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Abstract 

A new mechanism of neutron acceleration is studied experimentally in detail for cold neutrons passing through the ac- 
celerated perfect crystal with the energies close to the Bragg one. The effect arises due to the following reason. The crystal 
refraction index (neutron–crystal interaction potential) for neutron in the vicinity of the Bragg resonance sharply depends on 
the parameter of deviation from the exact Bragg condition, i.e. on the crystal–neutron relative velocity. Therefore the neutrons 
enter into the accelerated crystal with one neutron–crystal interaction potential and exit with the other. Neutron kinetic energy 
cannot vary inside the crystal due to its homogeneity. So, after passage through such a crystal, neutrons will be accelerated 
or decelerated because of the different energy change at the entrance and exit crystal boundaries. 

Copyright © 2016, St. Petersburg Polytechnic University. Production and hosting by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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1. Introduction 

The possibility of controlling the energy of neutron
beams is of great interest because of the wide neu-
tron applications in various scientific fields from ma-
terial science to nuclear physics, particle physics and
astrophysics. The acceleration effect for neutrons scat-
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tered by excited isomeric nuclei was first predicted in
1959 [1] and was discovered experimentally in 1980
[2,3] . The acceleration of neutrons in an inversely pop-
ulated medium [4,5] turned out to be very important in
processes of stellar nucleosynthesis. In Ref. [6] accel-
eration of neutrons by vibrationally excited nitrogen
molecules was observed. 

Acceleration of neutrons in the uniform magnetic
field by means of a radio-frequency flipper is well
known and successfully used in physical experiments
(see, e.g., Ref. [7] ). The phenomenon of neutron ac-
celeration in a strong alternating magnetic field (of
amplitude ∼0.4 T) was observed in Ref. [8] . The ac-
celeration of neutrons in a weak alternating magnetic
ction and hosting by Elsevier B.V. This is an open access article 
c-nd/4.0/ ). 
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will be shifted relative to the nuclear maxima. That 
field (of 0.1–1.0 mT) was measured using anomalous 
behaviour of the velocity dispersion for neutrons, mov- 
ing in a crystal close to the Bragg directions [9] . The 
foundations of the neutron acceleration in a laser ra- 
diation field were considered in Ref. [10] . 

Also acceleration and deceleration of neutrons 
by reflection from moving mirror [11,12] or by 

Doppler-shifted Bragg diffraction from a moving crys- 
tal [13,14] are well-known and used in experiments 
with ultracold neutrons. 

Recently a new interest has arisen in the acceler- 
ation of neutrons passing through accelerating media 
[15,16] . This effect was first observed by the authors 
of Ref. [17] and was described in detail in Ref. [18] . It 
was noted in Ref. [18] that “the observed effect was a 
manifestation of quite a general phenomenon – the ac- 
celerated medium effect (AME) inherent to waves and 

particles of different nature”. In Ref. [19] , the accel- 
eration and deceleration of neutrons were observed by 

applying a specific time-of-flight method. In Ref. [20] , 
some new special features of the effect for a birefrin- 
gent medium were discussed with the applications to 

neutron spin optics and evolution of flavor states of 
neutrino, propagating through a free space. The accel- 
eration of the samples in the mentioned experiments 
reached several tens of g units, and the value of the 
energy transfer �E n to a neutron with energy E n 

(�E n ≈ 2(�v/ v n ) E n [(1 − −n) /n]) 

fell within the range of (2–6) ·10 

–10 eV [18] for ultra- 
cold neutrons (UCN), so up to now AME was ob- 
served only for UCN and by only one research group 

(see Refs. [18,20] ). Here v n is a neutron velocity, �v is 
a value of a relative neutron-matter velocity variation 

during the neutron time-of-flight through the sample, 
n is the refraction index for neutron. 

In the present paper, a new much more effective 
mechanism of acceleration effect is proposed [21] , 
which has been tested and confirmed experimentally 

for cold neutrons passing through the accelerated per- 
fect crystal. An energy transfer to a neutron in this 
case can be at the level of ∼4 �10 

−8 eV. This value in 

contrast to AME is determined by the amplitude V g 

of the corresponding harmonic of the nuclear neutron–
crystal periodic potential, but not by the value of a 
relative neutron–crystal velocity variation during the 
neutron time-of-flight through the crystal. For cold 

neutron 

[ ( 1 − n ) /n ] ≈ V 0 / 2 E n, 

so AME in our case has an order 

�E n ≈ (�v/ v n ) V 0 ∼ 10 

−5 , V 0 ∼ 10 

−13 eV 
that is negligible in further consideration ( V 0 is zero 

harmonic of neutron–crystal interaction potential, i.e. 
averaged crystal potential). 

