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Abstract-This paper is concerned with a new method to solve a linearized inverse problem for 
one-dimensional parabolic equations. The inverse problem seeks to recover the subsurface absorption 
coefficient function baaed on the measurements obtained at the boundary. The method considers a 
temporal interval during which time dependent measurements are provided. It linearizes the working 
equation around the system response for a background medium. It is then possible to relate the inverse 
problem of interest to an ill-posed boundary value problem for a differential-integral equation, whose 
solution is obtained by the method of quasireversibility. This approach leads to an iterative method. 
A number of numerical results are presented which indicate that a close estimate of the unknown 
function can be obtained based on the boundary measurements only. @ 2002 Elsevier Science Ltd. 
All rights reserved. 
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1. INTRODUCTION 

In this paper, a second generation of the so-called ‘elliptic systems method’ (ESM) [1,2] for 
the numerical solution of parabolic inverse problems is developed. The first generation of the 
ESM only allowed one to image locations of the unknown small size targets, while the unknown 
coefficients within those targets were imaged poorly, with their values being at least ten times 
less than the correct ones [l]. It is shown in this paper, however, that the second generation 
method enables one to image with good accuracy both the locations of targets, and the values 
of unknown coefficients within them. In this approach, the difference between maximal values of 
computed coefficients within targets and their correct values usually does not exceed 25%. 

Inverse problems for parabolic equations appear in various fields with different applications. 
For instance, in electronic devices, the vital metal parts are routinely tested for coating quality 
or hidden corrosion or adhesion problems [3]. In thermal systems, various thermal properties, 
including heat convection coefficient [4] and temperature dependent thermal conductivity [5] are 
often unknown and need to be recovered. Recent applications also include the optical imaging 
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where the interest is to recover abnormal anomalies in human tissues [6,7]. In most applications, 
one is led to excite the system by an external means and record the associated system response. 
The collected data is then used to recover the sought-after unknown. For example, in applications 
involving nondestructive evaluation (NDE), also known as thermal imaging, one makes use of laser 
sources to illuminate an external surface of the material in order to induce thermal waves. The 
interactions of the thermal wave field with the material inhomogeneities give rise to the scattered 
fields which propagate and are ultimately measured at the surface of the material. 

Motivated by numerous physical applications, inverse problems for parabolic equations have 
received considerable attention. Recent results include an analytical method for the solution of 
the overdetermined inverse heat conduction [8], application of neural networks for the recovering 
of electrical conductivity profile [9], a spectral method for solving the sideway heat equations [lo], 
and a discrete diffusive model for the recovery of the absorption coefficient from diffused reflected 
light [ll]. Also, additional methods for various applications include nonlinear optimization using 
genetic algorithms [12], Marquardt’s procedure [13], and thermal wave slice tomography [14]. 
Recent analytical results have also been reported which deal with the existence and uniqueness 
of the solution to the inverse problems involving such systems [15-171. 

The purpose of this paper is to develop a new method based on quasireversibility. It can be 
considered as an alternative to optimization baaed methods. In most optimization based methods, 
one seeks to minimize a cost functional which is a measure of the error. It leads to an iterative 
algorithm which often requires a large number of iterations for satisfactory convergence [18,19]. 
The present method assumes that the unknown function is close to a known background field. 
It is then possible to treat the linearized problem. The method uses the given data and, through 
an appropriate change of function [1,2,20], relates the inverse problem at hand to an overspec- 
ified boundary value problem (BVP) for an integro-differential parabolic equation. The present 
algorithm uses the method of quasireversibility [21] to solve the associated BVP, after which it 
can readily solve for the sought-after unknown coefficient. It also leads to an iterative algorithm, 
however, it requires a far fewer number of iterations for convergence than optimization based al- 
gorithms. We have considered one-dimensional [22] and two-dimensional [18] domains and, using 
optimization based algorithms, we needed at least 1800 iterations for satisfactory recovery. The 
present algorithm requires about 150 iterations. 

In Section 2, we present the formulation and apply the method of quasireversibility to obtain 
the solution to the associated BVP. In Section 3, we use a number of numerical examples to 
discuss the algorithm in detail. In particular, we study applications from heat conductions as 
well as optical tomography, and Section 4 is devoted to closing remarks. 

