Matroids with at least two regular elements

S.R. Kingan ${ }^{\text {a }}$, Manoel Lemos ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Brooklyn College, City University of New York, Brooklyn, NY 11210, United States
${ }^{\mathrm{b}}$ Departamento de Matematica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50740-540, Brazil

ARTICLE INFO

Article history:

Received 15 March 2011
Accepted 19 December 2011
Available online 15 February 2012

Abstract

For a matroid M, an element e such that both $M \backslash e$ and M / e are regular is called a regular element of M. We determine completely the structure of non-regular matroids with at least two regular elements. Besides four small size matroids, all 3-connected matroids in the class can be pieced together from F_{7} or S_{8} and a regular matroid using 3-sums. This result takes a step toward solving a problem posed by Paul Seymour: find all 3-connected non-regular matroids with at least one regular element Oxley (1992) [5, 14.8.8].

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The matroid terminology follows Oxley [5]. Let M be a matroid and X be a subset of the ground set E. The connectivity function λ is defined as $\lambda(X)=r(X)+r(E-X)-r(M)$. Observe that $\lambda(X)=\lambda(E-X)$. For $j \geq 1$, a partition $\left(X_{1}, X_{2}\right)$ of E is called a j-separation if $\left|X_{1}\right|,\left|X_{2}\right| \geq j$, and $\lambda\left(X_{1}\right) \leq j-1$. When $\lambda\left(X_{1}\right)=j-1$, we call (X_{1}, X_{2}) an exact j-separation. When $\lambda\left(X_{1}\right)=j-1$ and $\left|X_{1}\right|=j$ or $\left|X_{2}\right|=j$ we call $\left(X_{1}, X_{2}\right)$ a minimal exact j-separation. For $k \geq 2$, we say M is k-connected if M has no j-separation for $j \leq k-1$. A matroid is internally k-connected if it is k-connected and has no non-minimal exact k-separations. In particular, a simple matroid is 3 -connected if $\lambda\left(X_{1}\right) \geq 2$ for all partitions (X_{1}, X_{2}) with $\left|X_{1}\right|,\left|X_{2}\right| \geq 3$. A 3-connected matroid is internally 4-connected if $\lambda\left(X_{1}\right) \geq 3$ for all partitions $\left(X_{1}, X_{2}\right)$ with $\left|X_{1}\right|,\left|X_{2}\right| \geq 4$.

The 1-sum, 2-sum, and 3-sum of binary matroids are defined in [6]. A cycle of a binary matroid is a disjoint union of circuits. Let M_{1} and M_{2} be binary matroids with non-empty ground sets E_{1} and E_{2}, respectively. We define a new binary matroid $M_{1} \Delta M_{2}$ to be the matroid with ground set $E_{1} \Delta E_{2}$ and with cycles having the form $C_{1} \Delta C_{2}$ where C_{i} is a cycle of M_{i} for $i=1,2$. When $E_{1} \cup E_{2}=\phi$, then $M_{1} \Delta M_{2}$ is a 1 -sum of M_{1} and M_{2}. When $\left|E_{1}\right|,\left|E_{2}\right| \geq 3, E_{1} \cap E_{2}=\{z\}$ and z is not a loop or coloop of

[^0]M_{1} or M_{2}, then $M_{1} \Delta M_{2}$ is a 2 -sum of M_{1} and M_{2}. When $\left|E_{1}\right|,\left|E_{2}\right| \geq 7, E_{1} \cap E_{2}=T$ and T is a triangle in M_{1} and M_{2}, then $M_{1} \Delta M_{2}$ is a 3 -sum of M_{1} and M_{2}.

An element e in a non-regular matroid M is called a regular element if both $M \backslash e$ and M / e are regular. Seymour posed the following problem that appears in Oxley's book Matroid Theory [5, 14.8.8]: find all 3 -connected non-regular matroids with at least one regular element. In this paper, we take a step toward solving this problem by determining the class of 3-connected non-regular matroids with at least two regular elements.

We denote the 4-point line as $U_{2,4}$ and the Fano matroid as F_{7}. We denote by S_{8} the following single-element extension of F_{7}. It is self-dual. A single-element extension of S_{8} that will play a role is P_{9} shown below.

$$
\begin{aligned}
F_{7} & =\left[I_{3} \left\lvert\, \begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right.\right] \quad S_{8}=\left[I_{4} \left\lvert\, \begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right.\right] \\
P_{9} & =\left[I_{4} \left\lvert\, \begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array}\right.\right] .
\end{aligned}
$$

For this paper, it helps to think of F_{7} as the single-element extension of the 3-wheel with spokes labeled $\{1,2,3\}$ where the new element forms a circuit with $\{1,2,3\}$. The matroid P_{9} is the singleelement extension of the 4 -wheel with spokes $\{1,2,3,4\}$ where the new element forms a circuit with any three consecutive spokes, say $\{1,2,3\}$. Then $P_{9} \backslash 1 \cong S_{8}$ and $P_{9} \backslash 3 \cong S_{8}$. Moreover, $P_{9} \backslash\{1,3\} \cong F_{7}^{*}$.