The essence of the crystal acceleration effect is as 
follows. The crystal refraction index for neutrons in 

the vicinity of the Bragg resonance sharply depends 
on the crystal–neutron relative velocity (see further). 
The neutrons enter into accelerated crystal with one 
potential of a neutron–crystal interaction and exit with 

the other potential, so the kinetic energy change at 
the crystal boundaries will differ, and neutrons will be 
accelerated or decelerated after passage trough such a 
crystal, in this case the energy transfer to a neutron 

being at the level of ∼4 ·10 

–8 eV. 
Neutron wave function significantly modifies for 

neutrons moving through the crystal under conditions 
close to the Bragg ones. As a result neutrons con- 
centrate on “nuclear” planes or between them [22,23] . 
We take the term “nuclear” planes to mean the po- 
sitions of maxima of periodic nuclear potential for 
corresponding system of crystallographic planes. The 
neutron–crystal interaction potential can be written as 
a sum (the reciprocal lattice vectors expansion) of har- 
monic potentials (harmonics) corresponding to all nu- 
clear plane systems described by reciprocal lattice vec- 
tor g normal to the given plane system, | g | = 2 π / d ( d is
an interplanar distance): 

V (r) = 

∑ 

g 

V g e 
i gr = V 0 + 

∑ 

g> 0 

2 v g cos ( gr + ϕ g ) . (1) 

Here V g are the amplitudes of g -harmonics of the crys- 
tal nuclear potential, which are determined by neutron 

scattering amplitudes for crystal elementary cell (struc- 
tural amplitudes). In general, V g are complex values, 
i.e. V g = v g exp ϕ g . 

However, if the crystal is nonabsorbing and cen- 
trosymmetric, all phases can be turned to zero at once, 
i.e. all V g can be made real, by putting the coordinate 
origin at the centre of symmetry. When a neutron is 
moving through the crystal under conditions close to 

the Bragg ones for a plane system g , only one har- 
monic with amplitude V g will be essential and should 

be taken into account. That is due to a very narrow 

wavelength width for Bragg reflection of neutrons. For 
one harmonic, the origin of coordinates can be always 
placed at its maximum making the V g amplitude real. 
Just the same can be done with the crystal electric po- 
tential. So for centrosymmetric crystals the positions 
of "nuclear" and "electric" planes always coincide. 

But if the center of symmetry is absent, the maxima 
of electric potential for some crystallographic planes 
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will lead to gigantic electric fields, acting on the neu-
tron inside the crystal [23–25] , because the neutrons
concentrate in the vicinities of the maxima and minima
of nuclear potential where electric field is just nonzero
in this case. So the whole class of new neutron optics
phenomena arises (see, for example, Ref. [26] ). 

2. Neutron crystal optics 

Interest in neutron optics in the perfect crystals
has accelerated in the past few years. It is caused
first by new outstanding possibilities for studies of
neutron fundamental properties and its interactions. A
case in point is, for instance, a search for a neutron
electric dipole moment, as well as a search for CP-
violating pseudomagnetic forces due to exchange of a
pseudoscalar axion-like particle, using neutron optics
in crystal [27–32] ; these are now the most important
tasks. 

The admixture of the waves reflected by crystallo-
graphic planes to the neutron wave function signifi-
cantly changes the pattern of neutron propagation in
the crystal and leads to new phenomena, which man-
ifest sharply defined resonance character with Bragg
(Darvin) width. For example, a small change of the
neutron energy within this width ( �E/E ∼10 

–5 for
thermal and cold neutrons) results in significant chang-
ing the neutron mean velocity in crystal (the anoma-
lous velocity dispersion), and so the sharp energy de-
pendence of the neutron-traveltime through the crystal
on neutron energy exhibits [33] . 

