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Abstract

Large-scale comparison of genomic DNA is of fundamental importance in annotating functional elements of
genomes. To perform large comparisons efficiently, BLAST (Methods: Companion Methods Enzymol 266 (1996)
460, J. Mol. Biol. 215 (1990) 403, Nucleic Acids Res. 25(17) (1997) 3389) and other widely used tools use seeded
alignment, which compares only sequences that can be shown to share a common pattern or “seed’’ of matching
bases. The literature suggests that the choice of seed substantially affects the sensitivity of seeded alignment, but
designing and evaluating seeds is computationally challenging.
This work addresses the problem of designing a seed to optimize performance of seeded alignment. We give

a fast, simple algorithm based on finite automata for evaluating the sensitivity of a seed in a Markov model of
ungapped alignments, along with extensions tomixtures and inhomogeneousMarkovmodels.We give intuition and
theoretical results on which seeds are good choices. Finally, we describeMandala, a software tool for seed design,
and show that it can be used to improve the sensitivity of alignment in practice.
© 2005 Published by Elsevier Inc.
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1. Introduction

Genomes and genomic sequence databases provide a fundamental reference tool for molecular bi-
ologists. These databases are used primarily to search for DNA sequences similar to (i.e. differing by
few mutations from) a query sequence, or for pairs of sequences similar to each other. Applications of
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similarity search include detecting repetitive elements[35] and noncoding parts of genes, augmenting
the power of gene-structure prediction[23], comparing whole genomes[13], and identifying sequences
of unknown origin or function. Public genomic DNA sequence databases such as GenBank are growing
exponentially[28], driving demand for fast comparison algorithms and heuristics that nonetheless are as
sensitive as possible to biologically meaningful sequence conservation.
Seededalignmentis the dominant paradigm for accelerating large-scale genomic sequence comparison.

BLAST [3,2,4]and other widely used tools[34,21]apply alignment algorithms like Smith-Waterman[36]
only to pairs of sequences that exhibit prior evidence of similarity in the form of a sharedseed, typically a
common short substring orwordof matching bases.1 All matching words between two sequences can be
found quickly, so seeded alignment efficiently directs computational resources toward pairs of sequence
regions most likely to exhibit high similarity. The words in a sequence database can also be statically
indexed[8,21] to accelerate subsequent searches for word matches.
While words are the most popular type of seed for seeded alignment, discontiguous patterns of match-

ing bases have seen considerable use in the sequence comparison literature. A discontiguous pattern
spannings bases, unlike a word of lengths, requires matching pairs of bases at only a subset of the
positions{0,1, . . . s − 1}. Califano and Rigoutsos, in their FLASH comparison tool[8], found that
randomly chosen discontiguous patterns in practice yielded the highest sensitivity to pairs of similar
sequences when used to index a database. Buhler[6] formally established the sensitivity of random pat-
terns in developing the randomizedLSH-ALL-PAIRS comparison algorithm. Discontiguous patterns have
also been used to accelerate seeded alignment algorithms including that of Pevzner and Waterman[31]
and, more recently, the BLASTZ algorithm[33,34]; Ma and co-workers’[25,26]; and work by Brejova
et al.[5].
PatternHunter introducedan important formal innovation toseededalignment: theresource-constrained

paradigmof seed design. This paradigm fixes the computational cost of seeded alignment a priori by
fixing the number of different seeds to be used and the approximate false-positive rate for each seed. It
then asks how to choose seeds that maximize the probability of detecting ungapped alignments described
by a probabilistic model.
The resource-constrained paradigm of seed design is well-suited to BLAST-like tools, in which the

cost of using more than one or a few seeds to search a database is unacceptably high, as well as to static
indexing schemes in which the number of indices, and hence of seeds, can be larger but is constrained by
storage and disk access costs. However, actually designing seeds in the resource-constrained paradigm,
even for simple probabilistic alignment models, is computationally challenging. Moreover, most existing
work on resource-constrained seed design (with the notable exception of[5]) does not consider alignment
models more informative than an i.i.d. random sequence of matches and mismatches.
This work describes tools for resource-constrained seed design. We address the following problem:

Given a collection of ungapped genomic sequence alignments of fixed length�, whose distribution
of matching base pairs is described by akth-order Markov modelM, and resource limitsw andn,
findn seeds�1 . . . �n, each inspectingw bases, such that thesensitivity, or probability that at least
one seed detects a random alignment fromM, is maximized.

1 BLASTN, unlike BLASTP, doesnot compute a neighborhood of each word in the query because typical word lengths are
much longer for DNA than for protein.
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This problem formalizes the data-driven design of seeds for alignment. The cost of filtering is con-
trolled in two ways. First, we fix theweightof, or number of positions inspected by, each seed, which
largely controls its false positive rate, i.e. the chance of seeing a seed match in the absence of an�-mer
alignment. Second, we fix the total number of seeds permitted. The Markov modelM describes a model
of “interesting’’ ungapped alignments that can be adjusted to reflect the empirical statistics of alignments
between DNA sequences of a particular type (e.g. protein-coding).
In the following sections, we present theoretical and practical results on solving resource-constrained

seed design and show that the design problem for models of order greater than zero is of practical
interest in improving algorithms for biosequence similarity search. Section2 gives an exact algorithm to
compute detection probabilities for sets of seeds in Markov models. This algorithm, which uses dynamic
programming on a finite automaton, generalizes and accelerates the original algorithm devised for the
design of PatternHunter’s seed. Section3 investigates the relative detection probabilities of different
seeds for�-mer alignments and elucidates the structure of seed space.We first give an intuitive account of
which properties are desirable in a seed, then prove the existence of seeds that are asymptotically optimal
with increasing length�. Section4 describes Mandala, a tool to design near-optimal seeds for alignment
models derived empirically from a collection of biosequences. Section5 presents controlled trials using
human–mouse genomic sequence comparisons to illustrate the practical utility of discontiguous seeds
and of our design methods. Finally, Section6 concludes and indicates directions for future work.

2. An exact algorithm for seed detection probabilities

In this section, we formally define both the design space of potential seeds for alignment and ameasure
of goodness by which to evaluate elements of this space.Although an appropriate measure of goodness—
sensitivity to alignments drawn from a probabilistic model—is conceptually straightforward, evaluating
this measure efficiently is computationally challenging. Section2.2therefore describes an efficient eval-
uation algorithm that uses dynamic programming on finite automata derived from one or more seeds.

2.1. Problem definition

Let C be a collection of genomic sequences. We seek all “interesting’’ ungapped alignments of some
fixed length� between pairs of substrings ofC. In a BLAST-like algorithm, each such alignment serves
as a starting point for gapped extension. An ungapped alignment between a pair of�-mers consists of
� pairs of bases, each of which may be a match or a mismatch. Alternatively, it may be viewed as a
string of � bits, with a 1 wherever two bases match and a 0 where they fail to match. The bit-string
representation of alignments discards some potentially useful information, such as their frequencies of
transitions versus transversions, but it is sufficient to model the behavior of seeds, such as those used by
BLAST and PatternHunter, that do not distinguish among different matched or mismatched base pairs.
An alignment is modeled by akth-order Markov processM that gives the probability that the next bit

seen will be 1 (i.e. a matching pair of bases) given the values of the previousk bits. The zeroth-order
marginal probabilities ofM describe the alignment’s overall degree of conservation, while its higher-
order marginals can reflect specific patterns of conservation. For example, alignments in coding sequence
often exhibit a pattern of two matches followed by a mismatch, corresponding to conservation of the
underlying protein with silent mutations at third base positions of codons.
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Fig. 1. Applying a seed, in this case{0,2,3,5}, at multiple offsets can cause it to inspect overlapping sets of sequence positions.

