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a continuous map f from the sphere to the real line or real plane, and show that X can
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be rotated so that f becomes constant on X.

MSC: © 2009 Elsevier B.V. All rights reserved.

55M20
55M35
55Q91

Keywords:
Knaster’s problem
Equivariant topology

1. Introduction
In [7] the following conjecture (Knaster's problem) was formulated.

Conjecture 1. Let S%=1 be a unit sphere in RY. Suppose we are given m =d — k + 1 points X1, ..., Xm € S4~1 and a continuous map
f: S9=1 _ R Then there exists a rotation p € S0(d) such that

flpx) = f(p(x2)) =---= f(p(xm)).

In papers [6,4] it was shown that for certain sets {xi,...,xn} C S9! Knaster's conjecture fails, such counterexamples
exist for every k> 2, for k=2 and d > 5, for k=1 and d > 67.

Still it is possible to prove Knaster’s conjecture in some particular cases of sets. In [10] the set of points was some orbit
of the action of a p-torus G = (Zp)" on R[G] for k=1 and on R[G] ® R for k = 2. Here we prove some similar results, the
set of points being a (Zp)"—orbit minus one point.

The group algebra R[G] is supposed to have left G-action, unless otherwise stated. Considered as a G-representation,
R[G] may have a G-invariant inner product. In fact, the space of invariant inner products has the dimension equal to the
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number of distinct irreducible G-representations in R[G] (for a commutative G), for a p-torus G = (Zp)k the dimension of
this space is # for odd p, and p* for p =2.

Definition 1. Denote I[G] C R[G] the G-invariant subspace in R[G] consisting of
Zotgg, with Zag =0.
geG geG

Note that its orthogonal complement (w.r.t. any G-invariant inner product) is the one-dimensional space with trivial G-
action.

In the sequel we consider a p-torus G = (Zp)" and denote q = p*.

Theorem 1. Let S92 be the unit sphere of I[G] w.r.t. some G-invariant inner product, denoted by (-,-). Then Conjecture 1 holds for
k = 1, the rotations w.r.t. (-,-), and the set Gx \ {x}, where x € S972 is any point.

Theorem 2. Let S~ be the unit sphere of R[G] w.r.t. some G-invariant inner product (-,-). Then Conjecture 1 holds for k = 2, q odd,
the rotations w.r.t. (-,-), and the set Gx \ {x}, where x € ST~1 is any point.

In fact, the last theorem may be formulated a little stronger. For example, Theorem 5 (see below) gives the following
statement. Let x € S9! be as in the theorem, and let fi, f>: S9~! — R be two continuous functions. Then for some rotation
p and two constants c1, C2,

vgeG, fi(p(gn)=ci,
VgeG, g#e, fa(p(gn)=ca.

2. Equivariant cohomology of G-spaces

We consider topological spaces with continuous action of a finite group G and continuous maps between such spaces
that commute with the action of G. We call them G-spaces and G-maps.

Let us consider the group G = (Zp)k and list the results (mostly from [12]) that we need in this paper.

The cohomology is taken with coefficients in Z,, in the notation we omit the coefficients.

Consider the algebra of G-equivariant (in the sense of Borel) cohomology of the point Ac = H{ (pt) = H*(BG). For any
G-space X the natural map X — pt induces the natural map of cohomology 7§ : Ac — H{ (X).

For a group G = (Z p)k the algebra A¢ (see [5]) has the following structure. For odd p, it has 2k multiplicative generators
vi, u; with dimensions dimv; =1 and dimu; = 2 and relations

2
vi =0, Bvi =u;.

Here we denote §(x) the Bockstein homomorphism.
For a group G = (Z»)* the algebra A¢ is the algebra of polynomials of k one-dimensional generators v;.
The powerful tool of studying G-spaces is the following spectral sequence (see [5,8]).

Theorem 3. There exists a spectral sequence with E,-term

EyY = H*(BG, HY (X, Z})).

that converges to the graded module, associated with the filtration of HE (X, Zp).
The system of coefficients HY (X, Z,) is obtained from the cohomology H” (X, Zp) by the action of G = 71(BG). The differentials
of this spectral sequence are homomorphisms of H*(BG, Z})-modules.