2. PROBLEM STATEMENT AND QUASIREVERSIBILITY 

Consider a physical system for which the state u(t, X) is governed by a parabolic equation given 

by 
Ut = U,, - U(Z)U, t E [O,r], z E [O,el, (1) 

with a Robin boundary condition at x = 0 and Neumann boundary condition at x = e, 

u,(t, 0) + cuu(t, 0) = 0, a, 4 = f(t), 

where constant o 2 0, and initial condition 

where, u(t,~) is the local temperature in heat conduction problems [23], and the light intensity 
in the case of optical tomography [24]. The boundary conditions at both ends can be altered 
according to the applications. The medium is excited by a specified flux at one boundary, i.e., 
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x = e. If the light intensity at both boundaries, ~(t, 0) and u(t, fZ), in addition to the flux ~,(t, 0) 
are recorded, i.e., 

then the inverse problem for the above equation is to recover the absorption coefficient a(x) based 
on the known applied flux and the measurements collected at the boundaries. 

It is worthwhile to mention here uniqueness results for this inverse problem; we refer to The- 
orem 9.2.1 in [25] and Theorem 4.7 in [26] for additional details. These results are valid if 
functions gi(t) and 93(t) belong to the range of a Laplace-like transform. That is, there should 
exist certain functions sj such that 

In this case, the above inverse problem can be reduced to a similar problem for the hyperbolic 
equation u,, = vu,, - a(x)w via inversion of this transform (although the inversion procedure is 
unstable, but it is useful for the proof of a uniqueness result). The point here is that proofs of 
uniqueness results are more advanced for the hyperbolic inverse problems as compared with their 
parabolic counterparts. Thus, using uniqueness theorems for the hyperbolic case, one can prove 
uniqueness results for our target inverse problem in the following two cases: 

(i) IO(X) z 0, and 

(ii) f0(x) # 0 on P,4. 

Let uo(t, cc) be the field due to an assumed value for the absorption coefficient Q(X), which 
is related to the actual absorption coefficient a(z), by a(x) = Q(X) + h(z), where h(z) is the 
unknown perturbation. So, so(x) is our guess for the background function, and 12(x) is an 
unknown perturbation of the background. We will use linearization with respect to h(x). Hence, 
we assume that h(z) is much smaller than uo(x), i.e., Ilhll~~lo,el < Ila~ll~~l~,~l. Therefore, uo(t, Z) 
is the solution of the equation 

Uot = u0s.Z - ao(2)2Lo, (2) 

with the same boundary conditions as those for equation (1). 
The equation for the error, i.e., v(t,x) = ~(t,x) - ~o(t,x), can be obtained by subtracting 

equation (2) from equation (I). This leads to 

Vt = v,, - uo(x)w - h(x)u. (3) 

Linearization of equation (3) around uo leads to 

vt = v,, - uo(x)v - h(x)urJ. (4) 

The product h(x)ue suggests rewriting equation (4) in terms of a new function H(t, Z) = u/7~o - 1, 
which leads to 

Ht = Hz, + 2H,% - h(x). (5) 

It is important that 
H(x,O) = 0. (5’) 

Equation (5’) is obviously true, if fog # 0 on [0, a]. In the case fog = S(X -x0), equation (5’) 
was proven in [l] for the case of the Cauchy problem for the parabolic equation. However, it is 
rather difficult to prove equation (5’) for other possible scenarios, if assuming, for example, that 
the domain for the variable 2 is bounded and fo(x) = 6(x--x0) or fo(x) = 0. Thus, similar to (21, 
we treat equation (5’) as a conjecture in such cases. Equation (5) still has two unknowns, namely, 
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H(t,z) and h(z). However, h(z) is not a function of time, and if we differentiate equation (5) 
with respect to time, then we obtain 

Ft = Pz, +2-& [zJut~~(r,z)dr], where P(t,z) = Ht(t,z). 

This reduces the original inverse problem to an integro-differential equation with a Volterra-like 
integral for one unknown function, namely, P(t,z). Once the solution for P&z) is obtained, 
then the unknown perturbation h(x) is found by integrating equation (5) from Tl to T2, i.e., 

Ht - H,, - 2H,% 
t 

dt, where H(t,x) = 
s 

P(T, 5) d7. (7) 
0 

The boundary conditions for the function P are provided by noting that the domain is accessible 
at both boundaries, therefore, the intensities and the fluxes are known. Once an initial absorption 
function is used, then the error in the intensities at the boundaries, i.e., v(t,O), v(t,e), and the 
error in the fluxes vz(t, 0), v%(t, e) can be obtained. These in turn provide boundary conditions 
for the function H(t,z), 

H(t,O) = s, H (t o) = vlz(t, O)uo(t, 0) - $4 O)%(t, 0) 
I , 

u;ct, 0) 
7 

, 

with similar relations for the boundary at x = e. Differentiating the boundary condition (8) with 
respect to time, we obtain the boundary conditions for the P(t, x), according to 

f’(t, 0) = Wt, 01, w, e) = W, e), %(t, 0) = Hz&, 01, Pz(4 e) = Hzt(4 e). (9) 

