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In this paper, generalizing the concept of cone convexity, we have defined cone
preinvexity for set-valued functions and given an example in support of this
generalization. A Farkas]Minkowski type theorem has been proved for these
functions. A Lagrangian type dual has been defined for a fractional programming
problem involving preinvex set-valued functions and duality results are established.
Q 1997 Academic Press

1. INTRODUCTION AND PRELIMINARIES

Problems involving set-valued functions have a wide range of applica-
w x w xtions in economics 8 , nonlinear programming 17 , differential inclusion

w x w x w x4 , and many more. Tanino and Sawaragi 12 and Corley 5 developed the
duality theories for multiobjective programming problems which implicitly

w xinvolve set-valued functions. Later, Corley 6 considered maximization of
concave set-valued functions, in possibly infinite dimensions, and estab-
lished an existence result and developed Lagrangian duality theory for a

w xprogramming problem involving such functions. More recently, Lin 9
generalized the Moreau]Rockafeller type theorem and the Farkas]Min-
kowski type theorem for convex set-valued functions and obtained neces-
sary and sufficient optimality conditions for the existence of a Geoffrion
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efficient solution for a set-valued problem. He further defined Mond]Weir
and Wolfe type duals and established duality results.

The notion of preinvexity for scalar-valued functions was introduced into
w x w xliterature by Weir and Jeyakumar 16 and Weir 15 by relaxing the

convexity assumption on the domain set of the functions. The advantage
with preinvex functions is that their nonnegative linear combination is also
preinvex.

Ž w xSeveral contributions have been made in the past see 2, 3, 7, 10, 11
.and the references therein in developing the duality theory for nonlinear

fractional programming problems by using a parameterization technique
w xgiven by Bector 1 .

Motivated by these ideas, in the present paper, we have extended the
class of cone-convex set-valued functions to the class of cone-preinvex
set-valued functions. A fractional programming problem involving set-val-
ued functions has been considered. A weakly efficient solution of this
problem has been related to the weakly efficient solution of a multiobjec-
tive set-valued programming problem obtained by using a parameteriza-
tion technique. Also a Lagrangian type dual has been defined and duality
results are established.

Let X and Y be topological vector spaces.
A set-valued function F from X into Y is a map that associates a

unique subset of Y with each point of X. Equivalently, F can be viewed as
a function from X into the power set of Y, i.e., F : X ª 2Y.

The domain of F : X ª 2Y is given by

D F s x g X ¬ F x / B .� 4Ž . Ž .

Y Ž . Ž .For E : X, F : E ª 2 , denote, F E s D F x .x g E
A subset V of Y is said to be a cone if lj g V for every j g V and

l P 0.
A convex cone is one for which l j q l j g V for every j , j g V1 1 2 3 1 2

and l , l P 0.1 2
Ž . � 4A pointed cone is one for which V l yV s 0 , where 0 is the zero

element of Y.
Let V be a pointed convex cone with int V / B. Then we define three

cone orders with respect to V as

j O j iff j y j g V ,1 V 2 2 1

� 4j F j iff j y j g V_ 0 ,1 V 2 2 1

j - j iff j y j g int V .1 V 2 2 1
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The set of all the weak V-minimal points and weak V-maximal points of
a set A in Y are defined as

� 4w-Min A s y g A ¬ there exist no y g A for which y - y ,V 0 V 0

� 4w-Max A s y g A ¬ there eixst no y g A for which y - y .V 0 0 V

If y g A is a weak minima of A with respect to cone V then it is0
denoted by y g w-Min A.0 V

The polar cone VU of V is defined as

U U U ² U :� 4V s y g Y ¬ y , y P 0 for all y g V .

w xThe following result is due to Wang and Li 14 .

LEMMA 1.1. If V g Y is a pointed con¨ex cone with int V / B, then

Ž .i V q int V ; int V

Ž . ² U : U U � 4ii y , y ) 0 for any y g V _ 0 and y g int V.

