On proper actions of Lie groups of dimension $n^{2}+1$ on n-dimensional complex manifolds

A.V. Isaev
Department of Mathematics, The Australian National University, Canberra, ACT 0200, Australia
Received 6 September 2007
Available online 28 January 2008
Submitted by Steven G. Krantz

Abstract

We explicitly classify all pairs (M, G), where M is a connected complex manifold of dimension $n \geqslant 2$ and G is a connected Lie group acting properly and effectively on M by holomorphic transformations and having dimension d_{G} satisfying $n^{2}+2 \leqslant$ $d_{G}<n^{2}+2 n$. We also consider the case $d_{G}=n^{2}+1$. In this case all actions split into three types according to the form of the linear isotropy subgroup. We give a complete explicit description of all pairs (M, G) for two of these types, as well as a large number of examples of actions of the third type. These results complement a theorem due to W. Kaup for the maximal group dimension $n^{2}+2 n$ and generalize some of the author's earlier work on Kobayashi-hyperbolic manifolds with high-dimensional holomorphic automorphism group.

© 2007 Elsevier Inc. All rights reserved.
Keywords: Complex manifolds; Proper group actions

0. Introduction

This paper is a continuation of [16], where we gave an extensive introduction to the subject and motivations for our work. Below we briefly recap some of the introductory points from [16].

Let M be a connected C^{∞}-smooth manifold and $\operatorname{Diff}(M)$ the group of C^{∞}-smooth diffeomorphisms of M endowed with the compact-open topology. A topological group G is said to act continuously on M by diffeomorphisms, if a continuous homomorphism $\Phi: G \rightarrow \operatorname{Diff}(M)$ is specified. We only consider effective actions, that is, assume that the kernel of Φ is trivial. The action of G on M is called proper, if the map

$$
\Psi: G \times M \rightarrow M \times M, \quad(g, p) \mapsto(\Phi(g)(p), p),
$$

is proper, i.e., for every compact subset $C \subset M \times M$ its inverse image $\Psi^{-1}(C) \subset G \times M$ is compact as well. Proper actions are a natural generalization of actions of compact groups. In particular, one can assume that G is a Lie group acting smoothly and properly on the manifold M, and that it is realized as a closed subgroup of $\operatorname{Diff}(M)$ (see [2] for a brief survey on proper actions). Due to the results of [25,27], Lie groups acting properly and effectively on

[^0]the manifold M by diffeomorphisms are precisely closed subgroups of the isometry groups of all possible smooth Riemannian metrics on M.

If G acts properly on M, then for every $p \in M$ its isotropy subgroup

$$
G_{p}:=\{g \in G: g p=p\}
$$

is compact in G. Then by [4] the isotropy representation

$$
\alpha_{p}: G_{p} \rightarrow G L\left(\mathbb{R}, T_{p}(M)\right), \quad g \mapsto d g(p)
$$

is continuous and faithful, where $T_{p}(M)$ denotes the tangent space to M at p and $d g(p)$ is the differential of g at p. In particular, the linear isotropy subgroup

$$
L G_{p}:=\alpha_{p}\left(G_{p}\right)
$$

is a compact subgroup of $G L\left(\mathbb{R}, T_{p}(M)\right)$ isomorphic to G_{p}. In some coordinates in $T_{p}(M)$ the group $L G_{p}$ becomes a subgroup of the orthogonal group $O_{m}(\mathbb{R})$, where $m:=\operatorname{dim} M$. Hence $\operatorname{dim} G_{p} \leqslant \operatorname{dim} O_{m}(\mathbb{R})=m(m-1) / 2$. Furthermore, for every $p \in M$ its orbit

$$
G p:=\{g p: g \in G\}
$$

is a closed submanifold of M, and $\operatorname{dim} G p \leqslant m$. Thus, setting $d_{G}:=\operatorname{dim} G$, we obtain

$$
d_{G}=\operatorname{dim} G_{p}+\operatorname{dim} G p \leqslant m(m+1) / 2 .
$$

It is a classical result (see $[5,7,8]$) that if G acts properly on a smooth manifold M of dimension $m \geqslant 2$ and $d_{G}=m(m+1) / 2$, then M is isometric (with respect to some G-invariant metric) either to one of the standard complete simply-connected spaces of constant sectional curvature $\mathbb{R}^{m}, S^{m}, \mathbb{H}^{m}$ (where \mathbb{H}^{m} is the hyperbolic space), or to $\mathbb{R P}^{m}$. Subgroups of lower dimensions turned out to be much more difficult to deal with, and many outstanding mathematicians were involved in determining such subgroups: Kobayashi, Nagano, H.-C. Wang, Yano, Egorov, to name a few. As a result of research activities that spanned over 20 years, a complete description of manifolds that admit proper actions of groups of dimension $(m-1)(m-1) / 2+2$ or higher was produced for $m \geqslant 6$. There are many other results, especially for compact subgroups, but-to the best of our knowledge-no complete classifications exist beyond dimension $(m-1)(m-2) / 2+2$ (see $[22,23,28]$ and references therein for details).

We study proper group actions in the complex setting with the general aim to build a theory for group dimensions lower than $(m-1)(m-2) / 2+2$, thus extending-in this setting-the classical results mentioned above. In our setting real Lie groups act by holomorphic transformations on complex manifolds. Thus, from now on, M will denote a complex manifold of complex dimension n (hence $m=2 n$) and G will be a subgroup of $\operatorname{Aut}(M)$, the group of all holomorphic automorphisms of M.

Proper actions by holomorphic transformations are found in abundance. A fundamental result due to Kaup (see [20]) states that every closed subgroup of $\operatorname{Aut}(M)$ that preserves a continuous distance on M acts properly on M. Thus, Lie groups acting properly and effectively on M by holomorphic transformations are precisely those closed subgroups of $\operatorname{Aut}(M)$ that preserve continuous distances on M. In particular, if M is a Kobayashi-hyperbolic manifold, then $\operatorname{Aut}(M)$ is a Lie group acting properly on M (see also [21]).

In the complex setting, in some coordinates in $T_{p}(M)$ the group $L G_{p}$ becomes a subgroup of the unitary group U_{n}. Hence $\operatorname{dim} G_{p} \leqslant \operatorname{dim} U_{n}=n^{2}$, and therefore

$$
d_{G} \leqslant n^{2}+2 n
$$

We note that $n^{2}+2 n<(m-1)(m-2) / 2+2$ for $m=2 n$ and $n \geqslant 5$. Thus, the group dimension range that arises in the complex case, for $n \geqslant 5$ lies strictly below the dimension range considered in the classical real case and therefore is not covered by the existing results. Furthermore, overlaps with these results for $n=2,3,4$ do not lead to any significant simplifications in the complex case.

If for complex manifolds M_{j} and subgroups $G_{j} \subset \operatorname{Aut}\left(M_{j}\right), j=1,2$, there exists a biholomorphic map $F: M_{1} \rightarrow M_{2}$ such that $F \circ G_{1} \circ F^{-1}=G_{2}$, we say that the pairs (M_{1}, G_{1}) and (M_{2}, G_{2}) are equivalent. We will be characterizing pairs (M, G) up to this equivalence relation, where $G \subset \operatorname{Aut}(M)$ is connected and acts on M properly. The case $d_{G}=n^{2}+2 n$ was considered by Kaup in [20]. In this case (M, G) is equivalent to one of the pairs
$\left(\mathbb{B}^{n}, \operatorname{Aut}\left(\mathbb{B}^{n}\right)\right),\left(\mathbb{C}^{n}, G\left(\mathbb{C}^{n}\right)\right),\left(\mathbb{C P}^{n}, G\left(\mathbb{C P}^{n}\right)\right)$. Here $\mathbb{B}^{n}:=\left\{z \in \mathbb{C}^{n}:|z|<1\right\}$, $\operatorname{Aut}\left(\mathbb{B}^{n}\right) \simeq P S U_{n, 1}:=S U_{n, 1} /($ center $)$ is the group of all transformations

$$
z \mapsto \frac{A z+b}{c z+d}
$$

where

$$
\left(\begin{array}{ll}
A & b \\
c & d
\end{array}\right) \in S U_{n, 1}
$$

$G\left(\mathbb{C}^{n}\right) \simeq U_{n} \ltimes \mathbb{C}^{n}$ is the group of all holomorphic automorphisms of \mathbb{C}^{n} of the form

$$
\begin{equation*}
z \mapsto U z+a, \tag{0.1}
\end{equation*}
$$

where $U \in U_{n}, a \in \mathbb{C}^{n}$ (we usually write $G(\mathbb{C})$ instead of $G\left(\mathbb{C}^{1}\right)$); and $G\left(\mathbb{C P}^{n}\right) \simeq P S U_{n+1}:=S U_{n+1} /($ center $)$ is the group of all holomorphic automorphisms of $\mathbb{C P}^{n}$ of the form

$$
\begin{equation*}
\zeta \mapsto U \zeta \tag{0.2}
\end{equation*}
$$

where ζ is a point in $\mathbb{C P}^{n}$ written in homogeneous coordinates, and $U \in S U_{n+1}$ (this group is a maximal compact subgroup of the complex Lie group $\operatorname{Aut}\left(\mathbb{C P}^{n}\right) \simeq P S L_{n+1}(\mathbb{C}):=S L_{n+1}(\mathbb{C}) /($ center $\left.)\right)$. We remark that the groups Aut $\left(\mathbb{B}^{n}\right)$, $G\left(\mathbb{C}^{n}\right), G\left(\mathbb{C}^{n}\right)$ are the full groups of holomorphic isometries of the Bergman metric on \mathbb{B}^{n}, the flat metric on \mathbb{C}^{n}, and the Fubini-Study metric on $\mathbb{C P}^{n}$, respectively, and that the above result due to Kaup can be obtained directly from E. Cartan's classification of Hermitian symmetric spaces (cf. [1, pp. 49-50]).

