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Atypical chemokine receptors (ACRs) are cell surface receptors with seven transmembrane
domains structurally homologous to chemokine G-protein coupled receptors (GPCRs). However,
upon ligation by cognate chemokines, ACRs fail to induce classical signaling and downstream
cellular responses characteristic for GPCRs. Despite this, by affecting chemokine availability and
function, ACRs impact on amultitude of pathophysiological events and have emerged as important

molecular players in health and disease. This review discusses individual characteristics of the
currently known ACRs, highlights their similarities and differences and attempts to establish their
group identity. It summarizes the progress made in mapping ACR expression, understanding their
diverse in vitro and in vivo functions of ACRs and uncovering their contributions to disease
pathogeneses.
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Introduction

Directed movement of cells defines embryogenesis and impor-
tantly contributes throughout life to many physiological and
pathological processes. Among different molecules able to provide
directional cues and drive augmented-rate cell locomotion,
chemokines occupy a unique position [1]. The unparalleled
molecular diversity of these structurally homologous chemotactic
molecules [2] and the fact that chemokines act in congruent
manner, allows them to convey most diverse and subtle cellular
messages and orchestrate most intricate cellular moves [1].
Human chemokines are the products of 48 distinct genes.
However, due to existing polymorphisms, differential splicing, N-
and C-terminal enzymatic processing and also accounting for the
virally encoded chemokines, the number of functional chemokine
entities acting in humans well exceeds hundred different
molecules [3,4]. Chemokines transmit their signals through one
or more of 18 distinct heptahelical G-protein coupled receptors
(GPCRs), which can be triggered each by either one or up to ten
different chemokines, albeit with disparate potency, efficacy and
texture of resulting downstream cell responses [1]. Most chemo-
kines are uniquely recognized, if not by one, but by a set of
chemokine GPCRs. Therefore, despite enormous diversity, there is
little if any functional redundancy within the chemokine system
[1]. The emergence of alternative, “atypical” chemokine receptors
(ACRs) increased even further the interactive complexity within
the chemokine system [5,6]. ACRs are heptaspanning membrane
receptors homologous to chemokine GPCRs. But, because of the
modified or missing canonical DRYLAIV motif within the second
intracellular loop, they are unable to couple to G-proteins and fail
to induce the full spectrum of “classical” GPCR signaling and
cellular responses, including cell migration [5,6]. This led to their
exclusion, in part, from the systematic chemokine receptor
nomenclature and initial designation as “silent”. It is clear now
that ACRs can signal with their downstream biochemical cascades
corresponding to G-protein-independent signaling of GPCRs [7–9].
An important GPCR feature retained by ACRs is their ability to
efficiently internalize their chemokine ligands, hence they are also
called ‘interceptors’ (internalizing receptors) [5,10]. Currently the
ACR family comprises five receptors, Duffy Antigen Receptor for
Chemokines (DARC), D6, CXCR7 and CC-Chemokine Receptors like
1 and 2 (CCRL1 and CCRL2), which cover among them awide range
of chemokine ligands. In general, the ACR-mediated internaliza-
tion and subcellular localization of chemokines and the ultimate
fate of cognate ligands falls between two diametrically opposite
paradigmatic outcomes. On one side of the spectrum is the
lysosomal targeting and degradation of chemokines, the reason for
the popular designation of ACRs as scavenging “decoys” [6]. This
ACR function is represented most emphatically by D6 [11]. On the
opposite side is the transcytosis function allowing ACRs to
transport chemokines across biological barriers and concentrate
them in hard-to-reach microanatomical domains. This ACR
function is currently epitomized by DARC [12]. However, data on
the outcomes of chemokine interactions with ACRs are derived
almost entirely from in vitro studies in heterologous transfectants.
Therefore, true subcellular functions of ACRs may be different
in vivo and may vary depending on the cellular context.

Curiously, irrespective of either scavenging or transporting
chemokines, ACR activity may lead to the establishment of
chemokine patterns, which would not be able to form as a result
of the free diffusion of chemokines. Such functional chemokine
patterns, either soluble or immobilized [13], often referred to as
gradients, may be responsible in several in vivo settings for the
directionality of cell responses to chemokines. Therefore, even
those ACRs, which contribute to chemokine degradation, may
support directional chemokine-induced in vivo cell migration. In
addition to affecting chemokine positioning within tissues, ACRs
may influence the responses to chemokines by heterodimerizing
with chemokine GPCRs expressed in cis-geometry, thus modifying
their availability and signaling. ACRs may also interfere with or
consume secondary intracellular signaling molecules, β-arrestin in
particular. Such mechanism characterizes the function of C5L2, an
interceptor for chemoattractant C5a [14].

