
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Journal of Discrete Algorithms 4 (2006) 239–254

www.elsevier.com/locate/jda

The complexity of minimum difference cover ✩

Carlo Mereghetti ∗, Beatrice Palano

Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, via Comelico 39,
20135 Milano, Italy

Available online 13 April 2005

Abstract

The complexity of searching minimum difference covers, both in Z+ and in Zn, is studied. We
prove that these two optimization problems are NP-hard. To obtain this result, we characterize those
sets—called extrema—having themselves plus zero as minimum difference cover. Such a combina-
torial characterization enables us to show that testing whether sets are not extrema, both in Z+ and
in Zn, is NP-complete. However, for these two decision problems we exhibit pseudo-polynomial
time algorithms.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Difference cover; NP-completeness; NP-hardness

1. Introduction

In this work, we study the complexity of computing difference covers for sets of inte-
gers. The problem was originally stated as follows [6]: find a subset Δ of Zn such that
any element of Zn can be obtained as difference modn of two elements in Δ. The set
Δ is called difference cover. Several variants of this problem have been considered in the
literature. The most relevant are discussed in Section 3.

The problem of reproducing sets of integers by differences has a lot of connections
with topics in combinatorics and computational geometry such as Golomb’s rulers [1,4],

✩ Partially supported by M.I.U.R. COFIN, under the projects “Linguaggi formali e automi: metodi, modelli e
applicazioni”, and “FIRB: Complessità descrizionale di automi e strutture correlate”.

* Corresponding author.
E-mail addresses: mereghetti@dsi.unimi.it (C. Mereghetti), palano@dsi.unimi.it (B. Palano).
1570-8667/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2005.03.004

https://core.ac.uk/display/82076609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jda
mailto:mereghetti@dsi.unimi.it
mailto:palano@dsi.unimi.it
http://dx.doi.org/10.1016/j.jda.2005.03.004

240 C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254
chords’ multisets [8], interpoint distances [13], etc. Yet, it shows up in many applications,
from communication to cryptography, networking, text compression, etc. (see [7], for a
survey).

It should be stressed that in all these and other applications, it turns out to be particu-
larly important to construct difference covers of small cardinality. For instance, in [6,14]
the construction of feasible concurrent systems having certain mutual exclusion proper-
ties (quorum systems) is related to the computation of small-size difference covers. More
recently, the relevance of difference cover within the realm of quantum computing [11]
has been pointed out. In particular, in [3,16] some algorithms for the construction small-
size quantum finite automata are presented that rely on the ability of generating small-size
difference covers.

This naturally leads to investigate the complexity of searching the minimum difference
cover (i.e., a difference cover with the smallest cardinality) for a given subset of Zn. We
call MinDCmod this optimization problem, presented in Section 3.1. We also introduce,
in Section 3.2, a slight variant of MinDCmod called MinDC, where we ask for minimum
difference covers for subsets of Z+. In this latter case, we use simple and not modular
differences.

We study in parallel the complexity of MinDCmod and MinDC by considering a closely
related decision problem on certain sets called extrema: a set A of nonnegative integers
is an extremum whenever its minimum difference cover is the trivial one consisting of
A ∪ {0}. In Section 4, we provide some combinatorial characterizations of extrema which
enable us to show that deciding whether a given set is not an extremum, both in Zn and
in Z+, can be done in pseudo-polynomial time. This is probably the best running time we
can achieve since, in Section 5, we show that testing non-extremity is NP-complete. By this
latter completeness result, we obtain, in Section 6, the NP-hardness of both MinDC and
MinDCmod. Hence, we can hardly expect that efficient algorithms for them will ever be
designed. For the sake of completeness, we also exhibit a Turing-reduction from MinDC to
MinDCmod. This reduction leads us to consider the restriction of MinDCmod where input
instances are the whole sets Zn. We prove that the related decision problem belongs to NP
but it is not NP-complete, unless P = NP.

2. Preliminaries

We quickly present basic definitions and results used throughout the paper. We denote
by Z+ the set of positive integers, and by Zn the set {0,1, . . . , n − 1}. Given x ∈ Z, we
denote by |x| its absolute value. Given a finite set Y = {y1, y2, . . . , ym} ⊂ Z, we denote by
maxi yi its maximum value. Given a set S, we denote by |S| its cardinality.

We recall some basics of graph theory. More details can be found, e.g., in [2]. A digraph
(directed graph) is a pair G = (V ,E), where V is the set of vertices and the set of ordered
pairs E ⊆ V × V is the set of arcs. Given v,w ∈ V , a chain from v to w is a sequence γ =
v0, v1, . . . , vn of vertices where v0 = v, vn = w and (vi, vi+1) ∈ E or (vi+1, vi) ∈ E, for
0 � i < n. The length of γ is n, i.e., the number of arcs involved; γ is an elementary chain
if it does not encounter the same vertex twice; γ is an elementary cycle if it is an elementary
chain, except that v0 = vn. The digraph G is weakly connected whenever any two vertices

C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254 241
are joined by a chain. A weakly connected component of G is a weakly connected subgraph
(V ′, (V ′ × V ′) ∩ E), with V ′ ⊆ V , such that any other subgraph (W, (W × W) ∩ E) of G
satisfying V ′ ⊂ W ⊆ V is not weakly connected.

