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Abmraet--We formulate a class of difference schemes for stiff initial-value problems, with a small 
parameter ¢ multiplying the first derivative. We derive necessary conditions for uniform convergence with 
respect to the small parameter c, that is the solution of the difference scheme u~ satisfies l u~ - u(x~)l ~< Ch, 
where C is independent of h and c. We also derive sufficient conditions for uniform convergence and show 
that a subclass of schemes is also optimal in the sense that lu~ - u(x~)l ~< C rain (h, E). Finally, we show 
that this class contains higher-order schemes. 

Subject classification: primary 65L05; secondary 34E15. 

1. I N T R O D U C T I O N  

We consider the initial-value problem on the interval fl  = (0, ~ )  

L u ( x  ) = eu" (x  ) + a ( x  ) u ( x  ) = f ( x ) ,  xEf~, ( la)  

u(0) = A, ( lb)  

where a ( x )  a n d f ( x )  are sufficiently smoo th  and  the per turbat ion parameter  E is small and positive. 
In  addi t ion we assume 

a ( x )  ~> a >~ 0, 

which is sufficient to guarantee  that  the opera tor  L has a max imum principle and that  the solution 
u ( x )  of  expressions ( la ,  b) is unique and  bounded.  We shall consider the following class o f  
difference schemes: 

h h h h = f h ,  (2a) LhU h =-- Et D+ui  + at ui+ 1 

u h = A, (2b) 

where 

and 

o +u ~, = (uL , - u~, ) /h, ,  

h~ = xt + l - xt, 

Eh>~O 

a ~ > ~ a h > 0 ,  

and in addi t ion we may,  for  convenience, write 

and  

a h = otta(xi+ O, 

where a~ and at are bounde d  and  hence E~ and a~ are bounded.  

925 

(2c) 
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We wish to derive conditions on expressions (2a-d) necessary for uniform convergence, i.e. such 
that 

lu~ - u(x31 ~< C max hi,  
O~j~i  

where C and p are independent of i, h~ and E and p > 0. We will also derive conditions sufficient 
for a class of difference schemes to be uniformly convergent. 

For boundary-value problems, without turning points, uniform convergence is a strict criteria 
which is satisfied by only a small number  of  schemes. These schemes are the (exponentially) fitted 
schemes, which model the boundary-layer behaviour accurately. Other schemes, on a uniform mesh, 
either suffer instability or, due to artificial viscosity, introduce diffusion of the boundary layers. 
In the case of initial-value problems the same effects may be noted. The traditional approach is 
to refine the mesh in the area of the initial layer and, as we shall mention later, for a general solver, 
this would still be necessary when using a fitted scheme. However, one can derive a better intuitive 
understanding of the criteria necessary for a scheme by considering the concept of uniform 
convergence for initial-value problems also. The conditions for uniform convergence, which we 
derive, specify essentially that the transient behaviour must be modeled accurately. It is for this 
reason that the fitting technique is not easily applicable to a general solver for non-linear problems. 
The initial layers, in this case, may differ significantly in behaviour, as is noted in O'Reilly [1, 2]. 
The schemes proposed there are not of the same essential form as those proposed here. 
Nevertheless, one may expect that the closer a general scheme corresponds to the correctly fitted 
scheme for a problem the more accurate it will be on an arbitrary grid. 

Another problem with applying the concept of uniform convergence to initial-value problems 
is that, although it requires that one model the transient behaviour well, it is not necessarily strict 
enough a criterion for behaviour outside the initial layer. Thus, as a fitted scheme may be more 
accurate initially but less accurate for large x. To impose a stricter criteria the concept of optimality 
was introduced [3]. A scheme is optimal and of order p if 

]uhi - u(xi){ <~ C rain(max h~, c). 
o<~j<~i 

We shall consider a subclass of schemes deriving additional necessary and sufficient conditions for 
optimality. We shall also show that higher-order optimal schemes exist. Intuitively these conditions 
require additionally that the scheme should model the solution of the reduced equation sufficiently 
well. 

Throughout the paper p~ = hffE and C will denote a generic constant independent of i, h~ and E. 
Uniformly convergent schemes for this problem have been proposed by Doolan et al. [3], Carroll 

[445] and Miller [7]. Non-linear initial-value problems have been considered in Carroll [5] and 
O'Reilly [I, 2]. We are not interested in proposing further schemes in this paper, rather we wish 
to show what properties all these schemes have in common. It will be obvious later that a large 
class of schemes can be proposed which will satisfy the sufficient conditions. Since we propose the 
weakest possible conditions the error bound will not be the best possible for many schemes. 
However, it will be the best obtainable for a general scheme of the form (2a-d), that is, there is 
at least one scheme of that form which is only O(h) uniformly convergent. 

