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In this paper some new cases of Knaster’s problem on continuous maps from spheres
are established. In particular, we consider an almost orbit of a p-torus X on the sphere,
a continuous map f from the sphere to the real line or real plane, and show that X can
be rotated so that f becomes constant on X .
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1. Introduction

In [7] the following conjecture (Knaster’s problem) was formulated.

Conjecture 1. Let Sd−1 be a unit sphere in R
d. Suppose we are given m = d − k + 1 points x1, . . . , xm ∈ Sd−1 and a continuous map

f : Sd−1 → R
k. Then there exists a rotation ρ ∈ SO(d) such that

f
(
ρ(x1)

) = f
(
ρ(x2)

) = · · · = f
(
ρ(xm)

)
.

In papers [6,4] it was shown that for certain sets {x1, . . . , xm} ⊂ Sd−1 Knaster’s conjecture fails, such counterexamples
exist for every k > 2, for k = 2 and d � 5, for k = 1 and d � 67.

Still it is possible to prove Knaster’s conjecture in some particular cases of sets. In [10] the set of points was some orbit
of the action of a p-torus G = (Z p)k on R[G] for k = 1 and on R[G] ⊕ R for k = 2. Here we prove some similar results, the
set of points being a (Z p)k-orbit minus one point.

The group algebra R[G] is supposed to have left G-action, unless otherwise stated. Considered as a G-representation,
R[G] may have a G-invariant inner product. In fact, the space of invariant inner products has the dimension equal to the
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number of distinct irreducible G-representations in R[G] (for a commutative G), for a p-torus G = (Z p)k the dimension of

this space is pk+1
2 for odd p, and pk for p = 2.

Definition 1. Denote I[G] ⊂ R[G] the G-invariant subspace in R[G] consisting of
∑

g∈G

αg g, with
∑

g∈G

αg = 0.

Note that its orthogonal complement (w.r.t. any G-invariant inner product) is the one-dimensional space with trivial G-
action.

In the sequel we consider a p-torus G = (Z p)k and denote q = pk .

Theorem 1. Let Sq−2 be the unit sphere of I[G] w.r.t. some G-invariant inner product, denoted by (·,·). Then Conjecture 1 holds for
k = 1, the rotations w.r.t. (·,·), and the set Gx \ {x}, where x ∈ Sq−2 is any point.

Theorem 2. Let Sq−1 be the unit sphere of R[G] w.r.t. some G-invariant inner product (·,·). Then Conjecture 1 holds for k = 2, q odd,
the rotations w.r.t. (·,·), and the set Gx \ {x}, where x ∈ Sq−1 is any point.

In fact, the last theorem may be formulated a little stronger. For example, Theorem 5 (see below) gives the following
statement. Let x ∈ Sq−1 be as in the theorem, and let f1, f2 : Sq−1 → R be two continuous functions. Then for some rotation
ρ and two constants c1, c2,

∀g ∈ G, f1
(
ρ(gx)

) = c1,

∀g ∈ G, g �= e, f2
(
ρ(gx)

) = c2.

2. Equivariant cohomology of G-spaces

We consider topological spaces with continuous action of a finite group G and continuous maps between such spaces
that commute with the action of G . We call them G-spaces and G-maps.

Let us consider the group G = (Z p)k and list the results (mostly from [12]) that we need in this paper.
The cohomology is taken with coefficients in Z p , in the notation we omit the coefficients.
Consider the algebra of G-equivariant (in the sense of Borel) cohomology of the point AG = H∗

G(pt) = H∗(BG). For any
G-space X the natural map X → pt induces the natural map of cohomology π∗

X : AG → H∗
G(X).

For a group G = (Z p)k the algebra AG (see [5]) has the following structure. For odd p, it has 2k multiplicative generators
vi , ui with dimensions dim vi = 1 and dim ui = 2 and relations

v2
i = 0, βvi = ui .

Here we denote β(x) the Bockstein homomorphism.
For a group G = (Z2)

k the algebra AG is the algebra of polynomials of k one-dimensional generators vi .
The powerful tool of studying G-spaces is the following spectral sequence (see [5,8]).

Theorem 3. There exists a spectral sequence with E2-term

Ex,y
2 = Hx(BG, H y(X, Z p)

)
,

that converges to the graded module, associated with the filtration of H∗
G(X, Z p).

The system of coefficients H y(X, Z p) is obtained from the cohomology H y(X, Z p) by the action of G = π1(BG). The differentials
of this spectral sequence are homomorphisms of H∗(BG, Z p)-modules.

