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The role of spin–orbit potential in nuclear prolate-shape dominance
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It is confirmed, in terms of the Woods–Saxon–Strutinsky method, that the spin–orbit potential plays a 
decisive role in the predominance of prolate deformation, which has been a long standing problem in 
nuclear physics. It is originated from the combined effects of the spin–orbit coupling and the diffused 
surface of the potential, in agreement with the previous work based on a more schematic Nilsson– 
Strutinsky method. The degree of prolate-shape dominance exhibits an oscillatory behavior with respect 
to the strength of spin–orbit potential and, the prolate-shape dominance is realized at the proper 
strength of the spin–orbit potential together with the standard surface diffuseness; this oscillatory 
behavior disappears in case of small diffuseness corresponding to ellipsoidal cavity. The calculated energy 
differences between oblate and prolate minima in this Letter are consistent with those of our extensive 
self-consistent calculations of the Hartree–Fock + BCS method with the Skyrme interaction.

© 2011 Elsevier B.V. Open access under CC BY license.
The discovery of the shell model, i.e., single particle motions in 
the average potential with spin–orbit term, altered drastically the 
view of atomic nuclei, which has made it possible to study nuclear 
structure based on microscopic picture. Soon after the discovery, 
however, the observed large quadrupole moment [1] turned out 
to be unexplainable in terms of the spherical shell model, and 
the concept of nuclear deformation [2,3] together with collective 
motion was introduced [4]; these concepts have been among the 
most important ones in the research of nuclear structure. In fact, 
the evidences of single particle motion in deformed nucleus, i.e., 
the success of the Nilsson model [5], have been observed, and the 
concept of nuclear deformation is now commonly accepted. The 
origin of the nuclear deformation has been studied from a wide 
variety of view points, and one of simple explanations is the fluc-
tuation of the single particle level density caused by the boundary 
conditions of the Schrödinger equation at deformed surface of po-
tential [6–8]. Such fluctuation of level density has been interpreted 
through periodic orbits of quasi-classical theories [9].

From early studies of nuclear deformation, it has been empir-
ically known that most of typical deformed nuclei have prolate 
rather than oblate shapes; the predominance of prolate deforma-
tions is simply called as prolate-shape dominance in this Letter. The 
first attempt to understand the prolate-shape dominance in well-
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deformed nuclei was made by Lemmer and Weisskopf, changing 
the strength η of additional potential H ′ = ηr4 which steepens
the oscillator wall [10]. They had results that the potential with 
steepened wall override the normal tendency of the harmonic os-
cillator potential to deform into an oblate shape in the second half 
of a major shell; i.e., a violation of the particle-hole symmetry. 
As a limiting case of steep wall, Frisk used a schematic model 
of ellipsoidal cavities to study the single particle level density 
through classical periodic orbits, and found prolate deformations 
favored [11]. It has been, therefore, recognized that the particle-
hole symmetry is specific to the harmonic oscillator potential, and 
the general trend of prolate-shape dominance is brought about by 
steepening walls. Recently Hamamoto and Mottelson reconfirmed 
the fact with somewhat different interpretation in terms of the 
fanning of the low Λ (projection of orbital angular momentum to 
symmetry axis) orbits [12].

In our extensive calculation of the Hartree–Fock (HF) + BCS
method with the Skyrme SIII interaction, the prolate-shape dom-
inance manifests itself, especially, in the region of Mayer–Jensen 
shell, i.e., N, Z � 50 [13]. This suggests that the spin–orbit poten-
tial may play an important role in the prolate-shape dominance. 
From results obtained by complex procedures of the self-consistent 
calculations, it is difficult to single out the origin of prolate-shape 
dominance in relation to energy spectrum of single particle mo-
tion.