Our digraph G can be weighted by associating a weight, a positive integer in this paper,
with each arc. We denote by ω(v, v′) the weight of the arc (v, v′) ∈ E. The weight of the
chain γ = v0, v1, . . . , vn joining the vertex v = v0 to the vertex w = vn is given by

ω(γ) =
∑

{vi ,vi+1∈γ : (vi ,vi+1)∈E}
ω(vi, vi+1) −

∑
{vi ,vi+1∈γ : (vi+1,vi)∈E}

ω(vi+1, vi).

We assume some familiarity with the main concepts in structural complexity, and refer the
reader to, e.g., [9] for a detailed exposition. The class (NP) P consists of those decision
problems solvable in polynomial time by (non)deterministic Turing machines. A polyno-
mial time many-one reduction from a decision problem Π to a decision problem Π ′ is a
deterministic polynomial time computable function f from the set of instances of Π to the
set of instances of Π ′ such that any instance I of Π has a positive answer if and only if
f (I) has a positive answer. Formally, we write Π �p Π ′ if there exists a polynomial time
reduction from Π to Π ′, and simply say “Π reduces to Π ′”. The decision problem Π is
NP-complete whenever Π ∈ NP and Π ′ �p Π , for every Π ′ ∈ NP. It is well-know that
an NP-complete problem admits a deterministic polynomial time algorithm if and only if
P = NP, a hardly believed event.

Some NP-complete problems have solution algorithms with the following property: if
certain bounds were imposed in advanced on the size of objects (e.g., numbers, sets car-
dinality) contained in input instances, then these algorithms would work in deterministic
polynomial time for the restricted problem. Algorithms of this type are called pseudo-
polynomial time algorithms. In many practical applications, such bounds on input instances
are actually satisfied. Thus, the possibility of finding a pseudo-polynomial time algorithm
for NP-complete problems can be well worth investigating.

To study the complexity of problems that are not decision problems, it is useful to intro-
duce the notion of NP-hardness. Roughly speaking, a problem is NP-hard if the existence of
a deterministic polynomial time algorithm for its solution would imply P = NP. More for-
mally, we need the notion of polynomial time Turing-reduction between problems whose
precise statement can be checked, e.g., in [9, Chapter 5]. Intuitively, we can say that there
exists a polynomial time Turing-reduction from a problem Π to a problem Π ′ whenever
there exists a deterministic algorithm A that solves Π by using an hypothetical subroutine
S for solving Π ′ (an oracle for Π ′) such that, if S were a polynomial time determinis-
tic algorithm for Π ′, then A would be a polynomial time deterministic algorithm for Π .
Formally, we write Π �T Π ′ if there exists a polynomial time Turing-reduction from Π

to Π ′, and simply say “Π Turing-reduces to Π ′”. The problem Π is NP-hard whenever
Π ′ �T Π , for every Π ′ ∈ NP.

In this work, we will prove the NP-completeness of some decision problems and the
NP-hardness of related optimization problems, thus stating that, very likely, they do not
admit efficient algorithms.

242 C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254
3. Difference covers

The problem of reproducing by differences sets of integers has been often considered in
the literature. In [18], the following problem is stated: given n � 0, find Δ ⊆ Zn such that
every element in Zn is obtained exactly once as difference modulo n of two integers in Δ.
The set Δ is called difference set. This problem has well-known relations with several
combinatorial topics. In particular, by using finite projective plane theory, the following
result is proved:

Theorem 3.1. [18] For any n = q2 + q + 1, with q prime power, there exists a difference
set for Zn of cardinality q + 1.

Since not for all n � 0 a difference set for Zn exists, a relaxation of the above problem
is studied in [6], where each element of Zn must be obtained at least once from Δ ⊆ Zn.
In this case, the set Δ is called difference cover. By using a result in [19], it is shown that

Theorem 3.2. [6, Theorem 2.4] For any n � 0, there exists a difference cover for Zn of
cardinality at most

√
1.5n + 6.

The problem of constructing difference covers shows up in many areas such as text
compression, code design, network theory, concurrent systems design, cryptography (see,
e.g., [5,7]).

A similar and well-studied problem on differences concerns the construction of Golom-
b’s rulers [1,4]. A Golomb’s ruler is a set B ⊂ N such that, for each pair a, b ∈ B with
a > b, the difference a − b cannot be obtained from any other pair in B . Even Golomb’s
rulers find a lot of applications in several areas such as radio astronomy, X-ray crystallog-
raphy, circuit layout, code design (see, e.g., [12,17]).

From a computational point of view, some sets for which Golomb’s rulers and difference
sets can be efficiently constructed are singled out in [3].

In what follows, we investigate some natural generalizations of the above problems on
differences [3,16], studying the complexity of related optimization problems.

3.1. Zn-difference cover

Let us first generalize the notion of difference cover by studying the reconstruction by
differences of subsets of Zn. Formally, we state that

Definition 3.1. The set Δ ⊆ Zn is a Zn-difference cover for the set X ⊆ Zn if, for each
x ∈ X, there exist two elements a, b ∈ Δ such that x = (a − b) modn.

By Theorem 3.2, there exists a Zn-difference cover of size
√

1.5n + 6 for any X ⊆ Zn:
clearly, a difference cover for the whole Zn is also a Zn-difference cover for any given sub-
set of Zn. However, we may be interested in finding a Zn-difference cover for X with the
smallest possible cardinality. This naturally leads to the following optimization problem:

C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254 243
MINIMUM Zn-DIFFERENCE COVER (MinDCmod)
INPUT: n ∈ Z+, X ⊆ Zn\{0}
OUTPUT: Δ = A ∪ {0}, with A ⊂ Zn, such that Δ is a Zn-difference cover for X

MEASURE: Cardinality of the Zn-difference cover, i.e., |Δ|
For technical reasons, we assume that the input subsets for MinDCmod do not contain 0.

