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ABSTRACT

In this work, we study the behavior of a recently-developed Lanthanum-based bulk metallic glass under
uniaxial and multi-axial stress-states using the constitutive model developed by Thamburaja and
Ekambaram (2007). The material parameters in the constitutive model are fitted to match the stress—
strain responses obtained from a set of simple compression experiments conducted at temperatures
within the supercooled liquid region under a variety of strain rates spanning approximately three dec-
ades. With the material parameters calibrated, we show that the aforementioned constitutive model is
able to accurately predict the force vs. displacement responses of representative experiments conducted
under multi-axial stress-states at temperatures within the supercooled liquid region, namely three-point
bending and the superplastic forming of a miniature gear component. In particular, the evolution of the
specimen geometry during the deformation under multi-axial loading conditions are also well-predicted
by the constitutive model.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Bulk metallic glasses (BMG) are finding increased used as
components in the sporting goods, bio-medical equipment, elec-
tronics, transformers and MEMS industries (Wang et al., 2004).
This is due to their ability in having more desirable properties com-
pared to conventional metallic alloys e.g. no crystallographic
defects, higher strength, higher wear resistance, softer magnetism,
higher corrosion resistance, etc. (Roth et al., 2005). Although BMG
specimens can be directly cast into the components’ required final
shape, certain commercial applications requires these as-cast
BMGs to undergo a certain degree of metal forming process
depending on the required final shape.

Typically, the forming of metallic glass components occur at tem-
peratures within the supercooled liquid region, i.e. the temperature
range between the glass transition temperature and the crystallization
temperature. Compared to its behavior at temperatures well-below
its glass transition temperature, BMGs have very low viscosities
and exhibit fluid-like flow behavior at temperatures within the
supercooled liquid region. Hence the superplastic forming of BMG
components can easily be performed within this temperature range.

There have been extensive experimental investigations regard-
ing the forming processes of BMGs into useful components. Kawam-
ura et al. (1999) and Saotome et al. (2001) have studied the
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superplastic deformation of an La-based metallic glass in the super-
cooled liquid region. The micro-forming ability of Zr-based BMGs
have also been investigated by Kawamura and Inoue (1999), Kim
et al. (2004), Wang et al. (2005) and Lewandowski et al. (2006,
2008). Recently, Schroers (2008) has also studied the formability of
a variety of BMGs within their respective supercooled liquid region.
From these works it has been demonstrated that within the super-
cooled liquid region, BMGs exhibit excellent workability.

Metallic glass specimens typically undergo extensive deforma-
tions and experience multi-axial stress-states during superplastic
forming into useful components. Therefore, the design process of
these components can be optimized with the aid of computer simu-
lations using a set of constitutive equations which are three-dimen-
sional and finite-deformation-based in nature. Some of the earlier
developed constitutive models for metallic glasses are the equations
postulated by Spaepen (1977), Argon (1979), De Hey et al. (1997),
Chenetal.(2000),and Kato et al. (2001). However, these constitutive
models are one-dimensional in nature. The yielding in a Pd-based
BMG has also been studied by Donovan (1989). Huang et al. (2002)
have developed a three-dimensional and small-strain-based consti-
tutive model for metallic glasses. A fictive-stress-based theory was
used by Kim et al. (2004) to model the micro-forming process of a
BMG within the supercooled liquid region.!

1 Actual details regarding the multi-dimensional fictive-stress constitutive model
has not been provided in the paper of Kim et al. (2004).
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Recently, Thamburaja and Ekambaram (2007) have developed a
finite-deformation-based and thermo-mechanically-coupled con-
stitutive model for metallic glasses. Their constitutive theory was
derived using fundamental thermodynamic laws and the principle
of micro-force balance (Fried and Gurtin, 1994). Furthermore, they
have also implementer their constitutive model into the Abaqus
(Abaqus, 2008) finite-element program. In this work, we shall
use the constitutive model of Thamburaja and Ekambaram
(2007) and its numerical-implementation into the Abaqus finite-
element program to study the uniaxial and multi-axial deforma-
tion behavior of a recently-developed BMG system.

The plan of this paper is as follows: in Section 2, we summarize
the key equations in the constitutive model of Thamburaja and
Ekambaram (2007). In Section 3, we describe the procedure for
the preparation of the raw BMG material, the experimental set-
ups and provide details regarding the calibration of the constitu-
tive parameters. In this Section, we will also present results
obtained from a series of simple compression, three-point bending
and superplastic forming experiments conducted on the BMG
alloy. The results obtained from the numerical simulations of the
aforementioned experiments will also be presented and discussed
in Section 3. Finally, we conclude in Section 4.

2. Constitutive equations

Here we summarize the key constitutive equations from the
constitutive model developed by Thamburaja and Ekambaram
(2007). For more details regarding the development of the consti-
tutive model, please refer to aforementioned work. All material
parameters in the constitutive model are treated as constants un-
less stated otherwise.