In the present paper we discuss one more phe-
nomenon related to the change in the neutron wave
function in the crystal, namely the resonant behavior
of neutron refractive index (i.e. kinetic energy of neu-
tron inside the crystal) depending on the difference of
the initial and Bragg neutron energies. If a neutron
passes through the non-absorbing perfect crystal and
Bragg conditions are not satisfied for any crystallo-
graphic planes, the neutron propagation through the
crystal can be described by the refractive index which
depends on the V 0 amplitude of zero harmonic (av-
erage crystal potential). In this paper, a perfect crys-
tal means a crystal with the dispersion of the inter-
planar distance much less than the intrinsic width of
the Bragg reflection. But when the energy or velocity
direction of a neutron approaches the Bragg values,
the waves reflected by the corresponding plane system
start arising. The amplitudes of these waves are deter-
mined by the corresponding V g amplitudes ofpotential
harmonics and by the deviations from the exact Bragg
condition. When this deviation being more than the
harmonic amplitude we can use the perturbation the-
ory [28,34] . In this case if the neutron has an initial
energy equal to E 0 and the wave vector k 0 ( E 0 = h̄
k 0 /2 m ), its wave function inside the crystal will be
written as 

ψ = e i kr + 

V g 

E k − E k g 

e i k g r ≡ e i kr 
[

1 − 1 

�B 
e i gr 

]
, (2)

where 

�B = ( E k − E k g ) / V g = 2( E k − E B ) / V g 

is the dimensionless parameter of deviation from the
exact Bragg condition for some g system of planes;
k , k g = k + g are the wave vectors of incident and re-
flected waves inside the crystal with the mean refrac-
tion index taken into account; E k and E k g are the un-
perturbed neutron kinetic energies in states | k〉 and
| k g 〉 , 
E k = h̄ 

2 k 2 / 2m = h̄ 

2 k 2 0 / 2m − V 0 , 

E k g = h̄ 

2 k 2 g / 2m 

E B = h̄ 

2 g 

2 / (8 m sin 

2 θB ) 

is the neutron energy that corresponds to exact Bragg
condition. The presence of a reflected wave with the
amplitude equal to 1 / �B 

leads to localization of neu-
tron density in crystal on(or between) reflecting planes
depending on the sign of �B 

: 

| ψ(r ) | 2 = 1 − 2 

�B 
cos ( gr ) . (3)

The concentration of neutron density in the vicinity
of maxima or minima of nuclear potential, as in the
case of Laue diffraction, leads to additional changing
the neutron kinetic energy 

˜ E k and, respectively, the
value of wave vector and refractive index n inside the
crystal depending on the magnitude of this concen-
tration, i.e. on deviation parameter �B 

from the Bragg
condition. Notice that the neutron refraction index n
is determined as usual: 

n 

2 = 1 − ˜ E k / E 0 . 

Averaging the potential over the wave function ( 2 ),
using ( 3 ), one gets 

˜ E k = 

h̄ 

2 ˜ k 2 

2m 

= E 0 − V 0 + V g · 1 

�B 

. (4)

The last term in Eq. (4) increases infinitely ap-
proaching the Bragg condition ( E k = E k g ), so it be-
comes incorrect (and the perturbation theory is inap-
plicable as well) already for 

E k − E k g ∼ V g . 
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The precise fulfilment of the Bragg condition 

E k − E k g = 0 

means the equality of energies for two neutron states 
with momenta h̄ k and h̄ ( k + g ) , i.e. the neutron en- 
ergy level E k becomes doubly degenerated. Ampli- 
tudes of these neutron states become comparable in 

value, and one should solve well-known two-level 
problem that corresponds to the two-wave approxima- 
tion of the dynamic diffraction theory. Result is the 
following. Neutrons with the energies within the Bragg 

(Darwin) width | E k – E B 

| ≤V g /2 cannot penetrate into 

the working K 3 crystal ( Fig. 1 ), they will completely 

reflect from the crystal entrance face which is parallel 
to the crystallographic planes. So only the neutrons 
with | E k – E B 

| > V g /2 ( �B 

> 1) can pass through this 
crystal and can be accelerated. Using the expansion of 
the exact two wave dispersion equation over 1/ �B 

, the 
following result for the kinetic energy of the neutron 

after its entrance into the crystal can be obtained: 

˜ E k = E 0 − V 0 + V g · �B 

�2 
B 

+ 1 

. (5) 

The last term in Eq. (5) describes the additional 
potential neutron energy due to neutron localization. It 
significantly changes with small variation of neutron 

energy within the Bragg reflection width �B 

∼= 

1, i.e. 
in the narrow energy range 

E B 

− V g < E k < E B 

+ V g . 