If A, B : R p, a g R, then we define

� 4A q B s a q b ¬ a g A , b g B

� 4a A s a a ¬ a g A

and if B : int R p then defineq

A
s arb s a rb , a rb , . . . , a rb ¬� Ž .1 1 2 2 p pB

a s a , a , . . . , a g A , b s b , b , . . . , b g B ,Ž . 4Ž .1 2 p 1 2 p

where R p denotes the nonnegatï e orthant of R p.q

w x YDEFINITION 1.1 13 . Let E ; X be a convex set and F : E ª 2 be a
set-valued function and V be a pointed convex cone in Y. Then F is said

w xto be V-convex on E if for every x , x g E, t g 0, 1 ,1 2

tF x q 1 y t F x ; F tx q 1 y t x q V .Ž . Ž . Ž . Ž .Ž .1 2 1 2

2. PREINVEX SET-VALUED FUNCTION

In this section, we define a new class of set-valued function, called a
preinvex set-valued function, as a generalization of a convex set-valued
function.



BHATIA AND MEHRA602

DEFINITION 2.1. Let E be a subset of X, F : E ª 2Y and let V be a
pointed convex cone in Y. F is said to be V-preinvex on E if there exists a
function h defined on X = X and with values in X such that for any

w xx , x g E, t g 0, 1 ,1 2

tF x q 1 y t F x ; F x q th x , x q V .Ž . Ž . Ž . Ž .Ž .1 2 2 1 2

w xIt is implicit in the above definition that for x , x g E and t g 0, 1 , x1 2 2
Ž .q th x , x g E. We call such a set E to be an invex set with respect to1 2

h.
This definition generalizes the class of V-convex set-valued functions, as

in the case where F is a V-convex function on E; then by taking
Ž .x y x s h x , x for all x , x g E, F becomes V-preinvex. However,1 2 1 2 1 2

the converse need not be true, that is, a V-preinvex set-valued function
need not be V-convex.

EXAMPLE 2.1. Let X s R, Y s R2, V s R2 , and let F : X ª 2Y beq
defined as

< <F x s a , a g Y ¬ a q a P y x .� 4Ž . Ž .1 2 1 2

Then F is not V-convex on X, as for x s y1 g X, x s 2 g X, t s 5r6,1 2
we have

tx q 1 y t x s y 1r2Ž . Ž .1 2

F x s a , a g Y ¬ a q a P y1 ,� 4Ž . Ž .1 1 2 1 2

F x s a , a g Y ¬ a q a P y2 ,� 4Ž . Ž .2 1 2 1 2

and

tF x q 1 y t F x o F tx q 1 y t x q VŽ . Ž . Ž . Ž .Ž .1 2 1 2

Ž . Ž . Ž . Ž .because, for y1, 0 g F x , 0, y2 g F x , we have1 2

t y1, 0 q 1 y t 0, y2 s y5r6, y1r3 g tF x q 1 y t F xŽ . Ž . Ž . Ž . Ž . Ž . Ž .1 2

Ž . Ž .but y5r6, y1r3 f F y1r2 q V.
However, F is V-preinvex on X with respect to a function h defined on

X = X as

h x , x s x y x if either x ) 0, x ) 0 or x - 0, x - 0Ž .1 2 1 2 1 2 1 2

s x y x if either x ) 0, x - 0 or x - 0, x ) 0.2 1 1 2 1 2

The following theorem characterizes the generalized Farkas]Minkowski
type theorem for preinvex set-valued functions.
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ŽTHEOREM 2.1. Let E be an in¨ex subset of X with respect to a function
. Yh : X = X ª X . If the set-̈ alued function F : E ª 2 is V-prein¨ex and

Z Ž .G : E ª 2 is H-prein¨ex with respect to same function h , where V and H
are pointed con¨ex cones in topological ¨ector spaces Y and Z, respectï ely,
then exactly one of the following statements is true:

Ž .i there exists x g E such that

F x l yint V / BŽ . Ž .
G x l yint H / BŽ . Ž .