2. ANALYTIC RESULTS 
In this section we collect some results concerning the solution of problem (la, b). The first of  

these show that the solution satisfies a maximum principle and hence is uniformly stable. The 
second is a technical lemma and the last gives a first-order asymptotic expansion for the solution. 

Lemma 2. I 

(a) If  Vo(X) satisfies v(0)i> 0 and Lvo(x)>10 for x a f l  then Vo(X)>1 O, V x e f l .  
(b) If  Vo(X) is the solution of problem (1) then 

1 
lu(x)l~<- max If(Y)l,  x ~ .  

0£ O~y~x  

Proof: Doolan et aL, Lemma 2.1 and 2.2 [3]. 
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Lemma 2.2 

Let  w (x )  be a smooth function such that, 

I(Lw(x))°~l <<. C[1 + E-~exp(-ax/Q] ,  

then 

I(w<0(x)l ~< C[1 + ~ - '  e x p ( -  ax/E)], 

Proof:  Doolan et al., Lemma 7.1 [3]. 
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for i ~>0, 

for i~>0. 

The problem (la, b) is a singlularly perturbed equation with an initial layer at x = 0. We may 
define the corresponding reduced solution uo(x) by 

LoUo(X ) = a ( x  )uo(x ) = f (x ), x e ~ .  

It is clear that the solution is 

Uo(X) = f ( x )  (4) 
a(x)"  

We may derive an asymptotic expansion for the solution u(x )  and a bound on the remainder and 
its derivatives as follows: 

Lemma  2.3 

The solution of  problem (l a, b) may be written as 

u(x  ) = Uo(X ) + Vo(X ) + Ez(x), (5) 

where 

Vo(X) = y exp[ -a(O)x /E] ,  y = ~b - u0(O), (6) 

is the boundary layer function, uo(x) is given by equation (4), and 

[z ~0 (x)[ ~< C[1 + E -i e x p ( -  ax/Q]. (7) 

Proof:  Using, L u ( x )  = f ( x ) ,  a (x )uo(x)  = Louo(x) = f ( x ) ,  and the explicit form of Vo(X), we get 

ELz(x)  = L u ( x )  - Luo(x)  - Lvo(x)  

= f ( x )  -- Eu~(x ) -- a ( x  )uo(x ) -- EvO(x ) -- a (x  )vo(x ) 

= --Eu~(x) -- [a(x) -- a(O)]vo(x). 

Thus, using a(x )  - a(O) = xa ' (~)  for 0 ~< ~ ~< x, 

L z ( x  ) = - u~ (x ) -- a'  (~ )x /EVo(X ) 

and thus, from the expression for Vo(X), 

[ (Lz)(°[ ~< C [ 1 + E - i exp ( - ax/2c )]. 

Hence, by Lemma 2.2, 

Iz~O(x)l <<. C[1 + E-iexp(--ax/2e)].  

3. NECESSARY CONDITIONS 

We wish now to derive necessary conditions for the solution of  the scheme (2a-d) to converge 
uniformly to the solution of problem (la,  b). 

Assume that the solution of  the difference schemes (2a-2d) exists V h ~< H and ¥ ~ ~< Eo and that 
equations (3a, b) hold, lim try, lira a h and lirnf~ exist and 

l imf~  = l imf(xi)  

and 

lira a,. h = lim a(x,) 
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where, throughout this section, lim denotes the limit as hi--* O, Pt = h~/E # 0 fixed and i fixed. With 
this definition, 

limf(x~) =f(O)  and lim a(x3  = a(O) 

and hence taking the limit of  expressions (2a--d), 

F ~/h h h ] = l i m f ~  lim (u~+ ! - -  Uhi) + a i u i +  I 
kPi 

becomes 

or, | ]  = f (o ) .  (8) lim [~ i  (u~+ 1 - u ~ ) + a ( O ) u ~ +  

Now, assuming uniform convergence, i.e. lim u~ = lim u(xi),  and using Lemma 2.2, 

lim u/h = lim u(xi) = lim [u0(xi) + Vo(Xi) + Ez (xi)] 

f (0 )  
= u0(0) + ? exp[--a(O)xi/E] = ~ + ? exp[--a(O)xi/£] 