In principle it is the Hamiltonian of a many-body system, es-
pecially the two-body interaction, which determines the shape of
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the ground state of the system. As the Strutinsky theory indicates,
however, it is always through the one-body level density that the
mechanism of this determination works. Thus one can safely as-
sume that various kinds of two-body Hamiltonians give rise to the
same ground-state shape if they are reduced to the same one-body
Hamiltonian in the mean-field approximation. This is the reason
why we prefer to ascribe the origin of the shape to the derived
one-body potential rather than to the underlying two-body inter-
action. For this purpose the Strutinsky theory is indispensable in
determining the shape from the one-body potential without spec-
ifying the underlying two-body interaction.

For answering the question whether the prolate-shape domi-
nance found in the Skyrme HF+BCS calculation is originated in the
radial profile or the spin–orbit potential, one of the authors of this
Letter made a preliminary examination by changing the strengths
of �2 (�: magnitude of the orbital angular momentum) term and
spin–orbit term in the Nilsson model [14]. The �2 term is designed
to emulate the deviation of the radial profile of the potential from
that of the harmonic oscillator, and is included to adjust the sin-
gle particle energy spectrum to the experiment. It is found that
prolate-shape dominance is most remarkable for the standard set
of parameters. However, the dominance disappears completely if
the strength of the spin–orbit potential is reduced by half. The
strength of the �2 term should be 1.5 times as large as the stan-
dard value to reproduce the degree of prolate-shape dominance
without the spin–orbit potential. The following significant trends
were also observed; with keeping the strength of the �2 term at
the standard value, the degree of prolate-shape dominance oscil-
lates with changing the strength of the spin–orbit potential and
becomes most enhanced at the standard value, and the period of
the oscillation becomes shorter with enlarging the strength of the
�2 term. Therefore it should be emphasized that the interference
between the effects of the �2 term and the spin–orbit potential is
crucial in the actual nuclei. It was also found that pairing correla-
tion enhances both prolate and oblate shape dominances [15].

These results can be ascribed to the fluctuation in the level den-
sity which, from the view point of the semiclassical quantization
theory, may be originated from a combined effect of three kinds
of phases, i.e., one brought about by propagating in medium, one
by reflection (Maslov index), and one of geometric origin associ-
ated with the Larmor precession (Section 6 in [8]) caused by the
spin–orbit potential. A quantitative study is necessary to evaluate
the combined effect.

In this Letter, we employ a realistic Woods–Saxon potential to
examine this interference. To compare the results of the Woods–
Saxon potential with those of the Nilsson potential, we explain
briefly parameters characterizing them.

The potential of the Nilsson model is expressed as

V (r) = 1
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where ω⊥ and ωz relate to a deformation parameter ε2 through
ω⊥ = ω̊0(1 + 1

3 ε2) and ωz = ω̊0(1 − 2
3 ε2) with ω̊0 determined by

the condition of a volume conservation ω2⊥ωz = ω̊3
0 . We used the

standard values given in Table 1 of Ref. [16] for the parameters κN

and μN in each harmonic oscillator shell N . The factors fls and fll
are introduced to see how prolate-shape dominance changes with
these factors when modified from standard values ( fls = fll = 1).

Deformed nuclear shapes (axially symmetric) in Woods–Saxon
potential are defined through a surface Σ :

R(θ; R0,β) = R0cv(β)
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]
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λ

with β ≡ {βλ} and a renormalization factor cv(β) to conserve vol-
ume. The central part of the potential is given by

V WS(r, V 0,β) = V 0

1 + exp[distΣ(r,β)/ faa] (3)

as well as the spin–orbit part

V SO(r,β) = flsλ

(
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2Mc

)2 1

h̄
∇V WS(r, V 0,β) · (σ × p), (4)

where distΣ(r,β) is the (perpendicular) distance between the
point r and Σ (taken with the minus sign inside the nucleus),
in use of the universal parameter set given in Table 1 of Ćwiok
et al. [17]. Similarly, the factors fa and fls are introduced to ma-
nipulate the potential for studying how prolate-shape dominance
depends on those factors, i.e., they control the surface diffuseness
and the strength of spin–orbit potential, respectively. It should
be noted that the standard value of the diffuseness parameter
a = 0.7 fm might seem very small compared with the nuclear ra-
dius, typically several femtometers, but for large Λ orbits centrifu-
gal potential squeezes wave functions towards the wall to make
the effect of diffuseness significant.