The governing variables? in the constitutive model are: (i) the
Helmholtz free energy per unit reference volume, . (ii) Absolute
temperature, 0. (iii) The deformation gradient, F with det F > 0.
(iv) The plastic distortion, F* with det F* > 0. (v) The elastic distor-
tion, F* with F® = FF"~' and det F¢ > 0. (vi) The elastic stretch, U°
with U° = U and det U° > 0. The spectral representation of the
elastic stretch is given by U° = 522 | ¢ r, @1, with {#¢|a=1,2,3}
representing the positive-valued eigenvalues and {r,|o = 1,2,3} the
mutually orthonormal eigenvectors of U°. (vii) The elastic rotation,
R® with R = R®" = FFU*"! and det R® = 1. (viii) The elastic logarith-
mic (Hencky) strain, E€ = (1/2) In C° where C° = U*” represents the
elastic right Cauchy-Green strain. (ix) The Cauchy stress, T with
T =T. (x) The work-conjugate stress to the elastic strain E°, T with
T = (det F)RETTRE (xi) The plastic shear strain, y > 0. (xii) The free
volume concentration (units of volume per unit volume), ¢ > 0.

2.1. Free energy

The Helmholtz free energy density, y is taken to be in the sep-
arable form

Y =y(C,0,VEE) =y +y' + Y8 +y° with (1)

Ye = Je(C,0)
= p|dev E°|* + Kk[(1/2) trace E° — 30,,(0 — 0,)] trace E°,  (2)

2 Notation: V and V? denote the referential gradient and the referential Laplacian,
respectively. The inverse of a second-order tensor B is denoted by B~!. The
transpose of tensor B is denoted by B, and (B™')" =B~". The determinant of the
tensor B is denoted by det B. The second-order identity tensor is denoted by 1. The
trace of the tensor B is denoted by trace B = 1-B. The magnitude of the tensor B is
denoted by |B| = vB - B. The deviatoric (traceless) portion of tensor B is denoted by
dev B=B-(1/3)[trace B]1.

W' =9"(0) = c[(0— 0,) — 0 In (0/0,)], 3)

VE=E(VE) = (1/2)sa VP, vE =J7(5,0)
= (1/2)s0 & =52 & . (@)

Here the variables ¢, ', y¢ and y* represent the thermo-elastic,
purely thermal, gradient and flow-defect free energies, respectively.
The material constants i > 0,k >0 and oy, represent the shear
modulus, bulk modulus and the linear thermal expansion coeffi-
cient, respectively. The specific heat per unit volume is denoted
by ¢ > 0. The material parameter s;; > 0 (units of energy per unit
length) represents the coefficient that amplifies the changes in the
gradient free energy, y® due to variations in V¢ The material
parameter S5 > 0 (units of energy per unit volume) represents
the coefficient that amplifies the changes in the flow-defect free
energy, v due to variations in ¢. Finally, ¢ denotes the thermal
equilibrium free volume concentration which can be approximated
by a Vogel-Fulcher-Tammann (VFT)-like linear in temperature
function (Masuhr et al., 1999):

ér = &g+ kol0 — 6] (3)

where 6, is the glass transition temperature, &, the thermal equilib-
rium free volume concentration at 6g, and k, (units of temperature
inverse) a constant of proportionality.

2.2. Stress-strain constitutive equation

The constitutive equation for the stress T" is given by
U
T* — 2 e~ (4
U < ’ ce)u
= 2u[dev E°] + k[trace E® — 3a,,(0 — 0,)]1. (6)

2.3. Flow rule

The flow rule provides the evolution equation for the plastic
distortion, F’. With the variable L” denoting the plastic velocity gra-
dient, we write the flow rule as:

. . /1/devT e
D _ JPRP P _« _ s Z
PP =I’F where L _/\/;Qdeﬂ*l) +g<3)1. (7)
The quantities 7 > 0 and & represent the plastic shear strain-
rate and the free volume generation rate, respectively.

2.4. Evolution equation for the plastic shear strain

The expression for the plastic shear strain-rate is given by
. Z Q) .. TQ
7y = 2f, exp{—m - Z} sinh

{21%9 +(p+ §70) Q
with 7=,/1/2|devT| >0, p=—(1/3) traceT" and 7T,=s:
(¢ — &) — sa(V2¢) denoting the equivalent shear stress, the hydro-
static pressure and the viscous stress, respectively. The parameters
fo (units of time inverse) denote the frequency of atomic vibration,
Z > 0 the activation energy (units of energy), k, the Boltzmann con-
stant, Q > 0 the activation volume (units of volume), ¢ > 0 a unit-
less geometric overlap factor, and yx the pressure-sensitivity
parameter. The dimensionless fit parameter, {; determines the sen-
sitivity of the plastic flow to the viscous stress, T,.