This does not represent a restriction since any nonempty Zn-difference cover Δ clearly
generates 0 as d − d , for d ∈ Δ. Instead, we require that Zn-difference covers given as
output must contain 0. Even this can be assumed without loss of generality, by considering
the following “translation” lemma:

Proposition 3.1. Let Δ be a Zn-difference cover for X ⊂ Zn, and let a fixed a ∈ Zn. Then
the set Δ′ = {(d − a) modn: d ∈ Δ} is a Zn-difference cover for X as well.

Proof. In fact, if x ∈ X is obtained as x = (d − d ′) modn, for d, d ′ ∈ Δ, then we can also
write x = ((d − a) − (d ′ − a)) modn, with (d − a), (d ′ − a) ∈ Δ′. �

This means that, by choosing a as the minimum element of Δ, we can always obtain a
Zn-difference cover for X of the same cardinality as Δ, and containing 0.

Let δ
(n)
X denote one of the minimum Zn-difference cover for X ⊂ Zn. It is not hard to

see that

Lemma 3.1. (1 + √
1 + 4|X|)/2 � |δ(n)

X | � |X| + 1.

Proof. The upper bound follows trivially since any set together with 0, is a Zn-difference
cover for itself. The lower bound can be obtained by observing that the cardinality k of any
given Zn-difference cover for X must clearly satisfy k(k − 1) � |X|. �

By considering Lemma 3.1, it might be interesting to notice that the difference cover for
Zn proposed in Theorem 3.2 is optimal up to a multiplicative constant. Yet, it is not hard
to see that δ

(n)
Zn\{0} matches the lower bound in Lemma 3.1 if and only if it is a difference

set for Zn.
We find it useful to associate with every Zn-difference cover a weighted digraph as

follows

Definition 3.2. Given a Zn-difference cover Δ for X ⊂ Zn, its weighted digraph G(Δ,X)

has the elements of Δ as vertices and there exists an arc from d to d ′ of weight (d ′ −
d) modn if and only if (d ′ − d) modn ∈ X.

The weighted digraphs associated with minimum Zn-difference covers have the follow-
ing important connection property:

Proposition 3.2. Let δ
(n)
X be a minimum Zn-difference cover for X ⊂ Zn. Then, G(δ

(n)
X ,X)

is weakly connected.

244 C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254
Proof. Suppose, by contradiction, that G(δ
(n)
X ,X) consists of two or more weakly con-

nected components insisting on mutually disjoint sets Δ1, . . . ,Δk satisfying
⋃k

i=1 Δi =
δ
(n)
X . By translating as in Proposition 3.1, we transform each Δi into Δ′

i containing 0, and

such that |Δi | = |Δ′
i |. It is easy to verify that

⋃k
i=1 Δ′

i = Δ′ is still a Zn-difference cover

for X, and that |Δ′| < |δ(n)
X |, which is a contradiction. �

3.2. Z+-difference cover

We can rephrase Definition 3.1 in Z, and obtain

Definition 3.3. The set Δ ⊂ Z is a Z-difference cover for the set Y ⊂ Z if, for each y ∈ Y ,
there exist two elements a, b ∈ Δ such that y = a − b.

Let us now make some technical considerations as we did after MinDCmod problem
statement. Given a set Y ⊂ Z, define Ŷ = {|y|: y ∈ Y }. It is easy to see that Δ ⊂ Z is a
Z-difference cover for Y if and only if it is a Z-difference cover for Ŷ as well. Again, any
nonempty Z-difference cover clearly generates 0. Hence, we can restrict ourselves to search
Z-difference covers for subsets of Z+. Moreover, we can easily provide the analogous of
Proposition 3.1, for Z-difference cover translation:

Proposition 3.3. Let Δ be a Z-difference cover for Y ⊂ Z, and let a fixed a ∈ Z. Then the
set Δ′ = {d − a: d ∈ Δ} is a Z-difference cover for Y as well.

By choosing a as the minimum element of Δ, we can always obtain a Z-difference
cover for Y of the same cardinality as Δ, and containing nonnegative integers only plus 0.
All these considerations lead us to the following optimization problem in Z+:

MINIMUM Z+-DIFFERENCE COVER (MinDC)
INPUT: Y ⊂ Z+
OUTPUT: Δ = {0} ∪ B , with B ⊂ Z+, such that Δ is a Z+-difference cover for Y

MEASURE: Cardinality of the Z+-difference cover, i.e., |Δ|
Denoting by δY a minimum Z+-difference cover for Y , we get

Lemma 3.2. (1 + √
1 + 8|Y |)/2 � |δY | � |Y | + 1.

Proof. Again, the upper bound follows trivially. For the lower bound, it is easy to see
that the cardinality k of any given Z+-difference cover for Y must now satisfy k(k −
1)/2 � |Y |. �

Notice that δY matches the lower bound in Lemma 3.2 if and only if it is a Golomb’s
ruler.

Even with a Z+-difference cover Δ for Y , we can associate the weighted digraph
G(Δ,Y) as in Definition 3.2, but now edge labels are computed by simple differences,
i.e., if d and d ′ are vertices of the digraph, then there exists an arc from d to d ′ of weight

C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254 245
d ′ − d if and only if (d ′ − d) ∈ Y . Indeed, by using Proposition 3.3, we can suitably adapt
the proof of Proposition 3.2 to obtain

Proposition 3.4. Let δY be a minimum Z+-difference cover for Y . Then, G(δY ,Y) is weakly
connected.

