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Abstract

Let the (subword) complexity of a sequence u = (un)∞n=0 over a finite set Σ be the function m 7→ Pu(m), where Pu(m) is
the number of distinct blocks of length m in u. Let t = (tn)∞n=0 denote the Thue–Morse sequence. In this paper we study the
complexity of the sequences tH = (tH(n))

∞
n=0, when H(n) ∈ Q[n] is a polynomial with H(N) ⊆ N. In particular, we solve an

open problem of Allouche and Shallit regarding (tn2)
∞
n=0. We also study the vector space over Z/2Z, spanned by the sequences

tH .
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let sn denote the number of 1’s in the binary representation of an integer n ≥ 0 and tn ∈ Z/2Z be the residue of sn
modulo 2. The (Prouhet)–Thue–Morse sequence, given by

t = (tn)∞n=0 = 01101001100101101001011001101001 · · · ,

was introduced by Thue [32,33] and Morse [24] and mentioned implicitly already in 1851 by Prouhet [28]. This
sequence has applications in many different areas in mathematics, including differential geometry, number theory and
mathematical physics (see [9] for a survey). Of particular interest is its role in the study of combinatorics on words.

One can easily see that every binary word of length ≥ 4 must contain a square (i.e., two consecutive identical
blocks). Thue [32,33] provided the sequence t = (tn)∞n=0 as an example of a cube-free infinite binary word (i.e.,
containing no three consecutive identical blocks). More generally, he proved that t is overlaps-free (i.e., containing
no blocks of the form awawa, where a ∈ Z/2Z and w is a binary block). He also proved that the sequence
(un)∞n=0 = 210201210 · · · , where un counts the number of 1’s between the nth and the (n + 1)st occurrences of
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0 in t, is a square-free sequence over Z/3Z. This work of Thue (see also Berstel [12] and the references therein) is
considered as the starting point of the study of combinatorics on words.

Let u = (un)∞n=0 be a sequence over a finite set Σ , and denote by Pu(m) the number of distinct blocks of length m
in u. The function m 7→ Pu(m) is the (subword) complexity of u (see [2,13,19,20] for surveys on this function). The
exact complexity of t was calculated independently by Brlek [14], de Luca and Varricchio [23] and Avgustinovich [10]
(see [25,31] for generalizations). Since t is generated by the morphism given by 0 7→ 01, 1 7→ 10 (see Example 1), it
is 2-automatic (see definition in Section 2), and thus its complexity is bounded by a linear function in m (cf. [17] and
[29, Ch. V]).

In this paper we study the complexity of the sequences

tH = (tH(n))
∞

n=0,

where H is a polynomial over Q with H(N) ⊆ N. Clearly, the complexity of tH is O(m) for linear polynomials
H(n) = an + b ∈ N[n]. This follows by the 2-automaticity of those sequences, or directly by the linear bound on
the complexity of t. (See [15] for other results on the blocks in (tan+b)

∞

n=0.) The sequences tH are, however, more
complicated when deg H ≥ 2. The following theorem of Allouche and Salon [7] shows in particular that none of these
sequences is 2-automatic.

Theorem A ([7]). Let r ≥ 0 and H, Q1, . . . , Qr ∈ Q[n] be polynomials with H(N) ⊆ N, Qi (N) ⊆ N, i = 1, . . . , r .
Assume that deg Qi < deg H for each i and that deg H ≥ 2. Then the sequence u = tH +

∑r
i=1 tQi ∈ (Z/2Z)N is

not 2-automatic.

In fact, Allouche and Salon [7] proved a generalization of Theorem A for the family of quasistrongly q-additive
sequences, namely sequences (vn)∞n=0 over an abelian group, satisfying the condition

∀r ∈ N ∃k0(r), ∀k ≥ k0, ∀n ∈ N, vqk n+r = vn + vr .

(See [22] for another generalization.)
In [8], Allouche and Shallit posed the following question,

Question A ([8, Open Problem 10.7]). Is it true that the complexity of (tn2)∞n=0 is P(m) = 2m?

It is interesting to note that even the much weaker property, namely the existence of arbitrarily long squares in
(tn2)∞n=0 was unresolved [8, Open Problem 1.11].

In this paper, we study the sequences (tH(n))
∞

n=0 for non-linear polynomials H and obtain a lower bound for
their complexities. This bound shows in particular that, if deg H = 2, then PtH

(m) = 2m , and thereby, provides a
positive answer to Question A. We also consider the complexity of tS =

∑
H∈S tH , where S ⊆ Q[n] is a finite set of

polynomials with H(N) ⊆ N. This enables us to provide a new generalization of Theorem A (see Corollary 5 for the
precise formulation).

