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Let p(z}=27_, a.z" be a polynomial of degree at most » vanishing at z={
{"*'#1). It has been proved that for every complex A and k=0, 1,2, .., n,
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Let p(z})=3"_, a,z’ be a polynomial of degree n. Then clearly

laol < < max lp(2)], (1.1)

with equality holding if and only if p(z) is of constant modulus on |z{ = 1.
In case p(z) has a zero on |z| = 1, Boas [1] sharpened the above inequality
(1.1) and proved
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Rahman and Schmeisser [3] generalized the above result of Boas [1]
for polynomials having a zero on |z|=p (0<p<oo) by proving the
following.

THEOREM A [3, Theorem 2]. Let p(z) = ay + a;z + --- + a,z" be a
polynomial of degree at most n vanishing at

C:pe@#eva’/(n*—l) (1<l?<n,p>0,0<¢<2n)
Then
2p 5 i +1 )
|00| < P Z Sln(ﬂ:v/(n )) max |p(€2kﬂhllx+ l))|.

n+1 = /p*—2pcos(Rno/(n+ 1) — @)+ 1 1<k<n
(1.3)

This inequality is best possible for every admissible pe™.

The above theorem has been deduced from the following lemma which
itself 1s of independent interest.

LemMmMa A [3, Lemmal, p.95]. If p(z)=a,+a,z+ --- +a,z" is a
polynomial of degree at most n vanishing at z={ ({"*' #1), then for every
complex number 2,
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In this note we prove a generalization of the above lemma by obtaining
a representation of a, for k=0, 1, 2, .., n, which for k=0 reduces to the
above lemma. Besides, we believe our proof is much simpler. We prove

THEOREM. If p(z)=ag+a,z+ --- +a,z" is a polynomial of degree at
most n vanishing at z={_ ({"*'#1), then for every complex A and
k=0,1,2,..,n,
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Proof. Using Lagrange’s interpolation formula [2, p.62] with z,,
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Z,, . Z,_x as interpolation nodes, where z,, z,, .., z,_, are the zeros of

"R, we get
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In particular,
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o= 2§ R
(n+1) =2, (ze >0+ 1)
Since by assumption p(z) vanishes at z={ ({"*'# 1), we get for every
complex 4,
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and the proof of the theorem is complete.

It is clear that for kK =0, the above theorem reduces to Lemma A.
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