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Let X and Y be given Banach spaces. For A ∈ B(X), B ∈ B(Y ) and C ∈ B(Y , X), let MC

be the operator defined on X ⊕ Y by MC = [ A C

0 B

]
. In this paper we give conditions for

continuity of τ at MC through continuity of τ at A and B , where τ can be equal to the
spectrum or approximate point spectrum.
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1. Preliminaries and notations

Let X and Y be Banach spaces and let B(X, Y ) denote the space of all bounded linear operators from X to Y ; abbre-
viate B(X, X) to B(X). For T ∈ B(X), let σ(T ), σl(T ), σr(T ), σap(T ) and σsu(T ) denote respectively the spectrum, the left
spectrum, the right spectrum, the approximate point spectrum and the surjective spectrum of T .

If T ∈ B(X) we write N(T ) and R(T ) for the null space and range of T . Also, let α(T ) = dim N(T ) and β(T ) =
dim X/R(T ), when theses spaces are finite dimensional. We set α(T ) = ∞ and β(T ) = ∞, when N(T ) and X/R(T ) are not
finite dimensional. An operator T ∈ B(X) is called upper semi-Fredholm, respectively lower semi-Fredholm, if it has closed
range and α(T ) < ∞, respectively β(T ) < ∞. The set of all upper (resp. lower) semi-Fredholm operators in B(X) is denoted
by Φ+(X) (resp. Φ−(X)). We say that T ∈ B(X) is a semi-Fredholm operator if T ∈ Φ−(X) ∪ Φ+(X) = Φ±(X), and T is a
Fredholm operator if T ∈ Φ−(X)∩Φ+(X) = Φ(X). The index of a semi-Fredholm operator T is defined as i(T ) = α(T )−β(T ).
For an operator T ∈ B(X), the ascent asc(T ) and the descent des(T ) are given by asc(T ) = inf{n ∈ N | N(T n) = N(T n+1)} and
des(T ) = inf{n ∈ N | R(T n) = R(T n+1)}, respectively; the infimum over the empty set is taken to be ∞.

Let K (X) denote the set of all compact linear operators in B(X). If π : B(X) → B(X)/K (X) is the canonical map, then
the essential spectrum of an operator T ∈ B(X), σe(T ), is the spectrum of π(T ) in the Calkin algebra B(X)/K (X). Also, the
left essential spectrum σle(T ) (the right essential spectrum σre(T )) is the left spectrum (right spectrum) of π(T ). We set
σlre(T ) = σle(T ) ∩ σre(T ). Now, let σs−F (T ) denote the set of all λ ∈ C such that λ − T is not semi-Fredholm. It is clear that
σs−F (T ) ⊆ σlre(T ), but the opposite inclusion is not always satisfied in general Banach spaces. These classes of operators
coincide in the case of Hilbert spaces.

The Weyl spectrum, the Browder spectrum and the set of Riesz points of T ∈ B(X) are defined respectively by σw(T ) =
{λ ∈ C | λ − T is not a Fredholm operator of index 0}, σb(T ) = {λ ∈ C | λ − T is not a Fredholm operator with finite ascent
and descent} and π0(T ) = {λ ∈ C | λ is an isolated eigenvalues of T of finite algebraic multiplicity}. Following [1], we say
that T ∈ B(X) satisfies Browder’s theorem, if σ(T ) \ σw(T ) = π0(T ).

The next concepts are part of classical point set topology:
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Letting {Kn} be a sequence of non-empty compact subsets of C, define

• lim inf Kn = {λ ∈ C | for every ε > 0, there exists N ∈ N such that B(λ, ε) ∩ Kn 
= ∅ for all n � N}.
• lim sup Kn = {λ ∈ C | for every ε > 0, there exists J ⊆ N infinite such that B(λ, ε) ∩ Kn 
= ∅ for all n ∈ J }.

It is well known that

(i) λ ∈ lim inf Kn if and only if there exists {λn} ⊆ C such that limn→∞ λn = λ and λn ∈ Kn for all n ∈ N.
(ii) λ ∈ lim sup Kn if and only if there exists an increasing sequence of natural numbers n1 < n2 < n3 < · · · and points

λnk ∈ Knk such that limk→∞ λnk = λ.

Let Tn , T ∈ B(X). We say that Tn converge in norm to T , and is denoted by Tn → T , if limn→∞ ‖Tn −T ‖ = 0. A function τ ,
defined on B(X), whose values are non-empty compact subsets of C is said to be upper (lower) semi-continuous at T , when
if Tn → T then lim supτ (Tn) ⊆ τ (T ) (τ (T ) ⊆ lim infτ (Tn)). It is known that if τ is bounded on convergent sequences, then
τ is continuous in “the Hausdorff metric” if and only if τ is both upper and lower semi-continuous at T .