8)

2.5. Kinetic equation for the free volume concentration

The diffusion-creation-annihilation equation for the free vol-
ume concentration is
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Fig. 1. The DSC data for Lag; 4Al;59Nij135Cuy1.35 amorphous alloy, obtained using a scanning rate of 20 °K/min. The inset represents the XRD pattern for the same alloy,

indicating the amorphous nature of the as-cast specimen.
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where ), = f, exp {féf%}. With respect to the terms on the
right-hand side of Eq. (9), the first term is the diffusion of free vol-
ume, the second term is the creation of free volume by plastic defor-
mation, the third term is the generation of free volume due to
hydrostatic pressure, and the fourth term is the generation of free
volume by structural relaxation. Here s:; > 0 (units of energy per
unit volume) represents the resistance to free volume generation
due to free volume diffusion, hydrostatic pressure and structural
relaxation. Finally, { = £(%) > O represents the dimensionless free
volume creation parameter.

2.6. Balance of energy

From the first law of thermodynamics, we obtain:
h—c! {km (vze) N 3Kocth{trace Ee}é) — Suakyl0 + w} (10)

where @ = Tj + [s4 (V2¢) — 52(E — &) — P& > 0 represents the rate
of plastic dissipation per unit reference volume, i the referential heat
supply rate per unit volume, and kg, = kth(f)) > 0 the thermal con-
ductivity coefficient. In Eq. (10), the Taylor-Quinney coefficient,

i.e. the fraction of plastic work rate converted into heating is unity.
To summarize, the list of constitutive parameters/functions

needed to be calibrated are
{5, 0, Se1, 822,823, ), &y Ego Koy Og, G for 0,2, Q, € K, T

A time-integration procedure based on the constitutive model
for metallic glasses listed above has been developed and imple-
mented in the Abaqus (2008) finite-element program by writing
a user-material subroutine.

3. Experimental procedure and finite-element simulations

The focus of the present work is on the modeling of the
Lagy 4Ali59Nij35Cu 135 BMG system developed by Tan et al.
(2003). We choose this alloy for our present study due to its
combined advantages of having a relatively lower glass transition

temperature (0, ~ 410 K) compared to other families of metallic
glasses, its wider super cooled liquid region (approximately 70 K)
and its high glass-forming ability with a critical thickness of
10.5 mm. The raw materials La (99.9%), Al(99.9%), Ni(99.98%) and
Cu(99.9999%) were used for preparing metallic glass plates having
dimensions of 80 mmx 30 mm x 5 mm. The alloy mixture placed
in a quartz crucible is melted by means of an induction furnace.
The molten alloy is subsequently chill cast by pouring it into a copper
mold in presence of a high purity argon atmosphere. The cast speci-
mens are subsequently examined using X-ray diffraction (XRD) in
order to verify the glassy nature of the as-cast sample. Furthermore,
the critical temperatures for this alloy are determined by carrying
out a Differential Scanning Calorimetry (DSC) study of the as-cast
specimen. The DSC test was done by employing a continuous heating
rate of 20 °K/min. The obtained results from the DSC analysis is
shown in Fig. 1 with the inset figure depicting the corresponding
XRD trace for the Lag; 4Al;59Nij135Cuyq35 (La-based) metallic glass
alloy. The DSC results identified the glass transition temperature,
0, and the crystallization temperature, 0, as 407 Kand 479 K, respec-
tively. The absence of any discrete crystalline peaks in the XRD result
confirms that the alloy is fully amorphous. A note regarding XRD
measurements: XRD technique is only capable of detecting crystal-
line structure when the volume fraction of crystallinity exceeds a
few percent. The information on the amount of crystallinity is impor-
tant since the flow property and pressure sensitivity of the metallic
glass strongly depends on it.

The batch of test specimens required for the experiments were
cut from the same as-cast metallic glass plate. In this work, we
have performed three types of experiments on the La-based BMG
in the supercooled liquid region: (a) simple compression, (b)
three-point bending and (c) superplastic forming. The cuboidal
specimens used for the simple compression experiments have ini-
tial dimensions of 4 mm x 4 mm x 8 mm. The three-point bending
experiments were conducted on cuboidal specimens having initial
dimensions of 4 mm x 6 mm x 45 mm. Finally, the superplastic
forming experiments were performed on cylindrical specimens
having initial dimensions of 5 mm in height and 4 mm diameter.

The surface of the specimens which comes into contact with the
testing machines/die during testing are polished using 1200 grit
silicon carbide paper, and a thin film of molybdenum disulphide
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is coated on these surfaces to attain nearly-frictionless conditions
during the high temperature experiments. All our experiments
were carried out using an Instron 8874 type axial/torsional servo
hydraulic system. The compression experiments were performed
under true-strain-rate control conditions by using a 2620-604 type
axial extensometer.

All the experiments in this work were conducted within the In-
stron 3119 series environmental chamber which has a working tem-
perature range of up to 523 °K. The ambient environment around the
specimen is still air. The required BMG specimen temperature for all
the experiments were achieved by using a constant heating rate of
20 °K/min. An additional K-type thermocouple having an accuracy
of 0.1 °K is placed next> to the metallic glass specimen to confirm
the actual specimen temperature. Once the temperature of the speci-
men reaches the ambient test temperature, it is held at this tempera-
ture for exactly 10 min before the experiments are performed. We
assume that this annealing procedure allows the free volume within
the material to attain its thermal equilibrium value at the given ambi-
ent test temperature, i.e. £,_y ~ ¢ (Lu et al., 2003).