Note that equation (6) for P(t, x) is only of second order. However, we need to satisfy two bound- 
ary conditions on each side. Therefore, the boundary conditions are over-specified. Moreover, 
the initial condition P(0, x) is unknown. Evaluating equation (5) at t = 0, we obtain 

P(O,x) = Ht(O,x) = -h(x), GO) 

which is indeed the unknown function. Therefore, we are faced with solving an ill-posed problem 
(6), (8), and (9) for the function P(t,x). Expanding equation (6) leads to 

I 
t 

pt = P,, + 2P,g f 24 P, dt, 
0 

g(t,x) = 2. (11) 

This formulation was used in [1,2], where integrals were eliminated through truncated generalized 
Fourier series with respect to time (see the Introduction), and a Newton-like iterative process was 
used to deal with nonlinear dependence of the function u(t, x) from the perturbation term h(x). 
Now, however, we solve this problem without an elimination of the integral, which is similar to 
the idea of [20], where an inverse problem for a wave-like equation (with attenuation) in frequency 
domain was considered. So, to solve the BVP, we apply the method of quasireversibility (211. 
Rewriting equation (11) in a compact form, we obtain 

s t AP=2jr P, d4 
a d2 d 

where A= - - - - 2g-. 
0 at ax2 ax 

In the method of quasireversibility, instead of solving equation (12) for P(t, x), we solve 

-c2Ptt + AP + $*AP = 2-+ 
s 

t 
Pz dt, 

0 

w-4 

(13) 
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where the operator A’ is formally adjoint to the operator A, and small numbers e1 and ez are 

regularization parameters. In the limit of ~1, ~2 + 0, the solution to the above equation converges 

to the solution of the original equation in equation (ll), at least in the case when the integral is 

not present in equation (11) [21]. The corresponding initial and final condition are given by [21] 

P(O,z) - e2~(O,z) - $dP(O,x) = PO(Z) -P;(X), t = 0, (14) 

c2$&r) + $dP(?‘,x) = 0, t = T, (15) 

where Pa(x) = P(0, X) is the initial condition for P(t, x), which is related to the unknown h(x) in 
equation (lo), thus unknown. The function P;(X) is any function in Lz[O,!]. According to [21], 
the choice of P;(x) will have influence on the solution P(t,x) near the initial line t = 0 in a 
neighborhood of 0( ,/$, for larger t, the effect of P,*(X) will diminish as ~1, ~2 -+ 0. Therefore, 
in the calculations for the first three examples, we choose P,*(x) = PO(Z), so the right-hand side 
of equation (14) is homogeneous. 

An alternative initial condition for equation (14) would be to use equation (10) instead, as is 
the case in Examples 4 and 5 below. Since we have no exact information on h(x), initially, we 
can set h(x) = 0, then as an iterative inversion algorithm progresses, updated information on 
h(x) = hupdated (x) can be used as the boundary condition 

P(O,x) = -hupdated(x), (14’) 

where, initially, h”pdated (x) = 0. We use equation (14’) in numerical Examples 4 and 5 below. 
The term PA leads to a fourth-order differential operator which enables us to enforce both 

boundary conditions on either side of the domain. Expanding equation (13), we obtain t t t -iptt + 7718 + 772p;c + 773pm! + 774ptz + pm, = 775 J pz dx+776 J Pm dx + 777 J Pm, dx, (If-9 
0 0 0 

where C = (1 + ~1~2) and 

771 = 61 + a?,, g’uo2, 

UO 

772 = -2Elg + $7, - Qwz + %z,, 

773 = -El + 29, - 4g2, r/4 = 49, 

775 = -at - %?tm + Qd/t + &ltz, 

q6 = 49% - %tz, 777 = -Qt. 

Therefore, instead of solving equation (11) for P(t, x), we are led to solve an elliptic boundary 
value problem depicted in Diagram A. 

The solution of this problem gives an approximation to the function P(t, x). This problem is 
well-posed and the solution is accurate everywhere except near a region close to the t = 0 and 
t = T boundaries [21]. Now we have the following iterative inversion algorithms. 

An Inversion Algorithm Based on Quasireversiblity 

(1) 

(2) 

(3) 

(4) 

(5) 

Assume an initial absorption coefficient, Q(X), and solve for the field due to aa , i.e., 

uo(t, x). 
Use the given measurements and obtain boundary condition for P(t, x), i.e., equations. 