Ž . Ž U U . Ž . U Uii there exists y , z / 0, 0 in V = H such that for e¨ery
x g E,

² U : ² U :y , F x q z , G x P 0.Ž . Ž .

Ž . Ž .Proof. We will first show that i and ii cannot hold simultaneously.
Ž . Ž . Ž .Let if possible i and ii both be true. Then by i , there exists some

x g E such thatˆ

F x l yint V / BŽ . Ž .ˆ
G x l yint H / B,Ž . Ž .ˆ

i.e.,

y - 0 for some y g F xŽ .ˆ ˆ ˆV

z - 0 for some z g G x .Ž .ˆ ˆ ˆH

Ž U U . Ž . U UNow for any y , z / 0, 0 in V = H , we have

² U : ² U :y , y q z , z - 0ˆ ˆ
for some y g F x , z g G x , and some x g E.Ž . Ž .ˆ ˆ ˆ ˆ ˆ

Ž .But this contradicts the assumption that ii holds for every x g E.
Ž . Ž .Next, we will show that not i « ii .

Ž .Let i be not true.
w xOn the lines of Lin 9 , it is sufficient to show that the set A defined as

A s y , z g Y = Z ¬ there exists x g E such that forŽ .�
some u g F x and ¨ g G x , u - y and ¨ - zŽ . Ž . 4V H

Ž .is convex in Y = Z and 0, 0 f A.
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Ž . Ž .Let y , z g A and y , z g A. Then there exists x g E, x g E1 1 2 2 1 2
Ž . Ž . Ž . Ž .such that for some u g F x , ¨ g G x , u g F x , ¨ g G x1 1 1 1 2 2 2 2

u - y and ¨ - z1 V 1 1 H 1
2.1Ž .5u - y and ¨ - z .2 V 2 2 H 2

Ž . Ž . Ž . Ž .Since u g F x , u g F x , ¨ g G x , ¨ g G x therefore for1 1 2 2 1 1 2 2
w xt g 0, 1 ,

tu q 1 y t u g tF x q 1 y t F xŽ . Ž . Ž . Ž .1 2 1 2 2.2Ž .5ẗ q 1 y t ¨ g tG x q 1 y t G x .Ž . Ž . Ž . Ž .1 2 1 2

By preinvexity of F and G with respect to same h, we have

tF x q 1 y t F x ; F x q th x , x q VŽ . Ž . Ž . Ž .Ž .1 2 2 1 2

tG x q 1 y t G x ; G x q th x , x q H.Ž . Ž . Ž . Ž .Ž .1 2 2 1 2

Ž . Ž Ž ..Hence by virtue of 2.2 , there exists u g F x q th x , x j g V, and2 1 2
Ž Ž ..¨ g G x q th x , x , t g H such that2 1 2

tu q 1 y t u s u q jŽ .1 2

ẗ q 1 y t ¨ s ¨ q t ,Ž .1 2

i.e.,

u s tu q 1 y t u y j O tu q 1 y t u - ty q 1 y t yŽ . Ž . Ž .1 2 V 1 2 V 1 2

¨ s ẗ q 1 y t ¨ y t O ẗ q 1 y t ¨ - tz q 1 y t zŽ . Ž . Ž .1 2 H 1 2 H 1 2

by using 2.1 .Ž .Ž .
Ž .This shows that there exists x s x q th x , x g E, as E is an invex set2 1 2

with respect to h, such that

u - ty q 1 y t yŽ .V 1 2

¨ - tz q 1 y t zŽ .H 1 2

Ž . Ž .for some u g F x , ¨ g G x .
Hence,

w xt y , z q 1 y t y , z g A , t g 0, 1 .Ž . Ž . Ž .1 1 2 2

COROLLARY 2.2. If in Theorem 2.1, we assume further that there exists
Ž . Ž . Ux g E such that G x l yint H / B then y / 0.ˆ ˆ

w xThe proof follows along similar lines as that of Corollary 3.4 in 9 .
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3. LAGRANGIAN DUALITY