Our goal is to devise aseed�, which is an ordered list ofw positions{x1 . . . xw}. We callw theweight
of �, also denoted|�|, while itsspanis the distancexw − x1 + 1.We say that� detectsan alignmentS if,
for at least one offsetj , S[j + xi] = 1 for 1�i�w. That is, every position ofS inspected by� at offset
j must contain matching bases. Without loss of generality, we require thatx1 = 0, since a seed with
x1 > 0 is equivalent (up to boundary conditions) to a seed of the same weight but shorter span. Seeded
alignment algorithms enumerate all pairs of locations in the inputC that exhibit matching bases in the
pattern prescribed by�, so they are guaranteed to detect every alignment that� detects. If we instead
devise a set� of n > 1 patterns, then� detects alignmentS if at least one of its component patterns
detectsS.
The computational cost of using seeds is controlled by their weightw, which largely determines their

false positive rate in the absence of ameaningful alignment, and by the numbern of seeds used. Following
[26],weassume that the investigator sets theseparameters apriori tomatchavailable computing resources.
The problem, then, is to find a set� of n seeds of weightw that maximizes sensitivity to�-mer alignments
S from modelM. That is, we want the set� that maximizes thedetection probability

Pr
S∼M

[� detectsS] .

In practice, the alignment length� is less than 100 bases; it represents the typical distance between indels
in the alignments of interest. BLAST-like algorithms typically use a single seed of weightw = 10–15.

2.2. Computing detection probabilities

Fig.1 illustrates the key difficulty in computing detection probabilities accurately enough to differenti-
ate among seeds of a given weight.A seed is applied at all possible offsets into an alignment, and we wish
to compute the probability that it matches atat least onesuch offset. The probability of at least one match
varies with the seed structure because matches at sufficiently close offsets do not occur independently.
For example, the alignment in the figure has two matches, at offsets 0 and 2, which share two of four
positions in common. The precise pattern of overlaps induced by a seed determines the dependencies in
an i.i.d. alignment model; for more general Markov models, matches at non-overlapping offsets are also
non-independent.
We cannot simply ignore overlap in analyzing seeds. Seed matches in biosequence alignments are

not (and should not be!) rare events, so Poisson approximation does not accurately estimate detection
probabilities. We could instead approximate a seed’s detection probability using partial information
about its overlap structure, e.g. by using the first couple of terms in the inclusion–exclusion form of
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the detection probability. However, for seeds of practically interesting weight and span, it is possible to
efficiently compute theexactdetection probability analytically.
Before proceeding, we pause to ask whether an analytical approach to match probabilities is the right

choice in practice.We could instead generate pseudorandom alignments from the modelM and estimate
how often such alignments contain the desired seed. This Monte Carlo approach is easy to implement
and generalizes toanygenerative alignment model. In practice, however, it has the significant drawback
that the number of random alignments required to accurately estimate match probabilities is quite high.
To obtain estimates accurate to one part in a thousand requires in excess of 106 trials. The computational
cost of Monte Carlo estimation is such that the exact algorithm described below proved at least two orders
of magnitude faster for the seeds designed in this work.
Our algorithm to compute detection probabilities encodes the overlap structure of a seed or set of seeds

into a deterministic finite automaton (DFA). Considering alignments as bit strings, a seed� describes a
certain pattern of 1’s in those strings.We compute the probability of seeing� by first constructing a DFA
A� that accepts all strings containing this pattern, then computing the probability thatA� accepts a string
chosen at random from the modelM.
DFAs have previously been used to summarize the dependence betweenmatches at overlapping offsets

by Nicodéme et al.[29] and by Tompa[39], who used them to compute occurrence probabilities for
degeneratewords in sequences. In contrast,methods for computing seed detection probabilities, including
the one originally devised for PatternHunter and later modifications by Keich et al.[20], Brejova et al.
[5], and Choi and Zhang[11], use dynamic programming in a way that does not explicitly represent the
overlap structure.We find that considering the DFA explicitly both makes the evaluation algorithm easier
to reason about and exposes opportunities for optimization of our methods.

2.2.1. DFA construction
Let � be a seed with weightw and spans, and letQ� be the set of all 2s−w s-bit strings that match

�. Following [29], we could construct a small non-deterministic finite automaton accepting all strings
containing a match toQ�, then use the subset construction[19] to compile it into the desired DFAA�.
This approach is reasonable when it would be too difficult to constructA� directly, though the exponential
worst-case behavior of the subset construction means that it might be slow in practice. However,A� has
an efficient direct construction.
First, construct a trieT� from the strings ofQ�. T� may be viewed as a DFA that accepts precisely the

languageQ�; its root is the start state, while each of its leaves is an accepting state. We next convertT�

to a DFAA0
� that accepts any input containing a string fromQ� as a suffix.A0

� can be built efficiently
from T� using the Aho-Corasick algorithm[1], which addsfailure links to T� that indicate, for any state
corresponding to an input string�, the state corresponding to the longest proper suffix of�. If we find that
we cannot follow a trie edge out of states on a given input, we instead follow the path of failure links out
of s until wecancontinue with a trie edge, or until we reach the start state. Once the failure link for state
s is known, we follow it if needed to determine the proper transition out ofs on a 0 bit. (Note that for
non-accepting states, we never fail on seeing a 1 bit.) If we add failure links toT� in breadth-first order
from the start state, the full path of such links out of states is well-defined whens is first processed.
The desired DFAA� must accept every input containing a string ofQ� as asubstring, not just as a

suffix. To formA� from A0
�, we make each accepting state of the latter an absorbing state, so that the

DFA accepts forever the first time it sees a seed match. All accepting states are now equivalent and so
may be collapsed into a single stateqa.
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We have observed empirically that, for the seeds designed in this work, the DFAA� is 3–30 times
larger than the smallest DFA accepting its language.

2.2.2. Probability computation
By construction, the automatonA� accepts an alignmentS, represented as a bit string, iff� detects

S. The following dynamic programming algorithm computes the probability thatA� accepts a random
alignment of length� from a kth-order Markov modelM. We give a description that applies without
change to anyk�0, though a slightly more space-efficient implementation is possible if the cases of
k = 0 andk > 0 are treated separately.
Let � be a bit string of lengthk. For a stateq, let�b(q) be the set of all states that transition toq on bit

b. DefineP(q, t, � · b) to be the probability that the automatonA� reaches stateq after readingt bits of
inputS, andthat the lastk + 1 bits read form thehistorystring� · b. We may derive

P(q, t, � · b) = Pr(S[t] = b | S[t − k . . . t − 1] = �)×
∑

q ′∈�b(q)

∑
b0∈{0,1}

P(q ′, t − 1, b0 · �). (1)

In other words, to reach stateq with history� · b at timet , the automaton must first reach stateq ′ with
history b0 · � at time t − 1, then execute a transition fromq ′ to q on bit b. The transition probability
Pr(S[t] = b | S[t−k . . . t−1] = �) is given by the modelM. For 1� t�k, the historyb0 ·� is shortened
to lengtht , and the transition probabilities are given byM’s lower-order marginals.
To initialize the recurrence, we setP(q0,0,0) = 1 for the start stateq0 and set all other probabilities

for t = 0 to 0. This initialization ensures thatP(q,1, b) = Pr(S[1] = b) if a transition fromq0 to q on
b exists, or 0 otherwise. Once we have completed� steps of the recurrence, the final probability thatA�

has reached its accepting stateqa is the sum over allk + 1-bit strings� · b of P(qa, �, � · b).
We note that theMarkovmodel constructed by Choi and Zhang[11, Section 2.3]is essentially the same

as our DFA. However, they use their model only to obtain analytical formulas for the match probabilities
of certain well-behaved seed families, while we use our DFA as the core of our dynamic programming
algorithm for any seed.