For every term E;(X) of this spectral sequence there is a natural map ;" : Ag — E;(X).
Definition 2. Denote the kernel of the map 7;* by Ind{; X.

The ideal-valued index of a G-space was introduced in [3], the above filtered version was introduced in [11]. Recall the
properties of Indf; X that are obvious by the definition. We omit the subscript G when a single group is considered.

e If there is a G-map f:X — Y, then Ind" X D Ind" Y.
e Ind™*! X may differ from Ind” X only in dimensions > r.
o U, Ind" X =IndX =kern}: Ag - HE(X).
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The first property in this list is very useful to prove nonexistence of G-maps. Following [12] we define a numeric
invariant of this ideal filtering Ind{, X.

Definition 3. Put
ic(X) = max{r: Indi; X =0}.
It is easy to see that ig(X) > 1 for any G-space X, ig(X) > 2 for a connected G-space X, and i (X) may be equal to +oo.

Moreover, for a G-space X without fixed points, G-homotopy equivalent to a finite G-CW -complex, ig(X) < dim X + 1.
From the definition of Ind; X it follows that if there exists a G-map f: X — Y, then i¢(X) <ig(Y) (the monotonicity

property).
The definition of iz (X) can be further extended.

Definition 4. Define the index of a cohomology class « € Ag on a G-space X by

ic(a, X) =max{r: « ¢ Indj; X}.

It may equal +o0 if o ¢ Indg X.

It is clear from the definition that either i (o, X) = +o0, or ig(a, X) < dima and ig(o, X) < dimX + 1 (for a finite
G-CW -complex). Moreover, for any G-map f : X — Y we have the monotonicity property

icg(a, X) <ig(a, Y).
3. Reformulations
We reformulate Theorems 1 and 2 in a more general way.

Theorem 4. Let S92 be the unit sphere of I[G] w.r.t. some G-invariant inner product, and let f : S92 — R be some continuous
function. Consider x € S972, the vector v = dec g € R[G] and some other vector w € R[G], non-collinear to v.

Then for some rotation p € SO(q — 1) the vector dec f(p(gx))g € R[G] is in the linear span of v and w.

Theorem 1 follows from this theorem in the following way. Put w = e € R[G]. Then by Theorem 4 there exists a rotation
p such that for some «, 8 € R,

VgeG, g#e, f(pgx)=a, f(p®)=a+8B.

That is exactly the statement of Theorem 1.

Theorem 5. Let S9~1 be the unit sphere of R[G] w.r.t. some G-invariant inner product, and let f : S9-1 — R? be some continuous map
with coordinates f1, f. Let q be odd. Consider x € S9~1, the vectors v = dec gB0eR[G]BR[Gl,u=0& dec g e R[G]HR[G]
and some other vector w € R[G] & R[G], non-coplanar to v, u.

Then for some rotation p € SO(q) the vector

> fi(p(g0)g® Y f2(p(gx)g € RIGI® RIG]

geG geG

is in the linear span of v, u, w.

Again, Theorem 2 (and its stronger version in the remark after Theorem 2) follows from this theorem by taking a vector
w=e®O0, similar to the previous remark.

4. Proof of Theorem 4 in the case of odd q

In this section q = p¥, p is an odd prime, G = (Zp)". Define for any p € SO(q — 1),

o(p)=)_ f(p(gx))g €RIG].

geG
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For any h € G we have

p(poh™) =Y flp(h'gm))g=)_f(p(h'g®))hh~'g=> " f(p(g())hg

geG geG geG

Thus the map ¢ : SO(qg — 1) — R[G] is a G-map for the left action of G on SO(q — 1) by right multiplications by g~! € G,
and for the standard left action of G on R[G].