and hence (8) becomes 

h 

lim[  ,e ,I o,0, ,1 l, 
o r  

+ a (0) exp [ -  a (0) Pi]]Y exp [ -  a (O)xi/E ] = 0 

where 

h = a(O)p, = a(a(O)p,),  (9) lim oi 
e x p [ - - a ( 0 ) p i ] -  1 

X 
~(x)  - (10) 

e x -  1 

is the generating function for the Bernoulli numbers. 
It Should be noted that, if we choose tr~ to satisfy condition (9) exactly, the difference scheme 

will be exact for a homogeneous constant coefficient problem. The necessary condition gives a 
minimum requirement on the scheme to model the transient behaviour of  the problem accurately. 
It is in this sense that one refers to the scheme as fitted. Condition (9) is only an asymptotic 
(limiting) condition for h approaching 0. It is interesting to determine how closely this must be 
satisfied for finitely large values of  h in order to obtain uniform convergence. We shall consider 
this question in the next section. 

No tes : 
(i) A minor modification of  the above proof  would yield 

lim ¢r~ = c~,¢r(a(O)p,). (11) 

(ii) It is possible to show that a (x)  has the following properties. These can be useful in verifying 
that schemes satisfy the necessary conditions. 

(1) It is clear that 

¢ r ( -x )  = a (x)  + x. (12) 

This can be useful in rewriting schemes in the form (2a-d). 

(2) By continuation, we define 

a(O)  = l i m  a ( x )  = 1. 
x~O 

(3) In addition if we write ~(x) = x coth x then 

• (x) = ½[a(2x) + a ( -  2x)] = ½12a(2x) + 2xl = a(2x) + x. 

(13) 

(14) 
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I~(X,) -- ~(xgl  < C Ix, -- xd 

w.l.o.g, assume x2 > x, t h e n  

a ( x , )  - , r ( x 9  = (x2 - x O - -  

It  suffices to show 

da(z )  
dx ' x, ~<z ~<x2. 

I x,ox 11 = < c .  
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(15 )  

(16) 

Since the only singularities o f  this function are at - ~ ,  0 and ov we need only show it 
is hounded there. It  is easy to verify 

lim --=da(x) _ lim --=da(x) _ . da (x )  
. . . .  dx 1, 3, lim - -  = 0. x~0 dx x ~  dx 

(5) I f  x 2 > x. ~ 0, then there exists some z, xl ~< z ~< x2, such that 

la(Xl) -- a(x2)[ ~ f i x2  - x,l(1 -t- z)e -=, 

This follows in the same manner  as expression (15), except that one must show that 

- d - - - - ~ e _ ~ ( l + z  ) ~<C, Yz~<O. 

4. S U F F I C I E N T  C O N D I T I O N S  

In this section we derive conditions sufficient for uniform convergence. First we shall consider 
the analogue of  Lemma 2.1 for the difference scheme, which will establish a discrete maximum 
principle for L h and also uniform stability for schemes (2a~l). 

Lemma 4.1 

(a) I f  vi satisfies v0/> 0 and Lhvi >i 0 for i > 0, then v~/> 0, for i > 0. 

(b) I f  u~ is the solution of  schemes (2a--d) then 

luPl<~luhl+Cmaxlfhl,  for i > 0 .  (17) 
0<j~<i 

Proof." 

(a) Suppose that  Vk < 0 some k, hence there exists a 

Then 

j s u c h t h a t  v j+ l<O,  vi~>O, for i<~j. (18) 

/ \ / ~.h 
i < 0 ,  ~ , t j f ~  E-~ffj'Jf-aJ) vj+ 

using expressions (2a-d), (17) and (18). This is a contradiction and hence vt/> 0Vi. 

(b) Let 

1 h wi = [u~[ + --= m a x  [L~u~[ + us. a n o~jgi 

Then 

w0 = lugl  + 1--x m a x  ILhuffl + ug >1 0 
a o~j~i 

C.A.M.W.A. IMI2--B 
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and, using expression (2d), 

h( h l m a x l L h u , )  Lhuh>>.ah ( l m a x l L h u h l ~ + L h u , > ~ O .  Lhwi = ai luol + I + luhl + a o~ j~  ] 

The result now follows using proof (a) and r ) -  h _ ,~h u i - - J i .  

We are now in a position to state the main theorem of this paper giving sufficient conditions for 
uniform convergence. We will defer the proof  until later. 