We are concerned with the following problem.
Let R p and Rm be ordered by pointed convex cones V and H,

respectively, with int V / B, int H / B.
Let E ; Rn, F : E ª 2 R p

, G : E ª 2 R p
, and H : E ª 2 R m

be set-val-0 0 0 0
ued maps defined on E . Then the problem is0

F x F x F xŽ . Ž . Ž .1 p
W-Min s , . . . , FPŽ .V G x G x G xŽ . Ž . Ž .1 p

subject to H x l yH / B, x g E .Ž . Ž . 0

We assume that for each x g E , and for each i s 1, 2, . . . , p,0

F x ; R and G x ; int R .Ž . Ž .i q i q

� Ž . Ž . 4 Ž .Let E s x g E ¬ H x l yH / B be the feasible set of FP .0
In this section, all the relations, until otherwise stated, are with respect

to the cone order V.

DEFINITION 3.1. A point xU g E is said to be a weakly efficient
Ž . Ž . U Ž U .solution or an efficient solution for FP if there exists y g F x and

U Ž U .z g G x such that

yU F xŽ .
g W-Min DUz G xŽ .xgE

yU F xŽ .
or respectively, g Min .DUž /z G xŽ .xgE

On using the parametric approach, we consider the following optimiza-
tion problem

W-Min F x y l G x , . . . , F x y l G xŽ . Ž . Ž . Ž .1 1 1 p p p

subject to x g E, PŽ . l

l s l , . . . , l g R p .Ž .1 p q

The following lemma for set-valued functions can easily be proved on
Žthe lines of the corresponding result proved for real valued functions in

. w xterms of cones by Chandra et al. 3 .
U U Ž .LEMMA 3.1. Let x g E. Then x is weakly efficient for FP with

U U Ž U . Ž U . Ž . Uy rz g F x rG x as a weakly efficient ¨alue of FP if and only if x is
Ž . U U U Ž U . U Ž U .Uweakly efficient for P where l s y rz and 0 g F x y l G x as al

Ž . Uweakly efficient ¨alue of P .l
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qŽ m p.Let L s B R , R be the set of all bounded continuous linear
m p Ž . Žfunctions s : R ª R such that s H ; V i.e., s is nonnegative with

.respect to cones V and H .
Ž .The weak dual problem associated with FP is defined as

F s HŽ .
W-Max W-Min q E .Ž .D ž /G GsgL

Letting

F s HŽ .
c s s W-Min q EŽ . Ž .ž /G G

F s HŽ .
s W-Min q xŽ .D ž /G GxgE

the dual problem can be rewritten as

W-Max c s , DFPŽ . Ž .D
sgL

Ž .i.e., we have to determine the weak maximal elements of D c s withsg L
respect to the cone V.

Ž . Ž .THEOREM 3.2 Weak Duality Theorem . Suppose x is feasible for FP0
Ž . Ž . Ž .and s is feasible for DFP . Then for any y g F x . z g G x , and0 0 0 0 0

Ž .¨ g c s ,0 0

y0 l ¨ .0z0

Ž .Proof. Suppose, to the contrary, that there exists some y g F x ,0 0
Ž . Ž .z g G x , and ¨ g c s for which0 0 0 0

y0
- ¨ 0z0

i.e.,
y0¨ y g int V . 3.1Ž .0 z0

Ž . Ž Ž . .Ž .Since, ¨ g c s s W-Min D FrG q s H rG x , hence for any x0 0 x g E 1
Ž . Ž . Ž .g E with y g F x , z g G x , and w g H x , we have1 1 1 1 1 1

y s wŽ .1 0 1q l ¨ . 3.2Ž .0z z1 1
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Ž . Ž .But as x g E, so in particular, for y g F x , z g G x , and w g0 0 0 0 0 0
Ž . Ž . ŽH x l yH this set is non-empty because of the feasibility of x for0 0