Next, in $[16,18]$ a complete classification was obtained for $n^{2}+2 \leqslant d_{G}<n^{2}+2 n$ (see also [17] for shorter proofs of the results of [16]). Furthermore, in [12-14,18] we considered the special case where M is a Kobayashi-hyperbolic manifold and $G=\operatorname{Aut}(M)$, and determined all manifolds with $n^{2}-1 \leqslant d_{\operatorname{Aut}(M)}<n^{2}+2 n, n \geqslant 2$ (see [15] for a comprehensive exposition of these results). Our immediate goal is to generalize these results to arbitrary proper actions on not necessarily Kobayashi-hyperbolic manifolds.

In the present paper we assume that $d_{G}=n^{2}+1$. Note that this is the lowest group dimension for which proper actions are necessarily transitive (see [20]); indeed, for $d_{G}=n^{2}$ both G-homogeneous and non- G-homogeneous manifold occur (see [15]). For $d_{G}=n^{2}+1$ we have $\operatorname{dim} G_{p}=(n-1)^{2}$, and we start by describing connected subgroups of the unitary group U_{n} of dimension $(n-1)^{2}$ in Proposition 1.1 (see Section 1), thus determining the connected identity components of all possible linear isotropy subgroups. According to this description, every action falls into one of three types. In Sections 2 and 3 we deal with actions of types I and II, respectively, and obtain complete lists of the corresponding pairs (M, G) in Theorems 2.1 and 3.1. Our proofs are variants of those appeared in [17]. Actions of type III are more difficult to deal with. In Section 4 we give a large number of examples of such actions. It is our conjecture that these examples in fact cover all possible actions of type III (see Conjecture 4.1). We will deal with this conjecture in our future work.

1. Classification of linear isotropy subgroups

In this section we describe all connected closed subgroups of U_{n} of dimension $(n-1)^{2}$, for $n \geqslant 2$.
Proposition 1.1. Let H be a connected closed subgroup of U_{n} of dimension $(n-1)^{2}, n \geqslant 2$. Then H is conjugate in U_{n} to one of the following subgroups:
I. $e^{i \mathbb{R}} S_{3}(\mathbb{R})($ here $n=3)$;
II. $S U_{n-1} \times U_{1}$ realized as the subgroup of all matrices

$$
\left(\begin{array}{cc}
A & 0 \tag{1.1}\\
0 & e^{i \theta}
\end{array}\right),
$$

where $A \in S U_{n-1}$ and $\theta \in \mathbb{R}$, for $n \geqslant 3$;
III. the subgroup $H_{k_{1}, k_{2}}^{n}$ of all matrices

$$
\left(\begin{array}{cc}
A & 0 \tag{1.2}\\
0 & a
\end{array}\right),
$$

where k_{1}, k_{2} are fixed integers such that $\left(k_{1}, k_{2}\right)=1, k_{1}>0$, and $A \in U_{n-1}, a \in(\operatorname{det} A)^{\frac{k_{2}}{k_{1}}}:=$ $\exp \left(k_{2} / k_{1} \operatorname{Ln}(\operatorname{det} A)\right)$.

Remark 1.2. The groups $H_{k_{1}, k_{2}}^{n}$ are pairwise not conjugate to each other for $n \geqslant 3$, whereas $H_{k_{1}, k_{2}}^{2}$ and $H_{k_{2}, k_{1}}^{2}$ are conjugate provided $k_{2}>0$. Observe also that the group $H_{k_{1}, k_{2}}^{n}$ is a k_{1}-sheeted cover of U_{n-1} for every k_{2} (note that for $k_{2}=0$ we have $k_{1}=1$).

Remark 1.3. Subgroups of classical groups were extensively studied and in some cases fully classified (see, e.g., $[6,24])$. It is possible that Proposition 1.1 can be derived from the existing classification results. Below we give an elementary and self-contained proof that does not rely on them.

Proof of Proposition 1.1. Since H is compact, it is completely reducible, i.e., \mathbb{C}^{n} splits into the sum of H-invariant pairwise orthogonal complex subspaces, $\mathbb{C}^{n}=V_{1} \oplus \cdots \oplus V_{m}$, such that the restriction H_{j} of H to each V_{j} is irreducible. Let $n_{j}:=\operatorname{dim}_{\mathbb{C}} V_{j}$ (hence $n_{1}+\cdots+n_{m}=n$) and let $U_{n_{j}}$ be the group of unitary transformations of V_{j}. Clearly, $H_{j} \subset U_{n_{j}}$, and therefore $\operatorname{dim} H \leqslant n_{1}^{2}+\cdots+n_{m}^{2}$. On the other hand $\operatorname{dim} H=(n-1)^{2}$, which shows that $m \leqslant 2$.

Let $m=2$. Then there exists a unitary change of coordinates in \mathbb{C}^{n} such that all elements of H take the form (1.2), where $A \in U_{n-1}$ and $a \in U_{1}$. We note that the groups H_{1}, H_{2} consist of all possible A and a, respectively.

If $\operatorname{dim} H_{2}=0$, then $H_{2}=\{1\}$, and therefore $H_{1}=U_{n-1}$. In this case we obtain the group $H_{1,0}^{n}$.
Assume that $\operatorname{dim} H_{2}=1$, i.e., $H_{2}=U_{1}$. Then $(n-1)^{2}-1 \leqslant \operatorname{dim} H_{1} \leqslant(n-1)^{2}$. Let $\operatorname{dim} H_{1}=(n-1)^{2}-1$ first. The only connected subgroup of U_{n-1} of dimension $(n-1)^{2}-1$ is $S U_{n-1}$. Hence H is conjugate to the subgroup of matrices of the form (1.1) if $n \geqslant 3$ and to $H_{1,0}^{2}$ for $n=2$. Now let $\operatorname{dim} H_{1}=(n-1)^{2}$, i.e., $H_{1}=U_{n-1}$. Consider the Lie algebra \mathfrak{h} of H. Up to conjugation, it consists of matrices of the form

$$
\left(\begin{array}{cc}
\mathfrak{A} & 0 \tag{1.3}\\
0 & l(\mathfrak{A})
\end{array}\right),
$$

where $\mathfrak{A} \in \mathfrak{u}_{n-1}$ and $l(\mathfrak{A}) \not \equiv 0$ is a linear function of the matrix elements of \mathfrak{A} ranging in $i \mathbb{R}$. Clearly, $l(\mathfrak{A})$ must vanish on the derived algebra of \mathfrak{u}_{n-1}, that is, on $\mathfrak{s u}_{n-1}$. Hence matrices (1.3) form a Lie algebra if and only if $l(\mathfrak{A})=c \cdot$ trace \mathfrak{A}, where $c \in \mathbb{R} \backslash\{0\}$. Such an algebra can be the Lie algebra of a closed subgroup of $U_{n-1} \times U_{1}$ only if $c \in \mathbb{Q} \backslash\{0\}$. Hence H is conjugate to $H_{k_{1}, k_{2}}^{n}$ for some $k_{1}, k_{2} \in \mathbb{Z}$, where one can always assume that $k_{1}>0$ and $\left(k_{1}, k_{2}\right)=1$.

Now let $m=1$. We shall proceed as in the proof of Lemma 2.1 in [18]. Let $\mathfrak{h}^{\mathbb{C}}:=\mathfrak{h}+i \mathfrak{h} \subset \mathfrak{g l}_{n}$ be the complexification of \mathfrak{h}, where $\mathfrak{g l} l_{n}:=\mathfrak{g l}_{n}(\mathbb{C})$. The algebra $\mathfrak{h}^{\mathbb{C}}$ acts irreducibly on \mathbb{C}^{n} and by a theorem of E . Cartan (see, e.g., [9]), $\mathfrak{h}^{\mathbb{C}}$ is either semisimple or the direct sum of the center \mathfrak{c} of $\mathfrak{g l}_{n}$ and a semisimple ideal \mathfrak{t}. Clearly, the action of the ideal \mathfrak{t} on \mathbb{C}^{n} is irreducible.

Assume first that $\mathfrak{h}^{\mathbb{C}}$ is semisimple, and let $\mathfrak{h}^{\mathbb{C}}=\mathfrak{h}_{1} \oplus \cdots \oplus \mathfrak{h}_{k}$ be its decomposition into the direct sum of simple ideals. Then the natural irreducible n-dimensional representation of $\mathfrak{h}^{\mathbb{C}}$ (given by the embedding of $\mathfrak{h}^{\mathbb{C}}$ in $\mathfrak{g l}_{n}$) is the tensor product of some irreducible faithful representations of the \mathfrak{h}_{j} (see, e.g., [9]). Let n_{j} be the dimension of the corresponding representation of $\mathfrak{h}_{j}, j=1, \ldots, k$. Then $n_{j} \geqslant 2, \operatorname{dim}_{\mathbb{C}} \mathfrak{h}_{j} \leqslant n_{j}^{2}-1$, and $n=n_{1} \cdot \ldots \cdot n_{k}$. The following observation is simple.

Claim. If $n=n_{1} \cdot \ldots \cdot n_{k}, k \geqslant 2, n_{j} \geqslant 2$ for $j=1, \ldots, k$, then $\sum_{j=1}^{k} n_{j}^{2} \leqslant n^{2}-2 n$.
Since $\operatorname{dim}_{\mathbb{C}} \mathfrak{h}^{\mathbb{C}}=(n-1)^{2}$, it follows from the above claim that $k=1$, i.e., $\mathfrak{h}^{\mathbb{C}}$ is simple. The minimal dimensions of irreducible faithful representations of complex simple Lie algebras \mathfrak{s} are well known (see, e.g., [26]). In Table 1 below V denotes representations of minimal dimension.