For thermal and cold neutrons V g / E B 

∼= 

10 

−5 . The 
V g amplitude value itself is comparable to that of the 
mean crystal potential V 0 . Hence, by changing the in- 
cident neutron energy in the vicinity of E B 

, a well- 
defined resonance-type energy dependence of the neu- 
tron refraction index can be observed in the crystal. 
For example, for (110) plane of quartz V g = 4 ·10 

−8 eV, 
V 0 = 10 

−7 eV, and E B = 

3.2 ·10 

−3 eV for a diffraction 

angle close to π /2. 
It is worth to notice that in our case Eq. (4) can also 

be quite a good approximation, the infinities can be re- 
moved by overaging over the neutron spectrum within 

�B 

∼ 2, because it is formed by two crystals K 1 and 

K 2 . When �B 

= 0 for the central part of the spectrum 

only the left and the right wings, having opposite po- 
tentials connected with the neutron concentration, can 

penetrate to the crystal so that averaged potential for 
this neutrons will be zero in accordance with Eq. (5) . 

3. Experimental setup 

Our experiment was carried out at the horizon- 
tal neutron beam of the WWR-M reactor (PNPI, 
Gatchina, Leningrad Region, Russia). The energy 

change of a neutron passed through the accelerating 

crystal near to the Bragg condition was measured. 
If the neutron moves through the accelerating crys- 

tal, then the parameter of deviation from the Bragg 

condition and correspondingly the mean potential of 
neutron–crystal interaction will be time-dependent (see 
Eq. (5) ). As a result, the refractive index will vary dur- 
ing a neutron travel in the crystal. Correspondingly, 
the changes in the neutron kinetic energies at the en- 
trance and the exit surfaces of the crystal will dif- 
fer. Therefore, one should observe either acceleration 

or deceleration of the neutron passing through such 

a crystal, because the kinetic energy 

˜ E k of the neu- 
tron inside the crystal does not change because of the 
crystal homogeneity. It should be noticed that it does 
not matter in which way a change in the parameter 
of deviation from the Bragg condition occurs over a 
time interval of the neutron propagation through the 
crystal. For example, instead of the variation of the 
relative neutron–crystal velocity, the crystal tempera- 
ture can be varied or the crystal can be deformed by 

squeezing. Both actions will cause a change in the 
crystal interplanar dimensions and so to the shift of 
the Bragg energy. The crystal movement was chosen 

due to the convenience of its realization (the above- 
mentioned accelerated medium effect [18] is negligi- 
ble in this case). Numerical estimations show that for 
the quartz crystal plane (110) the Bragg width in the 
neutron-velocity units is equal to �νB 

∼= 

9 mm/s, i.e., 
if the crystal velocity changes by 9 mm/s over the time 
interval of neutron transit through the crystal, the devi- 
ation from the Bragg condition will vary by one Bragg 

width. 
The scheme of our experimental setup is shown 

in Fig. 1 . The preselected neutron beam (the beam 

size is about 3 cm ×1 cm), reflected by the mosaic 
crystal of pyrolytic graphite (PG) with reflecting 

plane (002), falls on the monochromator K 1 made 
from perfect quartz crystal. Reflected by K 1 highly 

monoenergetic (within Darwin width) neutrons pass 
through the working crystal K 3 (the size is 5 cm×
5 cm × 10 cm) and then are reflected by the crystal- 
analyzer K 2 . The second PG crystal redirects these 
reflected neutrons to the detector. The quartz crys- 
tals K 1 , K 2 and K 3 with the same working reflect- 
ing planes (110) were arranged to have their plane 
orientations in parallel directions. The diffraction an- 
gle was close to the right one: θB 

= 89 

° ( λ≈ 4.9 Å). 
Scanning over the Bragg wave length performed 

by varying temperature difference T 21 = T 2 −T 1 be- 
tween crystals K 2 and K 1 , the temperature T 3 of 
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Fig. 1. Scheme of the experimental setup: K 1 is the monochromator; K 2 is the crystal-analyzer; K 3 is the working crystal; PG are the mosaic 
crystals of pyrolytic graphite; T 1 , T 2 , T 3 are the crystal temperatures; n is the neutron beam; (002), (110) are the reflecting planes; v ( t ) is the 
time-dependent speed of crystal K 3 ; D is a neutron detector inside a neutron shield S . 

