Knaster's problem for almost $\left(Z_{p}\right)^{k}$-orbits

R.N. Karasev ${ }^{\text {a,*, }, ~, ~ A . Y u . ~ V o l o v i k o v ~}{ }^{\text {b,c, } 2}$
${ }^{\text {a }}$ Dept. of Mathematics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny 141700, Russia
${ }^{\mathrm{b}}$ Department of Mathematics, University of Texas at Brownsville, 80 Fort Brown, Brownsville, TX 78520, USA
${ }^{\text {c }}$ Department of Higher Mathematics, Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Pr. Vernadskogo 78,
Moscow 117454, Russia

ARTICLE INFO

Article history:

Received 13 May 2009
Received in revised form 19 December 2009
Accepted 21 December 2009

MSC:

55M20
55M35
55Q91

Keywords:

Knaster's problem
Equivariant topology

Abstract

In this paper some new cases of Knaster's problem on continuous maps from spheres are established. In particular, we consider an almost orbit of a p-torus X on the sphere, a continuous map f from the sphere to the real line or real plane, and show that X can be rotated so that f becomes constant on X.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In [7] the following conjecture (Knaster's problem) was formulated.
Conjecture 1. Let S^{d-1} be a unit sphere in \mathbb{R}^{d}. Suppose we are given $m=d-k+1$ points $x_{1}, \ldots, x_{m} \in S^{d-1}$ and a continuous map $f: S^{d-1} \rightarrow \mathbb{R}^{k}$. Then there exists a rotation $\rho \in S O$ (d) such that

$$
f\left(\rho\left(x_{1}\right)\right)=f\left(\rho\left(x_{2}\right)\right)=\cdots=f\left(\rho\left(x_{m}\right)\right)
$$

In papers $[6,4]$ it was shown that for certain sets $\left\{x_{1}, \ldots, x_{m}\right\} \subset S^{d-1}$ Knaster's conjecture fails, such counterexamples exist for every $k>2$, for $k=2$ and $d \geqslant 5$, for $k=1$ and $d \geqslant 67$.

Still it is possible to prove Knaster's conjecture in some particular cases of sets. In [10] the set of points was some orbit of the action of a p-torus $G=\left(Z_{p}\right)^{k}$ on $\mathbb{R}[G]$ for $k=1$ and on $\mathbb{R}[G] \oplus \mathbb{R}$ for $k=2$. Here we prove some similar results, the set of points being a $\left(Z_{p}\right)^{k}$-orbit minus one point.

The group algebra $\mathbb{R}[G]$ is supposed to have left G-action, unless otherwise stated. Considered as a G-representation, $\mathbb{R}[G]$ may have a G-invariant inner product. In fact, the space of invariant inner products has the dimension equal to the

[^0]number of distinct irreducible G-representations in $\mathbb{R}[G]$ (for a commutative G), for a p-torus $G=\left(Z_{p}\right)^{k}$ the dimension of this space is $\frac{p^{k}+1}{2}$ for odd p, and p^{k} for $p=2$.

Definition 1. Denote $I[G] \subset \mathbb{R}[G]$ the G-invariant subspace in $\mathbb{R}[G]$ consisting of

$$
\sum_{g \in G} \alpha_{g} g, \quad \text { with } \sum_{g \in G} \alpha_{g}=0
$$

Note that its orthogonal complement (w.r.t. any G-invariant inner product) is the one-dimensional space with trivial G action.

In the sequel we consider a p-torus $G=\left(Z_{p}\right)^{k}$ and denote $q=p^{k}$.
Theorem 1. Let S^{q-2} be the unit sphere of $I[G]$ w.r.t. some G-invariant inner product, denoted by ($\left.\cdot, \cdot\right)$. Then Conjecture 1 holds for $k=1$, the rotations w.r.t. (\cdot, \cdot), and the set $G x \backslash\{x\}$, where $x \in S^{q-2}$ is any point.

Theorem 2. Let S^{q-1} be the unit sphere of $\mathbb{R}[G]$ w.r.t. some G-invariant inner product (\cdot, \cdot). Then Conjecture 1 holds for $k=2, q$ odd, the rotations w.r.t. ($\cdot, \cdot)$, and the set $G x \backslash\{x\}$, where $x \in S^{q-1}$ is any point.