Denote for any g € G by Ly = (v, gw) C R[G] the 2-dimensional subspaces. Assume the contrary: that is the image
of ¢ does not intersect UgeG Lg. So ¢ maps SO(q — 1) to the space Y =R[G]\ UgeG Lg. The natural projection 7 : Y —
R[G]/(v) =V gives a homotopy equivalence between Y and V \ UgeG R (gw), the latter space is homotopically a (q — 2)-
dimensional sphere without several points, hence it is a wedge of (q — 3)-dimensional spheres. G acts on Y without fixed
points, so ig(Y) <q— 2.

In [10] it was shown that ic(SO(q — 1)) = q¢ — 1 w.rt. the considered G-action. Here we give a short explana-
tion. In the spectral sequence of Theorem 3 all multiplicative generators of H*(SO(q — 1), Zp) are transgressive, because
they are pullbacks of the transgressive generators of H*(SO(q — 1), Z,) in the spectral sequence of the fiber bundle
7sog—1) : ESO(q — 1) — BSO(q — 1). So the first nonzero Indf; SO(q — 1) corresponds to the first nonzero characteristic class of
the G-representation I[G] in the cohomology ring A¢. It was shown in [10] that this is the Euler class of I[G] of dimension
q—1.

So we have a contradiction with the monotonicity of ig(X).

5. Proof of Theorem 5

Similar to the previous proof, we consider the G-map ¢ : SO(q) — R[G] & R[G], given by the formula

p(p)=>_ fi(p(s®))g® ) fa(p(g(0))g € RIGI & RIG].

geG geG

Take the composition ¥ = 7 - ¢ with the projection 7 : R[G] ® R[G] — I[G] @ I[G] = V. Assume the contrary: that is the
map ¢ does not intersect the linear span of u and v in R[G] ® R[G] and i does not intersect the linear span of gw for
any g € G in V, which means that the image of ¢ is in the space Y =V \ UgEG R (gw).

Let e € A; be the Euler class of V. From the spectral sequence of Theorem 3 it is obvious that ig(e, V \ {0}) =2q — 2,
because the spectral sequence for V \ {0} has the only nontrivial differential that kills the Euler class e. Since Y C V \ {0},
then ig(e, Y) < 4o00. Similar to the previous proof, the space Y is homotopically a wedge of (2q — 4)-dimensional spheres,
so ig(e,Y) <dimY +1=2q—3.

In [10] it was shown that i¢ (e, SO(q)) = 2q — 2, because e is in the image of the transgression in the spectral sequence
and e is not contained in the ideal of A¢, generated by the characteristic classes of SO(q) of lesser dimension. So we again
have a contradiction with the monotonicity of i (e, X).

6. Proof of Theorem 4 in the case of even q

In this section q = 2K, G = (Z»)¥. We use the notation from the odd case in Section 4. Note that the case g =2 is trivial,
and if g >4 then G acts on I[G] by transforms with positive determinant, so the group SO(q — 1) can be considered as the
configuration space.

Assume the contrary: the image ¢(SO(q — 1)) is in Y = R[G] \ UgeG Lg.

Denote the Stiefel-Whitney classes of I[G] in A by wy. We need the following lemma, stated in [10], based on results
from [2,9].

Lemma 1. The only nonzero Stiefel-Whitney classes of I[G] are Wq_y € Ag (1=0,...,k), the classes Wo_yl (1=0,...,k—1)are
algebraically independent and form a regular sequence, hence wq_1 is nonzero and not contained in the ideal of Ag, generated by wy,
withk <q—1.

Similar to the proof of Theorem 5 in Section 5, we find that ig(wg—1,Y) <dimY +1=q—2.

Now we apply the spectral sequence of Theorem 3 to the G-space SO(q — 1). The action of G on SO(q — 1) is the
restriction of action of SO(q — 1) on itself, the latter group being connected, hence G acts trivially on H*(SO(q — 1), Z3).

The results of [1] imply that the differentials in this spectral sequence are generated by transgressions that send the
primitive (in terms of [1]) elements of H*(SO(q — 1), Z3) to the Stiefel-Whitney classes wj (see Proposition 23.1 in [1]).
Thus Lemma 1 implies that ig(wq—1,50(q — 1)) =q — 1, and the existence of the G-map ¢ contradicts the monotonicity of
l‘(;(Wq,1 , X).
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