Fig. 2. The experimental (symbols) and the calculated (solid line) 
two-crystal reflection curves. They reach their maxima when in- 
terplanar distances for K 1 and K 2 crystals (see Fig. 1 ) coincide 
( T 21 = T 2 −T 1 = 0); N is the neutron intensity. The width W (in 
Kelvin) corresponds to �d / d = 1.8 ·10 –5 (in d units of interplanar 
distance). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the crystal K 3 being a reference one. Example of a
scanning curve is shown in Fig. 2 , when the crystal
K 3 is absent. We have scanned the shape of neutron
reflex from the K 1 crystal changing T 21 and so the rel-
ative interplanar distance for the K 2 crystal-analyzer.
The width of this convolution scanning curve is close
to that calculated (solid line) for two perfect crystals.

There was a possibility to vary the temperature
of the crystal K 3 and so its interplanar distance too.
Also we could move it in the direction parallel to the
reciprocal lattice vector g for working plane. To carry
out an experiment, the crystal was set in harmonic
motion by a piezoelectric motor. The frequency of
crystal vibration was v c = 4.5 kHz and the period
τ c = 222 μs. Vibration amplitude reached a value of
0.15 μm. The crystal length was L = 5 cm and neutron
time-of-flight through the crystal was τ n = 62 μs that
was about a quarter of the crystal vibration period. 

If the speed of the working crystal K 3 depends on
time as 

v(t ) = v 0 · sin ω t, (6)

the deviation from the Bragg condition for the neu-
trons moving through that crystal will also depend on
time in the same way 

�B 

(t ) = �B 0 + 4 

1 

v n 

E B 

V g 
v(t ) , (7)

where v n is the speed of incident neutrons, �B 0 is the
deviation from the Bragg condition for resting crystal
at v ( t ) = 0. This deviation �B 0 is determined by the
T 13 difference of temperatures (interplanar distances)
between K 1 and K 3 crystals T 13 = T 1 −T 3 . So further
we will use this temperature difference T 13 as a pa-
rameter of deviation from the Bragg condition for the
neutrons passing the resting K 3 crystal. The relation-
ship between parameters �B 0 and T 13 is given by the
expression 

�B 0 = 4 

E B 

V g 
αL T 13 , (8)

where αL 
∼= 

1.3 ·10 

−5 is the linear thermal expansion
coefficient for a quartz crystal in the direction perpen-
dicular to crystallographic planes. 

The effect of the neutron energy change after pass-
ing through the crystal boundaries is determined by
variation of the crystal velocity and so the averaged
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Fig. 3. Two-crystal scanning curves for neutrons passed through 
immovable working crystal with different deviations T 31 from the 
Bragg energy. T 31 , K: 0 ( 1 ), + 1.5 ( 2 ), –1.5 ( 3 ), > 5 ( 4 ). The arrows 
point to exact Bragg positions for K 3 crystal. 

 

 

 

potential ( 5 ) is done during the neutron time-of-flight 
through the accelerated crystal: 

�E ( t 0 ) = V g 

(
�B 

( t 2 ) 

�2 
B 

( t 2 ) + 1 

− �B 

( t 1 ) 

�2 
B 

( t 1 ) + 1 

)

= 

1 − �2 
B 0 

(1 + �2 
B 0 

) 
2 

4 E B 

v n 
�v( t 0 ) , (9) 

where �v( t 0 ) = v( t 0 ) − v( t 0 + τn ) , t 0 is the entry time 
of neutron into the crystal, τ n is the neutron time- 
of-flight through the crystal. Notice once more that 
the neutron kinetic energy (wave vectors) inside the 
crystal cannot change because of homogeneity of the 
averaged crystal potential. 

The change ( 9 ) of neutron energy (as well as the 
wavelength) after accelerated crystal results in a shift 
of the scanning-curve maximum (see Fig. 2 ). This 
maximum will be found for some other temperature 
difference T 21 of the K 2 and K 1 crystals. Such vari- 
ations of the scanning curve, depending on tempera- 
ture and movement of the K 3 crystal, were studied to 

find how the crystal acceleration effects. Time-of-flight 
technique was used for this purpose. 