Let F_{7}^{p} and S_{8}^{p} be the matroids obtained from F_{7} and S_{8}, respectively, by adding an element in parallel with an element belonging to at least two triangles. Note that every element of F_{7} is in at least two triangles, but only one element of S_{8} is in two triangles. The main result of this paper gives a complete characterization of the matroids with at least two regular elements.

Theorem 1.1. A 3-connected non-regular matroid M has at least two regular elements if and only if
(i) M is $U_{2,4}, F_{7}, F_{7}^{*}$ or S_{8}; or
(ii) M is the 3 -sum of F_{7} or S_{8} with a 3-connected regular matroid (with the possible exception of elements in parallel with the 3 -sum triangle); or
(iii) M is the 3-sum of F_{7}^{p} or S_{8}^{p} with two 3-connected regular matroids (with the possible exception of elements in parallel with the 3 -sum triangle). These two 3 -sums are made along two disjoint triangles of F_{7}^{p} or S_{8}^{p}.

In order to prove this result we use the following theorems. The first is by Oxley and appears in $[4,3.9]$.

Theorem 1.2. Let M be a non-binary 3-connected matroid having an element esuch that $M \backslash e$ and M / e are both regular. Then $M \cong U_{2,4}$.

The next result by Zhou appears in [7, 1.2]. The matroid S_{10}, shown below, is the first matroid in the internally 4 -connected infinite family of almost-graphic matroids $S_{3 n+1}$ [3]. The matroid $M\left[E_{5}\right.$] appears in [1] where Kingan characterized the class of matroids with no minors isomorphic to $M\left(K_{5} \backslash e\right), M^{*}\left(K_{5} \backslash e\right)$ and $A G(3,2) . M\left[E_{5}\right]$ is a splitter for this class. It is self dual and internally 4 -connected. The self-dual 4-connected matroid T_{12} appears in [2].

$$
S_{10}=\left[I_{4} \left\lvert\, \begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right.\right] \quad E_{5}=\left[I_{5} \left\lvert\, \begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right.\right]
$$

$$
T_{12}=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0
\end{array}\right] .
$$

Theorem 1.3. A non-regular internally 4-connected binary matroid other than F_{7} and F_{7}^{*} contains one of the following matroids as a minor: $M\left(E_{5}\right), S_{10}, S_{10}^{*}, T_{12} \backslash e$, and T_{12} / e.

It can be checked that $S_{10}, S_{10}^{*} T_{12} \backslash e$, and T_{12} / e each have one regular element and $M\left(E_{5}\right)$ has zero regular elements. Moreover, the number of regular elements in a non-regular matroid is bounded above by the number of regular elements in any non-regular minor. We use this fact throughout the paper. The next result follows from Theorem 1.2 and the above discussion.

Corollary 1.4. If M is an internally 4-connected binary non-regular matroid having at least two regular elements, then M is isomorphic to F_{7} or F_{7}^{*}.
Finally, we use the following results by Seymour that appear in [6, 2.9 and 4.1].
Theorem 1.5. If $\left(X_{1}, X_{2}\right)$ is an exact 3 -separation of a binary matroid M, with $\left|X_{1}\right|,\left|X_{2}\right| \geq 4$, then there are binary matroids M_{1}, M_{2} on $X_{1} \cup T, X_{2} \cup T$, respectively (where T contains three new elements), such that M is the 3 -sum of M_{1} and M_{2}. Conversely if M is the 3 -sum of M_{1} and M_{2}, then $\left(E\left(M_{1}\right)-E\left(M_{2}\right), E\left(M_{2}\right)-\right.$ $E\left(M_{1}\right)$) is an exact 3 -separation of M, and $\left|E\left(M_{1}\right)-E\left(M_{2}\right)\right|,\left|E\left(M_{2}\right)-E\left(M_{1}\right)\right| \geq 4$.

Theorem 1.6. If M is binary and is the 3 -sum of M_{1} and M_{2}, and M is 3 -connected, then M_{1} and M_{2} are isomorphic to minors of M.

In the next section, we give several separation lemmas that are used in the proof of the main theorem. In the third section, we give results on the number of regular elements in a matroid. Finally, in the fourth section, we prove Theorem 1.1. The difficulty in completely finishing off Seymour's problem lies in determining the structure of the non-regular internally 4-connected matroids with one regular element.

2. Understanding 3-separations in the context of regular elements

We will denote by $\operatorname{si}(M)$ and $c o(M)$ the simple and cosimple matroid, respectively, associated with M. Let M be a 3 -connected non-regular binary matroid such that M is the 3 -sum of matroids M_{1} and M_{2} where $\left|E\left(M_{1}\right)\right|,\left|E\left(M_{2}\right)\right| \geq 7, E\left(M_{1}\right) \cap E\left(M_{2}\right)=T$ and T is a triangle in M_{1} and M_{2}. Assume that $e \in E\left(M_{1}\right)-E\left(M_{2}\right)$ is a regular element of M.

