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a b s t r a c t

For a matroid M , an element e such that both M \ e and M/e
are regular is called a regular element of M . We determine
completely the structure of non-regular matroids with at least two
regular elements. Besides four small size matroids, all 3-connected
matroids in the class can be pieced together from F7 or S8 and
a regular matroid using 3-sums. This result takes a step toward
solving a problem posed by Paul Seymour: find all 3-connected
non-regular matroids with at least one regular element Oxley
(1992) [5, 14.8.8].

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Thematroid terminology followsOxley [5]. LetM be amatroid andX be a subset of the ground set E.
The connectivity function λ is defined as λ(X) = r(X)+r(E−X)−r(M). Observe that λ(X) = λ(E−X).
For j ≥ 1, a partition (X1, X2) of E is called a j-separation if |X1|, |X2| ≥ j, and λ(X1) ≤ j − 1. When
λ(X1) = j − 1, we call (X1, X2) an exact j-separation. When λ(X1) = j − 1 and |X1| = j or |X2| = j we
call (X1, X2) a minimal exact j-separation. For k ≥ 2, we say M is k-connected if M has no j-separation
for j ≤ k − 1. A matroid is internally k-connected if it is k-connected and has no non-minimal exact
k-separations. In particular, a simple matroid is 3-connected if λ(X1) ≥ 2 for all partitions (X1, X2)
with |X1|, |X2| ≥ 3. A 3-connected matroid is internally 4-connected if λ(X1) ≥ 3 for all partitions
(X1, X2) with |X1|, |X2| ≥ 4.

The 1-sum, 2-sum, and 3-sum of binary matroids are defined in [6]. A cycle of a binary matroid is
a disjoint union of circuits. Let M1 and M2 be binary matroids with non-empty ground sets E1 and E2,
respectively. We define a new binary matroid M1△M2 to be the matroid with ground set E1△E2 and
with cycles having the form C1△C2 where Ci is a cycle of Mi for i = 1, 2. When E1 ∪ E2 = φ, then
M1△M2 is a 1-sum of M1 and M2. When |E1|, |E2| ≥ 3, E1 ∩ E2 = {z} and z is not a loop or coloop of
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M1 or M2, then M1△M2 is a 2-sum of M1 and M2. When |E1|, |E2| ≥ 7, E1 ∩ E2 = T and T is a triangle
in M1 and M2, then M1△M2 is a 3-sum ofM1 and M2.

An element e in a non-regularmatroidM is called a regular element if bothM\e andM/e are regular.
Seymour posed the following problem that appears in Oxley’s bookMatroid Theory [5, 14.8.8]: find all
3-connected non-regular matroids with at least one regular element. In this paper, we take a step
toward solving this problem by determining the class of 3-connected non-regular matroids with at
least two regular elements.

We denote the 4-point line as U2,4 and the Fano matroid as F7. We denote by S8 the following
single-element extension of F7. It is self-dual. A single-element extension of S8 that will play a role is
P9 shown below.

F7 =


I3

1 0 1 1
1 1 0 1
0 1 1 1


S8 =

I4


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 1



P9 =

I4


0 1 1 1 1
1 0 1 1 1
1 1 0 1 0
1 1 1 1 0

 .

For this paper, it helps to think of F7 as the single-element extension of the 3-wheel with spokes
labeled {1, 2, 3} where the new element forms a circuit with {1, 2, 3}. The matroid P9 is the single-
element extension of the 4-wheel with spokes {1, 2, 3, 4} where the new element forms a circuit with
any three consecutive spokes, say {1, 2, 3}. Then P9\1 ∼= S8 and P9\3 ∼= S8. Moreover, P9\{1, 3} ∼= F∗

7 .
Let F p

7 and Sp8 be thematroids obtained from F7 and S8, respectively, by adding an element in parallel
with an element belonging to at least two triangles. Note that every element of F7 is in at least two
triangles, but only one element of S8 is in two triangles. Themain result of this paper gives a complete
characterization of the matroids with at least two regular elements.