Theorem 4.1 

Let up be the solution of  schemes (2a--d), u(x)  be the solution of  problem (la, b). If, for given 
2, some 0 <~ ~ <~ xi + Chi, 

la h -  a(a(rh)p~)l ~< Cpip(p~)x iexp[-a(~)pA,  for 0 ~< x;~< 2, (Ia) 

I Eh--El<<.Chi, for ~ < x i ,  (Ib) 

and 

la~ - a(x,+,)l ~< Ch,, (II) 

[fh -- f (xi+ ,)[ ~< Ch,, (III) 

where p(p~) is a polynomial in p~, 0 <~ ~ ~ xi + Chi and hi ~< 2, then 

luhi - u(xi)l <~ C max hi. 
O<j<~i 

Notes on conditions ( Ia ,b)-( I I I ) .  Conditions (II) and (III) are simply (uniform) consistency 
conditions as is condition (Ib). Condition (Ia) is a stronger condition which ensures that in the 
initial layer the solution of  the difference scheme represents the rapidly varying component of  the 
solution of  expressions (Ia, b) adequately. It allows us to vary significantly from the asymptotic 
value of  a h specified in expression (9). 

In order to prove Theorem 4.1 we first rewrite the truncation error using Lernma 2.3, 

Lh(u(x,)  -- u h) = Lhu(xi)  - - f ~  = Lhu(xi)  -- Lu(x,+ l) - - f  (xi+ L) - - f ~  

= Lhuo(X,) -- Luo(Xi+ t) + Lhv(x,)  -- Lv(xi+ ,) + e(Lhz(xi)  -- Lz  (xi+ ,)) + f ( x , +  ,) - - f~ .  (19) 

Rewriting the truncation error in this form will simplify the later proofs. It is also the natural 
choice if we consider the form of the difference scheme. We shall now proceed to bound the former 
sets of  terms separately. 

Lemma 4.2 

Under the conditions of  Theorem 4.1 

IL~v(xi) - Lv(xi+ t)l ~< C rain(h, e). 

Proof." By adding terms which are each zero we may rewrite this as follows: 

L hv(x~) -- Lv(x,+ ,) = ch D +v(xi) + ahv(xi+ l) -- E.a(a(O)p,)D +v(xi) + a(O)v(xi+ i) + E.v' (x,+ i) 

+ a(O)v(xi+ ,) -- Ev'(xi+ ,) + a(xi+ ,)v(xi+ 1) 

= [E h - ea (a (O)  p i ) ]D+v(x~)  + [a~ - a(x~+ 0]v(xi+ 0. (20) 

Let us consider the first group of  terms. In the region where condition (Ia) holds 

o "h = a(a(rh)p:) -I- Ri, 

where 

Thus, 

I R, I ~ C p , p ( p , ) x ,  exp[--a(~)p,]. 

h [El -- Ecr(a(O)pi)]D +v(x~) = E [~r(a(~h)p;) -- ~r(a(O)pi)]D +v(xj) + ¢Ri. 
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Now, usin_g expression (15), 

[e[a(aO/,)p;) -a(a(O)p,)]D+v(x,) l  <~ Cerl, p , p , ( p , ) e x p [ - a ( r l ) p , ]  
rain(l, p,) v(xi)  

h~ 
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<~ Cx, rain(l, p,) e x p [ - a ( ( ) p , ] v ( x ~ )  <~ C rain(h,, ~ ). 
Finally, 

leR, I ~< Cep~p(p,)x, e x p [ - a ( ( ) p , ]  <~ Cep, e x p [ - a ( ( ) p , ]  <<. C rain(h,, e). 

This is the reqqired bound in the region where condition (Ia) holds. 
In the region where condition (Ib) holds, since x~/> ~, 

IE h - t ~ ( a ( O ) p , ) l  ID+v(x,)l = [ I t ,  h - e l  + le  { a ( a ( O ) p , )  - I}  I]lD+v(x,)l 

<<. Ch~ + ep~ min(1, Pi) v(x~) <<. C min(1, p;) exp[ -a (O)~ / t ]  ~< C min(ho e). 
hi 

The latter follows since xi/> ~ > 0 and if hi/e = Pi ~< 1, then 

h~ a(O)~ 
min(1, p,) exp[--a(O)x~/E] <~ piexp[-a(O)Yc /E] ~ - -  - -  exp[--a(O)~/~] ~< Ch, 

a(O)~ e 

and, if p~ > 1, then 

E a(O)~ 
min(1, Pi) exp[--a(O)xi/e] <<. exp[--a(O)~/e] ~< - -  - -  exp[--a(O)~/e] ~< Ce. 