Chemokine GPCRsmay also exhibit the full spectrumof features
characteristic of ACRs. In some settings chemokine GPCRs are
uncoupled from G-proteins and downstream signaling e.g. in
response to physiological or pharmacological stimuli [15], in cell
senescence [16], or when expressed in particular cells [17]. Such G-
protein-“uncoupled” receptors were shown to scavenge or trans-
port chemokines [17,18]. However, the removal of cognate
chemokines from tissues is also an important, but often overlooked,
function of signaling chemokine GPCRs, as convincingly exempli-
fied by CCR2 [19]. Nevertheless, it is not GPCRs, but specialized
chemokine interceptors, the ACRs, which are positioned best to
regulate chemokine availability and create functional chemokine
patterns within tissue microenvironments. The highly conserved
structure of ACR orthologues and the co-evolvement of ACRs
simultaneously with chemokine GPCRs (both appeared in jawless
fish ca. 650 million years ago [20]) indicate an important non-
redundant nature of ACRs and the requirement of both of these
receptor types for optimal chemokine function in vivo.

Individual expression patterns of ACRs, also diverse ACR
activities, including various outcomes of their interactions with
chemokines and how these impact on chemokine functions, are
discussed in some detail below.
DARC, a blood group antigen

DARCwas initially described as the Duffy (Fy) blood group antigen
[21]. It consists of two major co-dominant alleles, FY*A and FY*B,
which constitute one of 26 currently recognized blood group
systems. The antigen was named after Mr. Duffy, a hemophiliac
first shown to develop antibodies to Fya+ erythrocytes [21]. The
Fya+ phenotype was described one year later in Mrs. Hahn, a
multiparawith anti-Fyb titers who had been exposed to fetal Fyb+
erythrocytes during pregnancies [22]. The two Fy alleles differ by a
single base substitution 306 G→A in codon 44 encoding glycine in
Fya and aspartic acid in Fyb [23]. In addition to Duffy “positive”
homozygous and heterozygous phenotypes, there is a remarkable
Duffy “negative” phenotype carried by the majority of individuals
of West African ancestry. It is determined by a single T to C
substitution at nucleotide −46 within the binding region of the
erythroid GATA1 promoter of FY*B [24]. This polymorphic change
terminates transcription of DARC in erythroid cells only [24] and
represents the third major allele, the erythroid silent FY*B(ES).
Therefore, Duffy “negatives” still bear DARC at non-erythroid sites
of its expression, on venular endothelial cells [25], Purkinje
neurons [26] and epithelial cells of kidneys and lungs [27].
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Two malarial parasites, Plasmodium vivax and knowlesi use
DARC to invade erythrocytes [28,29]. It was suggested that the
Duffy negative phenotype evolved to protect its carriers from vivax
malaria [28,29], which, accordingly, occurs seldom in Africa.
Nevertheless, recent epidemiological evidence suggests that such
resistance is not absolute. Some Duffy negative individuals on
Madagascar, inhabited by a mixed Duffy positive and negative
indigenous population, suffer from symptomatic vivaxmalaria and
carry parasites asymptomatically [30]. These findings suggest that
the failure of Duffy negative individuals to infect the anopheles
vector by vivax parasites may be an important component of the
resistance tomalaria by a population as a whole. Another rare FY*A
null mutation developed in Plasmodium vivax-endemic region of
Papua New Guinea causing two-fold depletion of Fya expression
and protection against vivax malaria [31]. Conversely to vivax,
Plasmodium falciparum does not require DARC for erythrocyte
invasion and therefore the Duffy negative phenotype does not
protect its bearers from falciparum malaria. A rare C286T
substitution in FY*B (FYX allele) leads to a “weak” Fyb expression
[32] while other rare polymorphisms cause a Duffy negative
phenotype [33–35].

HIV-1 also binds to DARC on erythrocytes allowing them to
transmit the virus to mononuclear and other susceptible blood
cells [36,37]. This mechanism of trans-infection may explain why
Duffy negative individuals, despite having a higher risk of
acquiring HIV, exhibit a slower disease progression [36], especially
when comparing the subgroups of leukopenic patients [38]. The
impact of Duffy negative phenotype on HIV infection has been
intangible in some cohorts [39–43].
Duffy antigen, receptor for chemokines