As a part of our proof we study the set of vectors

V [0,N )
= {(tcn)N−1

n=0 : c ≥ 1} ⊆ (Z/2Z)N ,

which may be of independent interest. It turns out to be a vector space and we are able to construct a basis for it.
In Section 2 we present our main results. Section 3 deals with V [0,N ). The proofs for our results regarding the

sequences tS are given in Section 4.

2. Notations and main results

We begin with some notations. Let Σ be a finite set (called alphabet). A word w over Σ is a concatenation of finitely
many elements (letters) in Σ . The length of w is the number of letters in it, and is denoted by |w|. If Σ = Z/2Z, the
word w is a binary word. Let wz denote the concatenation of two words w, z and wk the concatenation of w with
itself k ≥ 0 times. Thus, for example, 1031(10)20 = 1000110100 is a binary word of length 10. To avoid possible
confusion between the concatenation of words w, z and the product of the integers they may represent, we will restrict
the use of this notation only to cases when it is clear that the objects are letters and words. A word w is a subword of
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z (or w occurs in z) if z = w0ww1 for some words w0, w1. Denote by Σ l the set of all words of length l over Σ and
put Σ ∗

=
⋃

l≥0 Σ l . Given two words w = w0 · · · wl−1, z = z0 · · · zl−1 in (Z/2Z)l , let

w + z = (w0 + z0)(w1 + z1) · · · (wl−1 + zl−1) ∈ (Z/2Z)l .

The binary representation of an integer n ≥ 1 is the (unique) binary word (n)2 = nl−1 · · · n1n0 with n =
∑l−1

i=0 ni 2i

and nl−1 = 1. Put (0)2 = ε, where ε is the empty word. Denote by l2(n) the length of (n)2 (thus, l2(n) = blog2 nc+1
for n ≥ 1 and l2(0) = 0).

Let u = (un)∞n=0 be an infinite sequence over Σ . For all integers i, j ≥ 0 with i ≤ j , put

u[i, j) = ui ui+1 · · · u j−1 ∈ Σ j−i .

Let

Ωm(u) = {u[i, i + m) : i ≥ 0}, Ω(u) =

∞⋃
m=0

Ωm(u).

Thus, the complexity of u is the function Pu(m) = #Ωm(u).
A function µ : Σ ∗

→ Σ ∗ is a morphism if

µ(w1w2) = µ(w1)µ(w2), w1, w2 ∈ Σ ∗.

Note that every function µ : Σ → Σ ∗ has a unique extension to a morphism µ : Σ ∗
→ Σ ∗, given by µ(x0 · · · xl−1)

= µ(x0) · · · µ(xl−1), where xi ∈ Σ , i ≤ l − 1. A morphism µ is k-uniform if |µ(a)| = k for each a ∈ Σ . The
morphism is prolongable on a ∈ Σ if µ(a) = aw for some word w, and the lengths |a|, |µ(a)|, |µ(µ(a))|, . . . , are
strictly increasing. In such a case we have µi (a) = awµ(w)µ2(w) · · · µi−1(w) for every i ≥ 0, and thus each µi (a)

is a prefix of

µω(a) := awµ(w)µ2(w) · · · ∈ ΣN.

If u = µω(a) for some morphism µ, which is prolongable on a, then u is the pure morphic sequence generated by µ

and a. If there exists a function τ : Σ → Γ such that u = τ(µω(a)) (i.e., u is the sequence over Γ which is obtained
from µω(a) by replacing each element x ∈ Σ with τ(x)) then u is a morphic sequence. A morphic sequence u is
k-automatic if u = τ(µω(a)) for some k-uniform morphism µ.

Remarks. (1) There are many equivalent definitions for an automatic sequence. For example, one may define an
automatic sequence as a sequence which is generated by a finite automaton with output (see [8]). The definition in
terms of morphisms is convenient in this paper in order to show the connection between Theorem A and Corollary 5
infra.

(2) Automatic sequences have many useful closure properties. For example, if u = (un)∞n=0, v = (vn)∞n=0 are
k-automatic sequences over Γ , then so are (un)∞n=K , (uan+b)

∞

n=0 and ( f (un, vn))∞n=0 for all integers K , a, b ≥ 0 and
function f : Γ 2

→ Γ . In particular, the family of k-automatic sequences over Z/qZ is closed under addition and
multiplication.

(3) Automatic sequences occur in remarkably many different areas (cf. [3–6,16,30]). The reader can refer to [8] for
an extensive treatment of automatic sequences.

Example 1. Consider the Thue–Morse sequence t = (tn)∞n=0. Let µ : (Z/2Z)∗ → (Z/2Z)∗ be the uniform morphism
given by µ(0) = 01, µ(1) = 10. Using the relations t2n = tn , t2n+1 = tn + 1, we obtain that t2n t2n+1 = µ(tn) for
every n. This implies that t = µω(t0) = µω(0), and therefore (as is well-known) t is 2-automatic.