This proposition enables us to provide an upper bound on the value of the elements of
minimum Z+-difference covers.

Proposition 3.5. Let Y = {y1, y2, . . . , ym} ⊂ Z+. Each element of a minimum Z+-
difference cover δY is less than or equal to mmaxi yi .

Proof. By Proposition 3.4, the digraph G(δY ,Y) is weakly connected. So, each value d ∈
δY is easily seen to be obtained as the weight of an elementary chain in G(δY ,Y) joining
vertex 0 to vertex d . Since the length of elementary chains does not exceed |δY | − 1, each
element of δY is less than or equal to (|δY | − 1)maxi yi . Then, the result follows from
Lemma 3.2. �
4. Pseudo-polynomial time algorithms establishing extrema

In this section, we give a useful characterization of those sets for which the cardinality
of minimum difference covers exactly matches the upper bounds given in Lemmas 3.1
and 3.2. More precisely, we state

Definition 4.1. A set E ⊂ Z+ (E ⊂ Zn) is a Z+-extremum (Zn-extremum) if and only if the
cardinality of a minimum Z+-difference cover (Zn-difference cover) for E equals |E| + 1.

In other words, an extremum is a set admitting trivial minimum covers consisting of the
set itself plus 0. The following theorem gives a characterization of Z+-extrema.

Theorem 4.1. Let Y = {y1, y2, . . . , ym} ⊂ Z+, and let a1, a2, . . . , am be variables on
{−1,0,1}. Then Y is a Z+-extremum if and only if

m∑
k=1

akyk = 0 ⇔ ak = 0, for every 1 � k � m.

Proof. (If) Suppose, by contradiction, that there exists a nonzero assignment for ak’s such
that

∑m
k=0 akyk = 0 and let, without loss of generality, am �= 0. We can construct a Z+-

difference cover Δ for Y by the following algorithm:

INPUT: Y = {y1, y2, . . . , ym}
1: Δ := {0};
2: for i := 1 to m − 1 do
3: begin
4: if ai = 0 then t := yi else t := ∣∣∑i

akyk

∣∣;
k=1

246 C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254
5: Δ := Δ ∪ {t};
6: end
7: output(Δ).

It is easy to see that the returned Δ is a Z+-difference cover for Y . In fact according
to the if-test at line 4, for every 1 � i < m, if ai = 0 then yi is placed in Δ, and it can
be obtained by the difference yi − 0. Otherwise, |∑i

k=1 akyk| is placed in Δ, and yi is
obtained by ‖∑i

k=1 akyk| − |∑i−1
k=1 akyk‖, where |∑i−1

k=1 akyk| has been already put in Δ

during the previous iterations of the for-loop. Finally, since am �= 0, we have in Δ the
value ym = |∑m−1

k=1 akyk| which can be obtained by difference with 0.
The resulting Δ has cardinality m, and this contradicts the fact that, being a Z+-

extremum, Y cannot have Z+-difference covers with less than m + 1 elements.
(Only if) Suppose that Y is not a Z+-extremum, i.e., |δY | � m. Then, the number of

vertices of the digraph G(δY ,Y) is at most equal to the number of its edges. By Proposi-
tion 3.4, G(δY ,Y) is weakly connected, and hence it must contain a cycle. This cycle can
be used to exhibit a nonzero assignment of ak’s yielding

∑m
k=1 akyk = 0 as follows: For

any edge labeled yi not in the cycle, set ai = 0. For edges in the cycle, first set a traveling
direction along the cycle itself, then let ai = 1 for those yi following such an orientation,
and let ai = −1 otherwise. �

For Zn-extrema, we can give an analogous characterization:

Theorem 4.2. Let X = {x1, x2, . . . , xm} ⊂ Zn, and let a1, a2, . . . , am variables on
{−1,0,1}. Then X is a Zn-extremum if and only if(

m∑
k=1

akxk

)
modn = 0 ⇔ ak = 0, for every 1 � k � m.

Proof. (If) As in the (If) part of Theorem 4.1 proof, with the only difference that operations
are now to be performed modn (n is given as input to the algorithm). In particular, the
statement at line 4 of the algorithm returning the difference cover now becomes

4: if ai = 0 then t := yi else t := (
∑i

k=1 akyk) modn;

(Only if) Analogous to the (Only if) part of Theorem 4.1 proof. Only, we now use
Proposition 3.2 to analyze the digraph G(δ

(n)
X ,X). �

In what follows, we use the characterization provided in the latter theorem to design
an algorithm testing—in time polynomial in n—whether a given subset of Zn is a Zn-
extremum. To this aim, we need the following

Proposition 4.1. Let (a1, a2, . . . , am), (a′
1, a

′
2, . . . , a

′
m) ∈ {0,1}m satisfying

(a1, a2, . . . , am) �= (a′
1, a

′
2, . . . , a

′
m).

C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254 247
(i) If X = {x1, . . . , xm} ⊂ Zn is a Zn-extremum, then(
m∑

i=1

aixi

)
modn �=

(
m∑

i=1

a′
ixi

)
modn.

(ii) If Y = {y1, . . . , ym} ⊂ Z+ is a Z+-extremum, then

m∑
i=1

aiyi �=
m∑

i=1

a′
iyi .