Table 1

\mathfrak{s}	$\operatorname{dim} V$	$\operatorname{dim} \mathfrak{s}$
$\mathfrak{s l}_{k}, k \geqslant 2$	k	$k^{2}-1$
$\mathfrak{o}_{k}, k \geqslant 7$	k	$k(k-1) / 2$
$\mathfrak{s p}_{2 k}, k \geqslant 2$	$2 k$	$2 k^{2}+k$
\mathfrak{e}_{6}	27	78
\mathfrak{e}_{7}	56	133
\mathfrak{e}_{8}	248	248
\mathfrak{f}_{4}	26	52
\mathfrak{g}_{2}	7	14

Since $\operatorname{dim}_{\mathbb{C}} \mathfrak{h}^{\mathbb{C}}=(n-1)^{2}$, it follows that none of the above possibilities realize. Therefore, $\mathfrak{h}^{\mathbb{C}}=\mathfrak{c} \oplus \mathfrak{t}$, where $\operatorname{dim} \mathfrak{t}=n^{2}-2 n$. Then, if $n=2$, we obtain that H coincides with the center of U_{2} which is impossible since its action on \mathbb{C}^{2} is then not irreducible. Assuming that $n \geqslant 3$ and repeating the above argument for \mathfrak{t} in place of $\mathfrak{h}{ }^{\mathbb{C}}$, we see that \mathfrak{t} can only be isomorphic to $\mathfrak{s l}_{n-1}$. But $\mathfrak{s l}_{n-1}$ does not have an irreducible n-dimensional representation unless $n=3$.

Thus, $n=3$ and $\mathfrak{h}^{\mathbb{C}} \simeq \mathbb{C} \oplus \mathfrak{s l}_{2} \simeq \mathbb{C} \oplus \mathfrak{s o}_{3}$. Further, we observe that every irreducible 3-dimensional representation of $\mathfrak{s o}_{3}$ is equivalent to its defining representation. This implies that H is conjugate in $G L_{3}(\mathbb{C})$ to $e^{i \mathbb{R}} S O_{3}(\mathbb{R})$. Since $H \subset U_{3}$ it is straightforward to show that the conjugating element can be chosen to belong to U_{3}.

The proof of the proposition is complete.
Let M be a connected complex manifold of dimension $n \geqslant 2$, and suppose that a connected Lie group $G \subset \operatorname{Aut}(M)$ with $d_{G}=n^{2}+1$ acts properly on M. Fix $p \in M$, consider the linear isotropy subgroup $L G_{p}$, and choose coordinates in $T_{p}(M)$ so that $L G_{p} \subset U_{n}$. We say that the pair (M, G) (or the action of G on M) is of type I, II or III, if the connected identity component $L G_{p}^{0}$ of the group $L G_{p}$ is conjugate in U_{n} to a subgroup listed in I, II or III of Proposition 1.1, respectively. Since M is G-homogeneous, this definition is independent of the choice of p.

We will now separately consider actions of each type.

2. Actions of type I

A classification of actions of type I follows immediately from the general theory of Hermitian symmetric spaces, as shown in the proof of the following theorem.

Theorem 2.1. Let M be a connected complex manifold of dimension 3 and $G \subset \operatorname{Aut}(M)$ a connected Lie group with $d_{G}=10$ that acts properly on M. If the pair (M, G) is of type I , then it is equivalent to one of the following:
(i) $(\mathscr{S}, \operatorname{Aut}(\mathscr{S}))$, where \mathscr{S} is the Siegel space

$$
\mathscr{S}:=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: Z \bar{Z} \ll \mathrm{id}\right\},
$$

with

$$
Z:=\left(\begin{array}{ll}
z_{1} & z_{2} \\
z_{2} & z_{3}
\end{array}\right)
$$

(here $\operatorname{Aut}(\mathscr{S})$ is isomorphic to $\left.\operatorname{Sp}_{4}(\mathbb{R}) / \mathbb{Z}_{2}\right)$;
(ii) $\left(\mathcal{Q}_{3}, \mathrm{SO}_{5}(\mathbb{R})\right)$, where \mathcal{Q}_{3} is the complex quadric in $\mathbb{C P}^{4}$, and $\mathrm{SO}_{5}(\mathbb{R})$ is realized as a maximal compact subgroup of $\operatorname{Aut}\left(\mathcal{Q}_{3}\right)^{0} \simeq \operatorname{PSO}_{5}(\mathbb{C})$;
(iii) $\left(\mathbb{C}^{3}, G_{2}\left(\mathbb{C}^{3}\right)\right)$, where $G_{2}\left(\mathbb{C}^{3}\right)$ is the group that consists of all maps from $G\left(\mathbb{C}^{3}\right)$ with $U \in e^{i \mathbb{R}} \operatorname{SO}_{3}(\mathbb{R})($ see $(0.1)) .{ }^{1}$

Proof. Fix a G-invariant Hermitian metric on M. Since $L G_{q}$ for every $q \in M$ contains the element -id, the manifold M equipped with this metric becomes a Hermitian symmetric space. The group $L G_{p}^{0}$ acts irreducibly on $T_{p}(M)$, and

[^1]therefore M either is an irreducible Hermitian symmetric space, or is equivalent (holomorphically and isometrically) to \mathbb{C}^{3} with the flat metric.

If M is an irreducible Hermitian symmetric space, it follows from the general theory of Riemannian symmetric spaces that G coincides with the connected identity component of the group of holomorphic isometries of M (see Theorem 1.1 in Chapter V of [11]). Now E. Cartan's classification of irreducible Hermitian symmetric spaces implies that (M, G) is equivalent to either $(\mathscr{S}, \operatorname{Aut}(\mathscr{S}))$ or $\left(\mathcal{Q}_{3}, \mathrm{SO}_{5}(\mathbb{R})\right)$ (see Chapter IX of [11]).

Let M be equivalent to \mathbb{C}^{3} and let F be an equivalence map. The map F transforms G into a closed subgroup of $G\left(\mathbb{C}^{3}\right)$ (recall that $G\left(\mathbb{C}^{3}\right)$ is the full group of holomorphic isometries of \mathbb{C}^{3} with respect to the flat metric). Let $p_{0} \in M$ be such that $F\left(p_{0}\right)=0$. Then F transforms $G_{p_{0}}^{0}$ into a closed subgroup H of $U_{3} \subset G\left(\mathbb{C}^{3}\right)$ isomorphic to $e^{i \mathbb{R}} \mathrm{SO}_{3}(\mathbb{R})$ and acting irreducibly on $T_{0}\left(\mathbb{C}^{3}\right)$. By Proposition 1.1, the subgroup H is conjugate in U_{3} to the standard embedding of $e^{i \mathbb{R}} \mathrm{SO}_{3}(\mathbb{R})$ in U_{3}, and hence there exists an equivalence map \hat{F} between M and \mathbb{C}^{3} that transforms $G_{p_{0}}^{0}$ into $e^{i \mathbb{R}} \mathrm{SO}_{3}(\mathbb{R})$.

Let \mathfrak{g} be the Lie algebra (isomorphic to the Lie algebra of G) of fundamental vector fields of the action of the group $\hat{G}:=\hat{F} \circ G \circ \hat{F}^{-1}$ on \mathbb{C}^{3}, that is, \mathfrak{g} consists of all holomorphic vector fields X on \mathbb{C}^{3} for which there exists an element a of the Lie algebra of \hat{G} such that for all $z \in \mathbb{C}^{3}$ we have

$$
X(z)=\left.\frac{d}{d t}[\exp (t a)(z)]\right|_{t=0} .
$$

Since $\hat{G} \subset G\left(\mathbb{C}^{3}\right)$, the algebra \mathfrak{g} is generated by $\left\langle Z_{0}\right\rangle \oplus \mathfrak{s o}_{3}(\mathbb{R})$ and some affine holomorphic vector fields V_{j}, $j=1, \ldots, 6$, that do not vanish at the origin. Here

$$
Z_{0}:=i \sum_{k=1}^{3} z_{k} \partial / \partial z_{k},
$$

and $\mathfrak{s o}_{3}(\mathbb{R})$ is realized as the algebra of fundamental vector fields of the standard action of $\mathrm{SO}_{3}(\mathbb{R})$ on \mathbb{C}^{3}. Considering [$\left.Z_{0},\left[V_{j}, Z_{0}\right]\right]$ instead of V_{j}, we can assume that V_{j} are constant vector fields for all j (cf. the proof of Satz 4.9 in [20]). It then follows that $\hat{G}=G_{2}\left(\mathbb{C}^{3}\right)$.

The proof is complete.

3. Actions of type II

In this section we give a complete classification of actions of type II (cf. the proof of Theorem 4.2 in [17]).
Theorem 3.1. Let M be a connected complex manifold of dimension $n \geqslant 3$ and $G \subset \operatorname{Aut}(M)$ a connected Lie group with $d_{G}=n^{2}+1$ that acts properly on M. If the pair (M, G) is of type II, then it is equivalent to $\left(\mathbb{C}^{n-1} \times M^{\prime}, G_{1}\left(\mathbb{C}^{n-1}\right) \times G^{\prime}\right)$, where M^{\prime} is one of $\mathbb{B}^{1}, \mathbb{C}, \mathbb{C P}^{1}$, and G^{\prime} is one of the groups $\operatorname{Aut}\left(\mathbb{B}^{1}\right), G(\mathbb{C})$, $G\left(\mathbb{C P}^{1}\right)$, respectively. ${ }^{2}$

Proof. Fix $p \in M$. By Bochner's linearization theorem (see [4]) there exist an G_{p}-invariant neighborhood \mathcal{V} of p in M, an $L G_{p}$-invariant neighborhood \mathcal{U} of the origin in $T_{p}(M)$ and a biholomorphic map $F: \mathcal{V} \rightarrow \mathcal{U}$, with $F(p)=0$, such that for every $g \in G_{p}$ the following holds in \mathcal{V} :

$$
F \circ g=\alpha_{p}(g) \circ F,
$$

where α_{p} is the isotropy representation at p. Let \mathfrak{g}_{M} be the Lie algebra of fundamental vector fields on M of the action of G. Next, let $\mathfrak{g} \mathcal{V}$ be the Lie algebra of the restrictions of the elements of \mathfrak{g}_{M} to \mathcal{V} and \mathfrak{g} the Lie algebra of vector fields on \mathcal{U} obtained by pushing forward the elements of $\mathfrak{g}_{\mathcal{V}}$ by means of F. Observe that $\mathfrak{g}_{M}, \mathfrak{g}_{\mathcal{V}}, \mathfrak{g}$ are naturally isomorphic, and we denote by $\varphi: \mathfrak{g}_{M} \rightarrow \mathfrak{g}$ the isomorphism induced by F.