Let P denote the set of all polynomials H ∈ Q[n] with H(N) ⊆ N. Recall that for a finite set S ⊆ P we put

tS =

∑
H∈S

tH ∈ (Z/2Z)N,

where tH = (tH(n))
∞

n=0. Let

U = {tS : S ⊆ P, #S < ∞},

be the vector space over Z/2Z spanned by the sequences tH , H ∈ P .
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Define the equivalence relation ∼ on Q[n] by: H ∼ G if H = 2i G +q for some i ∈ Z, q ∈ Q. It will be convenient
to consider the following condition on finite sets S ⊆ P .

Condition (C1). S may be written in the form

S = {H1, H2, . . . , Hr , G1, G2, . . . , Gr , Q1, Q2, . . . , Qk},

where r, k ≥ 0, Hi ∼ Gi for each i ≤ r and deg Qi ≤ 1 for each i ≤ k.

Note that for finite sets S, T ⊆ P we have tS + tT = tS⊕T , where S ⊕ T = (S ∪ T ) \ (S ∩ T ) is the symmetric
difference of S and T . Moreover, if both S and T satisfy Condition (C1), then so does S ⊕ T . Thus,

U(C1) = {tS : S ⊆ P, #S < ∞, S satisfies Condition (C1)},

is a subspace of U .
Our main result is

Theorem 2. Let S be a finite subset of P , not satisfying Condition (C1). Put u = tS and d = max{deg H : H ∈ S}.
Then

{z1 + · · · + z2d−2 : z1, . . . , z2d−2 ∈ Ωm(u)} = (Z/2Z)m, m ≥ 0.

In particular, the subword complexity of u grows exponentially with Pu(m)≥cm, where c = 21/2d−2
.

Observing that S = {H} does not satisfy Condition (C1) when deg H ≥ 2, we obtain

Corollary 3. Let H ∈ P be a polynomial of degree d ≥ 2. Then the complexity of tH grows exponentially with
PtH

(m) ≥ 2m/2d−2
. In particular, if deg H = 2, then PtH

(m) = 2m .

Open Question 4. Is it true that PtH
(m) = 2m for every polynomial H ∈ P of degree d ≥ 3?

In fact, it may be the case that PtS
(m) = 2m for all finite sets S ⊆ P that do not satisfy Condition (C1).

Another corollary of Theorem 2 is obtained by a result of Ehrenfeucht et al. [18]. Ehrenfeucht et al. proved that
Pu(m) = O(m2) for every morphic sequence u (see [26,27] for a more precise result). Since the complexity of the
sequence u in Theorem 2 grows exponentially, we conclude the following.

Corollary 5. The sequence u = tS is not morphic for any finite set S ⊆ P that does not satisfy Condition (C1).

Note that our assumptions on the polynomials in S are weaker than the assumptions in Theorem A. Since automatic
sequences are a particular type of morphic sequences, we see that Corollary 5 generalizes Theorem A.

Corollary 5, and thus also Theorem 2, fails in general if we replace the sequence t by any automatic sequence. For
example, it is interesting to compare the behavior of t with that of the sequence b= (ν2(n)(mod 2))∞n=1, where νp(n)

is the p-adic valuation of n (i.e., pνp(n) is the exact power of p dividing the integer n). Thus,

b = (bn)∞n=1 = 010001010100010001 · · · .

Observing that b2n+1 = 0 and b2n+2 = bn+1 + 1 for all n ≥ 0, we get that b is generated by the morphism given by
0 7→ 01, 1 7→ 00 and 0 = b1 ∈ Z/2Z. Hence, b is 2-automatic.

Since b0 is undefined, we consider the sequences bH = (bH(n))
∞

n=0 only for polynomials H ∈ P with H(N) ⊆

N\ {0}. Let P1 denote the set of such polynomials (that is, P1 = {H+1 : H ∈ P}). Here we have the following elegant
property:

bH1·H2 = bH1 + bH2 , H1, H2 ∈ P1.

Using this formula and the fact that bH is 2-automatic when deg H = 1, we get that bH is 2-automatic for every
H ∈ P1 which is a product of linear polynomials Hi in P1 (see [11] for a more general claim). Since S = {H} does
not satisfy Condition (C1) when deg H ≥ 2, this already shows that Corollary 5 fails if we replace the sequence t by b.
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Remarks. (1) A simple connection between b and the Thue–Morse sequence is given by the following (cf. [31]),

bn+1 = tn+1 + tn + 1 ∈ Z/2Z, n ≥ 0.

Thus, bH = tH + tH−1 + 1 for every H ∈ P1. Observing that the sequence of 1’s is equal to tQ + t2Q+1 (for every
Q ∈ P), we see that bH = tS for a set S that satisfies Condition (C1).

(2) The sequence b is known as the period-doubling sequence (cf. [6, Section 1.4]).