Proof. We just consider (i), since point (ii) can be proved analogously. Suppose, by con-
tradiction, that (

∑m
i=1 aixi) modn = (

∑m
i=1 a′

ixi) modn. Hence, we get

(1)

(
m∑

i=1

(ai − a′
i)xi

)
modn = 0, with (ai − a′

i) ∈ {−1,0,1}.

By setting bi = (ai − a′
i), we can rewrite Eq. (1) as (

∑m
i=1 bixi) modn = 0, with bi ∈

{−1,0,1}. Since X is an extremum, Theorem 4.2 ensures that this equation is satisfied
if and only if bi ’s are all 0. This clearly would imply (a1, a2, . . . , am) = (a′

1, a
′
2, . . . , a

′
m),

against the initial hypothesis. �
Proposition 4.1 enables us to give an optimal upper bound on the cardinality of subsets

of Zn to be extrema; a similar upper bound is stated for Z+-extrema as well:

Lemma 4.1.

(i) If X = {x1, . . . , xm} ⊂ Zn is a Zn-extremum, then m �
logn�.
(ii) If Y = {y1, . . . , ym} ⊂ Z+ is a Z+-extremum, then m < 2(1 + log(maxi yi)).

Proof.

(i) Proposition 4.1(i) ensures that the expression (
∑m

i=1 aixi) modn returns 2m different
values, one per each different choice of (a1, a2, . . . , am) ∈ {0,1}m. Since we are oper-
ating in Zn, clearly we have 2m � n which completes the proof.

(ii) By Proposition 4.1(ii), we obtain 2m � 2mmaxi yi � 2(maxi yi)
2, whence the re-

sult. �
We are now able to single out examples of Zn and Z+-extrema.

Example. Consider the set Eρ = {1, ρ1, . . . , ρα}, for any given integer ρ � 2. We can
prove that Eρ is a Z+-extremum, and a Zn-extremum for any n > (ρα+1 − 1)/(ρ − 1).

First, it is easy to see that
∑α

k=0 akρ
k = 0 if and only if every ak ∈ {−1,0,1} is 0.

Otherwise, we could write
∑

{i: ai=1} ρi = ∑
{i: ai=−1} ρi . Since any number has a unique

representation in base ρ, we would get a contradiction. By Theorem 4.1, this shows that
Eρ is a Z+-extremum.

248 C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254
To see that Eρ is a Zn-extremum for n = ρα+1−1
ρ−1 + 1, we apply Theorem 4.2, noticing

that
∑α

k=0 ρk = n − 1.

This example can be used to show the optimality of the upper bound given in
Lemma 4.1(i). In fact

Proposition 4.2. There exists a Zn-extremum of cardinality
logn�.

Proof. The set E2 = {1,2, . . . ,2α} is a Zn-extremum for n = 2α+1, as seen in the previous
example. Its cardinality is exactly
logn�. �

Clearly E2 also witnesses the optimality of the upper bound in Lemma 4.1(ii) up to a
multiplicative constant.

We are now ready to show that

Theorem 4.3. Deciding whether X = {x1, . . . , xm} ⊂ Zn is a Zn-extremum can be per-
formed in O(nlog 3) time.

Proof. Our decision algorithm sketched below has two phases. In the first phase, we sim-
ply test whether m >
logn�. If this holds true, we reject according to Lemma 4.1(i). Other-
wise, the second phase starts, where a nontrivial solution for the equation (

∑m
k=1 akxk) mod

n = 0, with ai ∈ {−1,0,1}, is searched. Theorem 4.2 ensures that such a solution does not
exist if and only if X is a Zn-extremum.

INPUT: n ∈ Z+, X = {x1, x2, . . . , xm /* recall that 0 /∈ X

1: if m >
logn� then
2: reject
3: else
4: begin
5: B := ∅;
6: for i := 1 to m do
7: begin
8: B+ := ∅;
9: B− := ∅;
10: for each b ∈ B do
11: begin
12: B+ := {(b + xi) modn} ∪ B+;
13: B− := {(b − xi) modn} ∪ B−;
14: end;
15: B := B ∪ B+ ∪ B− ∪ {xi, (−xi) modn};
16: end;
17: if 0 ∈ B then
18: reject
19: else
20: accept
21: end.

C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254 249
We briefly explain how the else-part of the algorithm works. Before entering the it-
eration on xi ∈ X at the for-loop at line 6, the set B contains all the possible values
(
∑i−1

k=1 akxk) modn, for a1, a2, . . . , ai−1 ∈ {−1,0,1} not all 0. During the iteration on xi ,
we update B to contain all the linear combinations involving also xi by summing (line 12)
and subtracting (line 13) xi to every element of B . Finally, we also put in B the two linear
combinations (

∑i
k=1 akxk) modn where ai = ±1, and ak = 0 for every 1 � k < i (line 15).

Thus, after scanning the whole X, we will have in B all the values (
∑m

k=1 akxk) modn

where ak’s are not all 0. According to Theorem 4.2, we reject or accept depending on
whether 0 belongs to B or not, respectively (if-test, line 17).