Next, we fix coordinates in $T_{p}(M)$ in which $L G_{p}^{0}=S U_{n-1} \times U_{1}$. The algebra \mathfrak{g} is generated by $\mathfrak{s u}{ }_{n-1} \oplus \mathfrak{u}_{1}$ and some vector fields

[^2]\[

$$
\begin{aligned}
& V_{j}=\sum_{k=1}^{n} f_{j}^{k} \partial / \partial z_{k}, \\
& W_{j}=\sum_{k=1}^{n} g_{j}^{k} \partial / \partial z_{k},
\end{aligned}
$$
\]

where the functions $f_{j}^{k}, g_{j}^{k}, j, k=1, \ldots, n$, are holomorphic on \mathcal{U} and satisfy the conditions

$$
f_{j}^{k}(0)=\delta_{j}^{k}, \quad g_{j}^{k}(0)=i \delta_{j}^{k},
$$

where δ_{j}^{k} is the Kronecker symbol. Here $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$ is realized as the algebra of vector fields on \mathcal{U} of the form

$$
\sum_{j=1}^{n-1}\left(a_{j 1} z_{1}+\cdots+a_{j n-1} z_{n-1}\right) \partial / \partial z_{j}+i a z_{n} \partial / \partial z_{n}
$$

with

$$
\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n-1} \\
\vdots & \vdots & \vdots \\
a_{n-11} & \ldots & a_{n-1 n-1}
\end{array}\right) \in \mathfrak{s u}_{n-1}
$$

and $a \in \mathbb{R}$.
Let

$$
Z_{n}:=i z_{n} \partial / \partial z_{n}
$$

(observe that Z_{n} generates the \mathfrak{u}_{1}-component of $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$), and consider $\left[V_{j}, Z_{n}\right],\left[W_{j}, Z_{n}\right]$ for $j=1, \ldots, n-1$. Since these commutators vanish at 0 , they lie in $\mathfrak{s u} u_{n-1} \oplus \mathfrak{u}_{1}$, which implies that the functions f_{j}^{k}, g_{j}^{k} are independent of z_{n} for $k=1, \ldots, n-1$ and that

$$
\begin{aligned}
& f_{j}^{n}=\tilde{f}_{j}^{n}\left(z_{1}, \ldots, z_{n-1}\right) z_{n}, \\
& g_{j}^{n}=\tilde{g}_{j}^{n}\left(z_{1}, \ldots, z_{n-1}\right) z_{n},
\end{aligned}
$$

for some holomorphic functions $\tilde{f}_{j}^{n}, \tilde{g}_{j}^{n}$.
For every pair of indices $1 \leqslant j, l \leqslant n-1, j \neq l$, the vector fields

$$
\begin{aligned}
& X_{j l}:=i z_{j} \partial / \partial z_{j}-i z_{l} \partial / \partial z_{l}, \\
& Y_{j l}:=z_{l} \partial / \partial z_{j}-z_{j} \partial / \partial z_{l}
\end{aligned}
$$

lie in the $\mathfrak{s u}_{n-1}$-component of $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$. We now compute the commutators [$\left.V_{j}, X_{j l}\right],\left[W_{j}, X_{j l}\right],\left[V_{j}, Y_{j l}\right],\left[V_{l}, Y_{j l}\right]$ and observe that $\left[V_{j}, X_{j l}\right]-W_{j},\left[W_{j}, X_{j l}\right]+V_{j},\left[V_{j}, Y_{j l}\right]+V_{l},\left[V_{l}, Y_{j l}\right]-V_{j}$ vanish at the origin and hence lie in $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$. This yields
for $n \geqslant 4, j=1, \ldots, n-1$:

$$
\begin{aligned}
& \tilde{f}_{j}^{n}=i \rho_{j}+\lambda z_{j}, \\
& \tilde{g}_{j}^{n}=i \sigma_{j}-i \lambda z_{j}
\end{aligned}
$$

and for $n=3$:

$$
\begin{aligned}
& \tilde{f}_{1}^{3}=i \rho_{1}+\mu z_{1}+\nu z_{2}, \\
& \tilde{f}_{2}^{3}=i \rho_{2}-v z_{1}+\mu z_{2}, \\
& \tilde{g}_{1}^{3}=i \sigma_{1}-i \mu z_{1}+i v z_{2}, \\
& \tilde{g}_{2}^{3}=i \sigma_{2}-i v z_{1}-i \mu z_{2},
\end{aligned}
$$

where $\rho_{j}, \sigma_{j} \in \mathbb{R}, \lambda, \mu, \nu \in \mathbb{C}$. We now define: $V_{j}^{\prime}:=V_{j}-\rho_{j} Z_{n}, W_{j}^{\prime}:=W_{j}-\sigma_{j} Z_{n}$ for $j=1, \ldots, n-1$.

Further, consider the commutators $\left[V_{n}, X_{j l}\right],\left[W_{n}, X_{j l}\right],\left[V_{n}, Y_{j l}\right],\left[W_{n}, Y_{j l}\right]$. Each of these commutators vanishes at the origin and hence lies in $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$. This gives that f_{n}^{n}, g_{n}^{n} are independent of z_{1}, \ldots, z_{n-1} and that for $k=$ $1, \ldots, n-1$ the following holds:

$$
\begin{aligned}
& f_{n}^{k}=\alpha^{k}+\beta^{k}\left(z_{n}\right) z_{k}, \\
& g_{n}^{k}=\gamma^{k}+\delta^{k}\left(z_{n}\right) z_{k},
\end{aligned}
$$

where α^{k} and γ^{k} are linear functions independent of z_{k}, z_{n}.
Next, computing the commutators $\left[V_{n}, Z_{n}\right]$ and $\left[W_{n}, Z_{n}\right]$, we see that $\left[V_{n}, Z_{n}\right]-W_{n}$ and $\left[W_{n}, Z_{n}\right]+V_{n}$ vanish at 0 and hence are elements of $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$. This gives

$$
\begin{aligned}
& V_{n}=\sum_{k=1}^{n-1} \varepsilon^{k} z_{k} z_{n} \partial / \partial z_{k}+f_{n}^{n} \partial / \partial z_{n} \quad\left(\bmod \mathfrak{s u}_{n-1}\right), \\
& W_{n}=-i \sum_{k=1}^{n-1} \varepsilon^{k} z_{k} z_{n} \partial / \partial z_{k}+g_{n}^{n} \partial / \partial z_{n} \quad\left(\bmod \mathfrak{s u}_{n-1}\right),
\end{aligned}
$$

for some $\varepsilon^{k} \in \mathbb{C}, k=1, \ldots, n-1$, and we set

$$
\begin{aligned}
& V_{n}^{\prime}:=\sum_{k=1}^{n-1} \varepsilon^{k} z_{k} z_{n} \partial / \partial z_{k}+f_{n}^{n} \partial / \partial z_{n}, \\
& W_{n}^{\prime}:=-i \sum_{k=1}^{n-1} \varepsilon^{k} z_{k} z_{n} \partial / \partial z_{k}+g_{n}^{n} \partial / \partial z_{n} .
\end{aligned}
$$

Consider now for each $1 \leqslant j \leqslant n-1$ the commutator [$\left.V_{j}^{\prime}, V_{n}^{\prime}\right]$. Its linear part \mathcal{L}_{j} is easy to find:
for $n \geqslant 4, j=1, \ldots, n-1$:

$$
\mathcal{L}_{j}=\varepsilon^{j} z_{n} \partial / \partial z_{j}-\lambda z_{j} \partial / \partial z_{n},
$$

and for $n=3$:

$$
\begin{aligned}
& \mathcal{L}_{1}=\varepsilon^{1} z_{3} \partial / \partial z_{1}-\left(\mu z_{1}+\nu z_{2}\right) \partial / \partial z_{3}, \\
& \mathcal{L}_{2}=\varepsilon^{2} z_{3} \partial / \partial z_{2}-\left(-v z_{1}+\mu z_{2}\right) \partial / \partial z_{3} .
\end{aligned}
$$

Clearly, every commutator [$V_{j}^{\prime}, V_{n}^{\prime}$] vanishes at 0 . Hence it is an element of $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$ and thus coincides with \mathcal{L}_{j}. However, for $n \geqslant 4$ the vector field \mathcal{L}_{j} can be an element of $\mathfrak{s u}_{n-1} \oplus \mathfrak{u}_{1}$ only if $\varepsilon^{j}=\lambda=0$. For $n=3$ the vector fields \mathcal{L}_{1} and \mathcal{L}_{2} can be elements of $\mathfrak{s u}{ }_{2} \oplus \mathfrak{u}_{1}$ only if $\varepsilon^{1}=\varepsilon^{2}=\mu=v=0$. Therefore, $V_{j}^{\prime}, W_{j}^{\prime}$, for $j=1, \ldots, n-1$, are independent of z_{n} and $V_{n}^{\prime}, W_{n}^{\prime}$ are independent of z_{1}, \ldots, z_{n-1}.