In order to study the high temperature flow behavior of the La-
based metallic glass and predict the experimental data using our
constitutive model, we shall perform compression experiments at
temperatures within the supercooled liquid region, ranging from
417 K to 432 K and at various strainrates ranging from 1 x 107*/s
to 7 x 107%/s. Note that if the experimental applied strainrates
are high enough, shear localization and fracture will still occur in
the specimens. In this work, we will concentrate on modeling the
deformation behavior of La-based metallic glasses in the absence
of shear localization occurring in the test specimens. Using the
constitutive theory presented in Section 2, we have also numeri-
cally-simulated the shear localization processes in bulk metallic
glasses when deformed at high homologous temperatures (cf.
Thamburaja and co-workers (2007, 2008, 2009)).

The set of constitutive parameters/functions for the La-based
BMG alloy are determined by a combination of experimental data
determined from literature and by fitting the constitutive model to
a set of stress—strain data obtained from simple compression
experiments conducted under various strain rates at different tem-
peratures within the supercooled liquid region. It is important to
note that the measurement of the experimental stress—strain
curves were obtained by taking into account the compliance of
the testing machine. The value for the machine compliance was
obtained by compressing a block of hardened tool steel at the test
temperatures of interest.

The density of the alloy calculated by Archimedes’ principle is
determined to be 6114 kg/m3. The value for Young’s modulus is
obtained by fitting our model to the average initial elastic slope
of the stress strain experimental data at 417 K, it is determined
to be 25 GPa. The approximate value for the Poisson’s ratio of La-
based metallic glasses is given in the work of Jiang et al. (2007)
as 0.356. Hence the values for the shear modulus, ¢ and the bulk
modulus, x are 9.22 GPa and 28.93 GPa, respectively. For an La-
based metallic glass (Kato et al., 2008) have identified the linear
thermal expansion coefficient, «, to be 15.3 x 10’6/1(.

For simplicity we assume the thermal conductivity coefficient
and the specific heat capacity to be constants, and ignore their
variations with respect to temperature. The specific heat capacity,
c for an La-based metallic glass in the supercooled liquid region is
determined from Jiang et al. (2007) as approximately 2.4 MJ/m?.
The thermal conductivity coefficient is fit to the experimental
stress—strain curves by performing coupled thermo-mechanical
finite-element simulations (more on this later).

3 We were not able to permanently attach the thermocouple onto the specimens
and therefore sliding between the thermocouple and the specimens may occur during
the duration of the experiments.

As an initial guess we shall use the value of 1.1 x 10%*/s for the
frequency of atomic vibration, f, (Ekambaram et al., 2008). The val-
ues of activation volume (Q), activation energy (Z), geometric over-
lap factor (¢) and the constant of proportionality (k,) shall be
determined following the same procedure outlined in Thamburaja
and Ekambaram (2007), i.e. by conducting experiments at different
temperatures under very low strain rates and low stresses in the
Newtonian viscous limit. Under these conditions, the tensile vis-
cosity, ¢ can be approximated by

) :3—% ~ <3k" 6) exp [i+ 2} since
Ty foQ ky 6 &

2kp0 > (4P + (T0)Q. (11)

The remaining unknowns in Eq. (11) are Q,Z,¢ and
ér=¢Eg+ k(0 —0,). Using typical values of Q~1072°m?,
Z~10"") .9 ~0.1,&; ~0.003 and k, ~ 10K, we heuristically
fit Eq. (11) to the viscosity data obtained from the lowest (abso-
lute-valued) strain-rate simple compression experiments con-
ducted at temperatures 417 K, 422 K, 427 K and 432 K.# Once the
range of the experimentally-determined viscosities are attained,
the parameters are then fine-tuned to provide a better fit.

Based on the findings of Heggen et al. (2004), the free volume cre-
ation parameter, { is an increasing function of stress. As a first-cut
approximation, assume an exponential form for the dependance of
{ on the stress and ignore its the temperature dependence:

= ke exp (Tl) (12)

Here, k; and 7* (with units of stress) are the constants to be fit to
match the strain softening region of the experimental stress—strain
data.

Since the length scale for free volume diffusion is much smaller
than the specimen sizes, we will neglect the effect of free volume dif-
fusion in Eq. (9) by setting s;; = 0.0 M]J/m. For simplicity, the pres-
sure-sensitivity parameter, y is taken to be the same as the
pressure-sensitivity of a Vitreloy-1 metallic glass, i.e. y =0.15
(Patnaik et al., 2004). Further using the methodology and modeling
assumptions presented in Thamburaja and Ekambaram (2007), all
the remaining material parameters {s:,ss,{f,¢,,k:,7°} are then
heuristically fitted to the experimental simple compression stress—
strain data of specimens deformed under various (absolute-valued)
strain rates ranging from 1 x 10™*/sto 7 x 1072/s at different ambi-
ent temperatures within the supercooled liquid region as mentioned
above.’