In fact, the last theorem may be formulated a little stronger. For example, Theorem 5 (see below) gives the following statement. Let $x \in S^{q-1}$ be as in the theorem, and let $f_{1}, f_{2}: S^{q-1} \rightarrow \mathbb{R}$ be two continuous functions. Then for some rotation ρ and two constants c_{1}, c_{2},

$$
\begin{aligned}
& \forall g \in G, \quad f_{1}(\rho(g x))=c_{1}, \\
& \forall g \in G, g \neq e, \quad f_{2}(\rho(g x))=c_{2} .
\end{aligned}
$$

2. Equivariant cohomology of \boldsymbol{G}-spaces

We consider topological spaces with continuous action of a finite group G and continuous maps between such spaces that commute with the action of G. We call them G-spaces and G-maps.

Let us consider the group $G=\left(Z_{p}\right)^{k}$ and list the results (mostly from [12]) that we need in this paper.
The cohomology is taken with coefficients in Z_{p}, in the notation we omit the coefficients.
Consider the algebra of G-equivariant (in the sense of Borel) cohomology of the point $A_{G}=H_{G}^{*}(p t)=H^{*}(B G)$. For any G-space X the natural map $X \rightarrow$ pt induces the natural map of cohomology $\pi_{X}^{*}: A_{G} \rightarrow H_{G}^{*}(X)$.

For a group $G=\left(Z_{p}\right)^{k}$ the algebra A_{G} (see [5]) has the following structure. For odd p, it has $2 k$ multiplicative generators v_{i}, u_{i} with dimensions $\operatorname{dim} v_{i}=1$ and $\operatorname{dim} u_{i}=2$ and relations

$$
v_{i}^{2}=0, \quad \beta v_{i}=u_{i}
$$

Here we denote $\beta(x)$ the Bockstein homomorphism.
For a group $G=\left(Z_{2}\right)^{k}$ the algebra A_{G} is the algebra of polynomials of k one-dimensional generators v_{i}.
The powerful tool of studying G-spaces is the following spectral sequence (see [5,8]).

Theorem 3. There exists a spectral sequence with E_{2}-term

$$
E_{2}^{x, y}=H^{x}\left(B G, \mathcal{H}^{y}\left(X, Z_{p}\right)\right)
$$

that converges to the graded module, associated with the filtration of $H_{G}^{*}\left(X, Z_{p}\right)$.
The system of coefficients $\mathcal{H}^{y}\left(X, Z_{p}\right)$ is obtained from the cohomology $H^{y}\left(X, Z_{p}\right)$ by the action of $G=\pi_{1}(B G)$. The differentials of this spectral sequence are homomorphisms of $H^{*}\left(B G, Z_{p}\right)$-modules.

For every term $E_{r}(X)$ of this spectral sequence there is a natural map $\pi_{r}^{*}: A_{G} \rightarrow E_{r}(X)$.
Definition 2. Denote the kernel of the map π_{r}^{*} by $\operatorname{Ind}_{G}^{r} X$.
The ideal-valued index of a G-space was introduced in [3], the above filtered version was introduced in [11]. Recall the properties of $\operatorname{Ind}_{G}^{r} X$ that are obvious by the definition. We omit the subscript G when a single group is considered.

- If there is a G-map $f: X \rightarrow Y$, then $\operatorname{Ind}^{r} X \supseteq \operatorname{Ind}^{r} Y$.
- Ind $^{r+1} X$ may differ from Ind $^{r} X$ only in dimensions $\geqslant r$.
- $\bigcup_{r} \operatorname{Ind}^{r} X=\operatorname{Ind} X=\operatorname{ker} \pi_{X}^{*}: A_{G} \rightarrow H_{G}^{*}(X)$.

The first property in this list is very useful to prove nonexistence of G-maps. Following [12] we define a numeric invariant of this ideal filtering $\operatorname{Ind}_{G}^{r} X$.