The observation that erythrocytes of Duffy-positive but not
negative individuals bind IL-8 led to the establishment of Duffy
antigen as a chemokine receptor [44–46]. DARC binds, albeit with a
broad range of affinities, 20 human inflammatory chemokines of
both CC and CXC families [44–48]. Initial cloning suggested that
DARC has nine transmembrane domains [49] and only later it was
modeled as a seven-spanner [50]. Characteristically, DARC lacks
completely the GPCR consensus motif DRYLAIV and fails to couple
to G-proteins and trigger classical GPCR signaling. Red blood cells
are considered incapable of endocytosis. Therefore, chemokines
associated with erythrocyte DARC remain on the cell surface and
potentially can be eluted by cognate chemokines or other
molecules, e.g. heparin or activated coagulation factors [51].
Conversely, when expressed in nucleated cells, DARC can
efficiently internalize cognate chemokines, a characteristic inter-
ceptor feature of ACRs [5]. In contrast to some ACRs, which in the
absence of ligands continuously recycle between the cell mem-
brane and intracellular vesicular compartments [52,53], DARC
internalization is induced by its ligation [12,54]. This chemokine-
induced response signifies a signaling event of yet unknown
molecular nature, which may involve β-arrestin, Rab GTPases and
kinases shown to be activated in GPCRs independently of G
proteins [7–9]. In contrast to D6, CXCR7 and CCRL1, all more or less
efficiently scavenge their cognate ligands [11,53,55,56], chemo-
kine internalization by DARC does not lead to their degradation.
Nevertheless, DARC-mediated chemokine endocytosis may re-
move chemokines from extracellular microenvironments. Such
depletion of extravascular chemokines by the endothelial cell
DARC may provide the mechanism how it negatively regulates
angiogenesis induced by ELR chemokines [57] and in the context of
tumors [58–60]. Alternatively, DARC can heterodimerize with
chemokine GPCRs and thus affect their responses to cognate
chemokines [61].

In addition to chemokines, DARC was suggested to bind in
trans-geometry CD82, a tetraspanin expressed by tumor cells [62].
Through this interaction DARC apparently inhibits tumor cell
proliferation and induces senescence [62]. Currently, it is not clear
if a direct molecular interaction between DARC and CD82 takes
place or CD82 is required for the organization of functional
membrane domains, which include molecules interacting with
DARC. Also, this study contains a conundrum. Human umbilical
vein endothelial cells were used as a source of DARC. This cell type
is normally completely devoid of DARC, in situ and in vitro.
Erythrocyte DARC regulates chemokine homeostasis

In concert with early ideas about the function of ACRs, it has been
assumed initially that the role of DARC is limited to negative
regulation of chemokine activities. This was concluded based on
the chemokine “sink” function ascribed to the erythrocyte DARC
[44] and corroborated further when DARC was shown to mitigate
pathological surges of circulating inflammatory chemokines and
dampen the ensuing systemic leukocyte activation [63]. Curiously,
by acting as a sink and protecting circulating leukocytes from
chemokine overstimulation and desensitization, erythrocyte DARC
can preserve leukocyte responsiveness to tissue-derived localized
pro-emigratory cues and enhance leukocyte emigration from
blood. However, systemic pre-exposure to chemokines may, on
the contrary, also prime leukocytes for a multitude of effector
functions [64,65], including enhanced chemokine-induced migra-
tion [66]. This means that erythrocyte DARC, by reducing plasma
chemokine levels, can also mitigate subsequent leukocyte
responses. These two diametrically opposite possible outcomes
may contribute to the complex and apparently conflicting
phenotypes of leukocyte recruitment observed in DARC deficient
mice [63,67–71]. The formula of DARC involvement is further
complicated by its ability in both humans [72] and mice [73] to act
as a chemokine depot and sustaining chemokine levels not only on
erythrocytes but also in plasma. To date it is not clear what
purpose is served by maintaining inflammatory chemokines in
blood, but it may have functional consequences [68]. Chemokines,
depending on their relative binding affinities for DARC, can shift
the levels of other erythrocyte-borne and free blood chemokines
with ensuing effects for leukocyte responses [68]. In a mouse
model of E. coli pneumonia the overproduction of CXCL5, a
chemokine with high affinity for DARC, resulted in saturation of
erythrocyte DARC and inhibition of CXCL1 and CXCL2 binding [68].
The increase in plasma levels of these chemokines caused
desensitization of the cognate receptor CXCR2 on neutrophils
and, as a consequence, decreased migratory responses.

Surprisingly little is known on how distinct characteristics of
chemokine homeostasis in Duffy-negative individuals impact on
the development of human diseases. Nevertheless, there are
correlates of Duffy negative polymorphism with incidences of
benign ethnic neutropenia [74] and asthma and high IgE [75].
Recently, remarkable difference in the abilities of human
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polymorphic DARC variants Fya and Fyb to maintain chemokine
plasma levels have been uncovered in genome-wide association
studies [51]. Mechanistically, it is not clear if this results from
differential chemokine affinities of polymorphic DARC variants or
for other reasons, e.g. levels of DARC expression.
DARC function in endothelial cells

