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SUMMARY

Detailed knowledge of the pathways by which ghrelin
and leptin signal to AMPK in hypothalamic neurons
and lead to regulation of appetite and glucose ho-
meostasis is central to the development of effective
means to combat obesity. Here we identify CaMKK2
as a component of one of these pathways, show that
it regulates hypothalamic production of the orexi-
genic hormone NPY, provide evidence that it func-
tions as an AMPKa kinase in the hypothalamus,
and demonstrate that it forms a unique signaling
complex with AMPKa and b. Acute pharmacologic
inhibition of CaMKK2 in wild-type mice, but not
CaMKK2 null mice, inhibits appetite and promotes
weight loss consistent with decreased NPY and
AgRP mRNAs. Moreover, the loss of CaMKK2 pro-
tects mice from high-fat diet-induced obesity, insulin
resistance, and glucose intolerance. These data
underscore the potential of targeting CaMKK2 as
a therapeutic intervention.

INTRODUCTION

Obesity and associated diseases such as type 2 diabetes, hy-

pertension, cardiovascular disorders, and some cancers are

a threat to general human health and have stimulated increased

interest in understanding the molecular mechanisms responsible

for coordinated food intake, body weight, and glucose homeo-

stasis (Zamboni et al., 2005). Recent findings have emphasized

the role of the central nervous system (CNS), especially the hy-

pothalamus, in integrating hormonal and nutrient signals from

the periphery to modulate food intake, energy expenditure,

and peripheral glucose metabolism (Morton et al., 2006). For ex-

ample, abundant evidence indicates that the CNS is the site for

the appetite-controlling actions of leptin. Much progress has

been made in identifying neuronal populations in the arcuate

nucleus (ARC) and ventromedial hypothalamus (VMH) of the

hypothalamus that are directly responsive to leptin; the signaling
steps leading to transcriptional activation upon engagement of

the leptin receptor; and the neuronal circuitry linking leptin-

responsive neurons with populations of neurons that underlie

leptin’s endocrine, autonomic, and behavioral effects (Elmquist

et al., 2005; Flier, 2004; Friedman and Halaas, 1998). Unfortu-

nately, while administration of leptin causes weight loss in lean

mammals, there is typically leptin resistance in obese individuals

that compromises the use of leptin to treat obesity (Heymsfield

et al., 1999).

An emerging view holds that common neuronal circuitry is

used by a variety of hormones and metabolites that affect energy

homeostasis. One especially important example is ghrelin, which

is produced by the stomach and opposes the hypothalamic ac-

tions of leptin by stimulating food intake. Plasma ghrelin levels

display an episodic secretory pattern, rising shortly before meals

and falling sharply on feeding (Bagnasco et al., 2002). Ghrelin

also rises with acute fasting or chronic food deprivation and in re-

sponse to weight loss due to chronic exercise, eating disorders,

and cancer anorexia. Notably, the same effect occurs following

diet-induced weight loss, suggesting a mechanism for the re-

bound weight gain following dieting (Cummings et al., 2002). It

is through the upregulation of NPY and AgRP, the most potent

physiological appetite transducers known in mammals, that

ghrelin mediates its effect on food intake (Kalra and Kalra,

2004). Ghrelin binds the Gq-coupled growth hormone secreta-

gogue receptor expressed on NPY neurons in the ARC, which

leads to the increase in intracellular Ca2+ required for transcrip-

tional activation of the NPY and AgRP genes (Holst et al.,

2005; Kohno et al., 2003; Kojima et al., 1999; Sun et al., 2004).

Administration of NPY to rodents rapidly causes voracious feed-

ing and leads to increased adiposity over prolonged periods

(Clark et al., 1984). Blocking NPY action or selectively ablating

NPY neurons in rodents suppresses feeding and reduces obe-

sity and fasting-induced responses (Broberger and Hokfelt,

2001; Gropp et al., 2005; Luquet et al., 2005). In some situations,

inhibition of NPY signaling reduces food intake and body weight

without cachexia or rebound weight gain (Lambert et al., 2001).

These observations have prompted efforts to design antagonists

to NPY and to NPY receptors as therapeutics. However, poor

bioavailability and brain penetration and nonselective nature of

action have thus far confounded development of an effective
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therapeutic and have underscored the need to identify additional

signaling components in the pathway (Kalra and Kalra, 2004).

Recently, the AMP-dependent protein kinase (AMPK) was

identified as one such signaling component. The intraperitoneal

(i.p.) or intracerebroventricular (i.c.v.) injection of ghrelin in

rodents increases the phosphorylation and activation of AMPK

in the hypothalamus, while i.c.v. administration of a pharmaco-

logical AMPK activator (AICAR) stimulates food intake and

body weight gain in these animals (Andersson et al., 2004;

Kola et al., 2005). In addition, analysis of dissected hypothalami

has demonstrated a correlation between altered levels of AMPK

activity and expression of NPY (Minokoshi et al., 2004). Collec-

tively, the data indicate a role for AMPK in NPY neurons, down-

stream of ghrelin and upstream of NPY gene expression and the

stimulation of appetite.