a(0)~ e 

Now consider the second set of  terms in expression (20) 

I{a h - a(x~+ i)}v(xi+ 1)1 ~< Chiexp[ -a(O)x i / e]  <~ Ce h-2 exp[-a(0)~/E]  <~ C min(hi ,  E ), 
E 

since h~le <~ xile and x~lE e x p [ - a  (0)xi/E] ~< C. This concludes the proof  of  Lemma 4.2. []  
Let us now consider the first term in expression (19). In order to conveniently bound these we 

first prove the following technical lemma. 

L e m m a  4.3 

If  conditions (Ia) and (II) are true then 

le/~ - e I ~< C min(hi, e). 

Proof." 

[e~ - el = IE(a~ - 1)1 ~< e 1#~-  a(aO1,)p,)] + e Itr(a(rfi)p,) - 11 

<<. CEp,p(p,)x, e x p [ - a ( ( ) p , ]  + CE rain(l, p,) ~< C w_in(h, e). 

Using this lemma we can now prove Lemma 4.4. 

L e m m a  4.4 

Let 

y(x  ) = Uo(X ) + ~z(x ) 

then, under the conditions of  Theorem 4.2, 

IL hy(xt) - Ly(x~+ i)l ~< Chi. 

Proof." Since, ly(°(x)l = lu~°(x)l + E Iz(°(x)l ~< C[1 + E - '+l exp( -ax /~) ] ,  

IL hy(xs) -- Ly(x~+ t) l ~< leh D +y(x~) -- ahy(xi+ t) -- ey'(Xt+ l) -- a(xi+ t)y(x,+ ,)1 

<<. lehD+y(xl) -- ey'(xi+ 1)1 + l a h -- a(x~+ l)l ly(x~+ OI 

~< I(e, ~ - E)y'(x,+ O I + I E~[D+y(x~) - y ' (x ,+ ,)]1 + l af - a(x,+ ,)1 ly(x~+ ~)1 

~< C le h - e l +  Ceh~ly"(OI + Cla~ - a(x~+ i)1, (21) 
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where xi <~ ~ <~ xi + l, 

<<. Chi+CEhi(I +1, exp(-a(/O)~< Chi+Cmin(ht.O<<. Chi. 
P r o o f  o f  Theorem 4. I: Substituting (III) and the results of  Lemma 4.2 and 4.4 in expression (19) 

g i v e s  

[Lh(u(x,) -- uh)l ~< Ch, 

and, using Lemma 4.1, 

lu(xi)  -- uhil <<. C max hi. 
o ~ j ~ i  

We have thus shown that Theorem 4.1 gives sufficient conditions for uniform convergence. As 
we remarked earlier these conditions are quite general and are satisfied by a large number of 
schemes which have been proposed in the literature. 

5. OPTIMAL CONVERGENCE 

In order to show the stronger condition of optimality holds, we require stronger constraints on 
the coefficients. To guide us in the formulation of  these constraints we derive the following 
necessary conditions for optimal convergence. 

Let us assume that a h, a~ a n d f ~  are bounded and consider the limit as E ---~ 0, for h~ and i > 1 
fixed, which we denote by lim. Then 

lim Uhi = U,(Xi) = Uo(Xi) + Vo(Xi) + eZ(Xi) = Uo(Xi). 

NOW, substituting this in the scheme, 

lim ea h uh i÷ ' -  ui h h l imf~ -hl t- a; ui+ 1 = 

we obtain 

lim ahuo(Xi+ 1) = l i m f  h 

or, using expression (4), 

I f  hf(X'+ ,)'] lim h _ a; - -  = a(x~+,)J 0. (22) 

This additional condition implies we should solve the reduced equation exactly and suggests that 
we should impose a condition which in the limit gives expression (22). Thus we get the following 
sufficient conditions for optimal convergence. 

Theorem 5.1 

Let u h be the solution of 

h h - -  h h h h L ui = EtD+ui + aiUi+l = f h  (23) 

and u ( x )  be the solution of  problem (la, b) then if, for given ~, some 0 <~ r h <~ x~+ Ch~, 

Itr h -  a(a(~/i)pi)l ~< C p i p ( p l ) x l e x p [ - a ( O p ~ ] ,  for 0 ~< xi ~< ~, (Ia) 

IE h - ¢ I ~< C min(hi, E), for • ~< xi (Ib) 

and 

lah - a(x,+ l)[ ~< Chi, 

f h  h f  (Xi+ ') i - a, ~ ~< C rain(hi, ¢). 