In the sense of perturbation, the multipliers fls for the spin–
orbit terms in the two potentials are approximately equivalent. On
the other hand, the factors fa and fll play quite different roles. For
small fa , potential just inside the surface Σ is deep to increase the
binding energy of large � orbitals; therefore, the case with small fa

in the Woods–Saxon model corresponds to the case with large fll
in the Nilsson model. In the limit of small fa , the radial profile
of potential turns to be that of cavity with a finite height, which
cannot be rigorously simulated in the Nilsson model.

It is sometimes stated that large diffuseness reduces the spin–
orbit splittings of levels. However, they are roughly independent
of fa in the range considered here. The dependence of V SO on
fa through the radial form factor ∇V WS has only small influences
after the integral is done over the radius.

The equilibrium deformation and the ground state energy of
each nucleus are determined by the Strutinsky shell correction
method [18]. However, the conventional method for realistic fi-
nite potential has problems related mainly to the continuum states,
see e.g. Ref. [19]. We have recently proposed possible improve-
ments [20] based on the Kruppa prescription [21]. The total energy
of a nucleus is assumed to be decomposed into the macroscopic
and microscopic parts,

E = Emac + Emic ≡ ELDM + (EBCS − ẼBCS),

where Emac = ELDM is the energy of the liquid-drop model, for
which the parameters given in Ref. [22] are employed. The ener-
gies, EBCS and ẼBCS, are calculated by the BCS treatment for the
seniority-type pairing interaction (whose strength is G) with dis-
crete and smoothed level densities, g(ε) and g̃(ε), respectively,

(
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)
=
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As for the smoothed pairing gap, the value ̃ = 13 A−1/2 MeV, is
used throughout in this Letter, with which the average trends of
the even–odd mass differences are reproduced. More detailed def-
initions and calculation methods are found in Ref. [20].

We vary the values of multipliers fll, fls for the Nilsson poten-
tial or fa, fls for the Woods–Saxon potential. For each combination
( fll, fls) or ( fa, fls), we calculate the total energy curve versus
ε2(β2) (−0.5 � ε2(β2) � 0.5 with ε4(β4) optimized in −0.16 �
ε4(β4) � 0.16 for each ε2(β2)) for all the even–even nuclei with
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Fig. 1. (Color online.) Proportion of prolate nuclei Rp for Woods–Saxon (top) and
Nilsson (middle) potentials and its oscillatory behavior in the line fa = 1 or fll = 1
(bottom).

8 � Z � 126 and 8 � N � 184 and between the proton and neu-
tron drip lines predicted by the Bethe–Weizäcker mass formula.

The way to calculate the proportion of prolate nuclei is the
same as in the previous work [14]; the proportion is defined as
Rp = Np/(Np + No), where Np and No are the numbers of nuclei
identified as having prolate and oblate deformations, respectively.

The top part of Fig. 1 shows the proportion of prolate nuclei Rp
for the Woods–Saxon scheme as a function of the factors fls vs.
fa (2 � fa � 0.1,−1.5 � fls � 1.5). Negative values of fls do not
occur in nuclei but may help one to understand nuclear shapes
in the perspective of quantum many-body systems in general. It is
compared, in the middle part of Fig. 1, with the same proportion
for the Nilsson scheme: As is most clearly seen in the middle part
of the figure, the degree of prolate-shape dominance oscillates as
changing the strength of the spin–orbit term in both schemes. The
significant oscillatory behavior is found along the vertical line of
the standard diffuseness value fa = 1, as well as the line of the
standard value fll = 1 of the �2 term. Prolate-shape dominance is
most apparent at fls = 1, less apparent at fls = −1, medium at
fls = 0, weak at fls = ±1/2 in both potentials.
Fig. 2. (Color online.) Location of nuclides with prolate-shape deformation in the
periodic charts, for sets of ( fa, fls) = (1,1), (1,0.5), (0.1,0) at top, middle, and bot-
tom, respectively.