The AMPK holoenzyme is a heterotrimer comprised of a cata-

lytic and b and g regulatory subunits and requires phosphoryla-

tion of the a subunit on Thr172 by an upstream activating kinase

for activity (Hardie et al., 2003). Numerous studies indicate that

the tumor suppressor protein LKB1, mutations of which lead to

Peutz-Jeghers syndrome, is the relevant AMPK kinase (AMPKK)

when AMPK is responding to acute changes in energy balance

that occur at the cellular level (Sakamoto et al., 2005; Shaw

et al., 2004, 2005). In this context, AMPK activation also requires

50-AMP, which binds the g regulatory subunit and allosterically

activates the kinase, while at the same time inhibiting dephos-

phorylation of Thr172 by PP2C. Thus, an increase in the AMP/

ATP ratio that occurs when ATP levels are depleted is sensed

by AMPK. Once activated, AMPK switches off anabolic path-

ways and other processes that consume ATP, such as lipid

and carbohydrate synthesis, while switching on catabolic path-

ways that generate ATP, such as fatty acid oxidation and glu-

cose uptake, in order to restore energy balance. The AMP/

LKB1-dependent activation of AMPK results from pathological

stresses such as heat shock, hypoxia, and glucose deprivation

and is responsible for mediating activation of AMPK by the

antidiabetic drug metformin. Physiological stimuli such as con-

traction-stimulated glucose uptake by muscle cells and glucose

homeostasis in liver also depend on this pathway. Thus, in

peripheral tissues, it is desirable to activate AMPK.

Recently, the Ca2+/calmodulin (CaM)-dependent protein

kinase kinases (CaMKK) were shown to function as physiologi-

cally relevant AMPK kinases in cells, observations that have

broadened the scope of AMPK regulation (Hawley et al., 2005;

Hurley et al., 2005; Woods et al., 2005). In contrast to that

directed by AMP/LKB1, the CaMKK-dependent activation of

AMPK operates independently of AMP, instead requiring

a change in intracellular Ca2+. The abundant expression of

CaMKK in brain led us to predict that Ca2+/CaM/CaMKK may

regulate the phosphorylation of AMPK in NPY neurons of the hy-

pothalamus and that, if so, it would be desirable to inactivate

AMPK in this tissue (Witters et al., 2006).

Here we show that primary defects in mice null for CaMKK2

are reduced hypothalamic AMPK activity and downregulation

of NPY and AgRP gene expression in NPY neurons. Acute

i.c.v. administration of a CaMKK antagonist to wild-type mice,

but not CaMKK2 null mice, results in decreased food intake

that correlates with decreased hypothalamic NPY and AgRP

mRNAs. Intriguingly, the absence of CaMKK2 also protects
378 Cell Metabolism 7, 377–388, May 2008 ª2008 Elsevier Inc.
mice from diet-induced weight gain, hyperglycemia, and insulin

resistance, and we infer that the mechanism involved may also

involve hypothalamic AMPK. Finally, we identify and character-

ize a unique complex comprised of CaMKK2, AMPKa/b, and

Ca2+/CaM that may be the physiologically relevant signaling

complex for mediating these central effects on energy

homeostasis.

RESULTS

CaMKK2 Regulates NPY in the Hypothalamus
CaMKK2 is expressed throughout the brain, although its pres-

ence in hypothalamus has not been specifically examined

(Anderson et al., 1998). Immunoblotting of hypothalamic extracts

from wild-type (WT) mice revealed that CaMKK2 protein is pres-

ent in this part of the brain (Figure 1A) and appears as a doublet,

consistent with findings in HeLa cells (Hurley et al., 2005). The

hypothalamus is divided into regions including the ARC, VMH,

and lateral hypothalamus (LH), each with unique functions and

all previously shown to express AMPK. To identify regions where

CaMKK2 might colocalize with AMPK and function as an

AMPKK, its expression pattern in the hypothalamus was exam-

ined by in situ hybridization. Coronal sections of adult mouse

brain were collected from the midregion of the hypothalamus

and incubated with antisense riboprobes designed to hybridize

with MCH, NPY, or CaMKK2 mRNAs. NPY and MCH are neuro-

peptides expressed within neurons present only in the ARC or

VMH, respectively, and served as positive controls. Consistent

with previous studies in rat brain, CaMKK2 signal was strong in

the hippocampus and cortex and was shown here to be present

in the hypothalamus, where it appeared largely restricted to the

ARC (Figure 1B). Compared to NPY, CaMKK2 expression is

observed throughout a larger region, suggesting its presence

in multiple cell types. When mRNA levels were quantified from

ARC punches, CaMKK2, NPY, AgRP, and POMC were found

to be enriched 20- to 40-fold relative to whole hypothalamus

(Figure 1C). In contrast, MCH was barely detectable. Hypotha-

lamic punches that failed to display enrichment for NPY showed

correspondingly reduced levels of CaMKK2 (data not shown).