@L(9). 
Use the method of quasireversibility, i.e., equation (16), to solve for P(t, x), and in turn, 
obtain H(t,x) using H(t,x) = JiP(~,x)dr. 
Obtain the perturbation h(x) using equation (7), and update according to al(z) = Q,(X) + 

h(x). 
Repeat the process (l-4) until satisfuctoq convergence is achieved. 
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c2g(T,x)+$dP(T,x)=O t l 

Eqn. (16) 

) P(O, x) - &O, x) - ;dP(O, x) = 0 

Diagram A. 

PZ 

P 

+ 
X 

In Step (4), we have to choose Tl, Tz away from a boundary layer of thickness of at least 
O(,,&) from both t = 0 and t = T time lines. This is needed to avoid the influence of specific 
boundary condition (14) and (15) or (14’). At every iteration, the error can be computed and, 
as the iteration proceeds, it can be monitored for satisfactory reduction. It is our numerical 
experience that this iteration scheme converges. However, at this point, we cannot provide a 
rigorous proof of this fact. In the next section, we use a number of numerical examples to explain 
the algorithm in detail. 

3. NUMERICAL IMPLEMENTATIONS AND EXAMPLES 

For numerical implementation of the proposed inversion algorithm, high-order finite difference 
schemes for parabolic equations are used to discretize the partial differential equations [27]. The 
algorithm is composed of assuming an initial guess a,-,(z), for the absorption coefficient and then 
solving for the perturbation II(X), which is then used to update the assumed guess according to 
U,(X) = ai_l(z)+h(~). Once a background absorption function is assumed, then the field, uo(t, .z.), 
clue to Q(X) is obtained. This involves the numerical integration of the parabolic equation given 
in equation (1). An implicit Crank-Nicolson time integration, together with a fourth-order finite 
difference spatial discretization leads to an accurate approximation. Once the background field 
7Lg(t,x) is known, then, using the given data, the error v at the boundaries can be obtained. 
With the known field uo(t, 2) due to the assumed a~, the function g(t, z) = ~uo,~/~uo can also be 
computed. The discrepancies at the boundaries furnish the boundary conditions for t)he P(t, X) 
according to equations (8),(g). F or all the numerical results in this paper, the values of t,he 
parameters are given by ~1 = ~2 = 10e5. There was little sensitivity to the values of these 
parameters. We obtained essentially the same results for lO_’ > ~1 = 6’~ > l@. 

Given the boundary conditions for the variable P(t, x), the m&od of quRsireversibility is used 
to find an approximation for the function P(t, x) inside the domain. It is composed of solving the 
elliptic boundary value problem given in equation (l(i). U.. smg at least a second-order accurate 
finite difference approximation for the terms in equation (16) 1 et t d s us to t,hc discretizntion given 

l,Y 

(17) 
Ptt = & @+I - 2P,” + p;‘-1) , 

P, = +& (P;” - p;l-1) ) 
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1 
P, = - 

2Ax 

P 
1 

zzzz = - Ax4 

pm = j-& 
x t 

[( 
Ppf-2P;+l + Pf’+i’ + > ( 

p,?‘_l - 2p,3 + p/+l + p,j-i’ _ 2p;-’ 
> ( 

Pij+l - P/_l ) 
> 

PZ+2 -4P,+,f6Pj-4Pj_,+P;_, , 
> 

08) 

where At and Ax are the step size in time and space. The approximation leads to a stencil of 
the form as shown in Diagram B. 

i,j+1 

i- 2,.i 

i,j-1 

Diagram B. 

The boundary conditions are imposed according to 

P(jAt,O) = P;, Pz(jAt,O) = & (-3P; + 4P; - Pi) , 

P(jAt,e) = Pj+l, P&At, e) = & (3PZ+, - 4P;z + Pi_,) , 

where n is the number of equal intervals in space. The initial condition in equation (14) simplifies 
to 

at.? 
2Ax2 ‘-’ 

l+rlr2+&$+ 
+ g$P/_l + 

Also, the condition at t = T in equation (15) simplifies to 

At --- 
2Ax2 

where m is the number of time intervals. One way to solve the boundary value problem in 
equation (16) is to simply move all the terms to the left-hand side and invert a very big matrix. 
However, due to the integral terms on the right-hand side, the associated matrix would be a dense 
matrix and the inversion would be quite time consuming. An alternative approach would be to 
formulate an iterative algorithm in which the integral terms are kept on the right-hand side. In 
this case, the above discretization leads to a linear system of equations given by 

(21) 
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where the vector Pk contains the unknown function Pi at nodal points. The matrix I’ is the 
finite difference approximation of the terms on the left, and the matrix A is the finite difference 
approximation of the integral terms on the right. For this case, the matrix P is now a large but 
very sparse matrix, and special routines developed for sparse matrices can be used to effectively 
solve the associated linear system [28]. We use the routine DSLUGM from the SLATEC library. If 
the grid size in space and time are Ni and Nj, then the matrix l? is of the size (N, x Nj) x (Ni x Nj) 
and has w ll(Ni x Nj) nonzero entries. For the numerical examples in this paper, the iterations 
start from a zero initial guess PO = 0, and we need no more than three iterations for convergence. 
Therefore, we have an outer iteration to update the o(x) according to o(x) = Q,(Z) + h(z), and 
an inner iteration to solve for the P(t, z). 