2.2.3. Efficiency
The size ofT�, and hence ofA�, is surely at mosts2s−w, the total length of all strings inQ�. When

the strings ofQ� are generated from a common seed, the size of the trie can be more precisely bounded
as follows.

Lemma 1. The trieT� has size at most(w + 1)2s−w.

Proof. The trie built for a seed� of spans has a single root followed bys levels of nodes. Number the
root as level 0 and the remaining levels as 1. . . s. The portion of the trie up to leveli encodes all bit
strings of lengthi that are prefixes of some string accepted by�. If � inspects positioni − 1 (counting
from 0), then every string matching� has a 1 inpositioni − 1, and so trie leveli has the same number
of nodes as leveli − 1. Otherwise, strings matching� can have a 0 or a 1 inpositioni − 1, and so leveli
hastwiceas many nodes as leveli − 1.
Consider the trie built for the following seed of weightw: �∗ = {0, s −w+ 1, s −w+ 2, . . . , s − 1}.

This seed has spans and inspects its first position and its lastw − 1 positions. The seed�∗ therefore
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matches alls-bit strings of the form 1(0|1)s−w1w−1. The number of nodes at each level of the trieT�∗
therefore follows the progression

1,1,2,4, . . . ,2s−w, . . . ,2s−w,

where the last value is duplicatedw − 1 times after its initial appearance, once for each of thew − 1
terminal required 1 bits. The total size ofT�∗ is therefore

|T�∗ | = 1+
s−w∑
i=0

2i + (w − 1)2s−w

= 1+ 2 · 2s−w − 1+ (w − 1)2s−w

= (w + 1)2s−w.

We now claim that every other seed� of weightw and spans results in a trie of size less than|T�∗ |.
There are still 2s−w strings matching�, soT� still has 2s−w leaves. Moreover, we require by definition
that� hasx1 = 0, so the progression of level sizes inT� still begins with “1,1’’. However, if � �= �∗,
then some numberj�1 of �’s required 1 bits occur prior to lastw − 1 bits. Hence, the progression of
level sizes forT� containsj fewer instances of 2s−w and a corresponding number of earlier duplicated
values, each strictly less than 2s−w. We conclude thatT� has strictly fewer nodes thanT�∗ . �

The Aho-Corasick construction runs in time linear in the trie size, as does the collapsing of the final
states intoqa, soA� can be built from� in worst-case time�(w2s−w). Although some states ofA�

may have many parents, the total number of parents over the entire DFA is simply its total number of
transitions, which is at most twice the number of states. Hence, each step of dynamic programming takes
time�(w2s−w2k) for akth-order model. The full computation therefore runs in time�(w2s−w+k�). This
time is faster by a factor ofs/w than the algorithms of[11,20], which work only for model orderk = 0.
A C++ implementation of our algorithm, applied with� = 64, a seed� with w = 11 and spans = 18
(the same�, w, ands used by PatternHunter), and orderk = 5, runs in a few tens of milliseconds on a
2.5GHz Intel Pentium IV workstation.
Using the construction of the previous section, the time required to build the DFAA� is negligible

compared to the cost of computing the dynamic programming recurrence. The latter cost scales with
the number of states inA�, so it is often advantageous to minimizeA� prior to computing the match
probability.Because theDFAs forpatternsofpracticalweightandspanhave thousandsor tensof thousands
of states, minimization must be done in time subquadratic in the number of states to yield an overall
speedup. We use Hopcroft’sn log n minimization algorithm[18].
We note that, using a slightly more complex construction, our algorithm’s cost can be reduced to

�((2k + w2s−w)�) (see AppendixA for details). However, we did not implement this last speedup
because it relies on the underlying trie structure of the DFAA� and so will not work if the DFA is
minimized prior to dynamic programming.

2.2.4. Extensions
The above algorithm assumes a single seed� and a singlekth-order Markov alignment modelM.

However, it is straightforward to extend the computation to support multiple seeds or somewhat more
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complex alignment models.
• To compute the probability that at least one seed in a set� matches a random alignment, begin the
DFA construction with the setQ� = ⋃

�∈� Q�, and proceed as before.
• Although we use fixed-length alignments in our analysis, one could instead extendM to include
a distribution over alignment length. The dynamic programming algorithm of Section2.2.2 could
be extended to compute the detection probability forM as a weighted sum of probabilities for its
component lengths.

• Consider amixturemodel, inwhich alignments are drawn randomly fromoneof severalMarkovmodels
Mz with associated mixture priorspz. Then the match probability for a seed� is given by

Pr
S∼M

[� detectsS] =
∑
z

pz Pr
S∼Mz

[� detectsS] .

• Consider aninhomogeneous Markov model, in which the probability of seeing a given bit at positiont
of an alignment depends not only on the last fewbits seen but ont itself.A good example is an alignment
of coding DNA, where the probability of seeing amatching base pair depends strongly on the sequence
position modulo three. To compute detection probabilities for a given DFA in such a model, we simply
draw from the appropriate position-specific distribution fort when computing Pr(S[t] = b | . . .) in
Eq. (1).

Todesignseedsappropriate to codingDNA,wemodel alignmentsusingamixtureof threeMarkovmodels,
representing pairs of aligned�-mers starting in frame 0, 1, or 2, respectively, with equal (or empirically
derived) priors. Each model is inhomogeneous with period three, reflecting the three-periodic pattern of
coding sequence conservation.

3. The structure of seed space

When is one seed more sensitive than another? The answer seems to depend in a complicated way
on both the parameters ofM and the alignment length�. For example, while PatternHunter’s seed
outperforms a contiguous word�c of the same weight in a zeroth-order model with� = 64% and 70%
identity, it can be shown that for short enough� or sufficiently low identity,2 �c becomes optimal. Such
parameter-dependent irregularities complicate comparisons among seeds. In this section, we first consider
what, if any, formal statement we can make about the superiority of some classes of seeds over others,
then provide some intuitive explanation of this phenomenon.
For an alignmentS of length�, defineE�(�) to be the event that� detectsS atsomeoffset, and define

Ec
�(�) to be the complementary event. (We drop the�, writingE�, when� is clear from context.)We will

explore the zeroth-order alignment model postulated in[26].
The following claim demonstrates that at leastsomegeneral comparisons are possible among classes

of seeds. Call a seeduniformly spacedif its positions form an arithmetic progression with difference> 1,
e.g.{0,2,4,6, . . .}. Recall that�c is a contiguous word.