We now describe our result regarding V [0,N )
= {(tcn)N−1

n=0 : c ≥ 1}.

Theorem 6. Let N ≥ 1. Then V [0,N ) is a subspace of (Z/2Z)N of dimension d0 = b
N
2 c. Moreover, the set B =

{v(1), v(3), v(5), . . . , v(2d0−1)
}, where each v(k)

= (v
(k)
i )N−1

i=0 is given by

v
(k)
i =

{
1, i ∈ {k, 2k, 4k, 8k, . . . , },

0, otherwise,

forms a basis of V [0,N ).

Remarks. (1) In the proof of Theorem 2 we need to consider the set of vectors V I
= {(tcn)n∈I : c ≥ 1} for some

more general (finite) sets I ⊆ N. Taking N > max I , we get that V I is the image of V [0,N ) under the projection
ϕ :(Z/2Z)N

→(Z/2Z)#I , given by

ϕ((vi )
N−1
i=0 ) 7→ (vi )i∈I .

Let O(I ) denote the set of odd numbers k ≥ 1 such that 2lk ∈ I for some l ∈ N (for example, O({4, 6, 7, 12}) =

{1, 3, 7}). Employing Theorem 6, we obtain that V I is the vector space spanned by BI = {ϕ(v(k)) : k ∈ O(I )}. In
particular, dim(V I ) = #O(I ).

(2) One may ask if it is possible to extend Theorem 2 to the family of quasistrongly q-additive sequences considered
in [7]. It seems that the main obstacle is to provide a result analogous to Theorem 6. It is easy to prove that, if
u = (un)∞n=0 is a quasistrongly q-additive sequence over Z/qZ, where q is a prime, then V [0,N )

u = {(ucn)N−1
n=0 : c ≥ 1}

is a vector space over Z/qZ. However, an analogous construction of B does not seem to follow easily.

3. The vector space V [0,N)

Lemma 7. V [0,N )
= {(tcn)N−1

n=0 : c ≥ 1} is a vector space over Z/2Z.

Proof. Let c1, c2 ≥ 1 be integers. We need to prove that (tc1n + tc2n)N−1
n=0 belongs to V [0,N ). Let c ∈ N be given by

(c)2 = (c1)20l(c2)2,

where l = l2((N − 1)c2). For every n ≤ N − 1 we have

(cn)2 = (c1n)20a(c2n)2,

for some a ≥ 0, and hence tcn = tc1n + tc2n . Thus,

(tc1n + tc2n)N−1
n=0 = (tcn)N−1

n=0 ∈ V [0,N ). �

Proposition 8. For every odd integer n0 ≥ 1 there exists an integer c ≥ 1 with

tc = t2c = · · · = tc(n0−1) = 0, tcn0 = 1.

Proof. If n0 = 1, then we may take c = 1. Assume therefore that n0 > 1. We construct two integers N1, N2 with

tN1n0 + tN2n0 = 1, tN1n + tN2n = 0, n < n0, (1)

(where the additions in (1) are over Z/2Z). By Lemma 7 there exists a c ≥ 1 with tcn = tN1n + tN2n , n ≤ n0, so that
c satisfies the required property.
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Since n0 is odd, we may take an integer R > 1 with Rn0 ≡ 1 (mod 4). Write

(Rn0)2 = w101, (2)

for some word w1. Take an integer M ≥ 1 such that l2(Mn0) > l2(M(n0 − 1)). (For example, one may take
M = d

2L

n0
e for some L > 2l2(n0), so that Mn0 ≥ 2L , whereas M(n0 − 1) < (M − 1)n0 < 2L .) Write

(Mn0)2 = 1w2. (3)

Let N1, N2 be given by

(N1)2 = (R)20a(M)2, (N2)2 = (R)20a−1(M)2,

where a = l2(Mn0) − l2(M) ≥ 1. Multiplying N1, N2 by an integer n < n0, we get

(N1n)2 = (Rn)20a′

(Mn)2, (N2n)2 = (Rn)20a′
−1(Mn)2,

where a′
= l2(Mn0) − l2(Mn) ≥ 1. Thus, tN1n + tN2n = 2tRn + 2tMn = 0.

Using (2) and (3), and observing that l2(Mn0) = a + l2(M), we obtain

(N1n0)2 = w1011w2, (N2n0)2 = w110w2.

Denoting by |w|1 the number of 1’s in a binary word w, we get

tN1n0 + tN2n0 = 2|w1|1 + 2|w2|1 + 3 = 1 ∈ Z/2Z. �

Proof of Theorem 6. Denote by VB the vector space spanned by B. Take u = (tcn)N−1
n=0 ∈ V [0,N ) and an odd integer

k ∈ [0, N ). Recall that tn = t2i n for all n, i ≥ 0, and hence (taking n = ck), it follows that tck = tc2i k , i ≥ 0. This
implies that

u =

∑
k=1,3,...,2d0−1

tckv
(k)

∈ VB,

and thus V [0,N )
⊆ VB.