EXAMPLE 1. Consider a one-dimensional heat conduction problem, in which there exists a tem- 
perature dependent heat generation. In this case, the conduction of heat is modelled by equa- 
tion (1) with the unknown function a(z) having a positive sign. This situation appears in a 
number of physical applications including the study of polymers [29], thermal analysis of super- 
conductors [30], and biomedical heat generation [31]. For this case, the forward problem is given 
by the parabolic equation given by 

Ut = 21,, + a(z)u, t E [0,0.6], 5 E [O,l.O], 

%(& 1) = f(r), u(t, 0) = 0.1, 

u(0, X) = 0.1. 

For the inverse problem, the measured data at the boundaries are provided according to 

Note that we have a nonzero initial condition and a Dirichlet type boundary condition at x = 0. 
The heat is added to the system through the flux boundary condition at x = 1.0 according to 
f(t) = exp(-(t - .2)2/.005). Then, using the same numerical scheme, the flux at x = 0 and the 
temperature at x = 1 are calculated and are provided for the inversion. 

The spatial domain is divided into 60 equal intervals and the time domain [0, r] is divided into 
150 equal intervals. At every iteration, the algorithm uses the given data and obtains boundary 
conditions for the P equation according to equations (S),(9). Figures 1 and 2 show the boundary 
conditions for the P equation for the first outer iteration, and Figure 3 shows the solution of 
the BVP in equation (16), i.e., P(t, x), after three inner iterations. The solution is accurate 
everywhere, except for a narrow region close to the initial and final conditions. 

0.8 

0.6 

0.4 

0.2 

0 

0 0.1 0.2 0.3 

Time 

0.4 0.5 

Figure 1. The boundary condition for the P(t, 2) at z = 0 for the first iterations in 
Example 1. 
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0.2 I I I 1 

-0.5 ’ I I 1 I 
0 0.1 0.2 0.3 0.4 0.5 

Time 

Figure 2. The boundary condition for the P(t, I) at 2 = e for the first iterations in 
Example 1. 

935 

P(W 

0.16 

1 
L 

0.12 
0.08 X‘ 

Figure 3. The solution of the BVP in equation (16) for P(t,z) for the first outer 
iterations after three inner iterations for Example 1. 

The algorithm then proceeds to compute the function H(t,s) according to equation (7) after 
which it can solve for the perturbation h(z), from equation (7). For this case, the interval [Ti, Tz] 
is chosen as [0.15,0.25]. In the first example, the function to be recovered is given by 

a(z) = 1, z E [0,0.48) U (0.62, l], 

a(z) = 2, 2 E [0.48,0.62]. (22) 

Figure 4 shows the convergence of the unknown function for the first 100 outer iterations. It also 
shows the actual function. Observe that the maximal value of the reconstructed function U,(X) is 
about 1.5, which is 75% of the target. The anomaly is located with good accuracy, although its 
image is ‘diffusive’, probably because of the diffusive character of the physical process. Figure 6 
shows the reduction in the relative value of the error as a function of the number of iterations. 
The relative error is the total error divided by the error for the first iteration, The error for each 
iteration is given by 

Error = 2 (yi (jAT) - ‘11, (jAT,0))2 + 5 (~2 CAT> - u(W",~))~. 

j j 

The quantity Error0 is the above quantity for the first iteration. 

EXAMPLE 2. In this example, we use the algorithm to recover a heat generation function given 

by 
a(z) = 1, z E [0,0.15) U (0.25,0.75) U (0.85, l], 

a(z) = 2, 5 E [0.15,0.25] U [0.75,0.85]. (23) 
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44 

1.8 

1.6 

1.4 

1.2 

1 

0 0.2 0.4 0.6 0.8 1 
X 

Figure 4. The convergence of the unknown heat generation function in Example 1. 

2 

1.8 

1.F 

a(x) 1.4 

1.2 

1 F 

0 0.2 0.4 0.6 0.8 1 

X 

Figure 5. The convergence of the unknown heat generation function in Example 2. 