Ž .. Ž .FP , we have from 3.2 ,

y s wŽ .0 0 0q l ¨ . 3.3Ž .0z z0 0

Now,

w g H x l yH « w g yHŽ . Ž .0 0 0

which implies

s w O 0 since s g L .Ž . Ž .0 0 0

Also z ) 0 and V is a convex cone hence0

s wŽ .0 0 O 0,
z0

i.e.,

s wŽ .0 0y g V . 3.4Ž .
z0

Ž . Ž .From 3.1 and 3.4 , we get

y s wŽ .0 0 0¨ y q g int V0 ž /z z0 0

on account of Lemma 1.1.
Hence,

y s wŽ .0 0 0q - ¨ 0z z0 0

Ž .which contradicts 3.3 . The result follows.

Ž .THEOREM 3.3 Strong Duality Theorem . Suppose that V and H are
pointed con¨ex cones in R p and Rm, respectï ely, with int V / B, int H / B.
Let E be an in¨ex subset of Rn with respect to function h : Rn = Rn ª Rn.0
Let F, yG be V-prein¨ex and H be H-prein¨ex on E with respect to same h0

Ž . Ž .and further assume that there exist x g E such that H x l yint H / B.ˆ ˆ0
Ž . Ž .If x is a weakly efficient solution for FP then there exists y g F x ,0 0 0

Ž .z g G x such that0 0

y0 g W-Max c s .Ž .Dz0 sgL
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Ž .Proof. Since x is a weakly efficient solution for FP hence there exists0
Ž . Ž .y g F x , z g G x such that0 0 0 0

y F0 g W-Min x .Ž .Dz G0 xgE

Ž .Therefore by Lemma 3.1, x is a weakly efficient solution for P where0 l0
Ž . Ž . Ž .l s y rz with 0 g F x y l G x as a weakly efficient value of P .0 0 0 0 0 0 l0

This shows that the system

F x y l G x l yint V / BŽ . Ž . Ž .0 3.5Ž .5H x l yint H / BŽ . Ž .

has no solution.
Since F, yG are V-preinvex with respect to h and l P 0 hence0

F y l G is V-preinvex with respect to h on E . Therefore by Theorem 2.10 0
Ž U U . U Uand Corollary 2.2, there exists u , ¨ g V = H such that for all

x g E0

² U : ² U :u , F x y l G x q ¨ , H x P 0 3.6Ž . Ž . Ž . Ž .0

uU , ¨U / 0, 0 , uU / 0. 3.7Ž . Ž . Ž .

Ž .Let x s x in 3.6 . We get0

² U : ² U :u , F x y l G x q ¨ , H x P 0. 3.8Ž . Ž . Ž . Ž .0 0 0 0

Ž . Ž .Since y g F x and z g G x , hence, we have0 0 0 0

² U : ² U :u , y y l z q ¨ , H x P 0Ž .0 0 0 0

giving

y0U² :¨ , H x P 0 by using l s . 3.9Ž . Ž .0 0ž /z0

Ž .Also x is feasible for FP therefore0

H x l yH / B.Ž . Ž .0

Ž . Ž .Choose w g H x l yH ; then0 0

² U :¨ , w P 0 by using 3.9 . 3.10Ž . Ž .Ž .0

Moreover w g yH and ¨U g HU , therefore0

² U :¨ , w O 0. 3.11Ž .0
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Ž . Ž .Combining 3.10 and 3.11 , we get

² U :¨ , w s 0. 3.12Ž .0

U U U ² U :Since u g V , u / 0, choose j g V such that u , j s 1. Define
m p Ž . ² U :s : R ª R as s w s ¨ , w j . Then clearly s g L.0 0 0