Assuming homogeneous deformations and isothermal condi-
tions, a single Abaqus C3D8R continuum-three-dimensional brick
element was used to conduct simple compression finite-element
simulations to fit the material parameters listed in Table 1 to the
aforementioned simple compression experimental stress-strain
curves.” The initial conditions for all the finite-element simulations

4 These viscosity data are assumed to be very close to the Newtonian viscosity data
at temperatures of 417 K, 422 K, 427 K and 432 K.

5 There are also various other works which deal with the effect of hydrostatic
pressure/normal stress on the flow and fracture behavior of metallic glasses e.g. Davis
and Kavesh (1975), Lewandowski and co-workers (1998, 1999, 2002), and Henann
and Anand (2009). There are also experimental evidence which show increase in the
pressure sensitivity with increasing temperature cf. Wesseling et al. (2008).

5 The values for the material parameters {8:2,823,(, & ke, T} can be more
accurately determined by fitting it to the stress-strain curves along with the free
volume evolution data during plastic deformation. Since we were unable to
experimentally measure the free volume evolution during deformation, we resort
to fitting these parameters by heuristic means to achieve reasonable changes in free
volume concentration during the deformation.

7 The cross-section of the specimens were observed to be deforming homogenously
during the simple compression experiments. Therefore the experimental stress-strain
curves were calculated assuming homogeneous deformations.
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Table 1
Material parameters for the La-based BMG

U=9.22 GPa K =28.93 GPa o =153 x 10°5/K
fo=11x10*/s Z=0385x10""9] Q=252x10%m3
¢ =0325 %=0.15 & =007

&g =558x107 0g =407 K ko =154 x 107 /K
S5 =3500 GJ/m3 5:3 =320 GJ/m3 ke = 5.0 W/mK

7, =115.5 MPa k: =45 x 10~*/Pa ¢ =2.4MJ]/m3K

are : (1) the free volume concentration at each material point has a
value of the thermal equilibrium free volume concentration at the
ambient test temperature, i.e. the material is initially-assumed to
be fully-annealed, and (2) the plastic shear strain at each material
point is zero. The fit of the constitutive model with respect to the
experimental stress-strain curves are shown in Fig. 2. The overall
experimental stress-strain curves are relatively-well-reproduced
by the constitutive model. However, the stress—strain responses for
the experiments conducted at the highest strain rates at test temper-
atures 422 K, 427 K and 432 K are not accurately reproduced by the
constitutive model, i.e. the simulations are generally over-predicting
the experimental steady-state stress levels.

To investigate this issue, we perform coupled thermo-mechanical
finite-element simulations on the actual simple compression spec-
imen geometry. Fig. 3a shows the initially-undeformed geometry
of the simple compression specimen meshed using 686 Abaqus
C3D8RT continuum-three-dimensional brick elements with tem-
perature degree of freedom. The nodes on the bottom surface are
constrained from motion along axis-3 whereas a velocity profile
along axis-3 is imparted on the nodes at the top surface to simulate
simple compression deformation at the desired strain-rate.
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Initially, the temperature for all the nodes are set to the ambient
test temperature of interest. The nodal temperatures on the top
and bottom surfaces are maintained at the aforementioned ambi-
ent test temperature throughout the duration of the simulations.
This is done as we have assumed the compression platens in con-
tact with the specimen would act as an infinite heat sink. In all our
coupled thermo-mechanical simulations, we have neglected (a) the
heat supply rate term, 7, i.e. we set i = 0, and (b) the heat convec-
tion from the specimens’ side surfaces to the ambient environment
(still air). Finally, all the coupled thermo-mechanical simulations in
this work were conducted using the initially-undeformed finite-
element mesh shown in Fig. 3a with each element initially having
a free volume concentration being equal to the thermal equilib-
rium free volume concentration at the ambient test temperature
of interest.

Using the material parameters listed in Table 1 along with a
thermal conductivity coefficient of k,;, = 5.0 W/mK, the predicted
stress—strain responses from the coupled thermo-mechanical sim-
ple compression simulations are plotted in Figs. 3b—e along with
the experimental stress-strain curves shown previously in Fig. 2.
From Fig. 3, we can see that the experimental stress-strain curves
obtained from the lower strain-rate experiments at all ambient test
temperatures are almost identically well-predicted by both the
coupled thermo-mechanical and isothermal finite-element simula-
tions. However, the coupled thermo-mechanical simulations are
predicting the higher strain-rate experiments’ stress—strain curves
for all ambient test temperatures more accurately compared to the
isothermal simulations. The reason for this is as follows: Fig. 4
shows the temperature contours for the specimen once an applied
compressive strain of 50% is attained. These contour plots were
obtained from the simple compression coupled thermo-mechani-
cal finite-element simulations that were conducted at ambient test
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Fig. 2. Experimental stress-strain curves in simple compression at a temperatures of (a) 417 K, (b) 422 K, (c) 427 K, and (d) 432 K, under indicated strain rates. Also shown are
the fitted stress-strain curves from the finite-element simulations conducted under isothermal conditions.
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Fig. 3. Initial undeformed mesh of the compression test specimen having dimensions of 4 mm x 4 mm x 8 mm, using 686 Abaqus C3D8RT continuum-brick elements. (a)
Experimental stress—strain curves in simple compression conducted at ambient test temperatures of (a) 417 K, (b) 422 K, (c) 427 K, and (d) 432 K under a variety of strain

rates. Also shown are the predicted stress-strain curves from the coupled thermo-mechanical simulations.

