

An index such as γk is useful for model selection only if it has the same monotony
properties as γ1. Our next result shows this to be the case:

Proposition 5.3.
(1) If P1 	 P2, then

(a) γk(P1, d)� γk(P2, d),
(b) gk(P1, d)� gk(P2, d).

(2) If P is the identity partition, thenγk(P, d)= gk(P, d)= 1 for all k � 1.

Proof. (1) Both statements follow immediately from Lemma 3.1 and the definitions of γk
and gk .

(2) Since every class of P is a singleton, the approximation is perfect for every
k � 1. ✷

Looking at the results obtained in this Section, we conclude that the type of
approximation quality (and the “best set of attributes”) depends on the context of the
application—a boundary condition which cannot be defined by the data alone. The value
k = 1, which is used in RSDA, is perhaps the simplest choice, but it is by far not the
only one possible. One has to consider which γk is relevant for expressing the quality of
approximation, and whichk-cube relation is of interest. Thus, the researcher has to make a
decision how the weights of the approximation of sets are to be chosen.
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6. Example

To demonstrate our procedures, we will use a data set published in [1] shown in Table 4,
with the data recoded as in Table 5.

It is aimed to approximate the values of the countries in the attribute
• % ever practicing contraception (d)

from the characteristics
• average years of education (q1),
• percent urbanised (q2),
• gross national product per capita (q3),
• expenditures on family planning (q4),

and to find those characteristics that are most valuable to approximate the dependent
attribute d .

We use the notation PREk for γkPRE , where γkPRE is defined in analogy to γPRE (4.5). The
results for the various indices are shown in Table 6. The full set of variables results in the
identity partition, and thus in a perfect approximation quality (γ1 = 1). Since the random
assignment preserves the cardinalities of the partition classes, the expectation of γ1 is 1 as
well, and therefore, γPRE = 0. For the same reason, γ ∗1 = 0.

Because {q1, q2, q4} is a reduct (i.e., a set of attributes minimal with respect to the
property γ1 = 1), RSDA prefers the set as the best attribute set for describing d . Most
of the indices show that {q1, q2, q4} is indeed a good choice. However, the expectation