Lemma 2.1. The element e is not spanned by $E\left(M_{2}\right)-E\left(M_{1}\right)$ in M.
Proof. Suppose e is spanned by $E\left(M_{2}\right)-E\left(M_{1}\right)$ in M. Then e is spanned by T in M_{1} and so e is in parallel to some element $t \in T$. By hypothesis, $M \backslash e$ is regular. Observe that $M_{1} \backslash e$ and M_{2} are regular because:
(i) when $\left|E\left(M_{1}\right)\right|>7, M \backslash e$ is the 3 -sum of $M_{1} \backslash e$ with M_{2};
(ii) when $\left|E\left(M_{1}\right)\right|=7, M_{1} \backslash e$ has 6 elements and is isomorphic to $M\left(K_{4}\right)$. So $M \backslash e$ is obtained from M_{2} after a $\Delta-Y$ operation along the triangle T.
But M_{1} is obtained from $M_{1} \backslash e$ by adding e in parallel with t. Therefore M_{1} and M_{2} are regular; a contradiction because the class of regular matroids is closed under 3 -sums. Thus e is not spanned by $E\left(M_{2}\right)-E\left(M_{1}\right)$ in M.

Lemma 2.2. The element e is not spanned by $E\left(M_{2}\right)-E\left(M_{1}\right)$ in M^{*}.
Proof. If N_{i} is obtained from M_{i} by a $\Delta-Y$ operation along the triangle T, then M^{*} is the 3-sum of N_{1}^{*} and N_{2}^{*}. Applying Lemma 2.1 , we conclude that e is not spanned by $E\left(M_{2}\right)-E\left(M_{1}\right)$ in M^{*}.

In the next result, we describe how the presence of a regular element in M_{1} impacts the structure of M. We prove that one of two situations must occur: either M_{1} is non-regular with e as a regular element and M_{2} is regular or M_{2} is non-regular and M_{1} is a small matroid with a specific structure. In the latter situation we prove that $E\left(M_{1}\right)-T=T^{\prime} \cup T^{*}$ where T^{\prime} is a triangle and T^{*} is a triad such that $e \in T^{\prime} \cap T^{*}$ and $E\left(M_{1}\right)-E\left(M_{2}\right)$ is closed in M. Since M is binary, a triangle and triad must intersect in an even number of elements. This means M_{1} has just 7 elements, one of which is parallel with an element of T.

Lemma 2.3. (i) M_{2} is a regular matroid; or
(ii) there is a triangle T^{\prime} and a triad T^{*} of M such that $e \in T^{\prime} \cap T^{*}$ and $E\left(M_{1}\right)-T=T^{\prime} \cup T^{*}$.

Moreover,
(iii) when (i) happens, M_{1} is a non-regular matroid having e as a regular element;
(iv) when (ii) happens, $E\left(M_{1}\right)-E\left(M_{2}\right)$ is closed in M.

Proof. Assume that (i) does not hold, that is,
M_{2} is non-regular.
First, we establish that

$$
\begin{equation*}
r\left(M_{1}\right)=3 \text { or } \operatorname{si}(M / e) \text { is not } 3 \text {-connected. } \tag{2}
\end{equation*}
$$

Suppose that $r\left(M_{1}\right) \geq 4$ and $\operatorname{si}(M / e)$ is 3 -connected. If T^{\prime} is a triangle of M containing e, then, by Lemma 2.1, $\left|E\left(M_{2}\right) \cap T^{\prime}\right| \leq 1$. Therefore we may assume that si $(M / e)=M / e \backslash X$, for $X \subseteq E\left(M_{1}\right)-T$. If $M_{1} / e \backslash X \simeq M\left(K_{4}\right)$, then M_{2} is obtained from si (M / e) after a $Y-\Delta$ operation along the triad $E\left(M_{1}\right)-(e \cup X \cup T)$. So M_{2} is regular; a contradiction to (1). If $M_{1} / e \backslash X \not \approx M\left(K_{4}\right)$, then $\operatorname{si}(M / e)$ is the 3-sum of $M_{1} / e \backslash X$ and M_{2}. As si (M / e) is regular, it follows that M_{2} is regular; a contradiction to (1). We have (2).

If N_{i} is obtained from M_{i} by a $\Delta-Y$ operation along the triangle T, then M^{*} is the 3 -sum of N_{1}^{*} and N_{2}^{*}. Note that Lemma 2.3(i) holds for the decomposition $M=M_{1} \triangle M_{2}$ if and only if Lemma 2.3(i) holds for the decomposition $M^{*}=N_{1}^{*} \Delta N_{2}^{*}$. The analogous statement occurs when we replace (i) by (ii). Therefore, the dual of (2) becomes

$$
\begin{equation*}
r\left(N_{1}^{*}\right)=3 \text { or }[\operatorname{co}(M \backslash e)]^{*}=\operatorname{si}\left(M^{*} / e\right) \text { is not 3-connected. } \tag{3}
\end{equation*}
$$

By Bixby's Theorem [5, 8.4.6], $\operatorname{si}(M / e)$ or $\operatorname{co}(M \backslash e)$ is 3 -connected. By (2) and (3), $r\left(M_{1}\right)=3$ or $r\left(N_{1}^{*}\right)=3$. Taking the dual when necessary, we may assume that

$$
\begin{equation*}
r\left(M_{1}\right)=3 \tag{4}
\end{equation*}
$$

Next, we prove the following claim.
Claim: M_{1} does not have a minor N such that T and $T^{\prime}=E(N)-T$ are triangles of $N, e \notin E(N)=T \cup T^{\prime}$ and $r(N)=2$.