2The latter result follows by inspecting the inclusion–exclusion form of the detection probability.



350 J. Buhler et al. / Journal of Computer and System Sciences 70 (2005) 342–363

Claim 1. If � is a uniformly spaced seed, then, for any� and any zeroth-order modelM,

Pr[E�(�)] < Pr[E�(�c)].
Proof. Denote byBj(�) the event that the uniformly spaced seed� matches an alignmentS at offset
j , i.e.Bj(�) = {S[j + xi] = 1, ∀xi ∈ �}. To simplify notations, we only consider a 2-periodic seed
� = {0,2,4, . . . ,2(w − 1)}, though the same proof would hold for any uniformly spaced seed. Write

� = 2m + �, where� ∈ {0,1}. Let D� = ⋃m+�−(w−1)
j=1 B2j−1(�) (� matchesS at odd indices) and

F� = ⋃m−(w−1)
j=1 B2j (�) (� matches at even indices). Similarly, defineF�c = ⋃m−w

j=1 Bj(�c), define

D�c = ⋃�−(w−1)
j=m+1 Bj(�c), and defineG�c = ⋃m

j=m−w+1 Bj(�c).
We have that Pr[D�] = Pr[D�c] and Pr[F�] = Pr[F�c]. Moreover,D� is independent ofF�, and the

same holds for�c, so

Pr[E�(�)] =Pr[D�] + Pr[F�] − Pr[D�]Pr[F�]
=Pr[D�c ∪ F�c]
<Pr[D�c ∪ F�c] + Pr[G�c \ (D�c ∪ F�c)]
=Pr[E�(�c)]. �

3.1. Asymptotic structure of seed space

While some comparisons among seeds, like Claim1, hold for any fixed alignment length�, others, like
the apparent optimality of the contiguous seed�c, hold only for small�. To avoid irregularities that occur
for small�, we turn to sensitivity measures that holdasymptotically, that is, as� grows large. Asymptotic
results can elucidate properties of seed space that are not apparent for small�, and wemay hope that they
apply at least approximately to the range of� assumed in practice.
The following result shows that the asymptotic performance of a seed is well-defined.

Claim 2. For any seed� there exist� > 0 and � > 0 (both of which depend on�) such that
Pr[Ec�]/�� −→ � as�→ ∞.

Proof. For this and following results, we need the followingmatrix representationof the DFAA�, after
[29]. We assume here that the modelM is zeroth-order, relegating the proof of thekth-order case to
AppendixA. LetN + 1 be the number of states of the DFA, and letA� be anN ×N matrix indexed by
all states ofA� except its accepting state, such thatA�(s, t) is the probability of transitioning from state
s to statet of the DFA upon reading a base pair generated fromM. Note thatA� is sparse, entrywise
non-negative, and sub-stochastic.
Let e1 = (1,0,0, . . . ,0) ∈ RN . Thene1A yields the distribution of the automaton states one step (or

one bit) after starting from the entry stateq0. More generally,e1A� yields the distribution on the states
after� steps.3 This non-negative distribution has total mass less than 1; indeed, the difference is exactly
Pr[E�].

3 This formulation introduces another way to compute Pr[E�] in timeO(w2s−w�) by noting thate1An = (e1An−1)A [39].
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Assume for a moment thatA is primitive in the sense that there exists aj such thatAj is an entrywise
strictly positive matrix. SinceAj is a sub-stochastic positive matrix, by the Perron–Frobenius theorem it
has a multiplicity-1, positive eigenvalue�j < 1 such that any other eigenvalue� of Aj satisfies|�| < �j

[24]. Moreover, the left eigenvectoru corresponding to�j is positive, and without loss of generalityu’s
entries sum to 1. Asu is, up to a constant, the unique left eigenvector ofAj with eigenvalue�j and since
A andAj commute,u is also a left eigenvector ofA: uA = �u. Similarly, there exists a corresponding
positive right eigenvectorw for whichAw = �w. Lete1 = �u + v, wherev is a linear combination of the
other (possibly generalized) left eigenvectors ofAj . Then

0< e1w = �uw + vw = �uw,

and, sinceuw> 0, � > 0. Thus, assumingA is primitive we have

e1A
� = ���u + vA� = ���u + o(��),

which immediately implies the claim.
Finally, notice that for a seed� of spans, any non-terminal state ofA� is accessible from the entry

state by at mosts steps and vice versa. Because we can stay at the entry state for an arbitrary number of
steps,A2s is entrywise positive, whenceA is primitive. �

Remark 1. A version of Claim2can be traced back to[29] withmanymissing details which are provided
here for completeness.

Definition 1. A seed� is asymptotically worse than a seed�′, denoted� ≺ �′, if

lim
�

Pr[Ec
�(�)]/Pr[Ec

�(�
′)] > 1.

Similarly, � and�′ are asymptotically equivalent, denoted� � �′, if

lim
�

Pr[Ec
�(�)]/Pr[Ec

�(�
′)] = 1,

and� � �′ if � ≺ �′ or � � �′.

Remark 2. Using Claim2, it is easy to verify that this relation defines a linear order on the set of all
seeds. A seed�’s asymptotic performance is entirely determined by�(�) and�(�).

We now use our ability to define the asymptotic performance of seeds to argue that the widely used
contiguousseed is not very promising for large�. Fromnowon,weassumeS is generatedbyazeroth-order
model.

Claim 3. Let�c be the contiguous seed of weightw and� any seed with|�| = w. Then
�(�c)��(�). (2)

Proof. In [20, Claim 1]the authors prove that

Pr[E�(�c)]� Pr[E�+s−w(�)].



352 J. Buhler et al. / Journal of Computer and System Sciences 70 (2005) 342–363

It follows from Claim2 that

lim
�→∞

�(�c)�(�c)
�

�(�)�(�)�+s−w
�1,

which proves the claim. �

Weconjecture that equality holds in (2) if and only if� is a uniformly spaced seed. The “if’’part follows
immediately from Claim1 and the preceding claim.4 If this conjecture is true, than any non-uniformly
spaced seed is asymptotically better than the contiguous seed.While we cannot yet prove this conjecture,
wecanshow that�c cannot be asymptotically optimal:

Claim 4. Let� = {0,1, . . . , w−2, w} where|�| = |�c| = w > 2.Then�(�c) > �(�), and in particular
�c ≺ �.

Proof. Let x = (x1, . . . , xN) be the unique unit-mass positive eigenvector for whichxA(�) = �(�)x,
whereA(�) is the non-negative automaton matrix associated with� andN = w + 2 is its dimension.
Without loss of generality, the automaton of� consists of statesFi , i = 1 . . . w, which correspond to a
prefix of i − 1 1 bits, and statesFw+1 andFw+2, which correspond to a prefix ofw − 1 consecutive 1

bits followed by a 0 and a 1, respectively. For example, withw = 3 andq = 1−p,A(�c3) =

 q p 0

q 0 p

q 0 0


,

whileA(�) =



q p 0 0 0

q 0 p 0 0

0 0 0 q p

q 0 0 0 0

0 0 0 q 0


.