Theorem 1.1. A 3-connected non-regular matroid M has at least two regular elements if and only if

(i) M is U2,4, F7, F∗

7 or S8; or
(ii) M is the 3-sumof F7 or S8 with a 3-connected regularmatroid (with the possible exception of elements

in parallel with the 3-sum triangle); or
(iii) M is the 3-sum of F p

7 or Sp8 with two 3-connected regular matroids (with the possible exception of
elements in parallel with the 3-sum triangle). These two 3-sums are made along two disjoint triangles
of F p

7 or Sp8 .

In order to prove this result we use the following theorems. The first is by Oxley and appears
in [4, 3.9].

Theorem 1.2. Let M be a non-binary 3-connected matroid having an element e such that M \ e and M/e
are both regular. Then M ∼= U2,4. �

The next result by Zhou appears in [7, 1.2]. The matroid S10, shown below, is the first matroid in
the internally 4-connected infinite family of almost-graphic matroids S3n+1 [3]. The matroid M[E5]
appears in [1] where Kingan characterized the class of matroids with no minors isomorphic to
M(K5 \ e), M∗(K5 \ e) and AG(3, 2). M[E5] is a splitter for this class. It is self dual and internally
4-connected. The self-dual 4-connected matroid T12 appears in [2].

S10 =

I4


1 0 0 1 1 0
1 1 0 0 1 1
0 1 1 0 1 1
0 0 1 1 0 1

 E5 =

I5


0 1 1 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 1 0
1 1 0 0 0


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T12 =

I6



1 1 0 0 0 1
1 0 0 0 1 1
0 0 0 1 1 1
0 0 1 1 1 0
0 1 1 1 0 0
1 1 1 0 0 0

 .

Theorem 1.3. A non-regular internally 4-connected binary matroid other than F7 and F∗

7 contains one of
the following matroids as a minor: M(E5), S10, S∗

10, T12 \ e, and T12/e. �

It can be checked that S10, S∗

10T12 \ e, and T12/e each have one regular element andM(E5) has zero
regular elements. Moreover, the number of regular elements in a non-regular matroid is bounded
above by the number of regular elements in any non-regular minor. We use this fact throughout the
paper. The next result follows from Theorem 1.2 and the above discussion.

Corollary 1.4. If M is an internally 4-connected binary non-regular matroid having at least two regular
elements, then M is isomorphic to F7 or F∗

7 .

Finally, we use the following results by Seymour that appear in [6, 2.9 and 4.1].

Theorem 1.5. If (X1, X2) is an exact 3-separation of a binary matroid M, with |X1|, |X2| ≥ 4, then there
are binarymatroidsM1, M2 on X1∪T , X2∪T , respectively (where T contains three new elements), such that
M is the 3-sum of M1 andM2. Conversely if M is the 3-sum of M1 andM2, then (E(M1)−E(M2), E(M2)−
E(M1)) is an exact 3-separation of M, and |E(M1) − E(M2)|, |E(M2) − E(M1)| ≥ 4. �

Theorem 1.6. If M is binary and is the 3-sum of M1 and M2, and M is 3-connected, then M1 and M2 are
isomorphic to minors of M. �

In the next section, we give several separation lemmas that are used in the proof of themain theorem.
In the third section, we give results on the number of regular elements in a matroid. Finally, in the
fourth section, we prove Theorem 1.1. The difficulty in completely finishing off Seymour’s problem
lies in determining the structure of the non-regular internally 4-connectedmatroids with one regular
element.

2. Understanding 3-separations in the context of regular elements

Wewill denote by si(M) and co(M) the simple and cosimplematroid, respectively, associatedwith
M . Let M be a 3-connected non-regular binary matroid such that M is the 3-sum of matroids M1 and
M2 where |E(M1)|, |E(M2)| ≥ 7, E(M1) ∩ E(M2) = T and T is a triangle in M1 and M2. Assume that
e ∈ E(M1) − E(M2) is a regular element ofM .

Lemma 2.1. The element e is not spanned by E(M2) − E(M1) in M.