Suppose that N exists, say $N=M_{1} \backslash X / Y$. By hypothesis, $e \in X \cup Y$ and so $M \backslash X / Y$ is regular. Moreover, $M \backslash X / Y$ is isomorphic to M_{2}. Thus M_{2} is regular; a contradiction to (1). Therefore the claim holds.

If $\operatorname{si}\left(M_{1}\right) \simeq F_{7}$, then M_{1} / e is a rank-2 matroid. By Lemma 2.1, M_{1} / e has T as a triangle. We have a contradiction by the claim because every parallel class of M_{1} / e is non-trivial. Hence, by (4), $\operatorname{si}\left(M_{1}\right) \simeq M\left(K_{4}\right)$. In particular, $T^{*}=E\left(M_{1}\right)-\mathrm{cl}_{M_{1}}(T)$ is a triad of M_{1}. By Lemma 2.1, $e \in T^{*}$, say $T^{*}=\left\{e, e_{1}, e_{2}\right\}$. Let f_{1}, \ldots, f_{k} be the elements of $\mathrm{cl}_{M_{1}}(T)-T$. For each i, there is $t_{i} \in T$ such that $\left\{f_{i}, t_{i}\right\}$ is a parallel class of M_{1}. By the claim, $k \leq 2$. Next, we establish that

$$
\begin{equation*}
k=1 . \tag{5}
\end{equation*}
$$

As $\left|E\left(M_{1}\right)\right| \geq 7$ and $\left|E\left(M_{1}\right)-\mathrm{cl}_{M_{1}}(T)\right|=3$, it follows that $k \geq 1$. If (5) does not hold, then $k=2$. In M_{1} / e, by the claim, e_{i} is in parallel with f_{j}, say e_{i} is in parallel with f_{i}, for both i. Therefore $T_{i}=\left\{e, e_{i}, f_{i}\right\}$ is a triangle of M, for both i, and so $T_{1} \Delta T_{2} \Delta\left\{f_{1}, f_{2}, t_{3}\right\}=\left\{e_{1}, e_{2}, t_{3}\right\}$, where $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ is a triangle
of M_{1}. Thus $N=M_{1} \backslash e / e_{1}$ is a minor of M_{1} contrary to the claim. Thus (5) holds. By the claim e_{1} or e_{2} is in parallel with f_{1} in M_{1} / e, say e_{1}. That is, $T^{\prime}=\left\{e, e_{1}, f_{1}\right\}$ is a triangle of M_{1} and so of M. We have (ii).

Assume that (i) happens, that is, M_{2} is regular. Thus M_{1} is non-regular because M is non-regular. To conclude (iii) we need to prove only that e is a regular element of M_{1}. By the proof of Theorem 1.6, there are disjoint subsets Y and Z of $E\left(M_{2}\right)-E\left(M_{1}\right)$ such that $N=M_{2} \backslash Y / Z$ is a 6-element matroid such that $T^{\prime \prime}=E(N)-T$ is a triangle of N and, for each $f \in T$, there is an $f^{\prime \prime} \in T^{\prime \prime}$ such that $\left\{f, f^{\prime \prime}\right\}$ is a circuit of N. So $M \backslash Y / Z$ is isomorphic to M_{1}-this isomorphism fix each element of $E\left(M_{1}\right)-E\left(M_{2}\right)$ and sends $f^{\prime \prime}$ into f, for each $f^{\prime \prime} \in T^{\prime \prime}$. As both $M \backslash e$ and M / e are regular, it follows that $(M \backslash e) \backslash Y / Z \simeq M_{1} \backslash e$ and $(M / e) \backslash Y / Z \simeq M_{1} / e$ are regular. That is, e is a regular element of M_{1}. We have (iii).

Assume that (ii) happens. If $E\left(M_{1}\right)-E\left(M_{2}\right)$ spans an element g of $E\left(M_{2}\right)-E\left(M_{1}\right)$ in M, then $\left[E\left(M_{1}\right)-E\left(M_{2}\right)\right] \cup g$ is a 3 -separating set for M. Using the 3 -separation induced by this set, we can decompose M as the 3-sum of matroids M_{1}^{\prime} and M_{2}^{\prime} such that $E\left(M_{1}^{\prime}\right)=\left[E\left(M_{1}\right)-E\left(M_{2}\right)\right] \cup g \cup T^{\prime \prime}$ and $T^{\prime \prime}=E\left(M_{1}^{\prime}\right) \cap E\left(M_{2}^{\prime}\right)$. Note that, in M_{1}^{\prime}, the element g is in parallel with some element of $T^{\prime \prime}$. In particular, $M_{1}^{\prime} \backslash g \simeq M_{1}$ is regular. So M_{1}^{\prime} is regular; a contradiction to this lemma. Thus $E\left(M_{1}\right)-E\left(M_{2}\right)$ is closed in M.