For the running time of this algorithm, we just observe that, after the kth iteration of the
outer for-loop (line 6), the cardinality of the set B is at most 3k − 1. Then, the number
Γ (k) of operations modn performed at lines 12, 13, 15 up to the kth iteration satisfies
Γ (k) � Γ (k − 1) + 2 · 3k−1 − 1, with Γ (1) = 1. Such a recurrence has solution Γ (k) �
3k − k − 1. Since k � m �
logn�, we get that the running time is O(nlog 3). �

We notice that the running time of the algorithm sketched in the proof of the previous
theorem is polynomial (in the length of the input, and hence efficient) if the cardinality of
the input set X is “the order of” nα , with constant 0 < α � 1. If this is not the case, our
algorithm needs exponential time. Thus, we have a pseudo-polynomial time algorithm for
testing Zn-extrema. This algorithm can be easily adapted to check also for Z+-extrema,
and this shows that

Proposition 4.3. Deciding whether a set Y = {y1, y2, . . . , ym} ⊂ Z+ is a Z+-extremum can
be performed in pseudo-polynomial time.

Proof. We can directly use the algorithm in Theorem 4.3 on input Y (without providing
n ∈ Z+). In the first phase, we check whether m � 2(1 + log(maxi yi)), in case rejecting
by Lemma 4.1(ii). Otherwise, we start the second phase for which it is not hard to verify
that the running time is O((maxi yi)

log 9). Clearly, if maxi yi = mO(1), we would obtain a
polynomial running time. �

The algorithms presented in the proofs of Theorem 4.3 and Proposition 4.3 can be
straightforwardly adapted to test whether sets are not extrema: it is enough to switch accep-
tance with rejection. This show that even non-extremity can be tested in pseudo-polynomial
time. This is probably the best we can achieve. In fact, in the next section, we are going to
show that testing whether sets are not extrema, both in Z+ and in Zn, is NP-complete.

5. Establishing non-extremity is NP-complete

We start by considering the characterization of Z+-extrema in Theorem 4.1 by which
deciding whether Y = {y1, y2, . . . , ym} ⊂ Z+ is not a Z+-extremum is equivalent to decide
whether there exists a nonzero assignment of ak’s, with ak ∈ {−1,0,1}, satisfying the
equation

∑m
akyk = 0. We call this latter decision problem Ass(−1,0,1).
k=1

250 C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254
To study the hardness of Ass(−1,0,1), we find it useful to introduce a more general
problem Sys(−1,0,1), where the input is a system of equations

S =
{

n∑
k=1

w
(t)
k xk = 0

}
0�t�n̂

in the variables xk ∈ {−1,0,1}, with coefficients w
(t)
k ∈ N, and with n̂ = nO(1). This prob-

lem asks whether there exists an assignment in {−1,0,1} of xk’s satisfying S and such that
not all xk’s are set to 0. We show that

Lemma 5.1. Sys(−1,0,1) �p Ass(−1,0,1).

Proof. We reduce the system of equations S = {∑n
k=1 w

(t)
k xk = 0}0�t�n̂ to a single equa-

tion E(x1, . . . , xn) = 0, such that any assignment in {−1,0,1} of xk’s is a solution of E
if and only if it is a solution of S . To this purpose, we set W = 1 + maxt

∑n
k=1 w

(t)
k , and

define E(x1, . . . , xn) = 0 as

(2)
n∑

k=1

w
(0)
k xk + W

n∑
k=1

w
(1)
k xk + W 2

n∑
k=1

w
(2)
k xk + · · · + Wn̂

n∑
k=1

w
(n̂)
k xk = 0.

Any assignment satisfying the system S satisfies such an equation as well.
Vice versa, suppose we have an assignment of xk’s satisfying Eq. (2). For the sake of

readability, let Hi = ∑n
k=1 w

(i)
k xk , so that we can rewrite Eq. (2) as

H0 = −W

(
n̂∑

i=1

HiW
i−1

)
.

This means that W divides H0, but since −W < Hi < W for each 0 � i � n̂, we must
conclude that H0 = 0. By iterating such a reasoning, we obtain that the assignment satis-
fying Eq. (2) satisfies each Hi as well.

We end by quickly noticing that computing E from S is easily seen to be done in poly-
nomial time. �

Now, we need to recall the well-known NP-complete problem Partition (see, e.g., [9,
Chapter 3]). Here, we formulate such a problem in a slightly modified but perfectly equiv-
alent version which is more suited to our purposes.

PARTITION

INPUT: Finite set Y = {y1, y2, . . . , ym} ⊂ Z+.
OUTPUT: Is there an assignment in {−1,1} of bk’s s.t.

∑m
k=1 bkyk = 0?

In other words, we ask whether Y can be partitioned into two subsets of “equal sum”.

Lemma 5.2. Partition �p Sys(−1,0,1).

C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254 251
Proof. Let Y = {y1, . . . , ym} ⊂ Z+ be an input instance of Partition. We construct the fol-
lowing system of m+1 equations in the 2m+1 variables {b1, b2, . . . , bm, c1, c2, . . . , cm, a}
ranging on {−1,0,1}:

SY =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑m
k=1 bkyk = 0

b1 + 2c1 + a = 0

b2 + 2c2 + a = 0
...

bm + 2cm + a = 0.

Now, notice that any solution for SY either has all the variables set to 0 (i.e., is the trivial
one) or is on {−1,1} only. In fact, take a solution σ where bi = 0, for a given 1 � i � m.
Since all the variables range only on {−1,0,1}, the corresponding equation bi + 2ci + a =
0 has a unique solution for a = 0 and ci = 0. In turn, a = 0 yields the equations bk +
2ck = 0, for 1 � k � m, giving that σ must set all the variables to 0. This reasoning shows
that any possible nontrivial solution for SY yields a solution in {−1,1} for the equation∑m

k=1 bkyk = 0, and hence represents a partition of Y .
Vice versa, it is clear that any possible partition of Y can be immediately transformed

into a solution for the corresponding system SY . It is enough to add a ∈ {−1,1}, and
ck = (−a − bk)/2 for every 1 � k � m.