Proof. Suppose e is spanned by E(M2)−E(M1) inM . Then e is spanned by T inM1 and so e is in parallel
to some element t ∈ T . By hypothesis,M \e is regular. Observe thatM1\e andM2 are regular because:

(i) when |E(M1)| > 7,M \ e is the 3-sum ofM1 \ e withM2;
(ii) when |E(M1)| = 7, M1 \ e has 6 elements and is isomorphic to M(K4). So M \ e is obtained from

M2 after a ∆ − Y operation along the triangle T .

But M1 is obtained from M1 \ e by adding e in parallel with t . Therefore M1 and M2 are regular; a
contradiction because the class of regular matroids is closed under 3-sums. Thus e is not spanned by
E(M2) − E(M1) in M . �

Lemma 2.2. The element e is not spanned by E(M2) − E(M1) in M∗.

Proof. If Ni is obtained fromMi by a ∆− Y operation along the triangle T , thenM∗ is the 3-sum of N∗

1
and N∗

2 . Applying Lemma 2.1, we conclude that e is not spanned by E(M2) − E(M1) in M∗. �
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In the next result, we describe how the presence of a regular element in M1 impacts the structure
of M . We prove that one of two situations must occur: either M1 is non-regular with e as a regular
element andM2 is regular orM2 is non-regular andM1 is a small matroid with a specific structure. In
the latter situation we prove that E(M1)−T = T ′

∪T ∗ where T ′ is a triangle and T ∗ is a triad such that
e ∈ T ′

∩ T ∗ and E(M1) − E(M2) is closed in M . Since M is binary, a triangle and triad must intersect
in an even number of elements. This means M1 has just 7 elements, one of which is parallel with an
element of T .

Lemma 2.3. (i) M2 is a regular matroid; or
(ii) there is a triangle T ′ and a triad T ∗ of M such that e ∈ T ′

∩ T ∗ and E(M1) − T = T ′
∪ T ∗.

Moreover,

(iii) when (i) happens, M1 is a non-regular matroid having e as a regular element;
(iv) when (ii) happens, E(M1) − E(M2) is closed in M.

Proof. Assume that (i) does not hold, that is,

M2 is non-regular. (1)

First, we establish that

r(M1) = 3 or si(M/e) is not 3-connected. (2)

Suppose that r(M1) ≥ 4 and si(M/e) is 3-connected. If T ′ is a triangle of M containing e, then, by
Lemma 2.1, |E(M2) ∩ T ′

| ≤ 1. Therefore we may assume that si(M/e) = M/e \ X , for X ⊆ E(M1) − T .
If M1/e \ X ≃ M(K4), then M2 is obtained from si(M/e) after a Y − ∆ operation along the triad
E(M1) − (e∪ X ∪ T ). SoM2 is regular; a contradiction to (1). IfM1/e \ X ≄ M(K4), then si(M/e) is the
3-sum of M1/e \ X and M2. As si(M/e) is regular, it follows that M2 is regular; a contradiction to (1).
We have (2).

If Ni is obtained fromMi by a ∆− Y operation along the triangle T , thenM∗ is the 3-sum of N∗

1 and
N∗

2 . Note that Lemma 2.3(i) holds for the decomposition M = M1 △ M2 if and only if Lemma 2.3(i)
holds for the decomposition M∗

= N∗

1 △ N∗

2 . The analogous statement occurs when we replace (i) by
(ii). Therefore, the dual of (2) becomes

r(N∗

1 ) = 3 or [co(M \ e)]∗ = si(M∗/e) is not 3-connected. (3)

By Bixby’s Theorem [5, 8.4.6], si(M/e) or co(M \ e) is 3-connected. By (2) and (3), r(M1) = 3 or
r(N∗

1 ) = 3. Taking the dual when necessary, we may assume that

r(M1) = 3. (4)

Next, we prove the following claim.
Claim: M1 does not have aminorN such that T and T ′

= E(N)−T are triangles ofN , e ∉ E(N) = T ∪T ′

and r(N) = 2.
Suppose that N exists, say N = M1 \ X/Y . By hypothesis, e ∈ X ∪ Y and so M \ X/Y is regular.