Leukocyte egress from blood occurs predominantly in venules and
small veins where chemokines can be immobilized on the luminal
membrane of endothelial cells [76] by glycosaminoglycans
(GAGs), heparan sulfate in particular [77,78]. In order to appear
on the luminal side of the endothelium, tissue-derived chemokines
have to cross the endothelial cell barrier. This is achieved by active
transcellular transport targeting chemokines to the apical micro-
villi [79]. Heparan sulfate was shown to mediate chemokine
transcytosis [80] but it was also suggested that DARC, expressed by
venular endothelial cells [25,27,81] may participate in chemokine
binding and transport [25,82,83]. Recent in vitro studies unequiv-
ocally established DARC as a transcytosis receptor that transports
chemokines unidirectionally, from the baso-lateral to apical side
only, but not vice versa [12]. Accordingly, DARC expression
supports optimal chemokine-induced leukocyte migration in
vitro and in vivo [12]. Upregulation of DARC expression in veins
and its appearance in vascular beds usually devoid of it, was
observed in infection, inflammation and transplant rejection [84–
90]. Though, it is not clear if DARC overexpression in these lesions
is required for their development. Chemokine transcytosis by
DARC across venular endothelial cells also may provide a
mechanism of chemokine elimination from the tissues. Clearance
of chemokines, however, in the overwhelming majority of tissues,
is more likely to take place by diffusion between the endothelial
cells of blood capillaries or via the lymphatics. The initial afferent
lymphatics are completely devoid of DARC-immunoreactivity.
Conversely, a segment of lymphatic vessels, the podoplanin-dull
precollectors express DARC, suggesting its involvement in chemo-
kine mediated cell migration at this site [91]. It is unknown under
what circumstances, in response to which chemokines and by
what mechanism such trafficking may take place.
D6, a CC-chemokine scavenger

D6 is an ACR for at least twelve inflammatory CC chemokines and
has a high homology with their classical GPCRs [92]. Consistently
with being an ACR, D6 has DKYLEIV instead of the canonical
DRYLAIV motif. Therefore, no G-protein-mediated signaling is
initiated downstream of D6. But, remarkably, D6 may be not as
“silent”, as it has always been postulated but a permanently
“chitchatting” receptor. It was revealed that D6 constantly under-
goes phosphorylation at its C-terminus [93,94] putting it on a par
with continuously signaling virally encoded receptors KSHV-GPCR
and US28 [95,96]. It is of note that phosphorylation of D6 was not
observed in all studies [52]. However, it is unequivocal that D6 is
internalized, recycled and re-expressed constitutively, in either
presence or absence of cognate ligands [52,53,97]. Moreover,
chemokine uptake not only fails to downmodulate D6 or
desensitize it for subsequent chemokine binding, but actually
enhances the cell surface expression of D6 [53,97]. This is due to
translocation of D6 from intracellular rab4-, rab11- and transferrin
receptor-positive early and recycling endosomes, where it loca-
lizes under basal conditions [52,53,97]. These are the intracellular
compartments where the chemokine cargo also initially appears
following its internalization by D6. Subsequent transfer into late
endosomes leads to dissociation of chemokines and their degra-
dation in lysosomes, whereas D6 is recycled back to the cell
surface. Repeating this cycle allows D6 to massively scavenge CC
chemokines [11,52,53,97]. The residues within the C-terminus of
D6 determine its intracellular itinerary and also the resistance to
desensitization but, not the internalization itself [94].

A characteristic feature of almost all D6 ligands is a proline in N-
penultimate position [98]. However, this residue is required only
for chemokine degradation initiated by D6, but not for their
binding to D6 [99]. Using full length inactive “precursor”
chemokine CCL14(1–74) and its N-terminally processed forms,
active CCL14(9–74) and CD26-cleaved inactive CCL14(11–74), it
was shown that, whereas all three molecules bind D6, only the
active agonist CCL14(9–74) is degraded and can induce the
upregulation of D6 expression. Similar observations were made
for D6-degraded CCL3L1, poorly degraded CCL3 and non-degraded
CCL3(5–68), all binding to D6 [99]. This experimental work has
profound implications for understanding the function of D6. It
shows that chemokine binding to D6 can be dissociated from
downstream events of ligand-induced upregulation of D6 surface
expression and targeting chemokines for lysosomal degradation.
Together with previous findings [94], this implies that chemokines
signal through D6, with ligand-induced receptor upregulation
being the main cellular effect [99]. Proline residue in penultimate
N-terminal position of chemokines [99] and the serine-rich C
terminal tail of D6 [94] are required, but the molecules involved in
downstream signaling remain elusive. It is also not clear what is
the fate of those D6 ligands, which are not degraded as a
consequence of their binding.
D6 expression and function in vivo