Further,

² U : ² U :s w s 0 and u , s w s ¨ , w . 3.13Ž . Ž . Ž .0 0 0

Ž .We will show that y rz g c s . To the contrary, let if possible, y rz f0 0 0 0 0
Ž .c s .0

Ž .This implies that there exists x g E such that for some y g F x ,ˆ ˆ ˆ
Ž . Ž .z g G x , and w g H x ,ˆ ˆ ˆ ˆ

y s w yŽ .ˆ ˆ0 0q -
z z zˆ ˆ 0

giving

y y s wŽ .ˆ ˆ0 0y q g int V ,ž /z z zˆ ˆ0

hence,

y y s wŽ .ˆ ˆ0 0U U U Uu , y q ) 0 as u g V , u / 0.¦ ;ž /z z zˆ ˆ0

Therefore, we have

y0U U² : ² :u , y y l z q u ? s w - 0 using the fact that l sŽ .ˆ ˆ ˆ0 0 0ž /z0

Ž .which in view of 3.13 gives

² U : ² U :u , y y l z q ¨ , w - 0.ˆ ˆ ˆ0

Ž .But this contradicts 3.8 .
Ž .Hence y rz g c s .0 0 0

Next, we have to show that
y0 g W-Max c s .Ž .Dz0 sgL

Assume to the contrary. Then there exists s g L such that for some1
Ž .¨ g c s , we have1 1

y y0 0
- ¨ « ¨ y g int V . 3.14Ž .1 1z z0 0
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Ž . Ž . Ž .Now, x is feasible for FP hence H x l yH / B. Therefore for0 0
Ž . Ž . Ž .w g H x l yH , we have s w O 0. Since z ) 0 and H is a convex0 0 1 0 0

cone, therefore

s wŽ .1 0 O 0
z0

i.e.,

s wŽ .1 0y g V . 3.15Ž .
z0

Ž . Ž .From 3.14 and 3.15 , we get

y s wŽ .0 1 0¨ y q g int V1 ž /z z0 0

on account of Lemma 1.1.
Hence, we have

y s wŽ .0 1 0q - ¨ . 3.16Ž .1z z0 0

Ž .But 3.16 is a contradiction to the fact that

y s w F s HŽ . Ž .0 1 0 1q g q xŽ .Dz z G G0 0 xgE

and

F s HŽ .1¨ g c s s W-Min q x .Ž . Ž .D1 1 ž /G GxgE

Ž . Ž .Therefore s is a weakly efficient solution for DFP with y rz g c s0 0 0 0
Ž .as a weakly efficient value of DFP .

ŽTHEOREM 3.4. Suppose the assumptions of the pre¨ious theorem Strong
. Ž .Duality Theorem are satisfied. Let x be a weakly efficient solution for FP0

Ž . Ž . Ž .and ¨ g W-Max D c s . Then for e¨ery y g F x , z g G x , y rz0 sg L 0 0 0 0 0 0
Ž . Ž .l ¨ . Moreo¨er there exists y g F x and z g G x for which ¨ l y rz .ˆ ˆ ˆ ˆ0 0 0 0 0 0 0 0

Ž .Proof. Since x is a weakly efficient solution for FP hence it is0
Ž . Ž .feasible for FP and ¨ g W-Max D c s . Therefore there exists s g0 sg L 0

Ž .L such that ¨ g c s .0 0
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Ž . Ž .Hence by Theorem 3.2 Weak Duality Theorem for every y g F x0 0
Ž .and z g G x ,0 0

y0 l ¨ .0z0

Ž .On using Theorem 3.3 Strong Duality Theorem , we get an existence of
Ž . Ž .y g F x , z g G x , and s g L such thatˆ ˆ0 0 0 0 0

ŷ0 g c s .Ž .0ẑ0

Ž .But ¨ g W-Max D c s , hence ¨ l y rz .ˆ ˆ0 sg L 0 0 0
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