2. Spectral continuity on Banach spaces

Throughout this paper, X and Y denote Banach spaces. Let T , Tn ∈ B(X) be such that Tn converge in norm to T . By
[2, Lemma 3] it is easy to see that for every λ ∈ isoσ(T ) we have that λ ∈ lim infσ(Tn). Even we have more, if λ ∈ π0(T ),
then there exists a sequence of complex numbers {λn} such that λn ∈ π0(Tn), for every positive integer n, and λn → λ (see,
for example, [3, Corollary 2.13]). Hence, we have the next lemma:

Lemma 1. π0 is lower semi-continuous.

A bounded linear operator T ∈ B(X) is said to have the single-valued extension property (SVEP, for short) at λ ∈ C, if for
every open neighborhood Uλ of λ, the only analytic function f : Uλ → X which satisfies the equation (T − μ) f (μ) = 0 for
all μ ∈ Uλ is the function f ≡ 0.

We use S(T ) to denote the open set where T fails to have SVEP and we say that T has SVEP if S(T ) is the empty set.
Taking T ∈ B(X), define

φ+(T ) = {
λ ∈ C

∣∣ λ − T ∈ Φ±(X), N(λ − T ) is complemented and i(λ − T ) > 0
}
,

φ−(T ) = {
λ ∈ C

∣∣ λ − T ∈ Φ±(X), R(λ − T ) is complemented and i(λ − T ) < 0
}
.

Let φ+∞(T ) (and φ−∞(T )) denote respectively the set of λ ∈ φ+(T ) (λ ∈ φ−(T )) such that i(λ − T ) = ∞ (i(λ − T ) =
−∞). We set φ±∞(T ) = φ+∞(T ) ∪ φ−∞(T ). It is not difficult to prove that all these sets are open, and with these sets,
[4, Lemma 3.1] can be extended to general Banach spaces. In fact:

Lemma 2. If Tn → T in B(X) and λ /∈ φ±∞(T ) is such that, for every ε > 0, the ball B(λ, ε) contains a component of σlre(T ), then
λ ∈ lim infσs−F (Tn).

Observe that if i(λ− T ) � 0 for every λ /∈ σlre(T ), then the set φ±∞(T ) in Lemma 2 can be replaced by φ+∞(T ). The next
theorem gives a new sufficient condition for the continuity of the approximate point spectrum.

Theorem 3. Let T ∈ B(X) such that T ∗ has SVEP at every β /∈ σlre(T ). If for each λ ∈ σlre(T ) \ φ+(T ) and ε > 0, the ball B(λ, ε)

contains a component of σlre(T ), then σ and σap are continuous at T .

Proof. First, we are going to show that σap is continuous at T . Using [4, Lemma 1.8] it is easy to see that σap is always
upper semi-continuous in the algebra B(X). Let {Tn}n∈N ⊆ B(X) be a sequence such that Tn → T , and let λ ∈ σap(T ).

Case I: λ /∈ σlre(T ).
In this case λ − T is a semi-Fredholm operator and T ∗ has SVEP at λ, so by [5, Corollary 3.19], i(λ − T ) � 0. Suppose

that i(λ − T ) = 0. Since T ∗ has SVEP at every β /∈ σw(T ), it follows that T ∗ satisfies Browder’s theorem, and consequently,
T satisfies too. Thus λ ∈ σ(T ) \ σw(T ) = π0(T ). Consequently by Lemma 1, λ ∈ lim infπ0(Tn) ⊆ lim infσap(Tn).

Now, let i(λ − T ) > 0. If λ /∈ lim infσap(Tn), then there exist ε1 > 0 and an increasing sequence of natural numbers
n1 < n2 < n3 · · · such that B(λ, ε1) ∩ σap(Tnk ) = ∅ for all k ∈ N. As λ /∈ σap(Tnk ), λ − Tnk is an injective operator with closed
range. This implies that λ − Tnk ∈ Φ+(X) and i(λ − Tnk ) � 0. On the other hand, λ − Tnk → λ − T , so by the continuity of
index, it follows that i(λ − T ) � 0 which is a contradiction. That proves λ ∈ lim infσap(Tn).
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Case II: λ ∈ σlre(T ).
By the proof of case I, we have that φ+(T ) ⊆ lim infσap(Tn). Thus φ+(T ) ⊆ lim infσap(Tn) because lim infσap(Tn) is a