Table 4
Contraception data

Country q1 q2 q3 q4 d

(1) Lesotho 3.9 4 73 0 6

(2) Kenya 0.9 4 108 6 9

(3) Peru 2.7 17 367 0 14

(4) Sri Lanka 3.8 20 142 12 22

(5) Indonesia 1.2 9 61 14 25

(6) Thailand 2.1 8 142 20 36

(7) Colombia 2.7 47 284 16 37

(8) Malaysia 1.6 29 313 18 38

(9) Guayana 6.1 20 318 0 42

(10) Jamaica 6.9 8 593 23 44

(11) Jordan 1.4 53 197 0 44

(12) Panama 5.3 50 570 19 59

(13) Costa Rica 4.7 18 464 21 59

(14) Fiji 3.7 15 321 22 60

(15) Korea 4.5 15 188 24 61

Table 5
Recoded data

Country q1 q2 q3 q4 d

(1) Lesotho 1 0 0 0 0

(2) Kenya 0 0 0 0 0

(3) Peru 1 1 2 0 0

(4) Sri Lanka 1 1 0 1 0

(5) Indonesia 0 0 0 1 0

(6) Thailand 1 0 0 1 1

(7) Colombia 1 2 1 1 1

(8) Malaysia 0 1 2 1 1

(9) Guayana 2 1 2 0 1

(10) Jamaica 2 0 2 2 1

(11) Jordan 0 2 1 0 1

(12) Panama 2 2 2 1 2

(13) Costa Rica 2 1 2 2 2

(14) Fiji 1 1 2 2 2

(15) Korea 2 1 1 2 2



232 G. Gediga, I. Düntsch / Artificial Intelligence 132 (2001) 219–234

Table 6
Analysis of the contraception data

Set γ1 E[γ1] PRE1 γ ∗1 E[γ1∗] PRE∗1 γ2 E[γ2] PRE2 γ3 E[γ3] PRE3

{q1, q2, q3, q4} 1 1 0 0 0 0 1 1 0 1 1 0

{q2, q3, q4} 0.73 0.62 0.31 0.50 0.28 0.31 0.53 0.42 0.19 0.38 0.31 0.11

{q1, q3, q4} 0.73 0.81 −0.43 0 0.30 −0.43 0.53 0.68 −0.48 0.38 0.59 −0.51

{q1, q2, q4} 1 0.91 1 1 0.29 1 1 0.83 1 1 0.77 1

{q1, q2, q3} 0.60 0.62 −0.06 0.25 0.29 −0.06 0.38 0.43 −0.09 0.24 0.32 −0.11

{q3, q4} 0.33 0.34 −0.01 0.17 0.17 −0.01 0.12 0.17 −0.06 0.04 0.10 −0.06

{q2, q4} 0.47 0.34 0.20 0.38 0.24 0.20 0.22 0.17 0.06 0.11 0.10 0.01

{q2, q3} 0.40 0.31 0.13 0.18 0.13 0.13 0.18 0.13 0.05 0.08 0.07 0.02

{q1, q4} 0.33 0.31 −0.03 0.17 0.19 −0.03 0.12 0.08 −0.08 0.04 0.11 −0.07

{q1, q3} 0.40 0.36 0.06 0.18 0.13 0.06 0.18 0.18 0.00 0.09 0.10 −0.01

{q1, q2} 0.47 0.44 0.05 0.20 0.16 0.05 0.27 0.24 0.04 0.18 0.15 0.04

{q4} 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00

{q3} 0 0.01 −0.01 0 0.01 −0.01 0 0.01 −0.01 0 0.01 −0.01

{q2} 0 0.01 −0.01 0 0.01 −0.01 0 0.00 0.00 0 0.00 0.00

{q1} 0 0.01 −0.01 0 0.01 −0.01 0 0.00 0.00 0 0.00 0.00

values of the γk are quite high; this means that the resulting rules are based on only a small
number of examples, and consequently the approximation is not significant (α = 0.29).

Of some interest is the comparison of {q2, q3, q4} and {q1, q3, q4}, because both have
identical γk-values. The PRE interpretation offers a different view: {q2, q3, q4} results in
a positive PRE measure, whereas the PRE results of {q1, q3, q4} are negative. This means
that a higher approximation quality can be achieved by using our benchmark of random
assignment.

7. Discussion

Our starting point were the basic questions
• What are the observationsthat should be counted?
• What could be used as a meaningful normalisation factor?

We have shown that there are various reasonable choices for both problems, and that
these choices lead to evaluations of approximation quality which are different from the
standard γ1 statistic. Differentiating among different types of basic information led to
approximation measures which show characteristics similar to the Minkowski norm in
metric data analysis. Although these measures exhibit a certain dissociation from γ1 as
shown by the examples, applications of different γk measures in a reduct search situation
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shows that the reducts do not differ from those constructed by γ1. The example is typical
for this observation: The rank order of the evaluation of the conditional attribute sets is
very stable, given different γk , if γ1 is moderately large.

One problem remains: If there are so many possible measures—what measure should be
chosen? We think the question is justified, but hard to solve. It certainly is dependent on the
context and the intentions of the researcher. There are some examples in the literature, such
as the well established RAND index, originally used for the evaluation of cluster analysis
results [5,11]. This measure acts on the same domain as γ2, and can be used to evaluate the
equivalence of two partitions.

A different look at the normalisation factor resulted in dramatic changes of the evaluation
of approximation quality. Assuming statistical independence of the decision attribute from
the class assignments PX of the conditional attributes, a γ -like PRE measure shows
behaviour extremely different from γ1, if PX contains very small classes. Whereas γ1 tends
to be very high in this situation, γPRE tends to show low values. This is explained by the
fact that small classes have a high chance to be in the lower approximation of a set. We
could show additionally that, at any rate, γ1 is an optimistic measure of approximation
quality, because γ1 � γPRE. We therefore recommend to use both statistics to describe
approximation quality. However, since the computation of γPRE is very costly, we propose
a “quick-and-dirty” measure γ ∗1 for the evaluation of approximation quality, which can
be computed with minimal additional effort. Because γ1 � γ ∗1 � γPRE, we result in a
better upper approximation of the PRE approximation measure than can be achieved by γ1.
Because the computation of γ ∗1 is not costly at all, it should be implemented as a routine
procedure in rough set algorithms.

We have shown that the interpretation of γ1 as a PRE measure leads to strange
set combinations, which are not compatible to standard statistical assumptions such as
independence. It is worthwhile to look at the problem from a different direction: Consider
set combinations which can be defined by γ1 = 0 and define a “rough independence”
axiomatically, which implies γ1 = 0 in these cases. But this is a different story.
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