The mapping of D6 mRNA expression in human and mouse tissues
revealed its presence in many organs and tissues including lung,
liver, spleen, kidney, heart, muscle, brain, placenta, gut and skin
[92,100]. Immunohistochemistry and in situ hybridization showed
that in several of these tissues D6 is expressed by the endothelial
cells lining afferent lymphatic vessels [101] whereas in situ
chemokine binding studies [102] suggested that D6 in these cells
is functional [82,101]. However, it is not known what is the
mechanistic role of D6 at this site of intense cell traffic and fluid
diffusion. Tissue-derived chemokines, like other small molecules,
are swept through the lymphatics into the draining lymph nodes
where they can be loaded onto the endothelial cells of high
endothelial venules and induce leukocyte homing into the lymph
nodes [103,104]. D6 expressed on the luminal side of the
lymphatic endothelium may scavenge chemokines during their
passage along the lymphatics. This would limit the “remote
control” function of tissue chemokines in the lymph node. Also,
it is possible that chemokine neutralization by D6 prevents
leukocyte activation and consequently adhesion to the endothelial
lining of lymphatic vessels promoting their channeling into the
lymph nodes. Alternatively, by scavenging chemokines D6 on
lymphatics may lead to the establishment of their putative
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gradients, which either induce leukocyte entry into the lymphatics
or prevent leukocyte return back into the tissue. Additionally, D6 is
expressed by several leukocyte subtypes, B-cells, dendritic cells,
macrophages and monocyte subsets [105]. Chemokine scavenging
by leukocyte D6 may provide the most efficient way to reduce the
chemokine contents within the inflammatory lesions and thus
contribute to the resolution of inflammatory pathologies
[105,106]. Pro- and anti-inflammatory mediators regulate the D6
levels on leukocytes leading to teleologically consistent ensuing
effects. In vitro stimulation of monocytes and macrophages with
major pro-inflammatory cytokines leads to a decrease in D6
expression, whereas treatment with TGFβ results in its increase
[105,107]. Because chemokine GPCRs and ACRs can heterodimer-
ize [61,108] it is also possible that D6 expressed by leukocytes
directly influences chemokine-induced leukocyte responses me-
diated via their GPCRs.
Pathophysiological role of D6: lessons from D6
deficient mice

The use of D6 knockout mice enabled an array of in vivo studies
probing the function of this ACR in different diseases. Under
normal conditions D6 deficiency does not convey any apparent
disadvantages. However, when challenged with various stimuli D6
knockout mice develop increased inflammatory responses. For
example, following topical treatment with phorbol ester or
Freund's adjuvant injection D6−/− mice show augmented skin
inflammation as compared to wild type controls [109,110]. Also, in
two-step chemical skin carcinogenesis model, D6 expression
suppressed tumor development by scavenging chemokines and
mitigating the recruitment of tumor-promoting inflammatory
cells [111]. There are other examples of a protective function of
D6 in murine pathologies. In experimental Mycobacterium tuber-
culosis infection D6 expression prevented the lethal outcome seen
in D6 knockouts by suppressing the chemokine and cytokine
storm and reducing leukocyte infiltration into the lungs and other
organs [112]. A similar mechanism of action by D6 was implicated
in a protective effect in a model of carbon-tetrachloride induced
liver injury [113].

In placenta, an organ with the highest D6 expression, it is on
syncytiotrophoblasts, cells covering placental villi [114,115].
Additionally, decidua and gestational membranes express D6
abundantly throughout the human pregnancy [115]. It is easy to
envision how a chemokine scavenging receptor placed at the
foeto-maternal interface would protect the fetus from maternal
chemokines. To investigate this, two types of pathologies leading
to fetal loss in humans were modeled in D6 deficient mice. On one
hand, it was revealed that placental inflammation induced by LPS
or anti-phospholipid antibodies was more massive in D6 knockout
mice and resulted in a significant increase in fetal loss as compared
to wild type controls [114]. On the other hand, placental D6 was
shown to ward off maternal immune assault against an allogeneic
fetus [115]. D6 deficient embryos transferred into allogeneic
surrogate mothers were resorbed and showed abnormalities
more often than their wild type counterparts [115].

However, not in all experimental models D6 plays an
unequivocally protective role. D6 is expressed in the brain,
primarily by astrocytes [116], ideally positioned to scavenge
pathogenic inflammatory chemokines. Yet, D6 knockout mice are
relatively protected from experimental autoimmune encephalitis
induced by myelin oligodendroglial glycoprotein immunization
[117]. This is explained by a reduced aptitude of D6 deficient mice
to generate adaptive immune responses due to a failure of
dendritic cell trafficking through the lymphatics [117]. D6 is
expressed in murine colon and upregulated in colitis induced by
dextran sulfate sodium (DSS) [118]. Nevertheless, the overall
pathology of DSS-colitis was significantly reduced in D6 deficient
mice as compared to wild type controls, though accompanied by
increased IL-17A and IFNγ production and elevated numbers of
Tγδ cells [118]. Another report showed in a similar model that D6
deficient mice have increased levels of chemokines, enhanced
recruitment of leukocytes and a more severe colitis [119]. As gut
bacteria are an important pathogenic factor in DSS colitis, the
difference between these two opposite outcomes may be due to
divergent bacterial flora colonizing mice at two research sites.
Another rather ambiguous picture of D6 contribution to disease
emerged in an ovalbumin-induced asthma model [120]. On one
hand, D6 could scavenge some but not all of its cognate
chemokines and reduced leukocyte emigration into the lungs. On
the other hand, the presence of D6 resulted in increased airway
hyperreactivity, by a yet unknown mechanism [120].
D6 in human disease