closed set. Therefore if λ ∈ φ+(T ), then λ ∈ lim infσap(Tn).
Let λ /∈ φ+(T ). By the hypothesis and Lemma 2, we get that λ ∈ lim infσs−F (Tn). But since σs−F (Tn) ⊆ σap(Tn) for all

n ∈ N, it follows that λ ∈ lim infσap(Tn). Therefore σap is continuous at T .
By [2, Theorem 1] σ is upper semi-continuous. Let λ ∈ σ(T ). If λ ∈ σap(T ), then by continuity of σap at T , λ ∈

lim infσap(Tn) ⊆ lim infσ(Tn). Now if λ ∈ σ(T ) \ σap(T ), then λ − T is a semi-Fredholm operator such that i(λ − T ) < 0.
If there exists an increasing sequence of natural numbers {nk}k∈N such that λ − Tnk is invertible for all k ∈ N, then by con-
tinuity of index, i(λ − T ) = 0 which is a contradiction. Thus there is n0 ∈ N such that for every n � n0, λ ∈ σ(Tn). Therefore
λ ∈ lim infσ(Tn). �

Observe that in a previous theorem the assumed hypotheses are not necessary for the continuity of σap at T as the
following example illustrates. Let αnk = (1 + 1

n )exp(2π i k
n ) for all n ∈ N and 1 � k � n, and let M : �2(N) → �2(N) be the

diagonal operator defined by

M =

⎛
⎜⎜⎝

α11
α21

α22
. . .

⎞
⎟⎟⎠ .

Then σp(M) = {αnk | n ∈ N, 1 � k � n} where each eigenvalue has geometry multiplicity one. Also σap(M) = {λ ∈ C | |λ| =
1} ∪ {αnk | n ∈ N, 1 � k � n}. Moreover

φ±(M) = ∅, π0(M) = {αnk} and σlre(M) = {
λ ∈ C

∣∣ |λ| = 1
}
.

Observe that σap(M) = π0(M), and by Lemma 1, π0(M) ⊆ lim infπ0(An) ⊆ lim infσap(An) for all sequence {An} in
B(�2(N)) such that An → M . So σap is continuous at M . However, for each λ ∈ σlre(T ) \ φ+(T ) = {λ ∈ C | |λ| = 1}, there
exists ε > 0 such that B(λ, ε) does not contain a component of σlre(T ).

In Theorem 3 the set of points λ for which the ball B(λ, ε) contains a component of σlre(T ) for all ε > 0 may be reduced.
Indeed:

Theorem 4. Let T ∈ B(X) such that T ∗ has SVEP at every β /∈ σlre(T ). If for each λ ∈ σlre(T ) \ φ+(T ) ∪ π0(T ) and ε > 0, the ball
B(λ, ε) contains a component of σlre(T ), then σ and σap are continuous at T .

We know that σlre(T ) = σlre(T ∗) and φ−(T ) = φ+(T ∗) for any bounded operator T . Thus by duality and Theorem 4 we
have the following corollary.

Corollary 5. Let T ∈ B(X) such that T has SVEP at every β /∈ σlre(T ). If for each λ ∈ σlre(T ) \ φ−(T ) ∪ π0(T ) and ε > 0, the ball
B(λ, ε) contains a component of σlre(T ), then σ and σsu are continuous at T .

An operator T ∈ B(X) is called a shift if α(T ) = 0, β(T ) = 1 and
⋂

n∈N
T n(X) = {0}. If T is a shift and an isometry, then

T is called a shift isometry.

Example 1. Let X be a Banach space. If T ∈ B(X) is a shift isometry, then

(a) σ and σsu are continuous at T ;
(b) σ and σap are continuous at T ∗ .

It is clear that T is a Fredholm operator with i(T ) = −1. Moreover σ(T ) = {λ ∈ C | |λ| � 1} (see [6, Theorem 6(a)]). Let
λ ∈ C such that |λ| < 1, then from [6, Theorem 6(b)] and [6, Proposition 2(a)], it follows that λ − T is a shift operator.
Therefore i(λ − T ) < 0 and R(λ − T ) is complemented (because β(λ − T ) < ∞). Thus

σ(T ) = {
λ ∈ C

∣∣ |λ| � 1
} ⊆ φ−(T ).

On the other hand, shift operators have SVEP (see [6, Proposition 6(a)]). Consequently by Corollary 5, σ and σsu are contin-
uous at T . By duality, σ and σap are continuous at T ∗ .
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3. Continuity of spectra on operator matrices

In this section we give sufficient conditions for the continuity of spectrum on the set of all upper-triangular operator
matrices. For A ∈ B(X), B ∈ B(Y ) and C ∈ B(Y , X) define the operator MC on X ⊕ Y as

MC =
[

A C
0 B

]
.