Now that we have shown M has a clearly defined structure, we want to say more about the second situation. Recall that $R(M)$ is the set of regular elements. For a triangle T^{\prime} and triad T^{*} of M, we say that T^{\prime}, T^{*} is an undesired fan if $T^{\prime} \cap T^{*} \cap R(M) \neq \emptyset$. Note that $\left\{T^{\prime} \cup T^{*}, E(M)-\left(T^{\prime} \cup T^{*}\right)\right\}$ is an exact 3 -separation for M and by Theorem 1.5, it is possible to decompose M as a 3 -sum using it. In the next lemma we show that the presence of an undesired fan implies the existence of two regular elements.

Lemma 2.4. If T^{\prime}, T^{*} is an undesired fan in M such that $E\left(M_{1}\right)-E\left(M_{2}\right)=T^{\prime} \cup T^{*}$, then $T^{\prime} \cap T^{*} \subseteq R(M)$. Moreover, if $T^{*}-T^{\prime}=\{f\}$, then M / f is a 3-connected non-regular matroid such that $T^{\prime} \cap T^{*} \subseteq R(M / f)$.
Proof. Suppose that $T^{\prime}=\left\{e, e^{\prime}, t\right\}, T^{*}=\left\{e, e^{\prime}, f\right\}$ and $e \in R(M)$. In $M / e^{\prime}, t$ and e are in parallel. As $M \backslash e$ and so $M / e^{\prime} \backslash e$ is regular, it follows that M / e^{\prime} is regular because M / e^{\prime} is obtained from $M / e^{\prime} \backslash e$ by adding e in parallel with t. Using duality, we conclude that $M \backslash e^{\prime}$ is regular. Hence e^{\prime} is a regular element of M and so $T^{\prime} \cap T^{*} \subseteq R(M)$.

Next, observe that $E\left(M_{1}\right)=T^{\prime} \cup T^{*} \cup T$ and $E\left(M_{2}\right)=\left[E(M)-\left(T^{\prime} \cup T^{*}\right)\right] \cup T$. As M_{1} is regular, it follows that M_{2} is non-regular. By Lemma 2.3, f does not belong to a triangle of M. So M / f is 3-connected because si (M / f) is 3 -connected. But $M / f \simeq M_{2}$ because M_{1} / f has three non-trivial parallel classes each containing one element of T^{\prime} and another of T. The result follows because $R(M) \subseteq R(M / f)$.

In the next lemma, we prove that, when this happens, it is possible to uncontract f keeping the property of these two regular elements.

Lemma 2.5. Let N be a 3-connected non-regular binary matroid having different regular elements e and e^{\prime}. Suppose that T^{\prime} is a triangle of N such that $e, e^{\prime} \in T^{\prime}$ and $\left\{e, e^{\prime}\right\}$ is not contained in a triad of N. If M is a one-element binary lift of N, say $M / f=N$, such that $\left\{e, e^{\prime}, f\right\}$ is a triad of M, then e and e^{\prime} are regular elements of M (and M is 3-connected).
Proof. Observe that $\operatorname{si}(M / e)=M / e \backslash e^{\prime}$. But, in $M \backslash e^{\prime}, e$ and f are in series. So $M / e \backslash e^{\prime} \simeq M / f \backslash e^{\prime}=N \backslash e^{\prime}$ and $\operatorname{si}(M / e)$ is regular. Thus M / e is regular. As $M \backslash e / f=N \backslash e$, it follows that $M \backslash e / f$ is regular and so $M \backslash e$ is regular. That is, e is a regular element of M. A similar argument holds with e^{\prime}.

3. The number of regular elements in a matroid

Next, we prove a result on the number of regular elements in a binary non-regular matroid. Observe that, F_{7}^{*} has two single-element extensions S_{8} and $A G(3,2)$. The matroid $A G(3,2)$ has one singleelement extension Z_{4}. The matroid S_{8} has two single-element extensions, Z_{4} and P_{9}. Observe further that F_{7} and F_{7}^{*} have seven regular elements, S_{8} has six regular elements, and P_{9} has four regular elements. $A G(3,2)$ has zero regular elements and consequently, so do all its 3 -connected extensions and coextensions.

Lemma 3.1. Let M be a 3-connected non-regular binary matroid. If $|E(M)| \geq 9$, then $|R(M)|=0,1,2$ or 4. Moreover, if $|R(M)|=4$, then $R(M)$ is both a circuit and a cocircuit of M.