Much less is known about the contribution of D6 to human
diseases. D6 is expressed in several human tissues and organs and
is upregulated in different inflammatory and autoimmune dis-
eases. However, it is not clear if and how such increased levels of
D6 expression may contribute to the pathogenesis. Like all ACRs,
D6 is expressed in human malignancies including angiosarcomas
[101] and breast cancer, where its expression levels showed
positive association with a disease free survival [121]. It was
shown recently that one out of four genetic variants of D6
correlates with the level of liver inflammation in hepatitis C [122].
Because the known nucleotide polymorphisms of D6 are within
regulatory regions, they cannot affect protein structure and
chemokine binding, but may influence D6 expression [122].
Accordingly, D6 mRNA expression was higher in patients with a
mild liver disease [122]. It would be of interest to explore how
these D6 polymorphisms affect the outcome in other human
diseases.
CXCR7, amultifunctional ACR for CXCL12 and CXCL11

CXCR7was originally identified as a GPCR from a dog thyroid cDNA
[123] and known for many years as an orphan receptor RDC1. It
was suggested to be a chemokine receptor based on sequence
homology and its genomic localization [124] and deorphanized as
a receptor for CXCL12 and CXCL11 [125,126]. Despite its inclusion
in the systematic chemokine receptor nomenclature, CXCR7 has
DRYLSIT instead of the canonical DRYLAIV motive and functions
more as an ACR than a GPCR. Accordingly, the initial findings of
CXCR7 signaling and involvement in mediating cell migration
[125] could not be confirmed by the subsequent studies [108,126–
129]. Nevertheless, alternative CXCR7-mediated signals have been
observed with the downstream cellular responses coupled to the
control of cell survival and adhesion [126,130–132]. These
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observations may be linked to the ability of CXCR7 to recruit β-
arrestin resulting in MAP-kinase activation [133–135]. In addition
CXCR7 can heterodimerize with signaling CXCR4 leading to
modulation of CXCL12-induced responses downstream of Gαi

[108,128,135]. The physiological significance of such heterodimer-
ization remains to be established. Possible signaling properties
aside, the main function of CXCR7 is likely to be, in line with its
ACR nature, in sequestration of CXCL12 and possibly CXCL11. This
function of CXCR7 its essential in controlling the formation of
CXCL12 gradients required for the optimal migration of primordial
germ cells in zebrafish [127,136,137]. Internalization, sequestra-
tion and scavenging of CXCL12 and CXCL11 by CXCR7 was shown
in transfectants as well as mouse heart valves and human
umbilical vein endothelial cells [56]. The latter may explain a
feature observed in CXCR7 deficient mice involving heart valve
malformation, which causes perinatal or early postnatal lethality
[108,138]. Scavenging function of CXCR7 was also reported in
breast cancer cells [139]. It is not clear how this activity in cancer
cells translates into tumor growth and metastasis-promoting
effects exerted via CXCR7 in several experimental tumors,
including breast and lung cancer [131]. In addition to tumor
parenchyma, CXCR7 is also overexpressed in the tumor vascula-
ture [131]. CXCR7 expression in vascular endothelium may have a
function distinct from chemokine scavenging. Specific luminal-to-
abluminal transcytosis of CXCL12 was shown to take place in bone
marrow endothelial cells and attributed to be a function of CXCR4,
the only known receptor for CXCL12 at the time [17]. It is possible
that CXCR7, by analogy to DARC, may also be involved in
chemokine transcytosis.

Additionally, CXCR7 was also described on subsets of B cells
[108,140] and in T cells [125,141], findings contested following a
failure to detect CXCR7 mRNA or protein in normal circulating
human and murine leukocytes [142]. The latter work importantly
highlights the fact that most of the commercially available anti-
CXCR7 antibodies recognize unrelatedmolecules. However, CXCR7
expression still may be induced in bone marrow derived cells by
stimuli present in specific tissues microenvironments or under
pathological condition. For example CXCR7 is upregulated via
Nuclear factor-kB pathway during malignant transformation of
hematopoietic cells [143]. Additionally, CXCR7 expression has
been described in cerebral cortex and bone osteocytes [138].
Functions of CXCR7 in these cellular contexts remain unknown.
CCRL1, an ACR for homeostatic chemokines CCL19,
CCL21 and CCL25