It is well known that for all Σ ∈ {σ ,σe, σw , σb} we have Σ(MC ) ⊆ Σ(A)∪Σ(B), and Σ(A)∩Σ(B) = ∅ implies Σ(MC ) =
Σ(A) ∪ σ(B) (see, for example, [7–9]). For the approximate point spectrum of operator matrices the situation is more
complicated.

Making an examination of the proof of Theorem 5.2 (ii ⇒ iii) of [7], one can prove the following lemma, that is a version
of the second part of Corollary 5.3 of [7] for the case of Banach spaces X and Y .

Lemma 6. Let X and Y be Banach spaces. If A ∈ B(X) and B ∈ B(Y ), then

⋂
C∈B(Y ,X)

σap(MC ) ⊇ σap(A) ∪ {
λ ∈ C

∣∣ R(λ − B) is not closed
} ∪ {

λ ∈ C
∣∣ β(λ − A) = 0 and α(λ − B) > 0

}

and

⋂
C∈B(Y ,X)

σsu(MC ) ⊇ σsu(B) ∪ {
λ ∈ C

∣∣ R(λ − A) is not closed
} ∪ {

λ ∈ C
∣∣ β(λ − A) > 0 and α(λ − B) = 0

}
.

The next theorem is a generalization of Theorem 2.1 of [8]. The proof of this theorem can be extended for the case when
Σ = σe or σb .

Theorem 7. Let A ∈ B(X), B ∈ B(Y ) and Σ ∈ {σ ,σe, σw , σb} such that Σ(A) ∩ Σ(B) = ∅. Then Σ is continuous at A and B if and
only if Σ is continuous at MC for every C ∈ B(Y , X).

In the previous theorem, MC satisfies that σ(MC ) = σ(A) ∪ σ(B). This condition and the continuity of σ at A and B are
not enough for σ to be continuous at MC . In fact, let U be the unilateral shift on �2(N) and let M be the operator defined
on �2(N) ⊕ �2(N) as

M =
[

U 0
0 U∗

]
.

Then σ(M) = σ(U ) ∪ σ(U∗), and by Example 1, U and U∗ are continuity points of σ . However in [8] it is proved that M is
not a continuity point of σ . To see this, consider

Mn =
[

U 1
n (I − U U∗)

0 U∗
]

.

Then Mn → M , M1 is a unitary operator, and each Mn is similar to M1. So for every n, σ(Mn) = σ(M1) = {λ ∈ C | |λ| = 1},
and σ(M) = {λ ∈ C | |λ| � 1}. Therefore σ(Mn) � σ(M).

Of course, if Tn = [ An Cn

0 Bn

]
is a sequence of upper-triangular operator matrices such that Tn → MC and σ(Tn) = σ(An) ∪

σ(Bn) for each n large, then σ(An) → σ(A) and σ(Bn) → σ(B) imply σ(Tn) → σ(MC ).
S.V. Djordjević and Y.M. Han have shown (see [8, Theorem 2.4]) that on Hilbert spaces σ is continuous at MC when it

satisfies Browder’s theorem and σap and σsu are continuous at A and B respectively.

Theorem 8. Let A ∈ B(X) and B ∈ B(Y ) such that

(i) σ(A) = σap(A);
(ii) σap is continuous at A;

(iii) σ is continuous at B.

Then σ is continuous at MC for every C ∈ B(Y , X).

Proof. Since the spectrum is upper semi-continuous at every operator T [2, Theorem 1], it is sufficient to show that σ is
lower semi-continuous at MC (in the set of all upper-triangular operator matrices).
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Let {Mn}n∈N be a sequence of upper-triangular operator matrices, Mn = [ An Cn

0 Bn

]
, such that Mn → MC . Taking an arbitrary

λ ∈ σ(MC ), since σ(MC ) ⊆ σ(A) ∪ σ(B), if follows that λ ∈ σ(A) or λ ∈ σ(B).

Case I: λ ∈ σ(A).
By a hypothesis, λ ∈ σap(A), and from continuity of σap at A, it follows that λ ∈ lim infσap(An). According to Lemma 6,

σap(An) ⊆ σap(Mn) ⊆ σ(Mn) for all n ∈ N. Consequently λ ∈ lim infσ(Mn).