Proof. Assume this result fails. Choose a minimal counter-example M. We have four possibilities: $|R(M)|=3$; or $|R(M)|=4$ and $R(M)$ is not a circuit of M; or $|R(M)|=4$ and $R(M)$ is not a cocircuit of M; or $|R(M)| \geq 5$. In all four cases, $R(M) \neq \emptyset$. In particular, $A G(3,2)$ is not a minor of M because $R(A G(3,2))=\emptyset$. Thus S_{8} is a minor of M. But the only 3-connected binary single-element extension of S_{8} without a minor isomorphic to $A G(3,2)$ is P_{9}. Therefore M has P_{9} or P_{9}^{*} as a minor. But $\left|R\left(P_{9}\right)\right|=4$ and $R\left(P_{9}\right)=R\left(P_{9}^{*}\right)$ is both a circuit and a cocircuit of P_{9}. Hence $|E(M)| \geq 10$. Moreover, $|R(M)| \leq\left|R\left(P_{9}\right)\right|=4$ and by Corollary $1.4, M$ is not internally 4-connected.

Suppose $|R(M)|=3$. By Theorem 1.5, we can decompose M as the 3 -sum of matroids M_{1} and M_{2} such that $E\left(M_{1}\right) \cap E\left(M_{2}\right)=T$ and $E\left(M_{1}\right) \cap R(M) \neq \phi$. If Lemma 2.3(ii) occurs and $f \in T^{*}-T^{\prime}$, then by Lemma 2.4 and the choice of M, the results holds for M / f. Moreover, $T^{\prime} \cap T^{*} \subseteq R(M)$. As $R(M) \subseteq R(M / f)$ and $|R(M)|=3$, it follows that $|R(M / f)|=4$ and $R(M / f)$ is both a circuit and a cocircuit of M / f. Thus $R(M) \cup g$ is a cocircuit of M, where $\{g\}=R(M / f)-R(M)$. If $R(M) \cup g$ is not a circuit of M, then $R(M) \cup\{f, g\}$ is a circuit of M containing T^{*}; a contradiction. Hence $R(M) \cup g$ is both a circuit and a cocircuit of M. Note that $[R(M) \cup g] \Delta T^{*}$ is a triad of M and $[R(M) \cup g] \Delta T^{\prime}$ is a triangle of M whose intersection contains a regular element. Therefore, by Lemma 2.4 the intersection has two regular elements (g is the other regular element); a contradiction. Thus Lemma 2.3(i) occurs. Observe that $R(M)$ is contained in a circuit-cocircuit of M_{1} consisting of regular elements avoiding T. Thus every element in this circuit-cocircuit is also a regular element of M; a contradiction. Thus we proved that M cannot have exactly three regular elements.

Next, suppose $|R(M)|=4$, but $R(M)$ is not a circuit and cocircuit. By Theorem 1.5, we can decompose M as the 3 -sum of matroids M_{1} and M_{2} such that $E\left(M_{1}\right) \cap E\left(M_{2}\right)=T$ and $E\left(M_{1}\right) \cap R(M) \neq$ ϕ. If Lemma 2.3(ii) occurs, $f \in T^{*}-T^{\prime}$, then, by Lemma $2.4, M / f$ has the same regular elements as M. By the choice of $M, R(M)$ is a circuit-cocircuit of M / f. As $R(M) \cup f$ contains a triad of M, it follows that $R(M) \cup f$ is not a circuit of M. Thus $R(M)$ is a circuit-cocircuit of M.

We may assume by Lemma 2.3(i) that M_{2} is regular, M_{1} is non-regular, and $|R(M)| \subseteq E\left(M_{1}\right)$. By the choice of M if $\left|E\left(M_{1}\right)\right| \geq 9, R(M)$ is a circuit-cocircuit of $\operatorname{si}\left(M_{1}\right)$ and therefore of M; a contradiction. Thus M_{1} has at most 8 elements. Since $\operatorname{si}\left(M_{1}\right)$ is non-regular, $\mathrm{si}\left(M_{1}\right)$ is isomorphic to F_{7} or S_{8}. In both cases, $R(M)$ is a circuit-cocircuit of this matroid.

Using the previous lemma, we can refine the second part of Lemma 2.4.
Lemma 3.2. Let M be a 3 -connected non-regular binary matroid with $|E(M)| \geq 10$ and suppose T, T^{*} is an undesired fan of M such that $T^{*}-T=\{f\}$. Then M / f is a non-regular 3-connected matroid such that $R(M / f)=R(M)$.
Proof. We argue by contradiction. Since $T \cap T^{*} \subseteq R(M)$, it follows from Lemma 2.4 that $|R(M)| \geq 2$. Lemma 3.1 implies that $|R(M / f)|$ is 2 or 4 . If $|R(M / f)|=|R(M)|$, then $R(M / f)=R(M)$ because $R(M) \subseteq R(M / f)$; a contradiction. By Lemma 3.1, $|R(M / f)|=4$ and $|R(M)|=2$. Moreover, $R(M / f)$ is a circuit-cocircuit of M / f.

Since $T^{*} \subseteq R(M / f) \cup f$, it follows that $R(M / f)$ is also a circuit-cocircuit of M. Therefore $T^{\prime}=$ $T \Delta R(M / f)$ is a triangle of M and $T^{*}=T^{*} \Delta R(M / f)$ is a triad of M. But T^{\prime} is a triangle of M / f containing two regular elements of M / f such that no triad of M / f contains these two elements. By Lemma 2.5 these two elements are also regular in M. Hence $R(M / f)=R(M)$; a contradiction.