Definition 3. Put

$$
i_{G}(X)=\max \left\{r: \operatorname{Ind}_{G}^{r} X=0\right\}
$$

It is easy to see that $i_{G}(X) \geqslant 1$ for any G-space $X, i_{G}(X) \geqslant 2$ for a connected G-space X, and $i_{G}(X)$ may be equal to $+\infty$. Moreover, for a G-space X without fixed points, G-homotopy equivalent to a finite $G-C W$-complex, $i_{G}(X) \leqslant \operatorname{dim} X+1$.

From the definition of $\operatorname{Ind}_{G}^{r} X$ it follows that if there exists a G-map $f: X \rightarrow Y$, then $i_{G}(X) \leqslant i_{G}(Y)$ (the monotonicity property).

The definition of $i_{G}(X)$ can be further extended.

Definition 4. Define the index of a cohomology class $\alpha \in A_{G}$ on a G-space X by

$$
i_{G}(\alpha, X)=\max \left\{r: \alpha \notin \operatorname{Ind}_{G}^{r} X\right\} .
$$

It may equal $+\infty$ if $\alpha \notin \operatorname{Ind}_{G} X$.

It is clear from the definition that either $i_{G}(\alpha, X)=+\infty$, or $i_{G}(\alpha, X) \leqslant \operatorname{dim} \alpha$ and $i_{G}(\alpha, X) \leqslant \operatorname{dim} X+1$ (for a finite G-CW-complex). Moreover, for any G-map $f: X \rightarrow Y$ we have the monotonicity property

$$
i_{G}(\alpha, X) \leqslant i_{G}(\alpha, Y)
$$

3. Reformulations

We reformulate Theorems 1 and 2 in a more general way.
Theorem 4. Let S^{q-2} be the unit sphere of $I[G]$ w.r.t. some G-invariant inner product, and let $f: S^{q-2} \rightarrow \mathbb{R}$ be some continuous function. Consider $x \in S^{q-2}$, the vector $v=\sum_{g \in G} g \in \mathbb{R}[G]$ and some other vector $w \in \mathbb{R}[G]$, non-collinear to v.

Then for some rotation $\rho \in S O(q-1)$ the vector $\sum_{g \in G} f(\rho(g x)) g \in \mathbb{R}[G]$ is in the linear span of v and w.

Theorem 1 follows from this theorem in the following way. Put $w=e \in \mathbb{R}[G]$. Then by Theorem 4 there exists a rotation ρ such that for some $\alpha, \beta \in \mathbb{R}$,

$$
\forall g \in G, g \neq e, \quad f(\rho(g x))=\alpha, \quad f(\rho(x))=\alpha+\beta
$$

That is exactly the statement of Theorem 1.

Theorem 5. Let S^{q-1} be the unit sphere of $\mathbb{R}[G]$ w.r.t. some G-invariant inner product, and let $f: S^{q-1} \rightarrow \mathbb{R}^{2}$ be some continuous map with coordinates f_{1}, f_{2}. Let q be odd. Consider $x \in S^{q-1}$, the vectors $v=\sum_{g \in G} g \oplus 0 \in \mathbb{R}[G] \oplus \mathbb{R}[G], u=0 \oplus \sum_{g \in G} g \in \mathbb{R}[G] \oplus \mathbb{R}[G]$ and some other vector $w \in \mathbb{R}[G] \oplus \mathbb{R}[G]$, non-coplanar to v, u.

Then for some rotation $\rho \in S O(q)$ the vector

$$
\sum_{g \in G} f_{1}(\rho(g x)) g \oplus \sum_{g \in G} f_{2}(\rho(g x)) g \in \mathbb{R}[G] \oplus \mathbb{R}[G]
$$

is in the linear span of v, u, w.

Again, Theorem 2 (and its stronger version in the remark after Theorem 2) follows from this theorem by taking a vector $w=e \oplus 0$, similar to the previous remark.

4. Proof of Theorem 4 in the case of odd q

In this section $q=p^{k}, p$ is an odd prime, $G=\left(Z_{p}\right)^{k}$. Define for any $\rho \in \operatorname{SO}(q-1)$,

$$
\phi(\rho)=\sum_{g \in G} f(\rho(g(x))) g \in \mathbb{R}[G]
$$

For any $h \in G$ we have

$$
\phi\left(\rho \circ h^{-1}\right)=\sum_{g \in G} f\left(\rho\left(h^{-1} g(x)\right)\right) g=\sum_{g \in G} f\left(\rho\left(h^{-1} g(x)\right)\right) h h^{-1} g=\sum_{g \in G} f(\rho(g(x))) h g .
$$

Thus the map $\phi: S O(q-1) \rightarrow \mathbb{R}[G]$ is a G-map for the left action of G on $S O(q-1)$ by right multiplications by $g^{-1} \in G$, and for the standard left action of G on $\mathbb{R}[G]$.