Moreover,M \X/Y is isomorphic toM2. ThusM2 is regular; a contradiction to (1). Therefore the claim
holds.

If si(M1) ≃ F7, then M1/e is a rank-2 matroid. By Lemma 2.1, M1/e has T as a triangle. We
have a contradiction by the claim because every parallel class of M1/e is non-trivial. Hence, by (4),
si(M1) ≃ M(K4). In particular, T ∗

= E(M1) − clM1(T ) is a triad of M1. By Lemma 2.1, e ∈ T ∗, say
T ∗

= {e, e1, e2}. Let f1, . . . , fk be the elements of clM1(T )−T . For each i, there is ti ∈ T such that { fi, ti}
is a parallel class ofM1. By the claim, k ≤ 2. Next, we establish that

k = 1. (5)

As |E(M1)| ≥ 7 and |E(M1) − clM1(T )| = 3, it follows that k ≥ 1. If (5) does not hold, then k = 2. In
M1/e, by the claim, ei is in parallel with fj, say ei is in parallel with fi, for both i. Therefore Ti = {e, ei, fi}
is a triangle ofM , for both i, and so T1△T2△{ f1, f2, t3} = {e1, e2, t3}, where T = {t1, t2, t3} is a triangle
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ofM1. Thus N = M1 \ e/e1 is a minor ofM1 contrary to the claim. Thus (5) holds. By the claim e1 or e2
is in parallel with f1 inM1/e, say e1. That is, T ′

= {e, e1, f1} is a triangle ofM1 and so ofM . We have (ii).
Assume that (i) happens, that is, M2 is regular. Thus M1 is non-regular because M is non-regular.

To conclude (iii) we need to prove only that e is a regular element ofM1. By the proof of Theorem 1.6,
there are disjoint subsets Y and Z of E(M2) − E(M1) such that N = M2 \ Y/Z is a 6-element matroid
such that T ′′

= E(N)− T is a triangle of N and, for each f ∈ T , there is an f ′′
∈ T ′′ such that { f , f ′′

} is a
circuit ofN . SoM \Y/Z is isomorphic toM1—this isomorphism fix each element of E(M1)−E(M2) and
sends f ′′ into f , for each f ′′

∈ T ′′. As bothM\e andM/e are regular, it follows that (M\e)\Y/Z ≃ M1\e
and (M/e) \ Y/Z ≃ M1/e are regular. That is, e is a regular element ofM1. We have (iii).

Assume that (ii) happens. If E(M1) − E(M2) spans an element g of E(M2) − E(M1) in M , then
[E(M1) − E(M2)] ∪ g is a 3-separating set for M . Using the 3-separation induced by this set, we can
decompose M as the 3-sum of matroids M ′

1 and M ′

2 such that E(M ′

1) = [E(M1) − E(M2)] ∪ g ∪ T ′′

and T ′′
= E(M ′

1) ∩ E(M ′

2). Note that, in M ′

1, the element g is in parallel with some element of T ′′. In
particular,M ′

1 \g ≃ M1 is regular. SoM ′

1 is regular; a contradiction to this lemma. Thus E(M1)−E(M2)
is closed inM . �

Now that we have shownM has a clearly defined structure, we want to say more about the second
situation. Recall that R(M) is the set of regular elements. For a triangle T ′ and triad T ∗ of M , we say
that T ′, T ∗ is an undesired fan if T ′

∩ T ∗
∩ R(M) ≠ ∅. Note that {T ′

∪ T ∗, E(M) − (T ′
∪ T ∗)} is an exact

3-separation forM and by Theorem 1.5, it is possible to decomposeM as a 3-sum using it. In the next
lemma we show that the presence of an undesired fan implies the existence of two regular elements.

Lemma 2.4. If T ′, T ∗ is an undesired fan in M such that E(M1)−E(M2) = T ′
∪T ∗, then T ′

∩T ∗
⊆ R(M).