temperatures of 417 K, 422 K, 427 K and 432 K under strain rates of
1x107%/52%x107%/s,5x107%/s and 7 x 107%/s, respectively.
From all the four temperature contour plots, we can generally
see that the specimens have experienced a rise in temperature,
measured with respect to the relevant ambient test temperature.
This observed rise in the temperature is caused by the inability
of the plastic dissipation, @ to be conducted out of the specimen

quickly enough. Since small changes in temperature can cause
large changes in the plastic flow rate, i.e. Eq. (8), we can conclude
that the overall reduction in the simulated stress levels are due to
thermal softening effects. Hence thermal softening is the main
cause for the differences in the calculated stress-strain curves
shown in Fig. 2 vs. Fig. 3 especially for the simulations conducted
at the highest strain rates at ambient test temperatures 422 K,
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prediction using the coupled thermo-mechanical simulations.

427 K and 432 K. Also note that the differences in the simulated
stress levels as shown in Fig. 2 vs. Fig. 3 at a given ambient test
temperature and applied strain-rate is larger in the large applied
strain range as compared to the small applied strain range. In the
large applied strain range, a larger accumulation of plastic dissipa-
tion would have occurred. Therefore the coupled thermo-mechan-
ical version of our theory would show a larger increase in the
average specimen temperature in the large applied strain range
as compared to small applied strain range before steady-state con-
ditions are reached. As a result of this, thermal softening effects be-
come more pronounced with increasing applied strain when the
coupled thermo-mechanical version of the theory is used. Hence,
when comparing the stress-strain response obtained from the iso-
thermal vs. the coupled thermo-mechanical version of our consti-
tutive theory, we will generally see increasing differences in the
calculated stress levels with increasing applied strain.

From the experimental and simulated stress—strain curves
shown in Fig. 3, we calculate the experimental steady-state tensile
viscosity data and plot it with respect to the simulated steady-state
viscosity data in Fig. 4e. From the results shown in Fig. 4e, we can see
that the constitutive model is able to fit the experimentally-deter-
mined steady-state viscosity data to good accord. One final note

regarding the coupled thermo-mechanical simulations: the chosen
value for the thermal conductivity coefficient of the Lanthanum-
based BMG used in the present work at temperatures within the
supercooled liquid region is reasonable since it is lower than the
thermal conductivity coefficient of a Zr-based metallic glass within
the same temperature range (~ 8.0 W/mK from Demetriou and
Johnson, 2004). This is due to Zirconium having a larger thermal con-
ductivity coefficient compared to Lanthanum (Zhang et al., 2007).

3.1. Three point bending experiments and simulations

In this subsection, we aim to validate our constitutive model
with respect to experiments conducted under multi-axial loading
conditions at temperatures within the supercooled liquid region.
To impart a multi-axial stress-state on the La-based metallic glass
during its deformation, we have chosen to conduct three-point
bending-type forming experiments so that the specimens will
simultaneously undergo tension, compression and shear-type
behavior.

Cuboidal metallic glass specimens having initial dimensions of
45 mm x 6mm x 4 mm measured along axis-1 (the length direc-
tion), axis-2 (the loading direction) and axis-3 (the transverse
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direction), respectively, are used in this work to study the deforma-
tion characteristics under three-point bending conditions. The
three-point bending fixture used in this study has two adjustable
cylindrical bottom rollers of diameter 5 mm and a cylindrical top
roller of diameter 4 mm. All three rollers are made out of tool steel.
For all the three-point bending experiments, we have used a con-
stant span of distance 35mm between the centers of the bottom
rollers which are fixed throughout the duration of the experiments.
The three rollers acting as the three loading points are carefully
aligned parallel to one another by making use of a specially
designed jig. The same experimental procedure described above
is followed, i.e. the BMG specimen is heated to the required final
temperature using a heating rate of 20 °K/min and annealed at this
final temperature for 10 min prior to loading. High temperature
lubricant is also applied at the contact surfaces between the rollers
and the metallic glass specimens to minimize frictional effects. We
have conducted three-point bending experiments at three different
ambient temperatures within the supercooled liquid region, i.e.
417 K, 422 K and 427 K. To achieve isothermal testing conditions,
all three-point bending experiments were conducted with the

top roller moving into the metallic glass specimens at a low speed
of 0.05 mm/s along the loading direction, i.e. axis-2.