The cooperative effect of the spin–orbit potential and the radial
profile is clearly seen also for the realistic Woods–Saxon potential.
However, the amplitude of the oscillation is reduced by a factor
∼ 1

3 . Consequently, the oblate-shape dominance predicted by the
Nilsson model at fls ∼ ±0.5 is denied by the Woods–Saxon model.
The large amplitude obtained with the Nilsson model is likely to
be due to an artificial enhancement of the interference between
two operators ls and ll due to their affinity in the sense that both
include l. Having removed this artifact is one of the significances of
our redoing these calculations employing not the Nilsson but the
Woods–Saxon potential.

On the other hand for very small diffuseness fa correspond-
ing to cavity, strong prolate-shape dominance is observed for the
Woods–Saxon potential at fls = 0, and the strongly oscillating be-
havior as a function of fls disappears. This fact suggests that the



432 S. Takahara et al. / Physics Letters B 702 (2011) 429–432
Fig. 3. Comparison of energy differences of oblate from prolate minima, calcu-
lated with the Hartree–Fock+BCS (abscissa), and with the Woods–Saxon–Strutinsky
methods (ordinate), respectively.

spin–orbit term hardly affect the prolate-shape dominance for po-
tentials with the cavity-like steep radial profile, to which the dom-
inance is solely attributed. The implication is consistent with the
statement by Hamamoto and Mottelson [12]. However, for poten-
tials with reasonable radial profiles, the dominance is not enough
without the spin–orbit potential. The apparent prolate-shape dom-
inance seen in the case with very small diffuseness does not seem
to explain the situation of real nuclei.

Only through looking at the proportion of prolate nuclei, it is
difficult to judge which interpretations are more realistic for ex-
plaining the nuclear prolate-shape dominance; a glance of nuclear
charts of prolate and oblate deformations may be instructive. The
top part of Fig. 2 shows the deformation of the ground state on
the nuclear chart for standard values of fa = fls = 1, which is com-
pared with the bottom part depicting that for cavity-like potential
without the spin–orbit term. The proportion of prolate nuclei Rp is
84% for this cavity-like model ( fa = 0.1, fls = 0), while Rp is 78%
for the standard model ( fa = fls = 1). It is clear that calculations
without the spin–orbit potential fail to predict correct locations of
spherical nuclei, i.e., the magic numbers. Therefore, all arguments
without taking account of spin–orbit potential lack reality in exist-
ing nuclei, and therefore have no predictability of deformation for
individual nuclides.

The oscillatory behavior, shown at the bottom part of Fig. 1,
with respect to the strength of the spin–orbit potential exhibits ap-
parent evidence for interference between two effects coming from
the spin–orbit coupling and the surface diffuseness. They work
constructively (in phase) at fls = 0,±1 and destructively (out of
phase) at fls = ±0.5 for prolate-shape dominance. Most of the nu-
clides predicted as oblate in the case with fls = 0.5, e.g., those
with 50 � Z � 76 and 94 � N � 116, in the middle part of Fig. 2
are actually typical prolate deformed nucleus, e.g. 166Dy. In other
words the quantitative feature of interference is decisive.

As a concluding remark, let us come back to the starting point
of discussion, in which extensive calculations of the HF + BCS
method with the Skyrme SIII implies an important role of the
spin–orbit potential in the prolate-shape dominance. In Fig. 3, we
compare the energy differences of oblate minimum from prolate
minimum in the energy surface obtained by the Woods–Saxon–
Strutinsky method and the self-consistent mean field theory [13].
This expresses apparent correspondence between two results and
implies both calculations predict the same consequences whether
a certain nuclide has prolate or oblate deformation; quantitatively,
the difference greater than 5 MeV is always enlarged for self-
consistent calculations.

While it is impossible to manipulate separately the parameters
like fa and fls in self-consistent field methods, the Woods–Saxon-
Strutinsky method is able to analyze two effects independently.
This analysis brings about the discovery of a mechanism in which
the interference of combined effects, spin–orbit coupling and spa-
tial profile of potential, results in the predominance of prolate
deformation.
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