Moreover, if T ∗
−T ′

= { f }, then M/f is a 3-connected non-regular matroid such that T ′
∩T ∗

⊆ R(M/f ).

Proof. Suppose that T ′
= {e, e′, t}, T ∗

= {e, e′, f } and e ∈ R(M). In M/e′, t and e are in parallel. As
M \ e and soM/e′

\ e is regular, it follows thatM/e′ is regular becauseM/e′ is obtained fromM/e′
\ e

by adding e in parallel with t . Using duality, we conclude that M \ e′ is regular. Hence e′ is a regular
element ofM and so T ′

∩ T ∗
⊆ R(M).

Next, observe that E(M1) = T ′
∪T ∗

∪T and E(M2) = [E(M)−(T ′
∪T ∗)]∪T . AsM1 is regular, it follows

that M2 is non-regular. By Lemma 2.3, f does not belong to a triangle of M . So M/f is 3-connected
because si(M/f ) is 3-connected. But M/f ≃ M2 because M1/f has three non-trivial parallel classes
each containing one element of T ′ and another of T . The result follows because R(M) ⊆ R(M/f ). �

In the next lemma, we prove that, when this happens, it is possible to uncontract f keeping the
property of these two regular elements.

Lemma 2.5. Let N be a 3-connected non-regular binary matroid having different regular elements e and
e′. Suppose that T ′ is a triangle of N such that e, e′

∈ T ′ and {e, e′
} is not contained in a triad of N. If M is

a one-element binary lift of N, say M/f = N, such that {e, e′, f } is a triad of M, then e and e′ are regular
elements of M (and M is 3-connected).

Proof. Observe that si(M/e) = M/e\e′. But, inM\e′, e and f are in series. SoM/e\e′
≃ M/f \e′

= N\e′

and si(M/e) is regular. Thus M/e is regular. As M \ e/f = N \ e, it follows that M \ e/f is regular and
so M \ e is regular. That is, e is a regular element ofM . A similar argument holds with e′. �

3. The number of regular elements in a matroid

Next,weprove a result on the number of regular elements in a binary non-regularmatroid. Observe
that, F∗

7 has two single-element extensions S8 and AG(3, 2). The matroid AG(3, 2) has one single-
element extension Z4. The matroid S8 has two single-element extensions, Z4 and P9. Observe further
that F7 and F∗

7 have seven regular elements, S8 has six regular elements, and P9 has four regular
elements. AG(3, 2) has zero regular elements and consequently, so do all its 3-connected extensions
and coextensions.

Lemma 3.1. Let M be a 3-connected non-regular binary matroid. If |E(M)| ≥ 9, then |R(M)| = 0, 1, 2
or 4. Moreover, if |R(M)| = 4, then R(M) is both a circuit and a cocircuit of M.



S.R. Kingan, M. Lemos / European Journal of Combinatorics 33 (2012) 1022–1029 1027

Proof. Assume this result fails. Choose a minimal counter-example M . We have four possibilities:
|R(M)| = 3; or |R(M)| = 4 and R(M) is not a circuit of M; or |R(M)| = 4 and R(M) is not a
cocircuit of M; or |R(M)| ≥ 5. In all four cases, R(M) ≠ ∅. In particular, AG(3, 2) is not a minor of
M because R(AG(3, 2)) = ∅. Thus S8 is a minor ofM . But the only 3-connected binary single-element
extension of S8 without a minor isomorphic to AG(3, 2) is P9. ThereforeM has P9 or P∗

9 as a minor. But
|R(P9)| = 4 and R(P9) = R(P∗

9 ) is both a circuit and a cocircuit of P9. Hence |E(M)| ≥ 10. Moreover,
|R(M)| ≤ |R(P9)| = 4 and by Corollary 1.4,M is not internally 4-connected.