FromxA(�) = �(�)x we obtain the following system of equations:

q(xw + xw+2) = �(�)xw+1 pxw = �(�)xw+2,

from which we deduce that

�(�)2xw+1 = q(�(�)+ p)xw. (3)

Consider the polynomialf (�) = �2 − q(� + p). For p ∈ (0,1) (andq = 1 − p) it has a unique
positive root, and it happens thatf (�) is the characteristic polynomial of the automaton matrix for�c2:

A(�c2) =
(
q p

q 0

)
. Sincew > 2, �c2 ⊂ �, and so the unique positive root off (�), �(�c2), satisfies

�(�c2)��(�)��(�c). Suppose for a moment that�(�c2) < �(�c). In this case either�(�) < �(�c), which
is exactly our claim, or�(�c2) < �(�). The latter implies thatf (�(�)) > 0, and it follows from (3) that
xw > xw+1.

4 It is not hard to show, in the spirit of Claim1, that for any uniformly spaced seed�, � ≺ �c; that is, although�(�) = �(�c),
�(�) > �(�c).
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Note that xA(�) = �(�)x implies that for i = 1,2, . . . , w − 1, pxi = �(�)xi+1 and

q
(
xw+1 +∑w−1

i=1 xi

)
= �(�)x1. Thus, withx̂ = (x1, . . . , xw) (x without its last two digits),

x̂A(�c) =
(
q

w∑
i=1

xi, px1, px2, . . . , pxw−1

)
= (�(�)x1 + q(xw − xw+1), �(�)x2, . . . , �(�)xw).

Since we showed thatq(xw − xw+1) > 0 it follows exactly as in the proof of the Perron–Frobenius
theorem (e.g.[24]) that�(�c) > �(�) as stated.
Finally, to show that�(�c2) < �(�c), we note that sincew�3 it suffices to check that�(�c2) < �(�c3),

which can readily be verified using symbolic algebra software such as Maple.�

Remark 3. While one might be suspicious of the practicality of asymptotic results, in this case one can
prove that ifw�4 then for� = w+ 3,p > 1

2, and the seed� given in Claim4, Pr[E�(�)] > Pr[E�(�c)].
The same inequality holds ifw�5, � = w + 4, andp > 1

3.

3.2. On good and bad seeds

Consider the following problem studied by Conway[17] among others. The input is a random string
of letters, each generated uniformly (each of the letters is equally likely) and independently of the others.
We are looking for two particular words in the text:�=AAAAAand�=ABCDE. At any specific location
in the string, the probability of seeing� is the same as that of seeing�: 1/265. Similarly, renewal theory
guarantees that the average distance between overlapping occurrences of� is the same as that between
occurrences of�: 265 (e.g.[32]). Faced with this apparent symmetry, one would be tempted to guess that
we are equally likely to see the first occurrence of� before that of� as to see first the occurrence of�
before that of�. However, this intuition is false: we are more likely to see� before�.
This confusing fact becomes more plausible when one considers clustered occurrences. Given that�

is observed starting at positioni, we can get another occurrence at positioni + 1 at a huge discount:
1/26 instead of the usual 1/265. Occurrences of�, on the other hand, cannot overlap, and therefore it
pays retail for every occurrence. Thus, relative to the occurrences of�, the occurrences of� tend to appear
in clustered blocks. Since theaveragedistance between occurrences of both words is the same it follows
that the average distance between the blocks of� has to be larger than the average distance between the
blocks of� (which contain a single occurrence of�). This exactly translates to longer waiting time5 for
the first occurrence of� than for that of�.
It is essentially this phenomenon that is behind the advantage a (properly) spaced seed has over the

contiguous seed.Theoccurrencesof the contiguous seedexhibit a tendency to clusterwhencomparedwith
those of the spaced seed, while the average distance between occurrences of both seeds in a randomly
generated string is the same: 1/pw. For the contiguous seed this follows from renewal theory, as in
the example above, while for the spaced seed, one needs the equivalent result from Markov renewal
theory[9].

5Arriving at a random time to a train station, which train line are we more likely to see departing first: one that has 5 trains
departing one per minute for the first 5min after the hour, or one that has 5 trains departing at 12-min intervals?
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Sowhich seeds are good? It is not hard to prove that,werethe occurrences of a certain seed independent,
that seed would be optimal, at least in our asymptotic framework. Of course, the occurrences of a seed
can never be independent due to their overlap, but we should try to minimize the overlap to create seeds
whose occurrences are as independent as possible. In general that task would conflict with our desire to
keep the span of the seed under control when considering a region of a finite length, and some compromise
between the two has to be struck. That conflict is, however, removed when considering asymptotically
optimal seeds. In that case, we empirically find that the best seeds are the ones which have at most one
bit in common for any shift (and are the minimal spanwise with that property). These seeds are exactly
optimal Golomb rulers[14] and represent the best approximation for independent occurrences.AGolomb
ruler forw = 6, for example, is{0,1,8,11,13,17}.

4. Mandala: software for seed design

The results of Section3provide insight into the structure of seed space but do not immediately lead to a
practical algorithm for picking the best seed for a given alignment modelM. This problem was recently
shown to be NP-hard even for a zeroth-order alignment model[25]. Xu et al. [42] give a (somewhat
compute-intensive) approximation algorithm for finding seeds that are within a bounded factor of the
optimal sensitivity, but the bound obtained depends in a complicated way on the seed weight and span
and can be fairly weak. Heuristic methods remain the approach of choice for fast, practical design of
seeds. To address the need for fast seed design in practice, we have constructed Mandala, a software tool
utilizing heuristic methods, along with the algorithm of Section2, to design seeds for seeded alignment.
At a high level, Mandala is organized as follows. The user provides a collection of unaligned sequences.

We first search these sequences for pairwise local alignments associated with annotated features of some
specified type, e.g. coding exon, UTR, orAlu repeat. We then use the alignments found to parameterize
an alignment modelM, which captures the essential properties of the alignments for use in seed design.
Finally, we search seed space, subject to certain constraints such as a fixed weightw, to find the best
seed(s) for detecting alignments drawn fromM. This section considers practical issues in parameterizing
the modelM and describes our local search algorithm for seed selection.

4.1. Model parameterization

Themodels considered in this work describe ungapped alignments of fixed length�. Given a set of such
alignments, we may parameterize akth-order Markov modelM by translating each alignment into a bit
string (1 for match, 0 for mismatch) and counting the frequencies of allk+1-bit substrings in the training
set. In practice, the challenge lies not in computingM’s parameters but in obtaining an appropriate set
of training alignments.
Training alignments can be obtained by extracting ungapped segments from alignments involving the

sequence features of interest. The typical length of these segments dictates the alignment length� for
the model. We have consistently used� = 64 in this work because ungapped segments of this length or
longer commonly occur in statistically significant alignments of human and mouse genomic DNA.6 The
required alignments could be obtained from the input sequences using any of numerous extant similarity