(II) 

(III) 
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where p(p~) is a polynomial in p,, 0 <~ ~ <<. x~+ Cht and ht ~< ~, then 

lu~ - u(x,)l ~< C man( max h~, E). 
O~j~i 

It is clear that Lemma 4.2 suffices for the truncation error in vo(x). However to prove the theorem. 
we must refine the argument in Lemma 4.4. To accomplish this we consider u0(x) and z ( x )  
separately. 

/.emma 5.1 

Under the conditions of  Theorem 5.1, 

e ILhz(x~) -- Lz(x,+ 1) 1 ~< C man (h,, e). 

Proof." Using condition (Ia), Lemma 4.3, conditions (Ib), (II), (7) and (x~+ i) >/(x~) >t h~, 

, lZhz(x,)  - Lz(x,+ I)1 ~< * leh D +z(x,) -- a~z(xi+ l) -- Ez' (x,+ 1) -- a(xi+ Oz(x~+ l)l 

<~ e [IEhD+z(xi) -- EZ'(X,+ I) 1 + lah -- a(x,+ 0l Iz(x,+OI] 

~< e {I (e, h - e)z ' (x ,+ 1) 1 + l eh[D+z(x,) -- z'(x,+,)] I} + Ceh, 

~< Ce I eh - e I(1 + e -i e x p [ -  a(x,+ O/e]) + Ce2h, lz"(~)l + Ceh~, 

where x; ~< ( ~< x,+ 1, 
~< Ceh,{ 1 + e - '  exp[ -a (x ,+  0/e]} + Cc2h,{1 + ¢ -2 exp[ -a (x ,+  ~)/E]} 

<~ Ceh~+ C e ( ~  e x p ( - a h ~ / , ) ) ~ < C  man(h,, ,). 

Of  the terms in expression (19) there remains only 

L huo(xi) -- Luo(x,+ 1) + f (x,+ ,) -- f ~. 

We bound these in the following lemma. 

Lemma 5.2 

Under the assumptions of  Theorem 5.1, 

ILhuo(x,) -- Luo(x,+ t) + f (xi+ 1) -- f~[ <~ C mAn(h,, E). 

Proof: Using, Uo(Xi + t) = f ( x , +  O/a(xi + O, 

ILh uo(x,) -- Luo(x, ÷ l) + f (x, + l) - f ~ l 

-= l ehD+uo(x,) -- eu~(x~) + ah~uo(x,+ 1) - a(xi+ 0uo(x;+ 1) - f (x,+ 1) -- fh l  

. ] hf(X,+,) [ = [EhD+u0(x,)-- eU~(X,)I "t- a, - -  fhi 
a(xi+ ,) J 

= le h -- E [ ID+uo(x,)l + E [D+uo(x,) - u~(x,)l + C man(h,, E) 

--- C min(ht, ~) + CEh~lu'~(~)1 + C min(h~, E) 

= C re_in(hi, e). 

Combining Lemma's 4.2, 5.1 and 5.2 and, using Lemma 4.1, gives the result in Theorem 5.1. 

6. SC HEMES W H I C H  SATISFY THESE C O N D I T I O N S  

A number of  schemes have been proposed in the literature for initial-value problems. Doolan 
et al. [3], for example, proposed the following schemes: 

Ea ( - a (x,) p~)D + u hi + a (xi)u ~ = f (x , ) ,  (24) 

~.[O,r(--a(x,)p,) + (1 -- O)o(a(x,))p,]D +u~ + a(x,)[Ou~ + (1 -- O)u~+ l] 

= Of(x,) + (1 -- O)f(x,+t)  (25) 
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E coth D+u~ + ~a(x~)[u~ + u,+ l] 

EtT(a(O)pi)D+uf + a(xi)uhi+ , 

Ea(a(O)p,)D + uf + a(x,+ l)uf+, 

E.a(--a(xi+ l)pi)D +uf + a(xi+ l)Uf 

= f (xi), 

= f (xi), 

= f ( x i+ , ) ,  

=f(x,+ 1)- 

(26) 

(27) 

(28) 

(29) 

Hence 

Ea(a(xi)p,)D +uf + a(x,)uf+ ~ = Of (xi) + (1 -- O)f  (x,+ ,). 