Suppose |R(M)| = 3. By Theorem 1.5, we can decompose M as the 3-sum of matroids M1 and M2
such that E(M1) ∩ E(M2) = T and E(M1) ∩ R(M) ≠ φ. If Lemma 2.3(ii) occurs and f ∈ T ∗

− T ′,
then by Lemma 2.4 and the choice of M , the results holds for M/f . Moreover, T ′

∩ T ∗
⊆ R(M). As

R(M) ⊆ R(M/f ) and |R(M)| = 3, it follows that |R(M/f )| = 4 and R(M/f ) is both a circuit and a
cocircuit of M/f . Thus R(M) ∪ g is a cocircuit of M , where {g} = R(M/f ) − R(M). If R(M) ∪ g is not
a circuit of M , then R(M) ∪ { f , g} is a circuit of M containing T ∗; a contradiction. Hence R(M) ∪ g is
both a circuit and a cocircuit of M . Note that [R(M) ∪ g] △ T ∗ is a triad of M and [R(M) ∪ g] △ T ′ is a
triangle ofM whose intersection contains a regular element. Therefore, by Lemma 2.4 the intersection
has two regular elements (g is the other regular element); a contradiction. Thus Lemma 2.3(i) occurs.
Observe that R(M) is contained in a circuit–cocircuit ofM1 consisting of regular elements avoiding T .
Thus every element in this circuit–cocircuit is also a regular element of M; a contradiction. Thus we
proved thatM cannot have exactly three regular elements.

Next, suppose |R(M)| = 4, but R(M) is not a circuit and cocircuit. By Theorem 1.5, we can
decomposeM as the 3-sum ofmatroidsM1 andM2 such that E(M1)∩E(M2) = T and E(M1)∩R(M) ≠

φ. If Lemma 2.3(ii) occurs, f ∈ T ∗
− T ′, then, by Lemma 2.4,M/f has the same regular elements asM .

By the choice ofM , R(M) is a circuit–cocircuit ofM/f . As R(M)∪ f contains a triad ofM , it follows that
R(M) ∪ f is not a circuit ofM . Thus R(M) is a circuit–cocircuit ofM .

Wemay assume by Lemma 2.3(i) thatM2 is regular,M1 is non-regular, and |R(M)| ⊆ E(M1). By the
choice of M if |E(M1)| ≥ 9, R(M) is a circuit–cocircuit of si(M1) and therefore of M; a contradiction.
Thus M1 has at most 8 elements. Since si(M1) is non-regular, si(M1) is isomorphic to F7 or S8. In both
cases, R(M) is a circuit–cocircuit of this matroid. �

Using the previous lemma, we can refine the second part of Lemma 2.4.

Lemma 3.2. Let M be a 3-connected non-regular binary matroid with |E(M)| ≥ 10 and suppose T , T ∗ is
an undesired fan of M such that T ∗

− T = { f }. Then M/f is a non-regular 3-connected matroid such that
R(M/f ) = R(M).
Proof. We argue by contradiction. Since T ∩ T ∗

⊆ R(M), it follows from Lemma 2.4 that |R(M)| ≥ 2.
Lemma 3.1 implies that |R(M/f )| is 2 or 4. If |R(M/f )| = |R(M)|, then R(M/f ) = R(M) because
R(M) ⊆ R(M/f ); a contradiction. By Lemma 3.1, |R(M/f )| = 4 and |R(M)| = 2. Moreover, R(M/f ) is
a circuit–cocircuit ofM/f .

Since T ∗
⊆ R(M/f ) ∪ f , it follows that R(M/f ) is also a circuit–cocircuit of M . Therefore T ′

=

T △ R(M/f ) is a triangle of M and T ′∗
= T ∗

△ R(M/f ) is a triad of M . But T ′ is a triangle of M/f
containing two regular elements of M/f such that no triad of M/f contains these two elements. By
Lemma 2.5 these two elements are also regular inM . Hence R(M/f ) = R(M); a contradiction. �

A 3-separation {X, Y } for a 3-connected matroid is said to be trivial provided |X | = 3 or |Y | = 3.