6Our choice of� is also historical—it is the length used in designing PatternHunter’s seed[26].
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search tools, but some caution is required in selecting a tool to avoid unduly biasing the training set. If, for
example, we were to use a seeded alignment tool such as BLASTN that finds only alignments containing
a particular seed�, our training set would assign a higher match probability to� than is warranted by the
underlying sequences.
An unbiased approach to finding training alignments would use a search algorithm that does not rely

on seeds at all. This approach is technically possible given the existence of robust dynamic program-
ming search tools, in particular the Sim algorithm[43], that return multiple nonoverlapping alignments
from a single pair of sequences. However, such tools take a long time to search the megabases of DNA
needed to produce a reasonably sized training set. We therefore took a more efficient compromise ap-
proach to training set generation that nonetheless limits seed bias. Buhler’sLSH-ALL-PAIRS algorithm[6]
finds ungapped�-mer alignments in a collection of sequences using repeated seeded alignment with a
large number of seeds chosen independently and uniformly at random. Seeds are allowed to have span
up to�. We sampled alignments from our human and mouse sequences usingLSH-ALL-PAIRS with tens of
different randomly chosen seeds, so that no one or a few seeds would be strongly favored in the training
data. This approach can sample tens or hundreds of thousands of�-mer alignments from 107 bases of
genomic sequence in a few tens of minutes on a single workstation, or from 108 to 109 bases of sequence
in an hour or two on a modest computing cluster.
A second issue in choosing training alignments is howwell-conserved they should be.Highly conserved

alignments (85% identity or more) are poor choices for training a modelM because the performance
of different seeds becomes nearly indistinguishable; in essence, any seed will do for an “easy’’ search
problem. Better seed discrimination is obtained by training on the least conserved alignments that are still
considered interesting. We typically train our models on alignments of 70–75% identity. When sampling
alignments with a range of different identities, we use rejection sampling to counteract the bias of seeded
alignment toward more conserved alignments.
A final consideration in training is whether one can reliably sample only the alignments of interest.

For example, biologically meaningful alignments of coding DNA sequences should be “in frame;’’ that
is, an aligned pair of bases should always be from the same codon position in the two aligned sequences.
However, we have found that simply sampling alignments of 70–75% identity between annotated human
and mouse coding sequences produces numerous alignments that arenot in frame, hence not biologically
meaningful and not useful for training. The solution is either to eliminate the meaningless alignments
from the training set, or to use an alternative similarity search algorithm that does not produce them.
In this work, we take the second approach, following[5]. We use NCBI TBLASTX[3] to find un-
gapped local alignments of amino acid sequences in the six-frame translations of the input sequences,
then draw our training set from the aligned DNA sequences underlying these proteomic alignments. Al-
though TBLASTX does not take the same degree of care asLSH-ALL-PAIRS to produce an unbiased sample
of alignments, it does avoid BLASTN’s reliance on exact word matching (at either the DNA or protein
level).

4.2. Finding optimal seeds

Given the alignment modelM, Mandala seeks a seed (or set of seeds) with the highest possible
detection probability subject to a fixed seed weightw, which roughly controls a seed’s false-positive
rate and hence the computational cost of using it. Other than brute-force enumeration and evaluation,
no procedure is known to find the optimum seed of fixed weightw and span up to somes for a model
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M. Enumeration is fast enough to choose single seeds in simple alignment models but rapidly becomes
impractical as the number of simultaneous seeds, the model complexity, or the maximum span increases.
Mandala therefore sacrifices global optimality for much faster design using the followinglocal search
method.
Let � = {x1 . . . xw} be the current seed, with allxi�s. As usual, we fixx1 = 0 to avoid generating

shifted versions of the same seed. The local neighborhood of� is the set of all seeds�′ that differ from�
in exactly one ofx2 . . . xw, with the differing position chosen from among the unused set{1 . . . s−1}−�.
Using this neighborhood definition and the probability calculation of Section2as an evaluation function,
we perform hill climbing with random restart in seed space to find a near-optimal seed.
To design a set of simultaneous seeds�, we can extend the neighborhood definition to encompass all

sets�′ in which one seed�′
i ∈ �′ differs from the corresponding�i ∈ � in a single position. How-

ever, this method exhibits slow convergence in practice, so Mandala implements a greedy approach that
progressively picks seeds.Details of themethod,which empirically seems towork aswell as simultaneous
design, are given in[37]. An independent implementation of greedy multiseed design was also recently
described in[25].
The speedup of Mandala over exhaustive seed enumeration is dramatic, even for problems in which

enumeration is feasible. Using the same design constraints as Ma et al. (� = 64,w = 11, zeroth-order
model with 70% identity[26]), we sought the best seed of spans�22. Mandala with 10 random restarts
finished in under 20 s on a 2.5GHz Intel Pentium IV workstation, versus over an hour for exhaustive
enumeration. In 10 trials of 10 restarts each, Mandala found the globally optimal seed three times; the
seven suboptimal seeds found differed from the optimum in their detection probabilities by less than 1%.
The evaluation algorithm of Section2 is fast for small spans, but its cost grows exponentially as the

span increases for fixed weight. We therefore heuristically limit the search space of seeds to those with
spans>�, usually permitting spans up to 2w. In practice, this limitation has not proven problematic.
However, if Mandala must consider seeds with larger spans, it can fall back on Monte Carlo estimation
of detection probabilities, as suggested in Section2.1. Monte Carlo estimation uses a large number of
pseudorandom bits and is therefore highly sensitive to bias in the values produced by the underlying
pseudorandom number generator. We have obtained good results with the Mersenne Twistor generator
[27], though more common long-period generators such as the GNU C Library’srandom() function
[15] proved inadequate. The optimizer accelerates Monte Carlo evaluation for hill-climbing search using
Wald’s Sequential Probability Ratio Test[40] to rapidly terminate evaluation of moves with a high
probability of being downhill.

5. Experimental results

Mandala’s design criteria produce seeds that work well in theory, but we naturally sought further
evidence that these seeds are also useful in practice. We investigated the following questions. First,
do discontiguous seeds, and Mandala’s seeds in particular,by themselvesbenefit seeded alignment?
Second, does empirical evidence support our conjecture in Section3 that contiguous seeds are among
the leastsensitive choices? Third, how well do our Markov alignment modelsM predict seeds’ actual
performance?
The performance of an alignment algorithm depends not only on seed choice but also on a variety of

other factors, such as choice of score matrix and aggressiveness in extending seed matches into gapped
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and ungapped alignments. Programs such as PatternHunter that improve several aspects of alignment
at once do not therefore provide clear proof of the utility of seed design. We therefore devised the
following test setup to isolate the effect of seed choice on performance. Starting with assemblies of the
human and mouse genomes obtained from the UCSC Genome Browser[22], we extracted 1262 pairs of
regions that had been annotated as syntenic fragments, i.e. orthologous regions with no major internal
rearrangements. These regions, spanning roughly 2.65 gigabases, were masked to remove repeats and
low-complexity DNA, then divided into coding and noncoding parts on the basis of annotated coding
exons predicted by the Twinscan gene structure prediction program[23]. Our experiments measured the
number of nonoverlapping gapped alignments found when comparing orthologous pairs of regions.
Sequences were compared using BLAST-like seeded alignment. We modified thelsh program from

the Projection Genomics Toolkit[7] to use a fixed externally specified seed or set of seeds. The pro-
gram performed gapped extension using banded Smith-Waterman with the default scoring function and
significance thresholdusedbyPipMaker[34],whoseparametersareoptimized for human–mousecompar-
ison. Other than the choice of seed, no property of the alignment tool was changed between experiments.
AppendixB gives further details of our experimental setup.