A 3-separation $\{X, Y\}$ for a 3-connected matroid is said to be trivial provided $|X|=3$ or $|Y|=3$.
Lemma 3.3. Let M be a 3 -connected non-regular binary matroid such that $|R(M)| \geq 1$. If any nontrivial 3-separation for M has the union of a triangle and a triad of a undesired fan as one of its sets, then M is isomorphic to S_{8}, F_{7} or F_{7}^{*}.
Proof. If $|E(M)| \leq 8$, then the result holds. Therefore, suppose that $|E(M)| \geq 9$. First assume that M has just one non-trivial 3-separation. By Theorem $1.5, M$ is the 3 -sum of matroids M_{1} and M_{2} such that $E\left(M_{1}\right)-E\left(M_{2}\right)$ is the union of the triangle and the triad of the undesired fan. Thus $E\left(M_{1}\right) \cap R(M) \neq \phi$. Observe that Lemma 2.3(ii) holds in this case. By the uniqueness of the 3-separation for M, M_{2} is internally 4-connected. By Theorem 1.3, M_{2} is isomorphic to F_{7}. Thus $|E(M)|=8$; a contradiction. Hence M has at least two non-trivial 3-separations.

Let T_{1}, T_{1}^{*} and T_{2}, T_{2}^{*} be different undesired fans of M. For $i \in\{1,2\}$, set $Z_{i}=T_{i} \cap T_{i}^{*}$. By Lemmas 2.4 and 3.1, and orthogonality, $R(M)=Z_{1} \cup Z_{2}$ is a circuit-cocircuit of M. In particular, Z_{1} and Z_{2} are unique
and these are the unique undesired fans of M. If $T_{1}-T_{1}^{*}=\{t\}$ and $T_{1}^{*}-T_{1}=\{f\}$, then $T_{2}=Z_{2} \cup t$ and $T_{2}^{*}=Z_{2} \cup f$ because $T_{1} \Delta T_{2}=T_{1}^{*} \Delta T_{2}^{*}=R(M)$. Observe that $Z_{1} \cup Z_{2} \cup\{f, t\}$ is a 2-separating set for M; a contradiction.

4. The main result

In this section, we give the proof of Theorem 1.1.
Proof of Theorem 1.1. First, we prove the "only if" part. If M is non-binary, then by Theorem 1.2 we may conclude that $M \cong U_{2,4}$. Therefore suppose M is binary and non-regular. Assume that M is binary non-regular and $|R(M)| \geq 2$. If M is an internally 4-connected matroid, then by Corollary $1.4, M$ is isomorphic to F_{7} or F_{7}^{*}.

Thus we may assume that M is not internally 4 -connected. By Lemma $3.3, S_{8}$ is the unique matroid having all non-trivial 3 -separations induced by the union of a triangle and a triad of some undesired fan. The result follows in this case. Therefore, we can assume that M has a 3 -separation such that none of its sets is the union of a triangle and a triad in a undesired fan, say $\left\{X_{1}, X_{2}\right\}$. By Theorem 1.5 there are 3-connected matroids (up to parallel elements with the common triangle) M_{1} and M_{2} such that M is the 3 -sum of M_{1} and M_{2} and, for $i \in\{1,2\}, E\left(M_{i}\right)=X_{i} \cup T$. By definition, T is the common triangle between M_{1} and M_{2}. By Lemma 2.3 we may assume that M_{1} is non-regular and M_{2} is regular. Moreover, $R(M) \subseteq X_{1}$. We may assume that M_{1} is also 3-connected (the elements in parallel with elements of T, if they exist, are in M_{2}). By Lemmas 2.1 and $2.2, T$ does not span any element of $R(M)$ in M_{1} or M_{1}^{*}. Thus by induction we have three possibilities.

First, suppose M_{1} is isomorphic to F_{7} or S_{8}. The result follows because M is the 3 -sum of a matroid isomorphic to F_{7} or S_{8} (that is M_{1}) with a regular matroid (that is M_{2}).

Second, suppose M_{1} is the 3 -sum of matroids N_{1} and N_{2} along a triangle T^{\prime} such that $R(M) \subseteq E\left(N_{1}\right)$; T^{\prime} does not span any element of $R(M)$ in $N_{1} ; N_{1}$ is isomorphic to F_{7} or S_{8} and N_{2} is regular (We may assume that $T^{\prime} \cap E\left(M_{2}\right)=\emptyset$.). If $\left|E\left(N_{2}\right) \cap T\right| \geq 2$, then $T \subseteq E\left(N_{2}\right)$ because an element of $E\left(N_{1}\right)-E\left(N_{2}\right)$ spanned by $E\left(N_{2}\right)-E\left(N_{1}\right)$ in M_{1} must be in parallel with some element of T^{\prime} in N_{1}. In this subcase, M is the 3 -sum of N_{1} and the regular matroid obtained by doing the 3 -sum of N_{2} and M_{2} along the triangle T. The result follows in this case. Thus we may assume that $\left|E\left(N_{2}\right) \cap T\right| \leq 1$. As any two triangles of N_{1} meet (recall that N_{1} is isomorphic to F_{7} or S_{8}), it follows that $E\left(N_{2}\right) \cap T=\{t\}$. Thus t is in parallel with an element t^{\prime} of T^{\prime} in N_{2}. Let N_{1}^{\prime} be the matroid obtained from N_{1} by adding t in parallel with t^{\prime}. Note that T is a triangle of N_{1}^{\prime}. Thus N_{1}^{\prime} is isomorphic to F_{7}^{p} or S_{8}^{p}. Moreover, M is the 3-sum of N_{1}^{\prime} with $N_{2} \backslash t$ and M_{2}. The result also follows in this case.