To numerically simulate the three-point bending experiments,
we use the initially-undeformed finite-element mesh shown in
Fig. 5a meshed using the actual dimensions of the experimental
three-point bending set-up and specimen sizes described above.
Due to symmetry only 1/4th of the metallic glass specimen is ana-
lyzed, and it is meshed using 6900 Abaqus C3D8R continuum-brick
elements. The top and bottom rollers are assumed to be rigid and
are meshed using analytical rigid surfaces. Appropriate three-point
bending boundary conditions are imposed on the metallic glass
specimen. The top roller is moved into the metallic glass specimen
at a speed of 0.05 mm/s along axis-2, i.e. the loading direction
whereas the bottom roller is rigidly fixed from motion. As men-
tioned previously, axis-1 and axis-3 represents the length direction
and the transverse direction of the metallic glass specimen, respec-
tively. Furthermore, we have assumed frictionless contact between
the metallic glass specimen and the rigid rollers. The metallic glass
specimen is also taken to be fully-annealed at test temperatures of
417 K, 422 K and 427 K prior to deformation. Finally, all the three
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Fig. 5. (a) The initially-undeformed finite-element mesh for the 3-point bending simulations. Due to symmetry, only 1/4-th of the metallic glass specimen is modeled. The
metallic glass specimen is meshed using 6900 Abaqus C3D8R continuum-brick elements whereas the top and bottom rollers are meshed using analytical rigid surfaces. (b)
The experimentally obtained load-displacement data for the three-point bending experiments on the metallic glass specimen conducted at ambient temperatures of 417 K,
422 K and 427 K. Also shown are the numerically-simulated load-displacement curves. The top roller speed used in the experiments and simulations is 0.05 mm)/s.



686 R. Ekambaram et al./ International Journal of Solids and Structures 47 (2010) 678-690

Plastic shear strain

000000«
OoONOAO

417K

Plastic shear strain
0.52

o
EN
J

o
IS
=

coooo000
OO==NNWW
QUIOOH—=O—=O]

Plastic shear strain

0.55
0.50
0.44

o
w
©

0000000
OO—=—=MNNW
OUI=~NNoW

422 K

427 K
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contour plots were obtained from the simulations conducted at ambient temperatures 417 K, 422 K and 427 K.

three-point bending simulations were conducted under isothermal
conditions.

The top roller force versus its displacement curves determined
from the three-point bending experiments described above are
plotted in Fig. 5b along with the force vs. displacement curves
obtained from the corresponding finite-element simulations con-
ducted using the material parameters listed in Table 1. The exper-
imental force-displacement curves are accurately predicted by
the constitutive model. In particular, the experimental force-
displacement curves show that once a peak load is reached,
continued deformation will cause a softening in the force-
displacement responses. This trend is well-reproduced by the
constitutive model. As expected the experimentally-applied force
required to sustain plastic deformation under three-point bending
loading conditions increases with decreasing ambient test temper-
ature, and this trend is also accurately predicted by the finite-
element simulations.

The contours of the plastic shear strain in the deformed
metallic glass specimen obtained at the conclusion of the

three-point bending simulations conducted above are shown in
Fig. 6. These contour plots show that certain the sections of
the metallic glass specimens have experienced relatively large
plastic deformation.

To further investigate the nature of the multi-axial deformation
during the three-point bend tests, we plot the deformed cross-sec-
tion of the metallic glass specimens located directly under the top
roller obtained at the conclusion of the three-point bending experi-
ments in Fig. 7a. Also shown in Fig. 7a is the cross-section of the ini-
tially-undeformed physical specimen. For comparison, we show the
predicted cross-section of the deformed metallic glass specimen lo-
cated directly under the top roller obtained at the conclusion of the
three-point bending finite-element simulations in Fig. 7b. From the
plots shownin Fig. 7, we can also conclude that the constitutive mod-
el is able to predict the deformed geometry of the three-point bend
specimens to good accord. The experimental results shown in
Fig. 7a show a gradual tapering of the deformed specimen cross-sec-
tion along axis-2 with the top line segment being the widest and the
bottom line segment being the narrowest. As plotted in Fig. 7b, this
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Fig. 7. The deformed cross-section of the metallic glass specimens located directly under the top roller determined at the conclusion of the three-point bending (a)
experiments, and (b) finite-element simulations obtained at ambient test temperatures of 417 K, 422 K and 427 K. The experimentally-determined bottom vs. top line
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observed tapering of the deformed cross-section is also well-repro-
duced by the constitutive model.

3.2. Superplastic forming of a metallic glass component

At temperatures significantly below the glass transition tem-
perature (6g), bulk metallic glasses exhibit insignificant macro-
scopic plastic strain and typically fractures by forming shear
bands. Compared to its characteristics at temperatures below 0y,
metallic glasses exhibit very high formability at temperatures
within the supercooled liquid region as its viscosity is much lower
and hence the material is able to flow much more easily exhibiting
superplastic-like deformation characteristics. In this Section, we
will perform the superplastic forming process of a miniature gear
component made from the La-based metallic glass specimen stud-
ied in the present work.

The geometry of the die used to form the miniature gear com-
ponent is taken from the work Wang et al. (2005), and is shown
in Fig. 8a. Wear resistant structural-steel material has been used
for fabricating the required die. The gear-shaped die features are
wire cut using electric discharge machining (EDM) on a 1.5 mm
thick plate having dimensions of 15 mm x 15mm. An additional
step of circular cross-section, having 4 mm diameter and 0.5 mm
depth co-axial with the gear-shaped mold is end milled on top of
the die, and this step shall be used to secure and align the metallic
glass specimen axis along with the die axis during the forming
experiment.