5.1. Non-coding DNA sequence

We used roughly 1.4 million ungapped alignments sampled from our syntenic regions, with� = 64
and 70–75% identity, to parameterize a fifth-order Markov alignment modelM5. The choice of model
order was somewhat arbitrary, though we had sufficient data to parameterize it; we therefore evaluated
seeds generated not only from the full model but also from each of its lower-order approximations, which
we denoteM0 . . .M4. The zeroth-order approximationM0 is identical to the model of[26] except with
p ≈ 0.724 instead of 0.7. In the interest of time, we tested seed performance using only a subset of 449
pairs of syntenic fragments, spanning roughly 500 megabases of unmasked sequence.
We concentrated on weight-11 seeds, since this weight is commonly used in NCBI BLASTN. Fig.2

illustrates the theoretical average detection probability for such seeds as a function of their span. The
figure supports our conjecture that nearlyanyseed ismore sensitive than the contiguous seed. Because the
alignment length� is finite, there are preferred spans for each model that optimize the tradeoff between
maximizing the number of offsets available for detection and minimizing seed overlap between offsets.
ForM0 (solid line), the best spans are 17–19, consistent with the results of[26]; however, the fullM5
(dashed line) prefers shorter spans of 13–15, suggesting that its alignments exhibit tighter grouping of
their matching base pairs.
Table1 gives the relative performance of several different seeds, both in theory and on our test set.

For each seed, we give its detection probability in the fifth-order alignment modelM5, the number of
non-overlapping gapped alignments found using the seed, and the total CPU time required for the search.
We first tested several known seeds: the contiguous 11-mer�c used in NCBI BLASTN, the contiguous
10-mer�c10, and the PatternHunter seed�ph. We then compared the performance of the best seeds found
by Mandala in 10 restarts using each of the modelsM0 throughM5, denoted in the table as�N0 through
�N5. All seeds were constrained to have weight 11 and span�22 (by which point sensitivity is apparently
already declining according to Fig.2). We note that the best seeds found are predicted to be noticeably
more sensitive than average seeds of the same span.
All discontiguous seeds found substantially more alignments in practice than did�c; in particular,�ph

found 14.6% more alignments than�c and 2.4% more than even�c10. The extra alignments found were
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Fig. 2. Average detection probabilities given by theoretical models for random seeds of weight 11 and various spans. Solid
line: zeroth-order non-coding modelM0; dashed line: fifth-order modelM5. Error bars are 95% confidence intervals for each
average over 1000 trials.

Table 1
Performance of seeds on non-coding DNA

Seed Pattern Pr[detection] Alignments found Time
(Thousands) (min)

�c {0,1,2,3,4,5,6,7,8,9,10} 0.607 220 382
�c10 {0,1,2,3,4,5,6,7,8,9} 0.712 246 502
�ph {0,1,2,4,7,9,12,13,15,16,17} 0.689 252 417

�N0 {0,1,2,5,7,10,11,14,16,17,18} 0.680 252 417
�N1 {0,1,2,3,5,8,9,12,13,14,15} 0.699 252 423
�N2 {0,1,2,3,6,8,9,10,12,13,14} 0.707 253 424
�N3 {0,1,2,3,5,6,9,11,12,13,14} 0.704 252 422
�N4 {0,1,2,4,5,6,8,11,12,13,14} 0.707 253 425
�N5 {0,1,2,3,5,6,7,10,12,13,14} 0.709 253 424

Pr[detection] is the detection probability in modelM5. Gapped alignments found and running times are on 500 megabases
of homologous non-coding regions from human and mouse.

among themost difficult to detect, with scores up to a few times the threshold score but far below themost
“obvious’’ high-scoring alignments. Mandala’s choice of seed for the zeroth-order modelM0 behaved
almost indistinguishably from�ph in practice, demonstrating that its local search optimizer is a viable
substitute for exhaustive enumeration of seeds.
The seeds chosen byMandala formodelsM1 throughM5 are instructive. Lower-order approximations

to the fullM5 yielded seeds that were close but theoretically inferior to�N5 in performance. In practice,
however, the performance of seeds�N1 through�N5 was nearly indistinguishable, suggesting that the
modelM5 actually contained little meaningful information for seed design above first order. The main
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difference between the zeroth-orderM0 and higher-order models was that the latter showed a tendency
for matches to occur in clumps rather than independently. This tendency is reflected in the shorter spans
of the seeds induced from these models. A shorter span may be considered advantageous in practice
because it increases the likelihood that a seed will detect an ungapped segment of an alignment with a
large proportion of indels.
All discontiguous seeds incurred a slight speed penalty versus�c, largely because their false positive

rates (i.e. the number of seed matches that did not lead to a significant gapped alignment after extension)
were up to 33% higher. However, the slowdowns observed were only about 11%, considerably less than
the> 30% slowdown observed going from�c to the shorter�c10. Indeed, the false-positive rate for�c10
may be expected to be around 400% higher than for�c, which (as observed in[26]) makes seed design a
more attractive option to increase sensitivity than simply reducing a seed’s weight.
Finally, we tested Mandala’s ability to design simultaneous seeds by finding two seeds of weight 12,

which should have sensitivity comparable to a seed of weight 11 while exhibiting roughly half the false-
positive rate. In accordance with our observations on single seed design, we used the first-order model
M1 to evaluate seeds. Mandala produced the following seed pair:

�1 = {0,1,2,3,6,7,13,17,18,19,20,21},
�2 = {0,1,2,3,4,5,8,9,11,12,13,14}.

These two seeds together were 2.3% more sensitive than the best single seed (�N5) found but required
roughly 16% more CPU time than it. The cost of finding seed matches dominates the practical cost of
seeded alignment, so simultaneous seeds are most appropriate when indexing a sequence database offline
or for hardware that can use multiple seeds in parallel. Even so, we note that the CPU time needed to use
both 12-mer seeds wasstill less than that needed for�c10.

5.2. Coding DNA sequence

We tested seeds for coding DNA using annotated coding exons from all 1262 homologous region pairs.
We extracted 357,000 64-mer alignments with 70–75% identity from TBLASTX alignments of these
regions, then used them to train the following modelMc. To capture the codon structure in the sampled
alignments, we first inferred three fifth-order Markov modelsMc1, Mc2, andMc3 from aligned base
pairs at first, second, and third codon positions, respectively. These three models can be combined into
one inhomogeneousmodel, in which the distributions used to generate successive positions cycle between
the three codon positions. Three different inhomogeneous models are possible depending on whether the
first position of an alignment is generated fromMc1,Mc2, orMc3. The final modelMc is a mixture of
these three inhomogeneous models in the proportions encountered in the training set, which are roughly
equal with a slight bias toward alignments starting at a first codon position.
A key design goal of Mandala is that it should exploit biologically meaningful structure present in

its training alignments. For coding alignments, we expect that the best seed design should resemble
a repeating “110’’ pattern that ignores every third position. Given the right offset into an alignment,
such a seed would consider only the better-conserved first and second base positions of each codon. We
investigated whether Mandala could automatically exploit this expected structure inMc.
Table2 lists the seeds tested on our coding data set. Besides�c and�ph, we tried the intuitive coding

seed�110 and the best weight-11 seed�C5 found by Mandala in ten restarts on modelMc with span
s�22. The seed�C5 is structured similarly but not identically to�110.
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Table 2
Performance of seeds on coding DNA

Seed Pattern Pr[detection] Alignments found Time
(Thousands) (min)

�c {0,1,2,3,4,5,6,7,8,9,10} 0.442 77.8 77.6
�ph {0,1,2,4,7,9,12,13,15,16,17} 0.627 92.2 81.0
�110 {0,1,3,4,6,7,9,10,12,13,15} 0.652 93.2 82.5
�C5 {0,1,2,8,9,11,12,14,15,17,18} 0.721 94.0 84.3

Pr[detection] is the detection probability in modelMc. Gapped alignments found and running times are on coding portions
of 2.65 gigabases of homologous regions from human and mouse.