Denote for any $g \in G$ by $L_{g}=(v, g w) \subset \mathbb{R}[G]$ the 2-dimensional subspaces. Assume the contrary: that is the image of ϕ does not intersect $\bigcup_{g \in G} L_{g}$. So ϕ maps $S O(q-1)$ to the space $Y=\mathbb{R}[G] \backslash \bigcup_{g \in G} L_{g}$. The natural projection $\pi: Y \rightarrow$ $\mathbb{R}[G] /(v)=V$ gives a homotopy equivalence between Y and $V \backslash \bigcup_{g \in G} \mathbb{R} \pi(g w)$, the latter space is homotopically a ($q-2$)dimensional sphere without several points, hence it is a wedge of $(q-3)$-dimensional spheres. G acts on Y without fixed points, so $i_{G}(Y) \leqslant q-2$.

In [10] it was shown that $i_{G}(S O(q-1))=q-1$ w.r.t. the considered G-action. Here we give a short explanation. In the spectral sequence of Theorem 3 all multiplicative generators of $H^{*}\left(S O(q-1), Z_{p}\right)$ are transgressive, because they are pullbacks of the transgressive generators of $H^{*}\left(S O(q-1), Z_{p}\right)$ in the spectral sequence of the fiber bundle $\pi_{S O(q-1)}: E S O(q-1) \rightarrow B S O(q-1)$. So the first nonzero $\operatorname{Ind}_{G}^{r} S O(q-1)$ corresponds to the first nonzero characteristic class of the G-representation $I[G]$ in the cohomology ring A_{G}. It was shown in [10] that this is the Euler class of $I[G]$ of dimension $q-1$.

So we have a contradiction with the monotonicity of $i_{G}(X)$.

5. Proof of Theorem 5

Similar to the previous proof, we consider the G-map $\phi: S O(q) \rightarrow \mathbb{R}[G] \oplus \mathbb{R}[G]$, given by the formula

$$
\phi(\rho)=\sum_{g \in G} f_{1}(\rho(g(x))) g \oplus \sum_{g \in G} f_{2}(\rho(g(x))) g \in \mathbb{R}[G] \oplus \mathbb{R}[G]
$$

Take the composition $\psi=\pi \cdot \phi$ with the projection $\pi: \mathbb{R}[G] \oplus \mathbb{R}[G] \rightarrow I[G] \oplus I[G]=V$. Assume the contrary: that is the map ϕ does not intersect the linear span of u and v in $\mathbb{R}[G] \oplus \mathbb{R}[G]$ and ψ does not intersect the linear span of $g w$ for any $g \in G$ in V, which means that the image of ψ is in the space $Y=V \backslash \bigcup_{g \in G} \mathbb{R} \pi(g w)$.

Let $e \in A_{G}$ be the Euler class of V. From the spectral sequence of Theorem 3 it is obvious that $i_{G}(e, V \backslash\{0\})=2 q-2$, because the spectral sequence for $V \backslash\{0\}$ has the only nontrivial differential that kills the Euler class e. Since $Y \subset V \backslash\{0\}$, then $i_{G}(e, Y)<+\infty$. Similar to the previous proof, the space Y is homotopically a wedge of $(2 q-4)$-dimensional spheres, so $i_{G}(e, Y) \leqslant \operatorname{dim} Y+1=2 q-3$.

In [10] it was shown that $i_{G}(e, S O(q))=2 q-2$, because e is in the image of the transgression in the spectral sequence and e is not contained in the ideal of A_{G}, generated by the characteristic classes of $S O(q)$ of lesser dimension. So we again have a contradiction with the monotonicity of $i_{G}(e, X)$.