For every term Er(X) of this spectral sequence there is a natural map π∗
r : AG → Er(X).

Definition 2. Denote the kernel of the map π∗
r by Indr

G X .

The ideal-valued index of a G-space was introduced in [3], the above filtered version was introduced in [11]. Recall the
properties of Indr

G X that are obvious by the definition. We omit the subscript G when a single group is considered.

• If there is a G-map f : X → Y , then Indr X ⊇ Indr Y .
• Indr+1 X may differ from Indr X only in dimensions � r.
• ⋃

r Indr X = Ind X = kerπ∗ : AG → H∗ (X).
X G
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The first property in this list is very useful to prove nonexistence of G-maps. Following [12] we define a numeric
invariant of this ideal filtering Indr

G X .

Definition 3. Put

iG(X) = max
{

r: Indr
G X = 0

}
.

It is easy to see that iG(X) � 1 for any G-space X , iG(X) � 2 for a connected G-space X , and iG(X) may be equal to +∞.
Moreover, for a G-space X without fixed points, G-homotopy equivalent to a finite G-C W -complex, iG(X) � dim X + 1.

From the definition of Indr
G X it follows that if there exists a G-map f : X → Y , then iG(X) � iG(Y ) (the monotonicity

property).
The definition of iG(X) can be further extended.

Definition 4. Define the index of a cohomology class α ∈ AG on a G-space X by

iG(α, X) = max
{

r: α /∈ Indr
G X

}
.

It may equal +∞ if α /∈ IndG X .

It is clear from the definition that either iG(α, X) = +∞, or iG(α, X) � dimα and iG(α, X) � dim X + 1 (for a finite
G-C W -complex). Moreover, for any G-map f : X → Y we have the monotonicity property

iG(α, X) � iG(α, Y ).

3. Reformulations

We reformulate Theorems 1 and 2 in a more general way.

Theorem 4. Let Sq−2 be the unit sphere of I[G] w.r.t. some G-invariant inner product, and let f : Sq−2 → R be some continuous
function. Consider x ∈ Sq−2 , the vector v = ∑

g∈G g ∈ R[G] and some other vector w ∈ R[G], non-collinear to v.
Then for some rotation ρ ∈ SO(q − 1) the vector

∑
g∈G f (ρ(gx))g ∈ R[G] is in the linear span of v and w.

Theorem 1 follows from this theorem in the following way. Put w = e ∈ R[G]. Then by Theorem 4 there exists a rotation
ρ such that for some α,β ∈ R,

∀g ∈ G, g �= e, f
(
ρ(gx)

) = α, f
(
ρ(x)

) = α + β.

That is exactly the statement of Theorem 1.

Theorem 5. Let Sq−1 be the unit sphere of R[G] w.r.t. some G-invariant inner product, and let f : Sq−1 → R
2 be some continuous map

with coordinates f1 , f2 . Let q be odd. Consider x ∈ Sq−1 , the vectors v = ∑
g∈G g ⊕0 ∈ R[G]⊕R[G], u = 0⊕∑

g∈G g ∈ R[G]⊕R[G]
and some other vector w ∈ R[G] ⊕ R[G], non-coplanar to v, u.

Then for some rotation ρ ∈ SO(q) the vector

∑

g∈G

f1
(
ρ(gx)

)
g ⊕

∑

g∈G

f2
(
ρ(gx)

)
g ∈ R[G] ⊕ R[G]

is in the linear span of v, u, w.

Again, Theorem 2 (and its stronger version in the remark after Theorem 2) follows from this theorem by taking a vector
w = e ⊕ 0, similar to the previous remark.

4. Proof of Theorem 4 in the case of odd q

In this section q = pk , p is an odd prime, G = (Z p)k . Define for any ρ ∈ SO(q − 1),

φ(ρ) =
∑

g∈G

f
(
ρ
(

g(x)
))

g ∈ R[G].
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For any h ∈ G we have

φ
(
ρ ◦ h−1) =

∑

g∈G

f
(
ρ
(
h−1 g(x)

))
g =

∑

g∈G

f
(
ρ
(
h−1 g(x)

))
hh−1 g =

∑

g∈G

f
(
ρ
(

g(x)
))

hg.

Thus the map φ : SO(q − 1) → R[G] is a G-map for the left action of G on SO(q − 1) by right multiplications by g−1 ∈ G ,
and for the standard left action of G on R[G].