Thus, we have $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$, where \mathfrak{g}_{1} is the ideal generated by $\mathfrak{s u}_{n-1}$ and V_{j}^{\prime}, W_{j}^{\prime}, for $j=1, \ldots, n-1$, and \mathfrak{g}_{2} is the ideal generated by \mathfrak{u}_{1} and $V_{n}^{\prime}, W_{n}^{\prime}$.

Let G_{j} be the connected normal (possibly non-closed) subgroup of G with Lie algebra $\tilde{\mathfrak{g}}_{j}:=\varphi^{-1}\left(\mathfrak{g}_{j}\right) \subset \mathfrak{g}_{M}$ for $j=1$, 2. Clearly, for each j the subgroup G_{j} contains $\alpha_{p}^{-1}\left(L_{j p}\right) \subset G_{p}^{0}$, where $L_{1 p} \simeq S U_{n-1}$ and $L_{2 p} \simeq U_{1}$ are the subgroups of $L G_{p}^{0}$ given by $\alpha=0$ and $A=\mathrm{id}$ in formula (1.1), respectively. Consider the orbit $G_{j} p, j=1,2$. Clearly, for each j there exists a neighborhood \mathcal{W}_{j} of the identity in G_{j} such that

$$
\begin{aligned}
& \mathcal{W}_{1} p=F^{-1}\left(\mathcal{U}^{\prime} \cap\left\{z_{n}=0\right\}\right), \\
& \mathcal{W}_{2} p=F^{-1}\left(\mathcal{U}^{\prime} \cap\left\{z_{1}=0, \ldots, z_{n-1}=0\right\}\right),
\end{aligned}
$$

for some neighborhood $\mathcal{U}^{\prime} \subset \mathcal{U}$ of the origin in $T_{p}(M)$. Thus, each $G_{j} p$ is a complex (possibly non-closed) submanifold of M, and the ideal $\tilde{\mathfrak{g}}_{j}$ consists exactly of those vector fields from \mathfrak{g}_{M} that are tangent to $G_{j} p$ at some point (and hence at all points).

Furthermore, for the isotropy subgroup $G_{j p}$ of the point p with respect to the G_{j}-action we have $G_{j p}^{0}=\alpha_{p}^{-1}\left(L_{j p}\right)$, $j=1,2$. Since $L_{j p}$ acts transitively on real directions in $T_{p}\left(G_{j} p\right)$ for $j=1,2$, by [3,10] we obtain that $G_{1} p$ is holomorphically equivalent to one of $\mathbb{B}^{n-1}, \mathbb{C}^{n-1}, \mathbb{C} \mathbb{P}^{n-1}$ and $G_{2} p$ is holomorphically equivalent to one of $\mathbb{B}^{1}, \mathbb{C}, \mathbb{C P} \mathbb{P}^{1}$.

We will now show that each G_{j} is closed in G. We assume that $j=1$; for $j=2$ the proof is similar. Let \mathfrak{U} be a connected neighborhood of 0 in \mathfrak{g}_{M} where the exponential map into G is a diffeomorphism, and let $\mathfrak{V}:=\exp (\mathfrak{U})$. To prove that G_{1} is closed in G it is sufficient to show that for some neighborhood \mathfrak{W} of $e \in G, \mathfrak{W} \subset \mathfrak{V}$, we have $G_{1} \cap \mathfrak{W}=\exp \left(\tilde{\mathfrak{g}}_{1} \cap \mathfrak{U}\right) \cap \mathfrak{W}$. Assuming the opposite we obtain a sequence $\left\{g_{j}\right\}$ of elements of G_{1} converging to e in G such that for every j we have $g_{j}=\exp \left(a_{j}\right)$ with $a_{j} \in \mathfrak{U} \backslash \tilde{\mathfrak{g}}_{1}$. Observe now that there exists a connected neighborhood \mathcal{V}^{\prime} of p in M foliated by complex submanifolds holomorphically equivalent to \mathbb{B}^{n-1} in such a way that the leaf passing through p lies in $G_{1} p$. Specifically, we take $\mathcal{V}^{\prime}:=F^{-1}\left(\mathcal{U}^{\prime}\right)$ for a suitable neighborhood $\mathcal{U}^{\prime} \subset \mathcal{U}$ of the origin in $T_{p}(M)$, and the leaves of the foliation are then given as $F^{-1}\left(\mathcal{U}^{\prime} \cap\left\{z_{n}=\right.\right.$ const $\left.\}\right)$. For every $s \in \mathcal{V}^{\prime}$ we denote by N_{s} the leaf of the foliation passing through s. Observe that for every $s \in \mathcal{V}^{\prime}$ vector fields from $\tilde{\mathfrak{g}}_{1}$ are tangent to N_{s} at every point. Let $p_{j}:=g_{j} p$. If j is sufficiently large, we have $p_{j} \in \mathcal{V}^{\prime}$. We will now show that $N_{p_{j}} \neq N_{p}$ for large j.

Let $\mathfrak{U}^{\prime \prime} \subset \mathfrak{U}^{\prime} \subset \mathfrak{U}$ be connected neighborhoods of 0 in \mathfrak{g}_{M} such that:
(a) $\exp \left(\mathfrak{U}^{\prime \prime}\right) \cdot \exp \left(\mathfrak{U}^{\prime \prime}\right) \subset \exp \left(\mathfrak{U}^{\prime}\right)$;
(b) $\exp \left(\mathfrak{U}^{\prime \prime}\right) \cdot \exp \left(\mathfrak{U}^{\prime}\right) \subset \exp (\mathfrak{U})$;
(c) $\mathfrak{U}^{\prime}=-\mathfrak{U}^{\prime}$;
(d) $G_{1 p} \cap \exp \left(\mathfrak{U}^{\prime}\right) \subset \exp \left(\tilde{\mathfrak{g}}_{1} \cap \mathfrak{U}^{\prime}\right)$.

We also assume that \mathcal{V}^{\prime} is chosen so that $N_{p} \subset \exp \left(\tilde{\mathfrak{g}}_{1} \cap \mathfrak{U}^{\prime \prime}\right) p$. Suppose that $p_{j} \in N_{p}$. Then $p_{j}=s p$ for some $s \in \exp \left(\tilde{\mathfrak{g}}_{1} \cap \mathfrak{U}^{\prime \prime}\right)$ and hence $t:=g_{j}^{-1} s$ is an element of $G_{1 p}$. For large j we have $g_{j}^{-1} \in \exp \left(\mathfrak{U}^{\prime \prime}\right)$. Condition (a) now implies that $t \in \exp \left(\mathfrak{U}^{\prime}\right)$ and hence by (c), (d) we have $t^{-1} \in \exp \left(\tilde{\mathfrak{g}}_{1} \cap \mathfrak{U}^{\prime}\right)$. Therefore, by (b) we obtain $g_{j} \in \exp \left(\tilde{\mathfrak{g}}_{1} \cap \mathfrak{U}\right)$ which contradicts our choice of g_{j}. Thus, for large j the leaves $N_{p_{j}}$ are distinct from N_{p}. Furthermore, they accumulate to $N_{p} \subset G_{1} p$. At the same time, since vector fields from $\tilde{\mathfrak{g}}_{1}$ are tangent to every $N_{p_{j}}$, we have $N_{p_{j}} \subset G_{1} p$ for all j, and thus the orbit $G_{1} p$ accumulates to itself. Below we will show that this is in fact impossible thus obtaining a contradiction. Clearly, we only need to consider the case when $G_{1} p$ is equivalent to one of $\mathbb{B}^{n-1}, \mathbb{C}^{n-1}$.

Since $G_{1 p}^{0}$ acts on $G_{1} p$ effectively, by the result of [10], the orbit $G_{1} p$ is holomorphically equivalent to one of $\mathbb{B}^{n-1}, \mathbb{C}^{n-1}$ by means of a map that takes p into the origin and transforms $G_{1 p}^{0}$ into $S U_{n-1} \subset G\left(\mathbb{C}^{n-1}\right)$. Consider the set $S:=G_{1} p \cap G_{2} p$. The orbit $G_{1} p$ accumulates to itself, and therefore S contains a point other than p. Note that S does not contain any curve. Since $G_{1 p}^{0}$ preserves each of $G_{1} p, G_{2} p$, it preserves S. However, the $G_{1 p}^{0}$-orbit of every point in $G_{1} p$ other than p is a hypersurface in $G_{1} p$ diffeomorphic to the sphere $S^{2 n-3}$. This contradiction shows that in fact S consists of p alone, and hence G_{1} is closed in G.

Thus, we have proved that G_{j} is closed in G for $j=1,2$. Hence G_{j} acts on M properly and $G_{j} p$ is a closed submanifold of M for each j. Recall that $G_{1} p$ is equivalent to one of $\mathbb{B}^{n-1}, \mathbb{C}^{n-1}, \mathbb{C P}^{n-1}$ and $G_{2} p$ is equivalent to one of $\mathbb{B}^{1}, \mathbb{C}, \mathbb{C P}^{1}$, and denote by F_{1}, F_{2} the respective equivalence maps. Let $K_{j} \subset G_{j}$ be the ineffectivity kernel of the G_{j}-action on $G_{j} p$ for $j=1,2$. Clearly, $K_{j} \subset G_{j p}$ and, since $G_{j p}^{0}$ acts on $G_{j} p$ effectively, K_{j} is a discrete normal subgroup of G_{j} for each j (in particular, K_{j} lies in the center of G_{j} for $j=1,2$). Since $d_{G_{1}}=n^{2}-2=$ $(n-1)^{2}+2(n-1)-1$, Theorem 1.1 in [16] yields that $G_{1} p$ is in fact equivalent to \mathbb{C}^{n-1} and that F_{1} can be chosen to transform G_{1} / K_{1} into $G_{1}\left(\mathbb{C}^{n-1}\right)$. Further, since $d_{G_{2}}=3$, the map F_{2} can be chosen to transform G_{2} / K_{2} into one of $\operatorname{Aut}\left(\mathbb{B}^{1}\right), G(\mathbb{C}), G\left(\mathbb{C P}^{1}\right)$, respectively. Here G_{j} / K_{j} is viewed as a subgroup of $\operatorname{Aut}\left(G_{j} p\right)$ for each j.