6. Proof of Theorem 4 in the case of even q

In this section $q=2^{k}, G=\left(Z_{2}\right)^{k}$. We use the notation from the odd case in Section 4 . Note that the case $q=2$ is trivial, and if $q \geqslant 4$ then G acts on $I[G]$ by transforms with positive determinant, so the group $S O(q-1)$ can be considered as the configuration space.

Assume the contrary: the image $\phi(S O(q-1))$ is in $Y=\mathbb{R}[G] \backslash \bigcup_{g \in G} L_{g}$.
Denote the Stiefel-Whitney classes of $I[G]$ in A_{G} by w_{k}. We need the following lemma, stated in [10], based on results from [2,9].

Lemma 1. The only nonzero Stiefel-Whitney classes of $I[G]$ are $w_{q-2^{l}} \in A_{G}(l=0, \ldots, k)$, the classes $w_{q-2^{l}}(l=0, \ldots, k-1)$ are algebraically independent and form a regular sequence, hence w_{q-1} is nonzero and not contained in the ideal of A_{G}, generated by w_{k} with $k<q-1$.

Similar to the proof of Theorem 5 in Section 5, we find that $i_{G}\left(w_{q-1}, Y\right) \leqslant \operatorname{dim} Y+1=q-2$.
Now we apply the spectral sequence of Theorem 3 to the G-space $S O(q-1)$. The action of G on $S O(q-1)$ is the restriction of action of $S O(q-1)$ on itself, the latter group being connected, hence G acts trivially on $H^{*}\left(S O(q-1), Z_{2}\right)$.

The results of [1] imply that the differentials in this spectral sequence are generated by transgressions that send the primitive (in terms of [1]) elements of $H^{*}\left(S O(q-1), Z_{2}\right)$ to the Stiefel-Whitney classes w_{k} (see Proposition 23.1 in [1]). Thus Lemma 1 implies that $i_{G}\left(w_{q-1}, S O(q-1)\right)=q-1$, and the existence of the G-map ϕ contradicts the monotonicity of $i_{G}\left(w_{q-1}, X\right)$.

References

[1] A. Borel, Sur la cohomology des espaces fibrés principaux et des espace homogènes de groupes de Lie compact, Ann. of Math. 57 (1953) 115-207.
[2] L.E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1) (1911) 75-98.
[3] E. Fadell, S. Husseini, An ideal valued cohomological index theory with applications to Borsuk-Ulam and Bourgain-Yang theorems, Ergodic Theory Dynam. Systems 8 (1988) 73-85.
[4] A. Hinrichs, C. Richter, The Knaster problem: More counterexamples, Israel J. Math. 145 (1) (2005) 311-324.
[5] Wu Yi Hsiang, Cohomology Theory of Topological Transformation Groups, Springer-Verlag, 1975.
[6] B.S. Kashin, S.J. Szarek, The Knaster problem and the geometry of high-dimensional cubes, C. R. Math. Acad. Sci. Paris 336 (11) (2003) $931-936$.
[7] B. Knaster, Problem 4, Colloq. Math. 30 (1947) 30-31.
[8] J. McCleary, A User's Guide to Spectral Sequences, Cambridge University Press, 2001.
[9] H. Mùi, Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo 22 (1975) 319-369.
[10] A.Yu. Volovikov, A Bourgin-Yang-type theorem for Z_{p}^{n}-action, Mat. Sb. 183 (2) (1992) 115-144 (in Russian); translation in: Russian Acad. Sci. Sb. Math. 76 (2) (1993) 361-387.
[11] A.Yu. Volovikov, On the index of G-spaces, Mat. Sb. 191 (9) (2000) 3-22 (in Russian); translation in: Sb. Math. 191 (9) (2000) 1259-1277.
[12] A.Yu. Volovikov, Coincidence points of maps of \mathbb{Z}_{p}^{n}-spaces, Izv. Math. 69 (5) (2005) 913-962.

[^0]: * Corresponding author.

 E-mail addresses: r_n_karasev@mail.ru (R.N. Karasev), a_volov@list.ru (A.Yu. Volovikov).
 1 The research of the author was partially supported by the Dynasty Foundation.
 2 The research of the author was partially supported by the Russian Foundation for Basic Research grant No. 08-01-00663 and by grant of Program of Support of Leading Scientific Schools HIII-1562.2008.1.