The main systematic error of this experiment is as- 
sociated with the dependence of the neutron transmis- 
sion through the K 3 crystal on the deviation from the 
Bragg condition in this crystal, that results in the spec- 
trum distortion for neutrons passed through the crys- 
tal. Therefore, the position and shape of the scanning 

curve can change for neutrons passed even through 

the resting K 3 crystal, when the acceleration effect is 
absent. Examples of the neutron intensity distribution 

over the wave length after such passage through the 
resting K 3 crystal with different deviations T 31 from 

the Bragg condition are shown in Fig. 3 . It is evi- 
dent that both the intensity of the transmitted neutrons 
and the maximum position of the scanning curve can 

change in different ways. In particular, for T 31 = 0 K, 
the neutrons cannot penetrate into the K 3 crystal after 
reflection from the K 1 crystal. They will be completely 

reflected (due to the exact Bragg condition) and can- 
not reach the K 2 crystal. So the latter will reflect only 

background neutrons. In the other case, for T 31 � 5 K, 
crystal behaves as a homogeneous medium and practi- 
cally does not distort the spectrum. In an intermediate 
case, the spectrum will be distorted, because the neu- 
tron K 3 crystal reflectivity (and so its transmittance) 
sharply depends on the neutron wavelength. 

However, unlike the sought crystal acceleration ef- 
fect ( 9 ), the curve distortion is determined only by the 
deviation from the exact Bragg condition at the entry 
time t 0 of neutron to crystal, but not by variation of the 
deviation during the time-of-flight through the crystal. 

So the position E s ( t 0 ) of the maximum and the 
maximum intensity N ( t 0 ) of the scanning curve (see 
Fig. 2 ) in the absence of the crystal acceleration effect 
will be some functions of deviation �B 

( t 0 ), depending 

on the crystal speed v ( t 0 ): 

E s ( t 0 ) = F ( �B 

( t 0 )) , (10) 

N ( t 0 ) = G ( �B 

( t 0 )) . (11) 

For further consideration and comparison with the 
experimental results expressions ( 10 ) and ( 11 ) can be 
expanded by Taylor series over v ( t 0 ) about the point 
v ( t 0 ) = 0 (i.e., �B ( t 0 ) = �B 0 ). Taking into account that
the crystal speed was significantly less than the typical 
Bragg widths, it is enough to leave expansion terms 
up to second order over v ( t 0 ): 

E s ( t 0 ) = A + B · v( t 0 ) + C · v ( t 0 ) 
2 , (12) 

N ( t 0 ) = N 0 + N 1 · v( t 0 ) + N 2 · v ( t 0 ) 
2 , (13) 

where A , B , C , N 0 , N 1 and N 2 are the free parameters
depending on �B 0 to be found from experiment. 

As it follows from ( 9 ), the crystal acceleration ef- 
fect contains a term phase-shifted with respect to the 
false effect ( 12 ) by the value of ωτ n /2. This shift is ap-
proximately equal to π /4 for our experimental condi- 
tions. Furthermore, the presence of acceleration effect 
does not change the intensity of the line, but gives 
its additional shift. Thus, there is a phase shift be- 
tween the time dependencies of N exp ( t 0 ) = N ( t 0 ) and 
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Fig. 4. The plots of the line positions versus its maximum intensities E exp ( N exp ). The initial deviation from the Bragg condition for the working 
crystal T 13 = + 1.5 K. Numbers inside the experimental points correspond to the channel numbers of time spectrum. The solid curve is the 
result of fitting the experimental data; the dashed line indicates a bijection between the maximum positions and the intensities; curved arrows 
show the sweep direction over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The experimental dependence of the line position on the 
entry time t 0 of neutrons into the crystal for various T 13 – initial 
deviations from the Bragg condition; T 31, K: + 1.0 ( 1 ), –1.5 ( 2 ), 
–2.5 ( 3 ). Horizontal axis t 0 in time-of-flight (TOF) channel units. 
One channel is equal to 25.6 μs. 

 

 

 

 

 

 

 

 

 

E exp ( t 0 ) = E s ( t 0 ) + �E ( t 0 ) that represents the crystal
acceleration effect. 