Lemma 3.3. Let M be a 3-connected non-regular binary matroid such that |R(M)| ≥ 1. If any non-
trivial 3-separation for M has the union of a triangle and a triad of a undesired fan as one of its sets,
then M is isomorphic to S8, F7 or F∗

7 .
Proof. If |E(M)| ≤ 8, then the result holds. Therefore, suppose that |E(M)| ≥ 9. First assume that M
has just one non-trivial 3-separation. By Theorem 1.5,M is the 3-sum ofmatroidsM1 andM2 such that
E(M1)−E(M2) is the union of the triangle and the triad of the undesired fan. Thus E(M1)∩R(M) ≠ φ.
Observe that Lemma 2.3(ii) holds in this case. By the uniqueness of the 3-separation for M , M2 is
internally 4-connected. By Theorem 1.3, M2 is isomorphic to F7. Thus |E(M)| = 8; a contradiction.
HenceM has at least two non-trivial 3-separations.

Let T1, T ∗

1 and T2, T ∗

2 be different undesired fans ofM . For i ∈ {1, 2}, set Zi = Ti ∩T ∗

i . By Lemmas 2.4
and 3.1, and orthogonality, R(M) = Z1∪Z2 is a circuit–cocircuit ofM . In particular, Z1 and Z2 are unique
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and these are the unique undesired fans of M . If T1 − T ∗

1 = {t} and T ∗

1 − T1 = { f }, then T2 = Z2 ∪ t
and T ∗

2 = Z2 ∪ f because T1 △ T2 = T ∗

1 △ T ∗

2 = R(M). Observe that Z1 ∪ Z2 ∪ { f , t} is a 2-separating
set forM; a contradiction. �

4. The main result

In this section, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. First, we prove the ‘‘only if’’ part. If M is non-binary, then by Theorem 1.2 we
may conclude thatM ∼= U2,4. Therefore supposeM is binary and non-regular. Assume thatM is binary
non-regular and |R(M)| ≥ 2. If M is an internally 4-connected matroid, then by Corollary 1.4, M is
isomorphic to F7 or F∗

7 .
Thus wemay assume thatM is not internally 4-connected. By Lemma 3.3, S8 is the unique matroid

having all non-trivial 3-separations induced by the union of a triangle and a triad of some undesired
fan. The result follows in this case. Therefore, we can assume thatM has a 3-separation such that none
of its sets is the union of a triangle and a triad in a undesired fan, say {X1, X2}. By Theorem 1.5 there
are 3-connected matroids (up to parallel elements with the common triangle) M1 and M2 such that
M is the 3-sum of M1 and M2 and, for i ∈ {1, 2}, E(Mi) = Xi ∪ T . By definition, T is the common
triangle betweenM1 andM2. By Lemma 2.3 we may assume thatM1 is non-regular andM2 is regular.
Moreover, R(M) ⊆ X1. We may assume that M1 is also 3-connected (the elements in parallel with
elements of T , if they exist, are in M2). By Lemmas 2.1 and 2.2, T does not span any element of R(M)
in M1 orM∗

1 . Thus by induction we have three possibilities.
First, supposeM1 is isomorphic to F7 or S8. The result follows becauseM is the 3-sum of a matroid

isomorphic to F7 or S8 (that isM1) with a regular matroid (that isM2).
Second, supposeM1 is the 3-sumofmatroidsN1 andN2 along a triangle T ′ such that R(M) ⊆ E(N1);

T ′ does not span any element of R(M) in N1; N1 is isomorphic to F7 or S8 and N2 is regular (We may
assume that T ′

∩E(M2) = ∅.). If |E(N2)∩T | ≥ 2, then T ⊆ E(N2) because an element of E(N1)−E(N2)
spanned by E(N2)−E(N1) inM1 must be in parallel with some element of T ′ inN1. In this subcase,M is
the 3-sum of N1 and the regular matroid obtained by doing the 3-sum of N2 andM2 along the triangle
T . The result follows in this case. Thus we may assume that |E(N2) ∩ T | ≤ 1. As any two triangles of
N1 meet (recall that N1 is isomorphic to F7 or S8), it follows that E(N2) ∩ T = {t}. Thus t is in parallel
with an element t ′ of T ′ in N2. Let N ′

1 be the matroid obtained from N1 by adding t in parallel with t ′.
Note that T is a triangle of N ′

1. Thus N
′

1 is isomorphic to F p
7 or Sp8 . Moreover,M is the 3-sum of N ′

1 with
N2 \ t and M2. The result also follows in this case.