Proposition 8 shows that for every odd integer k ∈ [0, N ) there exists a vector u(k)
= (u(k)

i )N−1
i=0 ∈ V [0,N ) such that

min{i : u(k)
i 6= 0} = k. Since the vectors u(k), k = 1, 3, . . . , 2d0 − 1, are linearly independent, we obtain

dimV [0,N )
≥ d0 = #B = dimVB.

Thus, V [0,N )
= VB. �

4. Proof of Theorem 2

For a finite set S ⊆ Q[n], denote

deg S = max{deg H : H ∈ S},

where we put deg H = −∞ if H = 0 and deg ∅ = −∞.
Before we prove Theorem 2 in detail, it will be instructive to sketch the proof. It goes by induction on deg S.

We begin by constructing finite sets Dc(S) ⊆ Q[n], c = 1, 2, . . . , such that, under a certain assumption on c, the
following properties hold:

(i) Dc(S) ⊆ P .
(ii) Ω(tS) ⊇ Ω(tDc(S)).
(iii) deg(Dc(S) ⊕ S) < deg S.
Put Xc = Dc(S) ⊕ S. The proof is split into two cases.

Case 1: There exists a c such that Xc does not satisfy Condition (C1).
In this case, by the induction hypothesis,

{z1 + · · · + z2d′−2 : z1, . . . , z2d′−2 ∈ Ωm(tXc )} = (Z/2Z)m, (4)
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where d ′
= deg Xc. Now, since tXc = tDc(S) + tS , each w ∈ Ωm(tXc ) is a sum of two words, z1 ∈ Ωm(tDc(S)) and

z2 ∈ Ωm(tS). Using (ii), we conclude that

Ωm(tXc ) ⊆ {z1 + z2 : z1, z2 ∈ Ωm(tS)}.

Together with (4), this implies the required property of Ωm(tS).
Case 2: Each Xc satisfies Condition (C1).

Here we show (Lemma 13(b)) that S has some particular structure. Using this structure, the fact that Ω(tS) ⊇

Ω(tDc(S)) for various values of c, and the equality V I
= (Z/2Z)#I for a certain set I ⊆ N given by some values of

polynomials in S (see the proof of Lemma 12), we prove that Ω(tS) = (Z/2Z)∗ in this case.

Remarks. (1) The induction hypothesis is used only in Case 1.
(2) If deg S = 2, then deg Xc ≤ 1, so that Xc satisfies Condition (C1). Hence only Case 2 is needed for answering

Question A.

Let L(H) denote the leading coefficient of a non-zero polynomial H . Put

L(S) = {L(H) : H ∈ S, H 6= 0} ⊆ Q×.

Throughout the proof it will be convenient to assume the following two conditions on S:

Condition (A1). L(S) does not contain a pair of numbers a, b with a = 2i b for some integer i ≥ 1.

Condition (A2). Each H ∈ S has non-negative coefficients.

To justify why (A1) and (A2) may be assumed without loss of generality, observe the following. For H ∈ P we
have tH = t2i H , i ≥ 1. If S contains a pair of polynomials H, G with G = 2i H for some i ≥ 1, then tS\{H,G} = tS .
Thus, taking some subset S0 ⊆ S with tS0 = tS , we may assume that S0 does not contain such pairs H, G. If S0
contains a pair H, G with L(H) = 2i L(G), H 6= 2i G, i ≥ 1, then replacing the polynomial H with H1 = 2i H we
get L(H1) = L(G). Repeating this argument we obtain a set S1, with tS1 = tS , satisfying Condition (A1). Now take
an integer K ≥ 0 and put

S2 = {H(n + K ) : H ∈ S1} ⊆ Q[n].

Since S1 ⊆ P , the leading coefficient of each H ∈ S1 is positive. Thus, for a sufficiently large K , the set S2 satisfies
Condition (A2) also. Note that S2 satisfies Condition (C1) if and only if S does, and consequently the assumptions
of Theorem 2 on S are valid for S2. Moreover, we have deg S2 ≤ deg S. Observing that tS2 is obtained from tS1 by
omitting the first K elements, we find that

Ω(tS2) ⊆ Ω(tS1) = Ω(tS).

Thus, if we prove that tS2 satisfies the assertion of Theorem 2, then so does tS .
Let H (k)

= H (k)(n) be the kth derivative of a polynomial H ∈ Q[n]. Put

S(k)
=

⊕
{{H (k)

} : H ∈ S, deg H ≥ k}.