Denote for any g ∈ G by Lg = (v, g w) ⊂ R[G] the 2-dimensional subspaces. Assume the contrary: that is the image
of φ does not intersect

⋃
g∈G Lg . So φ maps SO(q − 1) to the space Y = R[G] \ ⋃

g∈G Lg . The natural projection π : Y →
R[G]/(v) = V gives a homotopy equivalence between Y and V \ ⋃

g∈G Rπ(g w), the latter space is homotopically a (q − 2)-
dimensional sphere without several points, hence it is a wedge of (q − 3)-dimensional spheres. G acts on Y without fixed
points, so iG(Y ) � q − 2.

In [10] it was shown that iG(SO(q − 1)) = q − 1 w.r.t. the considered G-action. Here we give a short explana-
tion. In the spectral sequence of Theorem 3 all multiplicative generators of H∗(SO(q − 1), Z p) are transgressive, because
they are pullbacks of the transgressive generators of H∗(SO(q − 1), Z p) in the spectral sequence of the fiber bundle
πSO(q−1) : ESO(q − 1) → BSO(q − 1). So the first nonzero Indr

G SO(q − 1) corresponds to the first nonzero characteristic class of
the G-representation I[G] in the cohomology ring AG . It was shown in [10] that this is the Euler class of I[G] of dimension
q − 1.

So we have a contradiction with the monotonicity of iG(X).

5. Proof of Theorem 5

Similar to the previous proof, we consider the G-map φ : SO(q) → R[G] ⊕ R[G], given by the formula

φ(ρ) =
∑

g∈G

f1
(
ρ
(

g(x)
))

g ⊕
∑

g∈G

f2
(
ρ
(

g(x)
))

g ∈ R[G] ⊕ R[G].

Take the composition ψ = π ·φ with the projection π : R[G]⊕ R[G] → I[G]⊕ I[G] = V . Assume the contrary: that is the
map φ does not intersect the linear span of u and v in R[G] ⊕ R[G] and ψ does not intersect the linear span of g w for
any g ∈ G in V , which means that the image of ψ is in the space Y = V \ ⋃

g∈G Rπ(g w).
Let e ∈ AG be the Euler class of V . From the spectral sequence of Theorem 3 it is obvious that iG(e, V \ {0}) = 2q − 2,

because the spectral sequence for V \ {0} has the only nontrivial differential that kills the Euler class e. Since Y ⊂ V \ {0},
then iG(e, Y ) < +∞. Similar to the previous proof, the space Y is homotopically a wedge of (2q − 4)-dimensional spheres,
so iG(e, Y ) � dim Y + 1 = 2q − 3.

In [10] it was shown that iG(e, SO(q)) = 2q − 2, because e is in the image of the transgression in the spectral sequence
and e is not contained in the ideal of AG , generated by the characteristic classes of SO(q) of lesser dimension. So we again
have a contradiction with the monotonicity of iG(e, X).

6. Proof of Theorem 4 in the case of even q

In this section q = 2k , G = (Z2)
k . We use the notation from the odd case in Section 4. Note that the case q = 2 is trivial,

and if q � 4 then G acts on I[G] by transforms with positive determinant, so the group SO(q − 1) can be considered as the
configuration space.

Assume the contrary: the image φ(SO(q − 1)) is in Y = R[G] \ ⋃
g∈G Lg .

Denote the Stiefel–Whitney classes of I[G] in AG by wk . We need the following lemma, stated in [10], based on results
from [2,9].

Lemma 1. The only nonzero Stiefel–Whitney classes of I[G] are wq−2l ∈ AG (l = 0, . . . ,k), the classes wq−2l (l = 0, . . . ,k − 1) are
algebraically independent and form a regular sequence, hence wq−1 is nonzero and not contained in the ideal of AG , generated by wk
with k < q − 1.

Similar to the proof of Theorem 5 in Section 5, we find that iG(wq−1, Y ) � dim Y + 1 = q − 2.
Now we apply the spectral sequence of Theorem 3 to the G-space SO(q − 1). The action of G on SO(q − 1) is the

restriction of action of SO(q − 1) on itself, the latter group being connected, hence G acts trivially on H∗(SO(q − 1), Z2).
The results of [1] imply that the differentials in this spectral sequence are generated by transgressions that send the

primitive (in terms of [1]) elements of H∗(SO(q − 1), Z2) to the Stiefel–Whitney classes wk (see Proposition 23.1 in [1]).
Thus Lemma 1 implies that iG(wq−1, SO(q − 1)) = q − 1, and the existence of the G-map φ contradicts the monotonicity of
iG(wq−1, X).
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