Chemokine (CC-motif) receptor-like 1 (CCRL1) [144] has been
referred to as CCR10 [145], CCR11 [146] and recently often as CCX-
CKR [145]. CCRL1 binds with high affinity homeostatic chemokines
CCL19, CCL21 and CCL25 [145,147]. These ligands of CCR7 and
CCR9 play pivotal roles in the establishment of functional
microenvironments within primary [148,149] and secondary
lymphoid organs [150]. CCRL1 has a modified DRYLAIV motif,
DRYVAVT in humans and DRYWAVT in mice. Accordingly, it is
unable to induce Ca-flux in transfectants [147]. Similarly to D6, it
acts as chemokine scavenger causing ligand internalization and
subsequent lysosomal degradation [55]. However, the efficiency of
chemokine degradation via CCRL1 is hardly comparable to that by
D6 [55]. Other more subtle effects may also be mediated by CCRL1.
In polar cells it may function similarly to DARC [12] transporting
and presenting its cognate chemokines. Presently it is unknown
how homeostatic chemokines produced in the tissues are
transported to the luminal endothelial cell surface [151]. Such
transport across the high endothelial venules of the lymph nodes
has been shown for CCL19 [152] and is likely to occur for CCL21
[103].

Absence of CCRL1 in mice leads to strong increase in blood
CCL21 titers and increase in the levels of CCR7 ligands CCL19 and
CCL21 in lymph nodes but not in spleen [153]. Despite this, CCRL1
deficient mice have reduced lymph node cellularity [153] and
lower level steady-state DC lymph node homing [154]. This may
reflect a failure of CCRL1 knockouts to establish pro-migratory
chemokine patterns around lymphatics and within lymph nodes,
although, desensitization of CCR7 following exposure to its ligands
cannot be excluded. Conversely, transgenic overexpression of
CCRL1 in epithelial cells of the embryonic thymus mitigates the
homing of thymic precursors into the anlage [154]. These findings
are in line with the scavenging function of CCRL1. In an
experimental model of autoimmune encephalomyelitis (EAE) the
parameters of the antigen-specific immunity are clearly dimin-
ished in the draining lymph nodes of CCRL1 deficient mice but are
enhanced in the spleen leading to earlier onset of the disease [153].
It is not known if other immune-mediated diseases may also be
modulated by CCRL1. Also, parameters and correlates of CCRL1
expression and function in human disease are meager. CCRL1 is
upregulated in the bronchial lavage cells of sarcoidosis patients,
epithelial cells in particular, but the effect on the disease
progression is unknown [155]. Even the expression pattern of
CCRL1 in normal human andmurine tissues is not entirely clear. In
EGFP-reporter mice the CCRL1 expression was shown to be
restricted to non-hematopoietic cells including lymph node
marginal sinuses, thymic epithelial cells and skin keratinocytes
[154]. However, other reports indicate a much broader expression,
at least at the mRNA level, including on subsets of leukocytes and
in the intestine, heart and lung [144,145,147]. Increased CNS levels
of CCL21 in CCRL1 deficient mice with experimental EAE [153]
indicate a function of this ACR in the brain, where it is expressed in
astrocytes and microglia [156]. This CNS expression pattern is
shared with a new ACR, CCRL2, which is upregulated in astrocytes
and microglia in response to LPS [157] and in the early onset EAE
[158]. Human CCRL2 has been shown to bind CCL19 [159] and
could potentially cooperate with CCRL1 in the regulation of the
CCR7 axis.
CCRL2, the new member of the ACR family

Chemokine (CC-motif) receptor-like 2 (CCRL2) is also known as
L-CCR (LPS-inducible CC chemokine receptor related gene) [160],
HCR (human chemokine receptor) [161] and chemokine receptor
on activated macrophages (CRAM-A and CRAM-B). The latter
designations reflect two alternatively spliced variants of CCRL2
resulting in molecules with different N-temini, but apparently
identical properties [162]. The canonical DRYLAIV motif is
changed to QRYLVFL in human and to QRYRVSF in mouse.
Accordingly, most [159,163], but not all studies [162,164],
describe a lack of CCRL2-mediated Ca-flux and cell migration.
Nevertheless, phosphorylation of extracellular signal-regulated
kinases 1 and 2 has been observed downstream of CCRL2 [165].
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The exact mapping of interactions of CCRL2 with chemokine
ligands remains controversial. An early study reported CCRL2
binding of CCL5 as well as several CCR2-ligands including CCL2
[164], with resulting signaling and cell migration, which,
however, could not be independently confirmed [163]. Never-
theless, leukemic B cells, which carry CCRL2 but not any other
cognate CCL5 receptor, increase in response to CCL5 the
expression of CCRL2 on their surface. This response may be
similar to D6 upregulation after exposure to cognate chemokines
[97]. A more recent study showed binding of CCL19 to human
CCRL2 [159] which would align this interceptor with CCRL1 in
modifying the functional CCR7 axis. Based on the reported
expression pattern of CCRL2, one can predict that it has very
broad regulatory functions. It is expressed in many organs and
tissues and by a variety of cells including astrocytes andmicroglia
[157,158], lung bronchial epithelial cells [166], macrophages
[160], T cells and hematopoietic precursors [167], neutrophils
[162], mast cells [163], B-cells [165] and dendritic cells [168]. The
two independently developed CCRL2 knockout models [163,168]
should facilitate the efforts aimed at understanding the function
of this enigmatic ACR. Data obtained in ovalbumin-induced
asthma model in CCRL2 deficient mice show that CCRL2 supports
the migration of antigen-laden lung DC into the mediastinal
lymph nodes and this step is required for the full-blown disease
manifestation [168]. Another function of CCRL2 involves its non-
chemokine ligand, chemerin. CCRL2 expressed by mast cells can
immobilize chemerin on cell membrane but does not internalize
it [163]. It was hypothesized that CCRL2 on mast cell surface
concentrates chemerin and presents it in trans-geometry to its
signaling receptor ChemR23 on antigen presenting cells. This
results in enhanced skin swelling and increase in leukocyte
infiltrates into the lesions of passive cutaneous anaphylactic
reactions induced by a low dose of antigen-specific IgE [163].
Concluding remarks and future directions