4. Results and discussion 

An example of experimental dependence of the line
positions on its maximal intensity E exp ( N exp ) is shown
in Fig. 4 . In the absence of the acceleration effect a
bijection between the maximum positions and the in-
tensities should be observed, shown by a dashed line.
The presence of the neutron energy change after pas-
sage through the accelerating crystal leads to the de-
pendence E exp ( N exp ) described with a closed curve like
Lissajous figure, where the figure square is determined
by the crystal acceleration effect. Curved arrows in
Fig. 4 show the sweep direction over time. The rela-
tion between a line shift in units of the crystal tem-
perature and a change in the neutron energy is given
by the following expression: 

�E = 2 E B 

· αL �T . (14)

The splitting marked by arrows in Fig. 4 corre-
sponds to �E exp 

∼= 

5 neV. 
Examples of the time dependencies of the scanning

curve maximum position are shown in Fig. 5 for dif-
ferent deviations T 13 from the Bragg condition. Those
are the results of fitting the experimental curves under
the assumption that the maximum position is deter-
mined by a sum of two effects: see formulae ( 12 ) and
( 9 ). 
Dependence of the maximum value for an en-
ergy change ( 9 ) due to the acceleration effect on the
deviation from the neutron Bragg energy for work-
ing crystal (temperature difference T 13 ) is shown in
Fig. 6 . Measurements were carried out at two differ-
ent crystal oscillation amplitudes, corresponding to v 0∼= 

3 mm/s and v 0 ∼= 

1.5 mm/s (see Eq. (6) ). Curves
show the results of approximating the experimental
points by the theoretical curve ( 9 ). Thus, one can see
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Fig. 6. The experimental (symbols) magnitude of energy variation 
of a neutron passed through the accelerating crystal as a function 
of the deviation from the Bragg condition for incident beam, and 
this function approximation (solid and dashed lines); measurements 
were carried out at two different crystal oscillation amplitudes, cor- 
responding to v 0 = 1.5 mm/s ( 1 ) and 3.0 mm/s ( 2 ). 

Fig. 7. The behavior of the interaction potential E 0 − ˜ E k (see 
Eq. (5) ) of neutrons with the crystal in the vicinity of the Bragg 
energy. Calculated and reconstructed from Fig. 6 curves coincide 
in error limits; the curves for different v 0 ( v 0 = 1.5 mm/s ( 1 ) and 
v 0 = 3.0 mm/s ( 2 )) coinside also (vertical bars show the scale of the 
experimental error). 
that the neutron energy change after passage through 

accelerating crystal can reach ∼20 neV. 
The mean potential energy of a neutron–crystal in- 

teraction (see Eq. (5) ) can be obtained from the exper- 
imental dependence shown in Fig. 6 , because that is 
actually a derivative of function ( 5 ) (see Eq. (6) ). One 
should take into account that far from the Bragg con- 
dition the correction to the mean interaction potential 
due to the presence of g -harmonic V g tends to zero 

(see Eq. (4) ), and so neutron refraction will be de- 
termined only by the average potential V 0 . The result 
of the interaction potential reconstruction for neutrons 
moving in a crystal with energies close to the Bragg 

one is shown in Fig. 7 . It is easy to see that the relative 
change of the neutron energy by several units of 10 

–5 
leads to the variation of the interaction neutron–crystal 
potential by ± 20%. 

5. Summary 

The features of refraction of a neutron wave moving 

in a crystal close to the Bragg condition has been stud- 
ied. The energy dependence of refractive index was 
shown to exhibit an evident resonance shape in the 
vicinity of the Bragg energy with the corresponding 

Bragg (Darwin) width (for thermal and cold neutrons 
�E / E 

∼= 

10 

−5 ). The variation of the interaction po- 
tential of the neutron with the crystal in this energy 

range can reach about ± 20%. 
The resonance behaviour of the neutron–crystal 

interaction potential results in one more new phe- 
nomenon. That is the neutron acceleration, which is 
found experimentally for neutrons passed through the 
accelerating perfect crystal for neutron energies close 
to the Bragg one. The effect arises due to a change in 

the parameter of deviation from the exact Bragg con- 
dition during the neutron time-of-flight through the ac- 
celerating crystal. As a result the refraction index for 
neutron changes as well and so does the velocity of 
the outgoing neutron. 

This crystal acceleration effect has been observed 

for the first time. This phenomenon should be taken 

into account in precision neutron optical experiments 
such as mentioned above, because the neutron refrac- 
tion index is determined not only by the averaged crys- 
tal potential, but also by its harmonics, which have the 
same order of value as the average potential itself. 
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