To transform (26), we use expression (14), giving 

Ea(x,)h, uf+ , - uf Ec~ (a(xi) pt)O + u f 2E -h-i I- _ _  [u h + uhi+ ,] = f (x i )  

which also reduces to expression (30). Thus all of these schemes satisfy the sufficient conditions 
in Theorem 4.1. 

Having written the schemes in the form (2a-d), it is clear that schemes (24)-(27) do not satisfy 
the extra condition required for optimality by Theorem 5.1. However, for schemes (28) and (29) 
we have 

af = a(xi+ O, f h  = f ( x , +  l)" 

where 

and 

a h f  (x,+ 1) 
f~ - -  i - - - - ~ - - - 0 ,  

a(xi+ I) 

which shows that these do satisfy this condition and hence are optimal. 
A more interesting result is that a scheme (Example 9.1 of Doolan et al. [3]), which was shown 

to be O(h ~) uniformly convergent there, can be shown to be optimal also. It thus answers the 
speculation as to whether there exist higher-order optimal schemes. This scheme is given by 

e tr ( -a ,p , )D +u j] + ~i ul] = f f ,  (31a) 

at = [a(xi) + a(x,+ 0]/2 (31b) 

f ~ =  f ( x ! )  [1--a(aiPi)]+ f(x'+l------~) [a(--aiPt) - 1]. (31c) 
p,a(x,) pta(x,+ i) 

We may rewrite expression (31a) in the form (2a--d), using the same method as for scheme (24). 

which reduces to 

It is immediately obvious that expressions (27) and (28) satisfy the conditions of Theorem 4.1. 
To see that expressions (24), (29) and (25) do also, we use equations (12) and (14) to rewrite them 
in the form (2a--d). using equation (12), we can rewrite equation (24) as 

E[a(a(x,)pi) + a(xi)pilD +u~ + a(x,)u~ = f (xi). 

This is equivalent to 

Ea(a(xi)pi)D +u~ + a(xi)uhi+ l = f ( x i )  (30) 

which dearly satisfies the conditions. The same argument holds also for expression (29). 

Similarly, using expression (12), the scheme (25) can be transformed to 

E{Oa(a(xi)pi) + (1 - O)a(a(xi))pi}D+u h + 0 a(xi)hi e (uhi+, _ uhi) 
E h, 

+ a(xi)[Ou f + (1 - O)uf+ ,] = Of(x,) + (1 - O)f(xi+ ,) 
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Conditions (I) and (II) of  Theorem 5.1 are thus satisfied. It remains to show that condition (III) 
is also satisfied. To show this we proceed as follows: 

hf(xl+ I) f(xi) .. 
f ~  -- a, . . . .  tt -- a (a, pi)] -t a(xi+O pia(x,) 

f(xi) - -  [1 - a(a,p,)] + 
pia(xi) 

f(xl+l) [tr(--t~ip~)-- 11 .f(x,+l) 
pia(x,+ ,) -- a, ~ 

f(x,+ i) [tr(--a,p,) -- a,p,-- 11 
p~a(x, + 1) 

a(aipi)l ~ f(x,+O] 
= ~ [ 1 -  f " a(xi+l-----)_]' 

the latter, using expression (12) and regrouping. Thus, again using l a ( y ) -  l l ~  < rain(y, 1), 

f~-- hf(X'+O[ I a'a "D _ _[-f(x")-II ai ~a(xi+O = ,[1 - -  i. i P i ) J  +[a--~/)/ ~< C• rain(p,., 1 )=  C min(l~-,,), 

since f (x)  and a(x) are sufficiently continuous and a(x)/> a > 0. This concludes the proof  that 
scheme (31) satisfies the conditions of  Theorem 5.1 and hence is an optimal O(h 2) scheme. 

We remark that all these schemes satisfy condition (Ia) on the whole interval of  solution of  the 
problem. This is unnecessarily restrictive. One need only satisfy condition (Ia) near the initial layer 
and switch to any standard scheme, which may be cast in the form (2a--d) and satisfies condition 
(Ib), once this region has been traversed. 

Finally, to confirm that these bounds are attained in practice we consider the problem 

u ' ( x ) = - A ( u ( x ) - g ( x ) ) + g ' ( x ) ,  O<~x <~ lO, 

where 

u (0 )=10 ,  g ( x ) = 1 0 - - ( 1 0 + x ) e x p ( - - x ) .  