The studies performed during the last several of years and
reviewed here helped to propel ACRs from the fringes of
chemokine research into its mainstream. It is clear now that
ACR activities contribute to the majority of chemokine-driven in
vivo phenomena and provide an important molecular bias to the
pathophysiological processes that take us from the womb,
through years of balanced wellbeing and via countless avenues
of possible diseases, ultimately to the grave. Also, the early
general perception of ACRs as savage chemokine decoys has been
replaced by more deferential awareness and deeper understand-
ing of their multiple and versatile functions. The recent discovery
of the ACRs for homeostatic chemokines, progress in defining
various functional facets of both “old” and “new” ACRs and
mapping their expression in health and disease brought us much
closer to deciphering “chemokinese”, the chemokine-based
universal language of cell communication. Nevertheless, despite
giant leaps in understanding ACRs, we are still not entirely sure
about the grammatical rules of their involvement. Future studies
should unravel plentiful obscure aspects of ACR biology including,
but not limited, to the following issues. 1). Many but not all
chemokines have been assigned a cognate ACR. The outstanding
chemokines either may not require an ACR for their in vivo
activities or their interactions with ACRs have not yet been
uncovered. No comprehensive ligand mapping of ACRs has been
attempted. This allows for a possibility that remaining chemo-
kines may bind known ACRs. Alternatively, some of the orphan
heptaspanning membrane receptors may be chemokine ACRs. It is
clear that potential interactions of chemokines with putative
ACRs cannot be unveiled using traditional methods of GPCR
deorphanization, which rely on functional cell responses as
readouts. Prospective binding studies of isotope- or fluoro-
chrome-labeled chemokines to orphan heptaspanning receptors
may uncover new chemokine ACRs. 2). It is not known what
possible signaling pathways are initiated through ACRs and how
broad is their spectrum for any individual ACR. It is also not clear
if and how some of ACR-derived signals affect the availability and
function of the intracellular intermediates downstream of GPCRs.
Future systematic analysis of ACR interactomes may bring new
understanding of the biochemical cascades unleashed by ACRs
including those potentially harnessing GPCRs-mediated signals.
3). Upon their internalization, different ACRs complete dissimilar
intracellular itineraries. To date it is not apparent which
molecular cues allow ACRs to couple with alternative vesicular
pathways. Yet unidentified functional moieties within the
intracellular portions of ACRs may select putative secondary
effectors and determine subsequent differential targeting into
distinct endosomal compartments. Also, it is not clear how much
the nature of ACR itself versus the subcellular makeup of any
particular cell type affect the outcome of chemokine interactions
with ACRs. Comparative functional studies of wild type and
altered ACRs expressed in various host cells may answer these
questions. 4). In addition to paradigmatic scavenging and
transport, there may be other potential outcomes of chemokine
binding by ACRs. These may include chemokine immobilization
within functional microdomains of the cell membrane or nuclear
targeting of chemokines. Morphological studies using high-
resolution subcellular imaging may suggest such new ACRs
activities. 5). Interrogating the functions of ACRs in knockout
mice leaves questions open about the relative involvement of
ACRs on different cells and at different sites as well as potential
compensatory roles of other ACRs. The generation of conditional
knockout mice, still outstanding for most ACRs, will allow
selective ACR gene deletion in different organs and tissues.
6). On the whole, still very little is known about the exact
contribution of ACRs to human diseases. Immunohistochemical
mapping of ACR expression in human tissues has been challenged
by the general lack of suitable specific antibodies recognizing
ACRs in tissues. Potential discovery of polymorphic variants of
ACRs with altered function and their correlations with courses
and outcomes of human diseases would facilitate our under-
standing of different roles ACRs play in pathogenesis. This, in turn,
should allow the design of new therapeutic strategies targeting
ACRs for treatment of human diseases with significant chemokine
contribution to their pathogenesis. Such approaches may involve,
depending on the context, either interference with pathological
ACR expression and function or, on the opposite, the induction
and up-regulation of ACRs expression.
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