We will now show that the subgroup K_{j} is in fact trivial for $j=1,2$. Let first $j=1$. Since G_{1} / K_{1} is isomorphic to the simply-connected group $G_{1}\left(\mathbb{C}^{n-1}\right) \simeq S U_{n-1} \ltimes \mathbb{C}^{n-1}$ and since G_{1} covers G_{1} / K_{1} with fiber K_{1}, it follows that K_{1} is trivial. Let $j=2$. The action of $G_{2 p}^{0}$ on $G_{2} p$ is effective, and thus we have $K_{2} \backslash\{e\} \subset G_{2 p} \backslash G_{2 p}^{0}$. Suppose that G_{2} / K_{2} is isomorphic to either $\operatorname{Aut}\left(\mathbb{B}^{1}\right)$ or $G(\mathbb{C})$. Every maximal compact subgroup of each of these groups is 1-dimensional, hence so is every maximal compact subgroup of G_{2}. Since $G_{2 p}^{0}$ is 1-dimensional, it is maximal compact in G_{2}. Therefore $G_{2 p}$ is connected, which implies that K_{2} is trivial. Suppose next that G_{2} / K_{2} is isomorphic
to $G\left(\mathbb{C P}^{1}\right) \simeq P S U_{2}$. If K_{2} is non-trivial, then $G_{2} \simeq S U_{2}$ and $K_{2} \simeq \mathbb{Z}_{2}$. Then $G_{2 p}^{0}$ is conjugate in G_{2} (upon the identification of G_{2} with $S U_{2}$) to the subgroup of matrices of the form

$$
\left(\begin{array}{cc}
1 / b & 0 \\
0 & b
\end{array}\right)
$$

where $|b|=1$ (see, e.g., Lemma 2.1 of [19]). Since this subgroup contains the center of $S U_{2}$, the subgroup $G_{2 p}^{0}$ contains the center of G_{2}. In particular, $K_{2} \subset G_{2 p}^{0}$ which contradicts the non-triviality of K_{2}. Thus, G_{1} is isomorphic to $G_{1}\left(\mathbb{C}^{n-1}\right)$ and G_{2} is isomorphic to one of $\operatorname{Aut}\left(\mathbb{B}^{1}\right), G(\mathbb{C}), G\left(\mathbb{C P}^{1}\right)$.

We remark here that since M is G-homogeneous and G_{j} is normal in G, the discussion above remains valid for any point $q \in M$ in place of p; in particular, all G_{j}-orbits are pairwise holomorphically equivalent, $j=1,2$.

Next, since $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$, the group G is a locally direct product of G_{1} and G_{2}. We claim that $\mathscr{T}:=G_{1} \cap G_{2}$ is trivial. Indeed, \mathscr{T} is a discrete normal subgroup of each of G_{1}, G_{2}. However, every discrete normal subgroup of each of $G_{1}\left(\mathbb{C}^{n-1}\right)$, $\operatorname{Aut}\left(\mathbb{B}^{1}\right), G(\mathbb{C}), G\left(\mathbb{C P}^{1}\right)$ is trivial, since the center of each of these groups is trivial. Hence \mathscr{T} is trivial and therefore $G=G_{1} \times G_{2}$.

We will now observe that for every $q_{1}, q_{2} \in M$ the orbits $G_{1} q_{1}$ and $G_{2} q_{2}$ intersect at exactly one point. Let $g \in G$ be an element such that $g q_{2}=q_{1}$. It can be uniquely represented in the form $g=g_{1} g_{2}$ with $g_{j} \in G_{j}$ for $j=1,2$, and therefore we have $g_{2} q_{2}=g_{1}^{-1} q_{1}$. Hence the intersection $G_{1} q_{1} \cap G_{2} q_{2}$ is non-empty. Next, the fact that for every $q \in M$ the intersection $G_{1} q \cap G_{2} q$ consists of q alone follows by the argument used at the end of the proof of the closedness of G_{1}, G_{2}.

Let, as before, F_{1} be a biholomorphic map from $G_{1} p$ onto \mathbb{C}^{n-1} that transforms G_{1} into $G_{1}\left(\mathbb{C}^{n-1}\right)$, and F_{2} a biholomorphic map from $G_{2} p$ onto M^{\prime}, where M^{\prime} is one of $\mathbb{B}^{1}, \mathbb{C}, \mathbb{C P}^{1}$, that transforms G_{2} into G^{\prime}, where G^{\prime} is one of $\operatorname{Aut}\left(\mathbb{B}^{1}\right), G(\mathbb{C}), G\left(\mathbb{C P}^{1}\right)$, respectively. We will now construct a biholomorphic map \mathcal{F} from M onto $\mathbb{C}^{n-1} \times M^{\prime}$. For $q \in M$ consider $G_{2} q$ and let r be the unique point of intersection of $G_{1} p$ and $G_{2} q$. Let $g \in G_{1}$ be an element such that $r=g p$. Then we set $\mathcal{F}(q):=\left(F_{1}(r), F_{2}\left(g^{-1} q\right)\right)$. Clearly, \mathcal{F} is a well-defined diffeomorphism from M onto $\mathbb{C}^{n-1} \times M^{\prime}$. Since the foliation of M by G_{j}-orbits is holomorphic for each j, the map \mathcal{F} is in fact holomorphic. By construction, \mathcal{F} transforms G into $G_{1}\left(\mathbb{C}^{n-1}\right) \times G^{\prime}$.

The proof is complete.

4. Actions of type III

In this section we give a large number of examples of actions of type III (see also [17]). Some of the examples can be naturally combined into classes and some of the actions form parametric families. In what follows $n \geqslant 2$.
(i). Here both the manifolds and the groups are represented as direct products.
(ia). $M=M^{\prime} \times \mathbb{C}$, where M^{\prime} is one of $\mathbb{B}^{n-1}, \mathbb{C}^{n-1}, \mathbb{C P}^{n-1}$, and $G=G^{\prime} \times G_{1}(\mathbb{C})$, where G^{\prime} is one of the groups $\operatorname{Aut}\left(\mathbb{B}^{n-1}\right), G\left(\mathbb{C}^{n-1}\right), G\left(\mathbb{C P}^{n-1}\right)$, respectively.
(ib). $M=M^{\prime} \times \mathbb{C}^{*}$, where M^{\prime} is as in (ia), and $G=G^{\prime} \times \operatorname{Aut}\left(\mathbb{C}^{*}\right)^{0}$, where G^{\prime} is as in (ia).
(ic). $M=M^{\prime} \times \mathbb{T}$, where M^{\prime} is as in (ia) and \mathbb{T} is an elliptic curve; $G=G^{\prime} \times \operatorname{Aut}(\mathbb{T})^{0}$, where G^{\prime} is as in (ia).
(id). $M=M^{\prime} \times \mathcal{P}_{>}$, where M^{\prime} is as in (ia) and $\mathcal{P}_{>}:=\{\xi \in \mathbb{C}: \operatorname{Re} \xi>0\} ; G=G^{\prime} \times G\left(\mathcal{P}_{>}\right)$, where G^{\prime} as in (ia) and $G\left(\mathcal{P}_{>}\right)$is the group of all maps of the form

$$
\xi \mapsto \lambda \xi+i a,
$$

with $a \in \mathbb{R}, \lambda>0$.
(ii). Parts (iib) and (iic) of this example are obtained by passing to quotients in part (iia).
(iia). $M=\mathbb{B}^{n-1} \times \mathbb{C}$, and G consists of all maps of the form

$$
\begin{aligned}
& z^{\prime} \mapsto \frac{A z^{\prime}+b}{c z^{\prime}+d}, \\
& z_{n} \mapsto z_{n}+\ln \left(c z^{\prime}+d\right)+a,
\end{aligned}
$$

where

$$
\left(\begin{array}{ll}
A & b \\
c & d
\end{array}\right) \in S U_{n-1,1}
$$

$z^{\prime}:=\left(z_{1}, \ldots, z_{n-1}\right)$ and $a \in \mathbb{C}$. In fact, for $T \in \mathbb{C}$ one can consider the following family of groups acting on $\mathbb{B}^{n-1} \times \mathbb{C}$

$$
\begin{align*}
& z^{\prime} \mapsto \frac{A z^{\prime}+b}{c z^{\prime}+d} \\
& z_{n} \mapsto z_{n}+T \ln \left(c z^{\prime}+d\right)+a \tag{4.1}
\end{align*}
$$

where A, a, b, c, d are as above. Example (ia) for $M^{\prime}=\mathbb{B}^{n-1}$ is included in this family for $T=0$. If $T \neq 0$, then conjugating group (4.1) in $\operatorname{Aut}\left(\mathbb{B}^{n-1} \times \mathbb{C}\right)$ by the automorphism

$$
\begin{align*}
& z^{\prime} \mapsto z^{\prime} \\
& z_{n} \mapsto z_{n} / T, \tag{4.2}
\end{align*}
$$

we can assume that $T=1$.
(iib). $M=\mathbb{B}^{n-1} \times \mathbb{C}^{*}$, and for a fixed $T \in \mathbb{C}^{*}$ the group G consists of all maps of the form

$$
\begin{align*}
& z^{\prime} \mapsto \frac{A z^{\prime}+b}{c z^{\prime}+d} \\
& z_{n} \mapsto \chi\left(c z^{\prime}+d\right)^{T} z_{n} \tag{4.3}
\end{align*}
$$