The construction of SY from Y is easily seen to be performed in polynomial time, and
this completes the proof. �

We are now ready to prove the NP-completeness of testing non-extremity.

Theorem 5.1. Deciding whether a set Y = {y1, y2, . . . , ym} ⊂ Z+ is not a Z+-extremum is
NP-complete.

Proof. As above recalled, such a decision problem is equivalent to Ass(−1,0,1) for
the equation

∑m
k=1 akyk = 0. A polynomial time nondeterministic algorithm for solving

this latter problem simply guesses a nonzero assignment in {−1,0,1} for ak’s, and then
checks in polynomial time whether the assignment satisfies the equation. This shows that
Ass(−1,0,1) belongs to NP.

From Lemmas 5.1 and 5.2, we get that Partition �p Sys(−1,0,1) �p Ass(−1,0,1).
The result follows from the NP-completeness of Partition. �

This latter result enables us to obtain the NP-completeness even for testing non-
extremity in Zn.

Theorem 5.2. Deciding whether a subset of Zn is not a Zn-extremum is NP-complete.

Proof. By the characterization of Zn-extrema in Theorem 4.2, one may easily design a
nondeterministic polynomial time algorithm for testing non-extremity in Zn, thus setting
this problem in NP. To show its completeness, by Theorem 5.1, it is enough to exhibit a
reduction from testing non-extremity in Z+. Our reduction works as follows: given the

252 C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254
instance Y = {y1, y2, . . . , ym} ⊂ Z+, return the instance Y = {y1, y2, . . . , ym} ⊂ Zn, with
n = 1 + ∑m

i=1 yi . We must show that Y is not a Z+-extremum if and only if Y is not a
Zn-extremum, with n = 1 + ∑m

k=1 yk . To this purpose, we simply notice that, for every
assignment of ak’s in {−1,0,1}, we have

−n <

m∑
k=1

akyk < n.

Hence(
m∑

k=1

akyk

)
modn = 0 ⇔

m∑
k=1

akyk = 0.

By recalling the characterization of Z+ and Zn-extrema given in Theorems 4.1 and 4.2,
respectively, we get the result. �

6. The hardness of MinDC and MinDCmod, and open problems

Let us finally analyze the complexity of the optimization problems MinDC and MinDC-
mod presented in Section 3. The results in the previous section enable us to state that

Theorem 6.1. MinDC and MinDCmod are NP-hard.

Proof. Let us consider MinDC. Theorem 5.1 states that testing non-extremity in Z+ is
NP-complete. Thus, the claimed result can be shown by exhibiting a polynomial time
Turing-reduction from this decision problem to MinDC. It is easy to exhibit a Turing ma-
chine that decides in polynomial time whether a given Y ⊂ Z+ is not a Z+-extremum by
having an oracle for MinDC. First, we use such an oracle to compute δY , then we check
whether |δY | < |Y | + 1.

The NP-hardness of MinDCmod can be obtained by the same argument, using the NP-
completeness of testing non-extremity in Zn given in Theorem 5.2. �

For the sake of completeness, we are now going to exhibit a Turing-reduction from
MinDC to MinDCmod. To this purpose, we recall a well-known representation of Zn (see,
e.g., [10]) according to which the elements of Zn can be regarded to as points on a circle.
We designate a point to represent 0 followed by points 1,2, . . . , n − 1 placed at equal
distance to cover all the circumference. In this structure, sums and subtractions modn can
be performed by simply moving back and forth on the circle. The length of an interval
[a, b] in Zn is the length of the minimum arc joining a to b, and can be computed as
�(a, b) = min{(a − b) modn, (b − a) modn}.

Lemma 6.1. Let Y = {y1, y2, . . . , ym} ⊂ Z+, and set n = 1 + (m + 1)maxi yi . Then, for
each minimum Zn-difference cover δ

(n)
Y there exists an interval in Zn of length greater then

maxi yi not containing any element of δ
(n).
Y

C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254 253
Proof. Let δ
(n)
Y = {d1, d2, . . . , ds}, with d1 < d2 < · · · < ds , and let λ = max1�j<s(dj+1 −

dj), i.e., the maximal distance between two consecutive elements of δ
(n)
Y . If λ > maxi yi

there is noting to prove. Otherwise, since δ
(n)
Y is minimum, it must be that ds − d1 �∑m

i=1 yi � mmaxi yi , by using as argument the connectivity of the weighted digraph asso-

ciated with δ
(n)
Y (Proposition 3.2). This proves that �(d1, ds) > maxi yi . �

We are now ready to show that

Theorem 6.2. MinDC �T MinDCmod.

Proof. Let Y = {y1, y2, . . . , ym} ⊂ Z+ be an input instance for MinDC. We begin by setting
n = 1 + (m + 1)maxi yi . Then, from an oracle for MinDCmod, we obtain a minimum Zn-
difference cover δ

(n)
Y for Y . Now, by Proposition 3.1, we turn δ

(n)
Y into δ

(n)
Y g with the same

cardinality as δ
(n)
Y , so that 0 ∈ δ

(n)
Y g and the interval in Zn emphasized in Lemma 6.1 is

[g,0], with g the maximum element of δ
(n)
Y g . This gives that g � mmaxi yi and this fact

shows that, for any a, b ∈ δ
(n)
Y g , we have |a − b| � mmaxi yi < n. Then, in δ

(n)
Y g , the use

of modn to represent by difference the elements of Y is superfluous. Hence, δ
(n)
Y g is also a

minimum Z+-difference cover for Y . �
This Turing-reduction, together with the NP-hardness of MinDC, yields the NP-hardness

of MinDCmod too. From this approach, one can see that the result follows without ac-
tually using operations modn. Yet, the NP-hardness of MinDCmod does not imply the
NP-hardness of its restricted version where input instances are the whole sets Zn; estab-
lishing the complexity of this restricted version remains open.