1 

10 20 30 40 50 60 70 80 90 100 

Number of Iterations 

Figure 6. The reduction in the error computed at the boundaries for Examples l-3 
as a function of the number of iterations. 
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Figure 5 shows the convergence of the unknown function for a number of iterations. In both 
cases, the algorithm can recover a close approximation to the unknown function after a hundred 
iterations. The recovered function is more accurate if the anomaly is close to the boundaries 
where the data is being collected. In both cases, the results can also be improved by continuing 
the iterations. We next consider the effect of noise in the data. 

EXAMPLE 3. Consider the problem of recovering the unknown function given in Example 2 and 
assume that the given data is noisy. For this problem, the measurements are the flux at 5 = 0 
and the temperature at x = 1. Figure 7 shows the given data in which we have used a random 
number generator [32] to model the presence of noise. This was an additive noise with a zero 
mean with uniform distribution whose variance is equal to M 5.E-5. Before using the given data, 
we use a three-point averaging approximation given by fi = (1/3)(f,_i +fi + fi+i), to somewhat 
smooth out the noise. Note that this is the crudest approach for filtering out the noise. Once 
the data is smoothed out, it can be readily differentiated by a finite-difference method to provide 
the necessary boundary conditions for the associated (BVP). Figure 8 shows the convergence of 
the unknown function for the noisy data. Compared to Figure 5, the result loses accuracy at 
the midpoint in the domain, but the algorithm can still recover a close estimate of the unknown 
function. Again, both locations of the target and the maximal values of the coefficient U(Z) within 
them are imaged with good accuracy. In particular, those maximal values differ from the correct 
ones by not more than 25%. 

0.4 

0.35 

0.3 

0.25 
a s 0.2 

3 0.15 
‘b 
z 0.1 

0.05 

0 

-0.05 

-0.1 1 I I I I I 

0 0.1 0.2 0.3 0.1 02 0.6 

Time 

Figure 7. The collected data that are corrupted with noise in Example 3 

0 0.2 0.4 0.G 0.8 I 
x 

Figure 8. The convergence of the unknown heat generation function for the noisy 
data in Example 3. 
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Figure 6 shows the reduction of the error for the first three examples. The error is the differ- 
ence between the given data at the boundaries and the calculated data from the system as the 
function u(2) is updated after each iteration. For the case of noisy data, the error does not im- 
prove after 50 iterations. Figure 6 shows that the reduction in the error is not always monotonic. 
In optimization based methods, the algorithm seeks to minimize a cost functional which always 
includes the error. As a result, using such an algorithm [18], the error is reduced monotonically. 
However, in the present method, we deal directly with the given data. In the next two examples, 
noise is not introduced into the data. 

EXAMPLE 4. We next consider a specific problem involving optical tomography with applications 
in medical imaging [1,6,7,21]. The mathematical model is given by equation (1): 

ut = Du,, - u(x)u, t E [O,T], x E p,e1, 
uz(t,e) = f(t), u,(t, 0) + au(t, 0) = 0, u(O,x) = 0, 

where D is the diffusion coefficient. For human tissues, these values are given by D M 0.075(mm2/ 
ps), (Y = 5(l/mm), and a M O.O009(l/ps) for healthy tissues, where ps stands for picosecond 
= 10-12. If there exists an anomaly inside the domain, then the the absorption coefficient jumps 
to a value of about twice its normal amount, and the problem in medical imaging is to look for 
subsurface anomalies based on the data collected at the boundaries. The domain is excited by a 
specified flux f(t) at IC = C, i.e., f(t) = exp(-((t - 1500)2/300000)), and the data are collected 
at both boundaries. For our purpose, the length e = 5 cm is appropriate. The time Y- should be 
large enough for the excitation to reach the other end of the domain. We use r = 150OOps. In 
optical tomography, for the first 200 N 300 ps, there is not enough time for the excitation at x = e 
to reach the boundary at x = 0, and the data for these initial times is corrupted. We use the 
value of zero for the first 300 ps. Note that, in this case, the sampling of the domain starts from 
a zero initial condition, i.e., ~(0, x) = 0. As a result, applying the algorithm in its present form 
leads to numerical divergence at t = 0. The divergence occurs when evaluating the coefficient 
terms in equation (16). This is due to the presence of zero initial condition. As a result, we 
slightly modify the algorithm as follows. 