where A, b, c, d are as in (iia) and $\chi \in \mathbb{C}^{*}$. Example (ib) for $M^{\prime}=\mathbb{B}^{n-1}$ can be included in this family for $T=0$. This family is obtained from (4.1) by passing to a quotient in the last variable.
(iic). $M=\mathbb{B}^{n-1} \times \mathbb{T}$, where \mathbb{T} is an elliptic curve, and for a fixed $T \in \mathbb{C}^{*}$ the group G consists of all maps of the form

$$
\begin{align*}
& z^{\prime} \mapsto \frac{A z^{\prime}+b}{c z^{\prime}+d} \\
& {\left[z_{n}\right] \mapsto\left[\chi\left(c z^{\prime}+d\right)^{T} z_{n}\right],} \tag{4.4}
\end{align*}
$$

where A, b, c, d, χ are as in (iib), \mathbb{T} is obtained from \mathbb{C}^{*} by taking the quotient with respect to the equivalence relation $z_{n} \sim d z_{n}$, for some $d \in \mathbb{C}^{*},|d| \neq 1$, and $\left[z_{n}\right] \in \mathbb{T}$ is the equivalence class of a point $z_{n} \in \mathbb{C}^{*}$. Example (ic) for $M^{\prime}=\mathbb{B}^{n-1}$ can be included in this family for $T=0$. Clearly, after passing to the quotient, (4.3) turns into (4.4).
(iii). Part (iiib) of this example is obtained by passing to a quotient in part (iiia).
(iiia). $M=\mathbb{C}^{n}$, and G consists of all maps of the form

$$
\begin{aligned}
& z^{\prime} \mapsto e^{\operatorname{Re} b} U z^{\prime}+a, \\
& z_{n} \mapsto z_{n}+b,
\end{aligned}
$$

where $U \in U_{n-1}, a \in \mathbb{C}^{n-1}, b \in \mathbb{C}$. In fact, for $T \in \mathbb{C}$ one can consider the following family of groups acting on \mathbb{C}^{n}

$$
\begin{align*}
& z^{\prime} \mapsto e^{\operatorname{Re}(T b)} U z^{\prime}+a, \\
& z_{n} \mapsto z_{n}+b, \tag{4.5}
\end{align*}
$$

where U, a, b are as above. Example (ia) for $M^{\prime}=\mathbb{C}^{n-1}$ is included in this family for $T=0$. If $T \neq 0$, then conjugating group (4.5) in $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ by the automorphism

$$
\begin{aligned}
& z^{\prime} \mapsto z^{\prime}, \\
& z_{n} \mapsto T z_{n},
\end{aligned}
$$

we can assume that $T=1$.
(iiib). $M=\mathbb{C}^{n-1} \times \mathbb{C}^{*}$, and for a fixed $T \in \mathbb{R}^{*}$ the group G consists of all maps of the form

$$
\begin{aligned}
& z^{\prime} \mapsto e^{T \operatorname{Re} b} U z^{\prime}+a, \\
& z_{n} \mapsto e^{b} z_{n},
\end{aligned}
$$

where U, a, b are as in (iiia). Example (ib) for $M^{\prime}=\mathbb{C}^{n-1}$ can be included in this family for $T=0$. This family is obtained from (4.5) for $T \in \mathbb{R}^{*}$ by passing to a quotient in the last variable.
(iv). Parts (ivb) and (ivc) of this example are obtained by passing to quotients in part (iva).
(iva). $M=\mathbb{C}^{n}$, and G consists of all maps of the form

$$
\begin{aligned}
& z^{\prime} \mapsto U z^{\prime}+a, \\
& z_{n} \mapsto z_{n}+\left\langle U z^{\prime}, a\right\rangle+b,
\end{aligned}
$$

where $U \in U_{n-1}, a \in \mathbb{C}^{n-1}, b \in \mathbb{C}$, and $\langle\cdot, \cdot\rangle$ is the inner product in \mathbb{C}^{n-1}. In fact, for $T \in \mathbb{C}$ one can consider the following family of groups acting on \mathbb{C}^{n}

$$
\begin{align*}
& z^{\prime} \mapsto U z^{\prime}+a, \\
& z_{n} \mapsto z_{n}+T\left\langle U z^{\prime}, a\right\rangle+b, \tag{4.6}
\end{align*}
$$

where U, a, b are as above. Example (ia) for $M^{\prime}=\mathbb{C}^{n-1}$ is included in this family for $T=0$. If $T \neq 0$, then conjugating group (4.6) in $\operatorname{Aut}\left(\mathbb{C}^{n}\right)$ by automorphism (4.2), we can assume that $T=1$.
(ivb). $M=\mathbb{C}^{n-1} \times \mathbb{C}^{*}$, and for a fixed $0 \leqslant \tau<2 \pi$ the group G consists of all maps of the form

$$
\begin{align*}
& z^{\prime} \mapsto U z^{\prime}+a, \\
& z_{n} \mapsto \chi \exp \left(e^{i \tau}\left\langle U z^{\prime}, a\right\rangle\right) z_{n}, \tag{4.7}
\end{align*}
$$

where U, a are as in (iva) and $\chi \in \mathbb{C}^{*}$. In fact, for $T \in \mathbb{C}$ one can consider the following family of groups acting on $\mathbb{C}^{n-1} \times \mathbb{C}^{*}$

$$
\begin{align*}
& z^{\prime} \mapsto U z^{\prime}+a, \\
& z_{n} \mapsto \chi \exp \left(T\left\langle U z^{\prime}, a\right\rangle\right) z_{n}, \tag{4.8}
\end{align*}
$$

where U, a, χ are as above. Example (ib) for $M^{\prime}=\mathbb{C}^{n-1}$ is included in this family for $T=0$. For $T \neq 0$ this family is obtained from (4.6) by passing to a quotient in the last variable. Furthermore, conjugating group (4.8) for $T \neq 0$ in $\operatorname{Aut}\left(\mathbb{C}^{n-1} \times \mathbb{C}^{*}\right)$ by the automorphism

$$
\begin{aligned}
& z^{\prime} \mapsto \sqrt{|T|} z^{\prime} \\
& z_{n} \mapsto z_{n},
\end{aligned}
$$

we obtain the group defined in (4.7) for $\tau=\arg T$.
(ivc). $M=\mathbb{C}^{n-1} \times \mathbb{T}$, where \mathbb{T} is an elliptic curve, and for a fixed $0 \leqslant \tau<2 \pi$ the group G consists of all maps of the form

$$
\begin{align*}
& z^{\prime} \mapsto U z^{\prime}+a, \\
& {\left[z_{n}\right] \mapsto\left[\chi \exp \left(e^{i \tau}\left\langle U z^{\prime}, a\right\rangle\right) z_{n}\right],} \tag{4.9}
\end{align*}
$$

where U, a, χ are as in (ivb), \mathbb{T} is obtained from \mathbb{C}^{*} by taking the quotient with respect to the equivalence relation $z_{n} \sim d z_{n}$, for some $d \in \mathbb{C}^{*},|d| \neq 1$, and $\left[z_{n}\right] \in \mathbb{T}$ is the equivalence class of a point $z_{n} \in \mathbb{C}^{*}$. In fact, for $T \in \mathbb{C}$ one can consider the following family of groups acting on $\mathbb{C}^{n-1} \times \mathbb{T}$

$$
\begin{align*}
& z^{\prime} \mapsto U z^{\prime}+a, \\
& {\left[z_{n}\right] \mapsto\left[\chi \exp \left(T\left\langle U z^{\prime}, a\right\rangle\right) z_{n}\right],} \tag{4.10}
\end{align*}
$$

where U, a, χ are as above. Example (ic) for $M^{\prime}=\mathbb{C}^{n-1}$ is included in this family for $T=0$. For $T \neq 0$ this family is obtained from (4.8) by passing to the quotient described above. Furthermore, conjugating group (4.10) for $T \neq 0$ in $\operatorname{Aut}\left(\mathbb{C}^{n-1} \times \mathbb{T}\right)$ by the automorphism

$$
\begin{aligned}
& z^{\prime} \mapsto \sqrt{|T|} z^{\prime}, \\
& \xi \mapsto \xi,
\end{aligned}
$$

where $\xi \in \mathbb{T}$, we obtain the group defined in (4.9) for $\tau=\arg T$.
(v). $M=\mathbb{C}^{n-1} \times \mathcal{P}_{>}$, and for a fixed $T \in \mathbb{R}^{*}$ the group G consists of all maps of the form

$$
\begin{aligned}
& z^{\prime} \mapsto \lambda^{T} U z^{\prime}+a, \\
& z_{n} \mapsto \lambda z_{n}+i b,
\end{aligned}
$$

where $U \in U_{n-1}, a \in \mathbb{C}^{n-1}, b \in \mathbb{R}, \lambda>0$. Example (id) for $M^{\prime}=\mathbb{C}^{n-1}$ can be included in this family for $T=0$.
(vi). $M=\mathbb{C}^{n}$, and for fixed $k_{1}, k_{2} \in \mathbb{Z},\left(k_{1}, k_{2}\right)=1, k_{1}>0, k_{2} \neq 0$, the group G consists of all maps of the form (0.1) with $U \in H_{k_{1}, k_{2}}^{n}$ (see (1.2)). Example (ia) for $M^{\prime}=\mathbb{C}^{n-1}$ can be included in this family for $k_{2}=0$.
(vii). Part (viib) of this example is obtained by passing to a quotient in part (viia).
(viia). $M=\mathbb{C}^{n *} / \mathbb{Z}_{l}$, where $\mathbb{C}^{n *}:=\mathbb{C}^{n} \backslash\{0\}, l \in \mathbb{N}$, and the group G consists of all maps of the form

$$
\{z\} \mapsto\{\lambda U z\}
$$

where $U \in U_{n}, \lambda>0$, and $\{z\} \in \mathbb{C}^{n *} / \mathbb{Z}_{l}$ is the equivalence class of a point $z \in \mathbb{C}^{n *}$.
(viib). $M=M_{d} / \mathbb{Z}_{l}$, where M_{d} is the Hopf manifold $\mathbb{C}^{n *} /\{z \sim d z\}$, for $d \in \mathbb{C}^{*},|d| \neq 1$, and $l \in \mathbb{N}$; the group G consists of all maps of the form