Thus, S(k) is the set of non-zero polynomials occurring an odd number of times in (H (k))H∈S . For k = 1 we write H ′,
S′ instead of H (1), S(1), respectively. Denote

Dc(H) =

{
H, cH ′,

c2

2!
H (2), . . . ,

cd

d!
H (d)

}
, c ≥ 1,

where d = deg H and Dc(H) = ∅ if H = 0. Put Dc(S) =
⊕

H∈S Dc(H).
Note that, even when S ⊆ P , it may still happen that some of the polynomials in Dc(S) have values which are

both negative and non-integer. For example, taking S = {H}, where H(n) =
1
2 (n − 8)(n − 9) ∈ P , we obtain

H ′(n) = n −
17
2 ∈ D1(S). The following lemma, which is easily proved (cf. [1, p. 284]), will enable us avoiding such

cases in the proof of Theorem 2.
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Lemma 9. Let H be a polynomial with non-negative coefficients over Q and let c ≥ 1 be an integer such that
cH ∈ N[n]. Then ck

k!
H (k)(n) ∈ N[n] for every k ≥ 1.

Lemma 10. Let S be a finite subset of P and c ≥ 1 be an integer such that Dc(H) ⊆ P for each H ∈ S. Then

Ω(tS) ⊇ Ω(tDc(S)).

Proof. Let N ≥ 0. We prove that for every sufficiently large l we have tS[c2l , c2l
+ N ) = tDc(S)[0, N ). Since every

word in Ω(tDc(S)) occurs in tDc(S)[0, N ) for some N , this implies the lemma.

Let l ≥ max{l2( ck

k!
H (k)(n)) : H ∈ S, k ≤ deg H, n < N }. Take H ∈ S, d = deg H , r0 ∈ N, and let H(r0 + n)

=
∑d

k=0 H (k)(r0)
nk

k!
be the Taylor expansion of H(r0 + n) ∈ Q[n]. Substituting n = c2l , we get

H(c2l
+ r0) =

d∑
k=0

2lk ck

k!
H (k)(r0).

Take r0 ∈ [0, N ). Note that l ≥ l2( ck

k!
H (k)(r0)) for all k ≤ d, and therefore

(H(c2l
+ r0))2 =

(
cd

d!
H (d)(r0)

)
2

0ad−1 · · ·
(
cH ′(r0)

)
20a0

(
H(r0)

)
2

for some a0, . . . , ad−1 ≥ 0. Thus,

tH(c2l+r0)
=

d∑
k=0

t ck
k!

H (k)(r0)
, r0 = 0, . . . , N − 1.

This yields, tH [c2l , c2l
+ N ) = tDc(H)[0, N ). Since Dc(S) =

⊕
H∈S Dc(H), we get tS[c2l , c2l

+ N ) = tDc(S)[0, N ).
�

Recall that the density of a set Y ⊆ N is given by D(Y) = limN→∞
#([0,N )∩Y)

N , if the limit exists (cf. [21]).

Lemma 11. Let S 6= ∅ be a finite set of non-zero polynomials over Q, that do not contain any pair H, G of
polynomials with H = 2i G for an integer i 6= 0. Then the set

Y = Y(S) =

{
a ∈ N : ∃H, G ∈ S; H 6= G,

H(a)

G(a)
∈ {2i

: i ∈ Z}

}
,

is of density 0.

Proof. Since Y(S) =
⋃

H,G∈S Y({H, G}), it suffices to prove the lemma for a set S = {H, G} of size 2. Take

d = max(deg H, deg G). Clearly, max(
H(n)
G(n)

,
G(n)
H(n)

) = O(nd) = O(2d log2 n). Thus, for sufficiently large N ,{
H(a)

G(a)
: a ∈ [0, N )

}
∩ {2i

: i ∈ Z} ⊆ {2i
: |i | < (d + 1) log2 N }.

Observing that, for any fixed i = i0, the equation H(n)
G(n)

= 2i has at most d solutions, we conclude that for every
sufficiently large N ,

#(Y ∩ [0, N )) = #
{

a ∈ [0, N ) :
H(a)

G(a)
= 2i , i ∈ Z, |i | < (d + 1) log2 N

}
< d(2(d + 1) log2 N + 1).

Thus D(Y) = 0. �

Remark. One can show that, if the polynomials in S are of the same degree, thenY(S) must be finite. However, in gen-
eral, Y(S) may be infinite. For example, taking S = {H, G}, where G(n) = nH(n), we obtain Y(S) = {2i

: i ≥ 0}.
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Let

cS = {cH : H ∈ S}, c ≥ 1.

Lemma 12. Let S 6= ∅ be a finite set of non-constant polynomials in P . Take an integer m ≥ 1. Then

{tcS[a, a + m) : c ≥ 1} = (Z/2Z)m (5)

for almost every a ∈ N (i.e., for a set of a’s of density 1).