Third, suppose there are matroids N , N1, and N2 such that:

(1) M1 is the 3-sum of N,N1 and N2;
(2) N has elements t1 and t2 in parallel;
(3) N \ t1 is isomorphic to F7 or S8;
(4) E(N1) and E(N2) are disjoint;
(5) Ti = E(N) ∩ E(Ni) is a triangle in both N and Ni, for both i ∈ {1, 2};
(6) ti ∈ Ti, for both i ∈ {1, 2};
(7) N1 and N2 are regular and 3-connected (up to some parallel elements with elements of T1 and T2

respectively);
(8) (T1 ∪ T2) ∩ E(M2) = ∅.

We begin by showing that |E(Ni) ∩ T | ≤ 1, for both i ∈ {1, 2}. If |E(Ni) ∩ T | ≥ 2, say i = 2,
then E(N2) − T2 spans T in M1. As t1 and t2 are the only elements of N in parallel, it follows that
T ⊆ E(N2)− T2, otherwise the unique element belonging to E(N2)− T2 would be in parallel in N with
some element of T2 and this element is not t1. HenceM is the 3-sum of N,N1 and N ′

2, where N ′

2 is the
3-sumofN2 andM2 along T . The result follows, by induction. Thuswemay assume that |E(Ni)∩T | ≤ 1,
for both i ∈ {1, 2}. Moreover, when |E(Ni) ∩ T | = 1, say E(Ni) ∩ T = {ai}, ai is in parallel with some
element a′

i ∈ Ti in Ni. If Ai = {ai}, when this happens, and Ai = ∅ otherwise, then M1 is the 3-sum
or N ′

\ [{a1, a2} − (A1 ∪ A2)] with N1 \ A1 and N2 \ A2, where N ′ is obtained from N by adding, for
both i ∈ {1, 2}, ai in parallel with a′

i . As T does not span any element of R(M) in N ′, by Lemma 2.1, and
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|R(M)| ≥ 2, it follows that T spans T1 or T2, say T2. That is, each element of T is in parallel with some
element of T2 in N ′. We can transfer these elements for N2 and we arrive at the previous case.

Finally, to see the ‘‘if’’ part, we use Lemmas 2.5 and 3.2 to reduce the S8 case to the F7 case in the
3-sums. The F7 case is easy to verify. �

Acknowledgments

The authors thank the unknown referees for their valuable suggestions. The first author is partially
supported by PSC-CUNY Award 63076-00 41. The second author is partially supported by CNPq under
grant number 300242/2008-05.

References

[1] S.R. Kingan, Binary matroids without prisms, prism duals, and cubes, Discrete Math. 152 (1996) 211–224.
[2] S.R. Kingan, A generalization of a graph result by D. W. Hall, Discrete Math. 173 (1997) 129–135.
[3] S.R. Kingan, M. Lemos, Almost-graphic matroids, Advances in Applied Mathematics 28 (2002) 438–477.
[4] J.G. Oxley, On nonbinary 3-connected matroids, Transactions of the American Mathematical Society 300 (1987) 663–679.
[5] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[6] P.D. Seymour, Decomposition of regular matroids, Journal of Combinatorial Theory Series B 28 (1980) 305–359.
[7] X. Zhou, On internally 4-connected non-regular binary matroids, Journal of Combinatorial Theory Series B 91 (2004)

327–343.


	Matroids with at least two regular elements
	Introduction
	Understanding 3-separations in the context of regular elements
	The number of regular elements in a matroid
	The main result
	Acknowledgments
	References