Case II: λ ∈ σ(B) \ σ(A).
Since σ is continuous at B , we can take λn ∈ σ(Bn) for all n ∈ N, such that λn → λ. Suppose that there exists an

increasing sequence of natural numbers n1 < n2 < n3 · · · such that λnk /∈ σ(Mnk ) for all k ∈ N. Observe that λnk ∈ (σ (Ank ) ∪
σ(Bnk )) \ σ(Mnk ), thus λnk ∈ σ(Ank ) ∩ σ(Bnk ). Therefore, for every k ∈ N, λnk ∈ σ(Ank ). This implies that λ ∈ lim supσ(An).
Thus from upper semi-continuity of σ , it follows that λ ∈ σ(A) – a contradiction. Consequently there is n0 ∈ N such that
for every n � n0, λn ∈ σ(Mn). Therefore λ ∈ lim infσ(Mn). �

Let M be the matrix given in the example above, then

M∗ =
[

U∗ 0
0 U

]
.

Observe that by Example 1, σap is continuous at U∗ and σ is continuous at U . In [10, Example 2], it is shown that S(M∗) =
S(U∗). The operator U∗ does not have SVEP at 0 (see the proof of [6, Theorem 7(c)]), thus 0 ∈ S(M∗). Moreover, since
i(M∗) = i(U∗)+ i(U ) = 0 (see [11, Corollary 5]), it follows that 0 ∈ S(M∗)\σw(M∗). Therefore M∗ does not satisfy Browder’s
theorem. However σ(U∗) = σap(U∗), thus by Theorem 8, σ is continuous at M∗ . With this example we see that Theorem 8
is a generalization of [8, Theorem 2.4].

Remark 1. In Theorem 8 the hypothesis (i) can be replaced by the condition A∗ has SVEP at every λ /∈ σs−F (T ).

Let H be a Hilbert space, and let A ∈ B(H) be a continuity point of σ . We know [12, Theorem 3.1] that for each
λ ∈ σ(A) \ φ±(A) and ε > 0, the ball B(λ, ε) contains a component of π0(A) ∪ σlre(A). Thus, if λ ∈ σlre(A) \ φ±(A) ∪ π0(T ),
then for every ε > 0, the ball B(λ, ε) contains a component of σlre(A). With this and Theorem 4, we have the following
corollary.

Corollary 9. Let H and K be Hilbert spaces. If A ∈ B(H) and B ∈ B(K ) are such that

(i) A∗ has SVEP at every λ /∈ σlre(A);
(ii) σ is continuous at A and B,

then σ is continuous at MC for every C ∈ B(K , H).

Theorem 10. Let X and Y be Banach spaces. If A ∈ B(X) and B ∈ B(Y ) are such that

(i) σ(A) = σap(A);
(ii) σap is continuous at A and B,

then σap is continuous at MC for every C ∈ B(Y , X).

Proof. Let {Mn}n∈N be a sequence of upper-triangular operator matrices, Mn = [ An Cn

0 Bn

]
, such that Mn → MC .

Let λ ∈ σap(MC )(⊂ σap(A) ∪ σap(B)).

Case I: λ ∈ σap(A).
Then, similar to the proof of Theorem 8, we have by continuity of σap at A that

λ ∈ σap(A) ⊆ lim infσap(An) ⊆ lim infσap(Mn).

Case II: λ ∈ σap(B) \ σap(A).
The point λ is not in σ(A), because σ(A) = σap(A). By continuity of σap at B there exists {λn}n∈N ⊆ C such that λn → λ

and λn ∈ σap(Bn) for all n ∈ N. If there exists an increasing sequence of natural numbers n1 < n2 < · · · such that λnk ∈ σ(Ank ),
then λ ∈ lim supσ(An). So by upper semi-continuity of σ , λ ∈ σ(A) which is a contradiction. Thus, there exists a positive
integer n0 such that An − λn is invertible, for every n � n0. Consider n � n0. Since λn ∈ σap(Bn) it follows that R(λn − Bn)

is not closed or λn − Bn is not injective. If R(λn − Bn) is not closed, then by Lemma 6, λn ∈ σap(Mn). Now if λn − Bn is not
injective, then α(λn − Bn) > 0, but β(λn − An) = 0 (because λn − An is invertible). Again, by Lemma 6, we have λn ∈ σap(Mn).
Therefore for every n � n0, λn ∈ σap(Mn), that implies λ ∈ lim infσap(Mn). �
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By duality, we can prove the following statement.

Theorem 11. Let X and Y be Banach spaces. If A ∈ B(X) and B ∈ B(Y ) are given such that

(i) σ(B) = σsu(B);
(ii) σsu is continuous at A and B,

then σsu is continuous at MC for every C ∈ B(Y , X).
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