Proof. Without loss of generality we may assume that S satisfies Condition (A1). Thus, for every H1, H2 ∈ S we have
H1 ∼ H2 if and only if H1(n) = H2(n + q0) for some integer q0. Consider the decomposition S = S1 ∪ S2 ∪ · · · ∪ Sr
of S into equivalence classes.

We will prove that, for almost every a ∈ N, there exists a solution c ≥ 1 to the system of equations

tcS1 [a, a + m) = w1, tcS2 [a, a + m) = w2, . . . , tcSr [a, a + m) = wr ,

for every r words w1, . . . , wr ∈ (Z/2Z)m . Since

tcS[a, a + m) =

r∑
j=1

tcS j [a, a + m),

we see that (5) holds for every such a, and thus we will obtain the lemma.
For each j write S j = {H j (n + k) : k ∈ X j } for some H j ∈ S j and a finite set X j ⊆ N. Put K = max

⋃
{X j :

j ≤ r}. Consider the set of r(K + m) polynomials

E = {H j (n + k) : j ≤ r, k ∈ [0, K + m)} ⊆ P.

Since we assume that S satisfies Condition (A1) we get that E satisfies the conditions of Lemma 11. Thus,
D(Y(E)) = 0, and therefore D(N \ Y(E)) = 1. Take a ∈ N \ Y(E), and denote

I = IE,a = {H(a) : H ∈ E} ⊆ N.

Since a /∈ Y(E), the numbers H(a), H ∈ E , are distinct, and so #I = r(K+m). Moreover, for every k1, k2 ∈ I we
have k1

k2
6= 2i for all i 6= 0. By Theorem 6, this property of I yields

{(tcq)q∈I : c ≥ 1} = (Z/2Z)I . (6)

Let w1, . . . , wr be binary words of length m, say, w j = b( j)
0 · · · b( j)

m−1. For each j ≤ r , let x ( j)
= (x ( j)

k )K+m−1
k=0 be

a solution to the system of linear equations∑
k∈X j

x ( j)
k+n = b( j)

n ∈ Z/2Z, n = 0, . . . , m − 1.

(Note that this system is in echelon form, so that we easily obtain the existence of a solution.) By (6), there exists a
c ≥ 1 such that tcH j (a+k) = x ( j)

k for all j ≤ r , k ≤ K + m − 1. Thus, for every j ≤ r we have

tcS j [a, a + m) =

∑
H∈S j

tcH [a, a + m)

=

∑
k∈X j

tcH j (a+k)tcH j (a+k+1) · · · tcH j (a+k+m−1)

=

∑
k∈X j

x ( j)
k x ( j)

k+1 · · · x ( j)
k+m−1

= b( j)
0 · · · b( j)

m−1 = w j .

Since w1, . . . , wr ∈ (Z/2Z)m are arbitrary and D(N \ Y(E)) = 1, this completes the proof. �
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Remark. In the proof of Theorem 2, we only need the existence of an a (=a(m)) as in Lemma 12. However, since
we are using Lemma 11, we actually conclude that most a’s would work.

Lemma 13. Let S be a finite subset of P and c ≥ 1 be an integer. Assume that Dc(H) ⊆ P for each H ∈ S, and put
X = Dc(S) ⊕ S.

(a) If S 6= ∅, {0}, then deg X < deg S.
(b) Assume that S satisfies Condition (A1). Then X satisfies Condition (C1) if and only if S is of the form

S = {H1, H2, . . . , Hr , G1, G2, . . . , Gr , Q1, Q2, . . . , Qk}, (7)

where deg(Hi − Gi ) ≤ 1 for i ≤ r and deg Qi ≤ 2 for i ≤ k. Moreover, if this condition holds, then

X = cS′
⊕

⊕ {
c2

2
H (2)

: H ∈ S, deg H = 2
}

. (8)

Proof. (a) Since

X =

⊕
H∈S

(Dc(H) ⊕ {H}) =

⊕
H∈S

{
cH ′,

c2

2
H (2), . . . ,

cdeg H

(deg H)!
H (deg H)

}
, (9)

we have deg X < deg S.
(b) Assume that S can be ordered as in (7). Note that, if H , G are polynomials with deg(H − G) ≤ 1, then

H (k)
= G(k) for each k ≥ 2, so that Dc({H, G}) ⊕ {H, G} = {cH ′

} ⊕ {cG ′
}. Thus we easily obtain (8). Observing

that for each such pair H, G we have H ′
∼ G ′, we conclude that X satisfies Condition (C1).