$$
\{[z]\} \mapsto\{[\lambda U z]\}
$$

where U, λ are as in (viia), $[z] \in M_{d}$ denotes the equivalence class of a point $z \in \mathbb{C}^{n *}$, and $\{[z]\} \in M_{d} / \mathbb{Z}_{l}$ denotes the equivalence class of $[z] \in M_{d}$.
(viii). In this example the manifolds are the open orbits of the action of a group of affine transformations on \mathbb{C}^{n}. Let $G_{\mathcal{P}}$ be the group of all maps of the form

$$
\begin{aligned}
& z^{\prime} \mapsto \lambda U z^{\prime}+a, \\
& z_{n} \mapsto \lambda^{2} z_{n}+2 \lambda\left\langle U z^{\prime}, a\right\rangle+|a|^{2}+i b,
\end{aligned}
$$

where $U \in U_{n-1}, a \in \mathbb{C}^{n-1}, b \in \mathbb{R}, \lambda>0$.
(viiia). $M=\mathcal{P}_{>}^{n}, G=G_{\mathcal{P}}$, where

$$
\mathcal{P}_{>}^{n}:=\left\{\left(z^{\prime}, z_{n}\right) \in \mathbb{C}^{n-1} \times \mathbb{C}: \operatorname{Re} z_{n}>\left|z^{\prime}\right|^{2}\right\} .
$$

Observe that $\mathcal{P}_{>}^{n}$ is holomorphically equivalent to \mathbb{B}^{n}.
(viiib). $M=\mathcal{P}_{<}^{n}, G=G_{\mathcal{P}}$, where

$$
\mathcal{P}_{<}^{n}:=\left\{\left(z^{\prime}, z_{n}\right) \in \mathbb{C}^{n-1} \times \mathbb{C}: \operatorname{Re} z_{n}<\left|z^{\prime}\right|^{2}\right\}
$$

Observe that $\mathcal{P}_{<}^{n}$ is holomorphically equivalent to $\mathbb{C P}^{n} \backslash\left(\overline{\mathbb{B}^{n}} \cup L\right)$, where L is a complex hyperplane tangent to $\partial \mathbb{B}^{n}$ at some point.
(ix). Here $n=2, M=\mathbb{B}^{1} \times \mathbb{C}$, and G consists of all maps of the form

$$
\begin{aligned}
& z_{1} \mapsto \frac{a z_{1}+b}{\bar{b} z_{1}+\bar{a}}, \\
& z_{2} \mapsto \frac{z_{2}+c z_{1}+\bar{c}}{\bar{b} z_{1}+\bar{a}},
\end{aligned}
$$

where $a, b \in \mathbb{C},|a|^{2}-|b|^{2}=1, c \in \mathbb{C}$.
(x). Here $n=3, M=\mathbb{C P}^{3}$, and G consists of all maps of the form (0.2) for $n=3$ with $U \in S p_{2}$ (where $S p_{2}$ is the compact real form of $S p_{4}(\mathbb{C})$). It is isomorphic to $S p_{2} / \mathbb{Z}_{2}$.
(xi). Let $n=3$ and $(z: w)$ be homogeneous coordinates in $\mathbb{C P}^{3}$ with $z=\left(z_{1}: z_{2}\right), w=\left(w_{1}: w_{2}\right)$. Set $M=\mathbb{C P}^{3} \backslash\{w=0\}$ and let G be the group of all maps of the form

$$
\begin{aligned}
& z \mapsto U z+A w, \\
& w \mapsto V w,
\end{aligned}
$$

where $U, V \in S U_{2}$, and

$$
A=\left(\begin{array}{cc}
a & i \bar{b} \\
b & -i \bar{a}
\end{array}\right),
$$

for some $a, b \in \mathbb{C}$.
(xii). Here $n=3, M=\mathbb{C}^{3}$, and G consists of all maps of the form

$$
\begin{aligned}
& z^{\prime} \mapsto U z^{\prime}+a \\
& z_{3} \mapsto \operatorname{det} U z_{3}+\left[\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) U z^{\prime}\right] \cdot a+b,
\end{aligned}
$$

where $z^{\prime}:=\left(z_{1}, z_{2}\right), U \in U_{2}, a \in \mathbb{C}^{2}, b \in \mathbb{C}$, and \cdot is the dot product in \mathbb{C}^{2}.
We conclude the paper with the following conjecture.
Conjecture 4.1. Let M be a connected complex manifold of dimension $n \geqslant 2$ and $G \subset \operatorname{Aut}(M)$ a connected Lie group with $d_{G}=n^{2}+1$ that acts properly on M. If the pair (M, G) is of type III, then it is equivalent to one of the pairs listed in (i)-(xii) above.

Acknowledgments

Part of this work was done while the author was visiting the Ruhr-Universität Bochum in January-February 2007 and the Max-Plank Institut für Mathematik in Bonn in April-May 2007. We would like to thank G. Fels for making a large number of useful comments and interest in our work.

References

[1] D.N. Akhiezer, Lie Group Actions in Complex Analysis, Aspects Math., Vieweg, Braunschweig, Wiesbaden, 1995.
[2] H. Biller, Proper actions on cohomology manifolds, Trans. Amer. Math. Soc. 355 (2002) 407-432.
[3] J. Bland, T. Duchamp, M. Kalka, A characterization of $\mathbb{C P}{ }^{n}$ by its automorphism group, in: Complex Analysis, University Park, PA, 1986, in: Lecture Notes in Math., vol. 1268, Springer-Verlag, 1987, pp. 60-65.
[4] S. Bochner, Compact groups of differentiable transformations, Ann. of Math. 46 (1945) 372-381.
[5] E. Cartan, Leçons sur la Géométrie des Espaces de Riemann, Gauthier-Villars, Paris, 1928.
[6] E.B. Dynkin, Maximal subgroups of the classical groups, Amer. Math. Soc. Transl. Ser. 26 (1957) 245-378 (translated from Russian).
[7] L.P. Eisenhart, Continuous Groups of Transformations, Princeton Univ. Press, 1933.
[8] G. Fubini, Sugli spazii che ammettono un gruppo continou di movementi, Ann. Mat. Pura Appl. (3) 8 (1903) 39-81.
[9] M. Goto, F. Grosshans, Semisimple Lie Algebras, Lect. Notes Pure Appl. Math., vol. 38, Marcel Dekker, Inc., New York, 1978.
[10] R.E. Greene, S.G. Krantz, Characterization of complex manifolds by the isotropy subgroups of their automorphism groups, Indiana Univ. Math. J. 34 (1985) 865-879.
[11] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.
[12] A.V. Isaev, Hyperbolic manifolds of dimension n with automorphism group of dimension $n^{2}-1$, J. Geom. Anal. 15 (2005) $239-259$.
[13] A.V. Isaev, Hyperbolic 2-dimensional manifolds with 3-dimensional automorphism group, preprint, available from http://front.math.ucdavis. edu/math.CV/0509030.
[14] A.V. Isaev, Hyperbolic n-dimensional manifolds with automorphism group of dimension n^{2}, Geom. Funct. Anal. 17 (2007) 192-219.
[15] A.V. Isaev, Lectures on the Automorphism Groups of Kobayashi-Hyperbolic Manifolds, Lecture Notes in Math., vol. 1902, Springer-Verlag, 2007.
[16] A.V. Isaev, Proper actions of high-dimensional groups on complex manifolds, J. Geom. Anal. 17 (2007) 649-667.
[17] A.V. Isaev, Complex manifolds admitting proper actions of high-dimensional groups, J. Lie Theory 18 (2008) 141-160.
[18] A.V. Isaev, S.G. Krantz, On the automorphism groups of hyperbolic manifolds, J. Reine Angew. Math. 534 (2001) $187-194$.
[19] A.V. Isaev, N.G. Kruzhilin, Effective actions of the unitary group on complex manifolds, Canad. J. Math. 54 (2002) $1254-1279$.
[20] W. Kaup, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math. 3 (1967) 43-70.
[21] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.
[22] S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, 1972.
[23] S. Kobayashi, T. Nagano, Riemannian manifolds with abundant isometries, in: Differential Geometry, Kinokuniya, Tokyo, 1972, pp. 195-219 (in honor of Kentaro Yano).
[24] B.P. Komrakov, Maximal subalgebras of real Lie algebras and a problem of Sophus Lie, Soviet Math. Dokl. 41 (1990) $269-273$ (translated from Russian).
[25] S.B. Myers, N. Steenrod, The group of isometries of a Riemannian manifold, Ann. of Math. 40 (1939) 400-416.
[26] A. Onishchik, E. Vinberg, Lie Groups and Algebraic Groups, Springer-Verlag, 1990.
[27] R.S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. 73 (1961) 295-323.
[28] K. Yano, The Theory of Lie Derivatives and Its Applications, North-Holland Publishing Co., P. Noordhoff Ltd., Interscience Publishers Inc., 1957.

[^0]: E-mail address: alexander.isaev@maths.anu.edu.au.

[^1]: ${ }^{1}$ In [16] we introduced groups denoted by $G_{1}\left(\mathbb{C}^{n}\right), G_{2}\left(\mathbb{C}^{4}\right)$ and $G_{3}\left(\mathbb{C}^{4}\right)$. Notation in the present paper is consistent with that in [16].

[^2]: 2 The group $G_{1}\left(\mathbb{C}^{n}\right)$ was introduced in [16] and consists of all maps from $G\left(\mathbb{C}^{n}\right)$ with $U \in S U_{n}$ (we usually write $G_{1}(\mathbb{C})$ instead of $G_{1}\left(\mathbb{C}^{1}\right)$).