At every outer iteration, we need to solve the equation for P(t,x). This is done by inner 
iterations in which equation (21) is solved. For the special case of u(O,x) = 0, this iterative 
process fails to converge in a thin region close to t = 0. To overcome this divergence, we use the 
first iteration for P(t, x) to generate the H(t, x), and in turn, the perturbation h(x). Note that 
the initial condition for P(O,x) is indeed P(O,x) = -h( x ) f rom equation (10). Therefore, when 
performing the inner iterations, after the first inner iteration, we can use the boundary condition 
given in equation (14’), instead of the condition at t = 0 given in equation (14). This stabilizes 
the inner iterations and it converges after no more than three inner iterations. 

We consider the recovering of an absorption coefficient given by 

u(x) = 0.0009, x E [0,0.7) U (1.2,3.7) u (4.2,5], 

a(z) = 0.0018, z E [0.7,1.2] U [3.7,4.2]. 

This function closely models the existence of two anomalies centered at 0.95 and 3.95. The spatial 
domain is again divided into 60 equal intervals and the time domain [0, T] is divided into 150 equal 
intervals. We start the outer iterations by assuming an initial guess for the absorption coefficient 
Q(X) = 0.0009. Figure 9 shows the recovering of the unknown function with two anomalies. 
The number of iterations needed for a satisfactory convergence is more than the heat conduction 
problems in Examples 1-3. The algorithm can recover a good estimate of the unknown function 
after r 250 iterations. Figure 10 shows the reduction of the error as a function of the number of 
iterations. 
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Figure 9. The convergence of the unknown absorption function in Example 4. 
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Figure 10. The reduction in the error computed at the boundaries for Example 4 as 
a function of the number of iterations. 

4. DISCUSSION 

The method uses the data collected at the boundaries and, in general, the results are more 
accurate if the anomaly is close to a boundary. This was also the case when we considered 
similar problems using an optimization based algorithm [18]. In this paper, we used a very 
crude method to smooth out the noise, and as a result, the presence of the noise affects the 
accuracy of the results and somewhat increases the number of iterations needed. However, the 
method can still recover a good estimate of the unknown functions. A similar observation of 
accurate imaging of both locations of the anomalies and the values of h(z) within them was 
made in [20]. We note, however, that in previous works [1,2] on the ESM, only locations of 
the anomalies were imaged accurately, whereas values of the unknown coefficients within them 
were not calculated with good accuracy. Therefore, the second generation of the ESM, in which 
a BVP for an integro-differential equation is solved directly, rather than by an elimination of 
the integrals through truncated generalized Fourier series, has a clear advantage over the first 
generation of this method. Using the present algorithm, the computational time is considerably 
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lower. This is due to the fact that it requires a fewer number of iterations. We have considered 
one-dimensional [22] and two-dimensional [18] domains and, using optimization based algorithms, 
we needed at least 1800 iterations for satisfactory recovery. The present algorithm requires about 
150 iterations. In addition, at every iteration, the present algorithm seeks the solution to a BVP 
which requires the inversion of a large but sparse matrix. The algorithm uses an efficient method 
specifically developed for sparse matrices. 

In this paper, we presented a new method for one-dimensional parabolic inverse problems. 
The method requires temporal measurements obtained at the boundary. Since the method of 
quasireversibility [4] was developed for the solution of such problems for PDEs without integrals, 
our approach uses a modification of this method to solve that BVP, after which it can readily 
recover the unknown coefficient. The modification of the method of quasireversibility is done by 
the introduction of inner iterations for each outer iteration to deal with the integrals. Numerical 
results indicate that no more than three inner iterations are required for convergence at each 
iterative step of the outer iterations. Numerical results also indicate that an accurate estimate 
of the unknown coefficient can be recovered after about 150-200 outer iterations. 

We considered two different applications with different initial and boundary conditions. For 
application in optical tomography, the algorithm is slightly modified to handle the divergence 
that can occur due to the physical constraints. Numerical results indicate that the algorithm can 
effectively recover the unknown function based on boundary measurements. 

REFERENCES 

1. M.V. Klibanov, T.R. Lucas and R.M. Frank, Fast and accurate imaging algorithm in optical/diffusion 
tomogrophy, Inverse Problems 13, 1341-1361 (1997). 

2. M.V. Klibanov and T.R. Lucas, Numerical solutions of a parabolic inverse problem in optical tomography 
using experimental data, SIAM J. Appl. Math. 59, 1763-1789 (1999). 

3. S.K. Bruke, Eddy-current inspection of cracks in a multilayer conductor, Journal of Applied Physics 67 (l), 
465-76 (1990). 

4. T.J. Martin and Dulikravich, Inverse determination of steady heat convection coefficient distribution, Journal 
of Heat Pansfer 120, 328-334 (1998). 