Conversely, assume that X satisfies Condition (C1). We prove by induction on d = deg S that S can be ordered
as in (7). The cases d = 0, 1, 2 are trivial. Assume therefore that d ≥ 3. Given a set of polynomials E , put
E(k) = {H ∈ E : deg H = k}, k ≥ 0. From (9) it follows that deg X ≤ d − 1 and

X (d − 1) = cS(d)′ =

⊕
{{cH ′

} : H ∈ S(d)}. (10)

Note that L(X (d − 1)) ⊆ cL(S), and therefore X (d − 1) satisfies Condition (A1). Since X satisfies Condition (C1),
so does X(d − 1). Thus, X (d − 1) must be of the form

X (d − 1) = {H1, . . . , Hl , G1, . . . , Gl},

where Hi − Gi ∈ Z is a constant for each i ≤ l. Since X (d − 1) = cS(d)′, this implies that the polynomials in S(d)

can be ordered in pairs (H, G) with deg(H − G) ≤ 1. Thus, by the proof of the first direction,

Dc(S(d)) ⊕ S(d) = cS(d)′. (11)

Now put Ŝ = S ⊕ S(d) (=S \ S(d)) and X̂ = Dc(Ŝ) ⊕ Ŝ. Then

X̂ = Dc(S) ⊕ Dc(S(d)) ⊕ S ⊕ S(d) = X ⊕ X (d − 1),

where the second equality follows from (10) and (11). Since X, X (d − 1) satisfy Condition (C1)), so does X̂ . Using
the induction hypothesis on Ŝ, we get that Ŝ can be ordered as in (7). Since we already provided a similar ordering
of S(d), this completes the proof. �

Proof of Theorem 2. We prove the theorem by induction on d = deg S. Let u = tS , where S is a finite subset of
P that does not satisfy Condition (C1). Without loss of generality, assume that S satisfies Conditions (A1) and (A2).
Take an integer q ≥ 1 such that q H ∈ N[n] for each H ∈ S. By Lemma 9, Dcq(H) ⊆ P for all H ∈ S, c ≥ 1. Let
Xc = Dc(S) ⊕ S, c ≥ 1. We have Xcq ⊆ P , c ≥ 1.

Since S does not satisfy Condition (C1), d must be at least 2. We begin by proving the theorem for cases where
Xcq satisfies Condition (C1) for each c. This, in particular, proves the theorem for the case d = 2 (see the remarks at
the beginning of this section).

By Eq. (8) in Lemma 13(b) we have Dcq(S) = S ⊕ cq S′
⊕ c2T , where

T =

⊕ {
q2

2
H (2)

: H ∈ S, deg H = 2
}

.
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Write q S′
= T0 ∪ T1, where T0 = {H ∈ q S′

: deg H = 0} and T1 = q S′
\ T0. Thus,

tDcq (S) = tS + tcT0 + tcT1 + tc2T , c ≥ 1. (12)

Since S does not satisfy Condition (C1), we have T1 6= ∅. Now fix an integer m ≥ 1. Lemma 12 proves the existence
of an a ≥ 0 with

{tcqT1 [a, a + m) : c ≥ 1} = (Z/2Z)m .

Observing that tS[a, a + m) does not depend on c, we find that

{tS[a, a + m) + tcT1 [a, a + m) : c ≥ 1} = (Z/2Z)m . (13)

Since every polynomial in T0 ∪ T is of degree 0, the sequences tcT0 and tc2T are constant, so that

tcT0 [a, a + m) + tc2T [a, a + m) ∈ {0m, 1m
}, c ≥ 1. (14)

Using (12)–(14), we conclude that for each w ∈ (Z/2Z)m there exists a c ≥ 1 such that either tDcq (S)[a, a + m) = w

or tDcq (S)[a, a+m) = w (where we denote w = w+1|w|). Thus, at least one of the words w, w belongs to Ω(tDcq (S)).
By Lemma 10, we have Ω(tDcq (S)) ⊆ Ω(tS), and consequently one of w, w belongs to Ω(tS). Since m is arbitrary,
Ω(tS) must contain one of the two words w′

= ww and w′ = ww ∈ (Z/2Z)2|w|. This shows that every binary word
w occurs in tS , i.e., that Ωm(tS) = (Z/2Z)m , m ≥ 0, in this case.

Assume now that Xcq does not satisfy Condition (C1) for some c ≥ 1. (In fact, by Lemma 13(b), this means that
Xcq does not satisfy Condition (C1) for every c ≥ 1, but this will be of no consequence.) Denote d0 = deg Xcq .
Lemma 13(a) yields d0 < d , and thus, by the induction hypothesis, every word w ∈ (Z/2Z)∗ is a sum of 2d0−2 words
in Ω(tXcq ). By the arguments at the beginning of this section, each word in Ω(tXcq ) is a sum of 2 words in Ω(tS). It
follows that each word w ∈ (Z/2Z)∗ is a sum of 2 ·2d0−2

= 2d0−1 words in Ω(tS). Since 2d0−1
| 2d−2, this completes

the proof. �
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[25] B. Mossé, Reconnaissabilité des substitutions et complexité des suites automatiques, Bull. Soc. Math. France 124 (1996) 329–346.
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