However, as it is customary in complexity theory (see, e.g., [9]), we briefly investigate
the associated decision problem: inputs are the binary strings of the form 1n0〈k〉, where
1n = 11 · · ·1 (n-times) is the unary representation of the integer n, and 〈k〉 is the binary
representation of the integer k.

BOUNDED SIZE DIFFERENCE COVER (BsDC)
INPUT: 1n0〈k〉.
OUTPUT: Is there a Zn-difference cover Δ for Zn s.t. |Δ| � k?

It is easy to see that BsDC belongs to NP, and that it reduces to BsDC′, the same problem
where input instances satisfy k < n (for k � n, we always have a positive answer).

To study the complexity of BsDC, we need to recall the notion of sparseness [15]:
a set S ⊆ {0,1}∗ is said to be sparse if there exists a positive constant c such that
|S ∩ {0,1}m| � mc, for every m � 2. Let us now consider the set S[BsDC′] containing
the instances of BsDC′ with positive answer. For every size m = n + logk + 1 of input
instances, |S[BsDC′] ∩ {0,1}m| � k < n < m. This shows that S[BsDC′] is a sparse set.
From [15], we know that if a sparse set is NP-complete, than P = NP. Hence, if P �= NP,
the problem BsDC is not NP-complete. This leaves open the possibility of setting BsDC
in P, even if efficient algorithms for this decision problem do not necessarily imply efficient
solutions for MinDCmod restricted to sets Zn as input.

254 C. Mereghetti, B. Palano / Journal of Discrete Algorithms 4 (2006) 239–254
Acknowledgements

The authors wish to thank the anonymous referees for very helpful comments and valu-
able remarks.

References

[1] W.C. Babcock, Intermodulation interference in radio systems, Bell System Technical J. (1953) 63–73.
[2] C. Berge, Graphs, North-Holland, Amsterdam, 1985.
[3] A. Bertoni, C. Mereghetti, B. Palano, Golomb rulers and difference sets for succinct quantum automata,

Internat. J. Found. Comput. Sci. 14 (2003) 871–888.
[4] G.S. Bloom, S.W. Golomb, Applications of numbered undirected graphs, in: Proc. IEEE, vol. 65, 1977,

pp. 562–570.
[5] S. Burkhardt, J. Kärkkäinen, Fast lightweight suffix array construction and checking, in: Proc. 14th Annual

Symposium on Combinatorial Pattern Matching, in: Lecture Notes in Comput. Sci., vol. 2676, Springer,
Berlin, 2003, pp. 55–69.

[6] C. Colbourn, A. Ling, Quorums from difference covers, Inform. Process. Lett. 75 (2000) 9–12.
[7] C. Colbourn, J.H. Dinitz, D.R. Stinson, Applications of combinatorial designs to communications, cryptog-

raphy, and networking, in: Walker (Ed.), Surveys in Combinatorics, in: London Math. Soc. Lecture Note
Series, vol. 187, Cambridge Univ. Press, Cambridge, 1999.

[8] A. Daurat, Y. Gérard, M. Nivat, The chords’ problem, Theoret. Comput. Sci. 282 (2002) 319–336.
[9] M.R. Garey, D.S. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness, Free-

man, New York, 1979.
[10] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science,

Addison-Wesley, Reading, MA, 1998.
[11] J. Gruska, Quantum Computing, McGraw-Hill, New York, 1999.
[12] A.W. Lam, D.V. Sarwate, An optimum time hopping patterns, IEEE Trans. Comm. 36 (1988) 380–382.
[13] P. Lemke, S.S. Skiena, W.D. Smith, Reconstructing sets from interpoint distances, in: Discrete and Compu-

tational Geometry: The Goodman–Pollack Festschrift, in: Algorithms and Combinatorics, vol. 25, Springer,
Berlin, 2003.

[14] M. Maekawa, A square root N algorithm for mutual exclusion in decentralized systems, ACM Trans. Com-
puter Systems 3 (1985) 145–159.

[15] S.R. Mahaney, Sparse complete sets for NP: solution of a conjecture of Berman and Hartmanis, J. Comput.
Syst. Sci. 25 (1982) 130–143.

[16] C. Mereghetti, B. Palano, On the size of one-way quantum finite automata with periodic behaviors, Theoret.
Inform. Appl. 36 (2002) 277–291.

[17] J.P. Robinson, A.J. Bernstein, A class of binary recurrent codes with limited error propagation, IEEE Trans.
Inform. Theory 13 (1967) 106–113.

[18] J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer.
Math. Soc. 43 (1938) 337–385.

[19] B. Wichmann, A note on restricted difference bases, J. London Math. Soc. 38 (1963) 465–466.

	The complexity of minimum difference cover
	Introduction
	Preliminaries
	Difference covers
	Zn-difference cover
	Z+-difference cover

	Pseudo-polynomial time algorithms establishing extrema
	Establishing non-extremity is NP-complete
	The hardness of MinDC and MinDCmod, and open problems
	Acknowledgements
	References