5. K.J. Dowding, J.V. Beck and B.F. Blackwell, Estimating temperature-dependent thermal properties, Jounzal 
of Thewnophysics and Heat Rznsfer 13 (3), 328-336 (1999). 

6. R. Barbour, H. Graber, J. Chang, S. Barbour, S. Koo and R. Aronson, MRI guided optical tomography, 
IEEE Comp. Sci. Engng. 2 (4), 63-77 (1995). 

7. National Research Council, Mathematics and Physics of Emerging Biomedical Imaging, National Academic 
Press, Washington, DC, (1996). 

8. J. Taler, Analytical solution of the overdetermined inverse heat conduction problem with an application to 
monitoring thermal stresses, Heat and Muss Trunsfer 33, 209-218 (1997). 

9. C. Glorieux, J. Moulder, J. Basart and J. Thoen, The determination of electrical conductivity profiles using 
neural networks inversion of multi-frequency eddy-current data, Journal of Physics D: Appl. Phys. 32, 
612-622 (1999). 

10. F. Berntsson, A spectral method for solving the sideways heat equation, Inverse Problems 15, 891-906 
(1999). 

11. M.F. Martiz, G.T. Herman and C. Yee, Recovery of the absorption coefficient from diffused reflected light 
using a discrete diffusive model, SIAM Journal on Applied Mathematics 59, 58-71 (1998). 

12. P.L. Stoffa and M.K. Sen, Nonlinear multiparameter optimization using genetic algorithms: Inversion of 
plane-wave seismograms, Geophysics 56, 1794-1810 (1991). 

13. R. Keys, An application of Marquardt’s procedure to the seismic inversion problem, IEEE Proceeding 74, 
476 (1986). 

14. 0. Pade and A. Mandelis, Computational thermal-wave slice tomography with back-propagation and trans- 
mission reconstructions, Rev. Sci. In&mm. 64, 3548-3562 (1993). 

15. I. Knowles, Uniqeness for an elliptic inverse problem, SIAM Journal on Applied Mathematics 59, 1356-1370 
(1999). 

16. V. Isakov, Some inverse problems for the diffusion equation, Inverse Problems 15, 3-10 (1999). 
17. S. Gatti, An existence result for an inverse problem for a quisilinear parabolic equation, Inverse Problems 

14, 53-65 (1998). 
18. M. Tadi, Evaluation of a two-dimensional conductivity function based on boundary measurements, Journal 

of Heat nunsfer 217, 367-372 (2000). 
19. K.T. Nguyen and M. Prystay, An inverse method for estimation of the initial temperature profile and its 

evolution in polymer processing, International Journal of Heat and Muss nunsfer 42, 1969-1978 (1999). 



Parabolic Equations 941 

20. Y.A. Gryazin, M.V. Klibanov and T.R. Lucas, Numerical solution of a subsurface imaging inverse problem, 
SIAM J. Appl. Math. (Submitted). 

21. R. Latter and J. Lions, Method of Quasi-Reversibility: Applications lo Partial Differential Equations, 
Elsevier, New York, (1969). 

22. M. Tadi, Inverse heat conduction baaed on boundary measurements, Inverse Problems 13, 1585-1605 (1997). 
23. H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Oxford Science, New York, (1996). 
24. B.B. Das, F. Liu and R.R. Alfano, Time resolved fluorescence and photon migration studies in biomedical 

and modern random media, Rep. Progr. Phys. 60, 227-292 (1997). 
25. V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, (1998). 
26. M.V. Klivanov, Inverse problems and Carleman estimates, Inverse Problems 8, 575-596 (1992). 
27. J.C. Tannehill, D.A. Anderson and R.H. Pletcher, Computational Fluid Mechanics and Heat IPransjer, 

Taylor and Francis, Washington, DC, (1997). 
28. 0. Axelsson, Iterative Solution Methods, Cambridge, New York, (1996). 
29. B.R. Baliga, Thermal modeling of polymerizing polymethylmethacrylate, considering temperature-depen- 

dent heat generation, Journal of Biomechanical Engng. 114, 251-259 (1992). 
30. S.Y. Seol, Y.S. Cha and W.J. Minkowycz, Thermal analysis of composite superconductors subjected to 

time-dependent disturbances, Heat and Mass Transfer 33, 177-184 (1997). 
31. K.N. Rai and S.K. Rai, Heat transfer inside the tissues with a supplying vessel for the case when metabolic 

heat generation and blood perfusion are temperature dependent, Heat and Mass nansjer 35, 345-350 
(1999). 

32. W. Press, W. Vetterling, S. Teukolsky and B. Flannery, Numerical Recipes, Cambridge, New York, (1992). 