Our tests show that, with the right alignment model, Mandala can not only validate but also improve
on biological intuition. The seed�C5 does reveal something like the expected “110’’ pattern. However, in
this case biological intuition is somewhat in conflict with our intuition that highly periodic seeds are less
sensitive (cf. Section3.2). The seed�C5 compromises between these two design constraints by breaking
up the seed’s periodicity without disrupting the underlying codon structure. The compromise seed is
more sensitive in practice than either�ph, which satisfies only the aperiodicity constraint, or�110, which
satisfies only the codon structure constraint.

6. Conclusions and directions

Seed design materially affects the sensitivity of seeded alignment algorithms. Sensitivity improve-
ments of even a few percent are worthwhile, given the heavy use of these techniques in practice (over
105 queries/day to the NCBI BLAST server). We have described algorithms and software tools to
optimize the choice of seeds for particular alignment problems and have demonstrated that the right
seed choice confers practical benefits. The Mandala software, with source code, may be obtained from
http://www.cse.wustl.edu/∼jbuhler/mandala/.
Seed design is presently a fast-moving field, with extensive and continuing work[5,37,11,25,42]

on obtaining the best seeds for pairwise alignment. Opportunities for substantial new contributions
to bioinformatics from this technology now lie in extending the model-driven design of fast search
heuristics to newer, more challenging problems, in particular to alignment of alignments and to RNA
structural alignment.
As genomic sequences continue to proliferate, genomes of multiple species are increasingly being

aligned into homologous blocks that span anywhere from a few hundred to a few million bases[30,38].
These blocks seem destined to become a major component of sequence databases, and tools such as
RPS-Blast[4] and PhyloCon[41] are already being developed to compare them to query sequences and
to each other more efficiently.We plan to apply results from the design of seeds to these search problems.
A key question is how to find efficient extensions of simple seed heuristics for these problems that also
capture the information present in the distributions of residues in each column of a block.
Locally conserved structural motifs in RNA sequencesmay indicate a commonmechanism for regulat-

ing gene expression. However, discovering suchmotifs, whichmay occur together with primary sequence
conservation, requires simultaneous folding and local sequence alignment. A reasonable combinatorial
formulation of this problem is known to be NP-hard for more than two sequences[12], so it is desirable to

http://www.cse.wustl.edu/~jbuhler/mandala/
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devise heuristics to scan a collection of long RNA sequences for short, shared structural motifs, much like
PSI-BLAST[4] scans for potential shared primary sequence patterns. Again, initial scanning heuristics
have been developed for this problem (see, e.g.,[16]), but a more systematic exploration of heuristic
space may be feasible using techniques developed for improving pairwise alignment.
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Appendix A. Proofs omitted from text

A.1. Smaller automaton construction for Markov case

The following construction builds a new DFAB� equivalent toA� such that each state can be reached
by at most one possiblek-bit history. First, note that every state ofA� of depth�k in the trieT� already
has this property. For each states of A�, let thelabel �(s) be the string labeling the path from the trie
root tos.
Define new statessj for eachk-bit stringj such thatj is not�(s) for any state at depthk of T�.Although

these states are not inT�, we define their labels�(sj ) = j . On bitb, each new statesj transitions to the
state whose labelj ′ = j [2 . . . k] · b (either a new statesj ′ or an existing state ofA� whose label isj ′).
Moreover, if an existing statet of A� with depth�k transitions on bitb to a state at depth< k, that
transition is changed to target the statesj ′′ , where the labelj ′′ is the lastk − 1 bits of�(t) plusb. Now
delete the (unused) old states ofA� with depth< k. Finally, augment the new DFA with a full tree of
2k−1 initial states, the root of which is the new start state, such that the leaf of the tree reached on input
string� transitions on bitb to the state labeled� · b (which may be an old or a new state).
We can divide the non-initial statess of the newB� into equivalence classes�(t), wheret indexes the

states ofA�. The relation is as follows: ifs was a pre-existing statet of A�, s ∈ �(t). For all new states
sj , sj ∈ �(t) iff t is the state ofA� with depth< k whose label forms the longest suffix ofj . It can be
shown that for any stringS of length�k, if the original DFAA� ends up in states after readingS, then
the new DFAB� ends up in some state in�(s). Provided thatA� does not accept on any strings shorter
thank bits, this proves equivalence ofA� andB�. Moreover, each state of the new DFA, except for the
initial tree, is by construction associated with exactly one history ofk bits.
Because each transition ofB� is associated with only onek-bit history, each transition has fixed

probability in akth-order Markov model. We can therefore define a (sparse) matrixA� corresponding to
B� as described in the proof of Claim2. The cost of computing sensitivity in thekth-order Markov model
is thereforeO((2k + w2s−w)�), the cost of� matrix multiplications with the sparseA�.

A.2. Proof of Claim 2 in the Markovian case

When the stringS is governed by akth-order Markov chain, we define theN ′ × N ′ matrixA′ as the
submatrix of theA from the construction ofA.1 that corresponds to all non-initial statesB�.A′ is primitive
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since, as in the proof of the zeroth-order case, we can move between any two states in 2s steps. We can
complete the proof as before upon replacinge1 with � ∈ RN

′
, the distribution of the states after the first

k bits. Note that the probability distribution,�, is supported only on the states ofB� whose labels have
lengthk and is readily obtainable frome1Ak.

Appendix B. Details of experimental setup

We obtained NCBI build 31 of the human genome and Release 2 of the mouse genome, along with
their annotations, from theUCSCGenomeBrowser. Sequenceswere divided into annotated coding exons
and the remaining noncoding DNA based on Twinscan’s coding exon predictions. Soft-masked regions
of the sequences, representing interspersed repeats and low-complexity DNA, were ignored for training
and testing purposes.
Togenerate thecoding trainingset,TBLASTXwas runwith theBLOSUM62scoring function,modified

so as to heavily penalize stop codons. Translated alignments with E-value at most 10−5 were mapped
back to their underlying genomic sequences, and aligned segments with 70–75% identity were extracted
for training.
Test comparisons were performed with a modified version of thelsh program. The program was

modified to use hashing rather than sorting for detecting seed matches and to read a list of seeds from a
file. Each seed match was subjected to ungapped extension using NCBI BLAST’s linear-time dynamic
programming algorithm, followed by gapped extension using banded Smith-Waterman.We scored align-
ments with the HOXD-70 score matrix[10] and affine gap penalties of−400 to open and−30 to extend.
We kept only non-overlapping alignments that scored above 3000, the default cutoff used by PipMaker.
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