Tables 1-3 show the maximum absolute error at the nodes, for the backward Euler method, 
Trapezoidal method and for a number of  fitted methods, for values of  2 = 20, 200 and 10000 
(corresponding to values of  E of  0.05, 0.005 and 0.00001). 

T a b l e  1. ). ffi 20  (~ = 0 .05)  

S c h e m e  h = I /8  h ffi 1 /16  h = 1/32 h ffi 1 /64  

B a c k w a r d  E u l e r  2 .02  1 .57 9 . 1 8 E  - 1 5 . 0 5 E  - I 
T r a p e z o i d a l  1.93 5 . 5 7 E  - 1 1 .22E  - 1 3 . 0 6 E  - 2 
S c h e m e  (27)  6 . 5 2 E  - 1 2 . 8 2 E  - 1 1 .29E  - 1 6 . 1 3 E  - 2 
S c h e m e  (28)  2 . 8 2 E  - 1 i . 8 3 E  - 1 1 .04E  - I 5 . 4 9 E  - 2 
S c h e m e  [25 (0 ffi 0 .5)]  1 .93E  - I 6 . 9 2 E  - 2 6 . 1 0 E  - 2 7 . 5 0 E  - 2 
S c h e m e  (31)  7 . 9 1 E -  3 2 . 1 5 E -  3 7 . 7 0 E  - 4 2 . 0 7 E -  4 

T a b l e  2. 2 ffi 200  (~ ffi 0 . 005 )  

S c h e m e  h ffi 1/8 h = 1 /16  h ffi 1 /32 h ffi 1 /64 

B a c k w a r d  E u l e r  3 . 8 3 E -  1 7 A O E -  1 1.36 1 .98 
T r a p e z o i d a l  8 .52  7 . 2 4  5 .17  2 .63  
S c h e m e  (27)  1.02 5 . 0 2 E  - 1 2 . 3 2 E  - 1 9 . 9 5 E  - 2 
S c h e m e  (28)  4 . 0 2 E  - 2 4 , 2 5 E  - 2 4 . 3 1 E  - 2 3 . 7 3 E  - 2 
S c h e m e  [25 (0  = 0.5)]  4 . 9 0 E  - 1 2 . 3 0 E  - 1 9 A B E  - 2 3 . 4 6 E  - 2 
S c h e m e  (31)  2 . 1 3 E  - 3 1 .01E  - 3 4 . 1 8 E  - 4 1 .38E  - 4 

T a b l e  3. 2 ffi 10000  (~ = 0 . 0 0 0 0 1 )  

S c h e m e  h = I /8  h ffi 1 /16  h = 1 /32  h ffi 1 /64  

B a c k w a r d  E u l e r  7 . 9 5 E  - 4 1 .59E  - 3 3 . 1 9 E  - 3 6 . 3 9 E  - 3 
T r a p e z o i d a l  9 . 9 9  19.7  27 .7  2 8 . 4  
S c h e m e  (27)  1 .06 5 . 4 7 E -  I 2 . 7 7 E -  I 1 . 3 9 E -  1 
S c h e m e  (28)  8 . 0 5 E  - 5 8 . 5 0 E  - 5 8 . 7 5 E  - 5 8 . 8 7 E  - 5 
S c h e m e  [25 (0 ffi 0 .5)]  5 . 3 2 E  - 1 2 . 7 3 E  - ! 1 . 3 9 E  - 1 6 . 9 7 E  - 2 
S c h e m e  (31)  4 . 6 3 E  - 6 2 . 3 9 E  - 6 1 .20E  - 6 9 . 5 3 E  - 7 
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Schemes (24) and (26) do not differ from expression (27), nor does expression (29) from 
expression (28), since a(x) = 1 is a constant. I f a ( x )  is not a constant the solutions still do not differ 
significantly. The results show that, as predicted: 

(1) schemes (24), (26) and (27) which satisfy the conditions of  Theorem 4.1 but not 
of  5.1 are O(h) uniformly convergent; 

(2) schemes (28) and (29) are O(min(h, E)) uniformly convergent since for 
E ffi 0.00001 the error is approx. O(10 -5) even for h = 1/8; 

(3) scheme (25) for 0 = 0.5 shows peculiar characteristics since for this problem it 
is a fitted variation of  a trapezoidal scheme; 

(4) scheme (31) is uniformly O(min(h:,  E)) since again for E = 0.00001 the error is 
approx. O(10-5), whereas for E = 0.05 the error is O(h2). 

It can also be noted that all the fitted schemes perform better than backward Euler or the 
Trapezoidal Rule. 
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