Cylindrical metallic glass specimens having a diameter 4 mm
and height of 5 mm are machined out from the as-cast 5 mm thick

Lag; 4Al159Niqq 35Cu1 35 plates to be used as the initial specimens
for superplastic forming. The end faces of the cylindrical metallic
glass specimen are initially polished using 1200 grit silicon carbide
paper and a thin film of molybdenum disulphide is coated on these
surfaces to attain frictionless conditions during the metal forming
process. The die surfaces which will come in contact with the
deforming specimen are also coated with molybdenum disulphide
to minimize frictional effects. The specimen is then placed concen-
trically with the die and allowed it to sit flat beneath the step on
top of the die. This assembly is later placed on top of the compres-
sion platen within the temperature chamber of the mechanical
testing machine. The mechanical testing machine’s compression
platen would act as the forming punch forcing the material into
the die. The specimen is heated to the required temperature using
a typical ramping rate of 20 °C per minute and held at the desired
test temperature for 10 min prior to loading. By this time, the tem-
perature of the die and the metallic glass specimen would be equal
to the ambient testing temperature.

Using the geometry for the die and metallic glass specimen as
described above, we conduct finite-element simulations of the
superplastic forming process using the initially-undeformed mesh
as shown in Fig. 8b. Due to symmetry, only 1/12-th of the whole
die and metallic glass specimen assembly is modeled. The die is as-
sumed to be rigid and it is meshed using 1398 Abaqus R3D4 rigid
elements. The metallic glass specimen is meshed using 98704 Aba-
qus C3D8R elements. The finite-element simulations were con-
ducted using the material parameters listed in Table 1.

The superplastic forming experiments and simulations were per-
formed with the die moving into the metallic glass specimen at a low
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Fig. 8. (a) The geometry of the die used to form the miniature gear-shaped component. (b) The initial finite-element mesh showing 1/12-th of the actual set-up used for
simulating the gear forming experiment. The mesh consists of 1398 Abaqus R3D4 rigid elements for the die and 98704 Abaqus C3D8R continuum elements for the metallic

glass specimen.

loading rate of 1 x 1072 mm/s. Therefore, the finite-element simula-
tions were conducted assuming isothermal conditions. The experi-
ments and simulations were conducted at two different ambient
temperatures: 427 K and 432 K. The corresponding die applied load
versus its displacement curves obtained from the superplastic
forming experiments and simulations are plotted in Fig. 9. The
experimental load-displacement curves are well-predicted by the
present constitutive model. As shown by the experimental results
in Fig. 9 the forming load decreases with increasing temperature. This
trend is also accurately predicted by the constitutive model.
Starting from the origin, the experimental and simulated forming
load-displacement curves shown in Fig. 9 can be divided into three
segments: (1)ainitial linear region where the metallic glass deforms
elastically; (2) a plateau region where the load increases gradually
with the metallic glass specimen flowing into the die cavity and con-
sequently taking the shape of the die; and finally (3) a rapid increase
inload where the metallic glass has already filled the die cavity com-
pletely with further deformation causing the flattening of the

remaining metallic glass material not occupying the die cavity space.
Also shown in Fig. 9 are the corresponding images of the actual and
simulated metallic glass specimen keyed to points a to e on the
force-displacement curves of the superplastic forming experiment
and simulation conducted at an ambient temperature of 432K,
respectively. These images pictorially depict the entire metal form-
ing process through various stages, i.e. from the initial cylindrical
specimen to the formation of the final miniature gear component.
A qualitative comparison of the experimental results to the simu-
lated results shows the ability of the constitutive model in accurately
predicting the evolution of the miniature gear component geometry
during the superplastic forming process.

4. Conclusion
The deformation behavior of the Lag; 4Al159Nij135Cuq135 bulk

metallic glass under uniaxial and multi-axial stress-states have
been modeled using the constitutive equations of Thamburaja
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Fig. 9. The experimentally obtained force vs. displacement curves during forming of the gear-shaped metallic glass component at ambient temperatures of 427 K and 432 K.
The corresponding predictions from the constitutive model are also plotted. The die speed used for the experiments and the simulations is 0.01 mm/s. Also shown are the
experimental and simulated geometry of the metallic glass gear component keyed to points a to e on the force-displacement curves determined from the experiment and

simulation conducted at an ambient temperature of 432 K, respectively.

and Ekambaram (2007) via its numerical-implementation into
the Abaqus (2008) finite-element program. The material param-
eters in the constitutive model were fitted to match the stress
vs. strain responses from a series simple compression experi-
ments conducted under various strain rates at temperatures
within the supercooled liquid region. With the constitutive
parameters calibrated, force vs. displacement responses obtained
from three-point bending and superplastic forming experiments
performed at different temperatures within the supercooled li-
quid region were accurately predicted by the constitutive model.
In particular, the constitutive model and finite-element simula-
tions are also able to accurately reproduce the evolution of the
specimen geometry during the deformation process under mul-
ti-axial stress-states.
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