Third, suppose there are matroids N, N_{1}, and N_{2} such that:
(1) M_{1} is the 3 -sum of N, N_{1} and N_{2};
(2) N has elements t_{1} and t_{2} in parallel;
(3) $N \backslash t_{1}$ is isomorphic to F_{7} or S_{8};
(4) $E\left(N_{1}\right)$ and $E\left(N_{2}\right)$ are disjoint;
(5) $T_{i}=E(N) \cap E\left(N_{i}\right)$ is a triangle in both N and N_{i}, for both $i \in\{1,2\}$;
(6) $t_{i} \in T_{i}$, for both $i \in\{1,2\}$;
(7) N_{1} and N_{2} are regular and 3-connected (up to some parallel elements with elements of T_{1} and T_{2} respectively);
(8) $\left(T_{1} \cup T_{2}\right) \cap E\left(M_{2}\right)=\emptyset$.

We begin by showing that $\left|E\left(N_{i}\right) \cap T\right| \leq 1$, for both $i \in\{1,2\}$. If $\left|E\left(N_{i}\right) \cap T\right| \geq 2$, say $i=2$, then $E\left(N_{2}\right)-T_{2}$ spans T in M_{1}. As t_{1} and t_{2} are the only elements of N in parallel, it follows that $T \subseteq E\left(N_{2}\right)-T_{2}$, otherwise the unique element belonging to $E\left(N_{2}\right)-T_{2}$ would be in parallel in N with some element of T_{2} and this element is not t_{1}. Hence M is the 3 -sum of N, N_{1} and N_{2}^{\prime}, where N_{2}^{\prime} is the 3 -sum of N_{2} and M_{2} along T. The result follows, by induction. Thus we may assume that $\left|E\left(N_{i}\right) \cap T\right| \leq 1$, for both $i \in\{1,2\}$. Moreover, when $\left|E\left(N_{i}\right) \cap T\right|=1$, say $E\left(N_{i}\right) \cap T=\left\{a_{i}\right\}, a_{i}$ is in parallel with some element $a_{i}^{\prime} \in T_{i}$ in N_{i}. If $A_{i}=\left\{a_{i}\right\}$, when this happens, and $A_{i}=\emptyset$ otherwise, then M_{1} is the 3 -sum or $N^{\prime} \backslash\left[\left\{a_{1}, a_{2}\right\}-\left(A_{1} \cup A_{2}\right)\right]$ with $N_{1} \backslash A_{1}$ and $N_{2} \backslash A_{2}$, where N^{\prime} is obtained from N by adding, for both $i \in\{1,2\}, a_{i}$ in parallel with a_{i}^{\prime}. As T does not span any element of $R(M)$ in N^{\prime}, by Lemma 2.1, and
$|R(M)| \geq 2$, it follows that T spans T_{1} or T_{2}, say T_{2}. That is, each element of T is in parallel with some element of T_{2} in N^{\prime}. We can transfer these elements for N_{2} and we arrive at the previous case.

Finally, to see the "if" part, we use Lemmas 2.5 and 3.2 to reduce the S_{8} case to the F_{7} case in the 3 -sums. The F_{7} case is easy to verify.

Acknowledgments

The authors thank the unknown referees for their valuable suggestions. The first author is partially supported by PSC-CUNY Award 63076-00 41. The second author is partially supported by CNPq under grant number 300242/2008-05.

References

[1] S.R. Kingan, Binary matroids without prisms, prism duals, and cubes, Discrete Math. 152 (1996) 211-224.
[2] S.R. Kingan, A generalization of a graph result by D. W. Hall, Discrete Math. 173 (1997) 129-135.
[3] S.R. Kingan, M. Lemos, Almost-graphic matroids, Advances in Applied Mathematics 28 (2002) 438-477.
[4] J.G. Oxley, On nonbinary 3-connected matroids, Transactions of the American Mathematical Society 300 (1987) 663-679.
[5] J.G. Oxley, Matroid Theory, Oxford University Press, New York, 1992.
[6] P.D. Seymour, Decomposition of regular matroids, Journal of Combinatorial Theory Series B 28 (1980) 305-359.
[7] X. Zhou, On internally 4-connected non-regular binary matroids, Journal of Combinatorial Theory Series B 91 (2004) 327-343.

[^0]: E-mail addresses: skingan@brooklyn.cuny.edu (S.R. Kingan), manoel@dmat.ufpe.br (M. Lemos).