This finding, together with the in situ hybridization result, is con-

sistent with localization of CaMKK2 to NPY and POMC neurons

present in the ARC; however, it cannot provide unequivocal

assignment of CaMKK2 to specific neuron types. To evaluate

the possibility of a functional correlation between CaMKK2 and

NPY, we compared hypothalamic NPY, AgRP, and POMC

mRNA levels in WT and CaMKK2 null mice. Figure 1D shows

decreased NPY and AgRP levels in the mutant, but no significant

difference in POMC. These results implicate CaMKK2 in a

pathway that regulates NPY and AgRP in NPY neurons.

Since CaMKK2 can function as an AMPK in cells, we ques-

tioned whether the absence of CaMKK2 alters hypothalamic

AMPK activity. AMPK was immunoprecipitated from protein

extracts prepared from WT and CaMKK2 null mice and assayed

in vitro. A statistically significant decrease in AMPK activity was

observed in the CaMKK2 null samples (Figure 1E), consistent

with diminished AMPK-NPY signaling. We suspect that the mod-

est decrease in total hypothalamic AMPK activity reflects the

observation that CaMKK2 expression is restricted to a small

region of the hypothalamus and is considerably enriched in
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punch biopsies containing ARC (Figures 1B and 1C), whereas

AMPK activity is detected throughout the hypothalamus

(Minokoshi et al., 2004).

Ghrelin stimulates food intake via binding to growth hormone

secretagogue receptors (GHS-Rs) present on NPY neurons,

which leads to an increase in intracellular Ca2+ and activation

of the AMPK-NPY pathway (Cummings et al., 2005). This signal-

ing pathway was further evaluated by systemic administration of

ghrelin to WT and CaMKK2 null mice. Ghrelin increased food

intake of WT animals at 1 hr and overnight but had no effect on

food intake of CaMKK2 null mice (Figure 1F). The ghrelin signal

can be bypassed by 2-deoxyglucose (2-DG), which causes

AMP/LKB1-dependent activation of AMPK due to depletion of

cellular energy stores, which raises the AMP/ATP ratio. As

shown in Figure 1G, systemic administration of 2-DG stimulated

the food intake of both WT and CaMKK2 null mice to the same

extent. Collectively, our data are consistent with a signaling de-

fect in the NPY neurons of CaMKK2 null mice lying downstream

of ghrelin and upstream of AMPK that affects the expression of

NPY and AgRP mRNAs.

STO-609 Blocks Ca2+-Dependent Induction of NPY
As we wanted to provide more direct evidence linking CaMKK2,

AMPK, and NPY production, we turned to N38 cells, an immor-

talized cell line derived from mouse hypothalamus that have

been shown to express NPY. These cells express CaMKK2

(Figure 2A) and other components of the AMPK signaling path-

way that can be activated by treating the cells with exogenous

stimuli. Ionomycin, which increases intracellular Ca2+ leading

to activation of CaMKK2, and 2-DG, which raises the AMP/

ATP ratio by inhibiting cellular production of ATP, both result in

increased levels of phosphorylated AMPK (p-AMPK) and

Figure 1. CaMKK2 Is Expressed in the

Hypothalamus and Regulates NPY

(A) CaMKK2 protein is expressed in the hypothal-

amus. Protein extracts of hypothalamus from

wild-type (WT) and CaMKK2 null (KO) mice were

immunoblotted for CaMKK2. CaMKK2 protein

appears as a doublet in the WT sample and is

absent from the KO sample.

(B) CaMKK2 mRNA is expressed in the hypothala-

mus. Coronal mouse brain sections collected at

the midregion of the hypothalamus were incu-

bated as indicated with antisense riboprobes

against NPY and MCH, which serve as positive

controls for the arcuate nucleus (ARC) and ventro-

medial hypothalamus (VMH), respectively, and

against CaMKK2.

(C) CaMKK2, NPY, AgRP, and POMC mRNAs are

enriched in ARC punch biopsies from hypothala-

mus of WT mice. n = 3.

(D) NPY and AgRP mRNA levels are decreased in

hypothalamus of CaMKK2 null mice. Total RNA

was isolated from hypothalamus of WT and

CaMKK2 null mice that had been fasted overnight,

and NPY, AgRP, and POMC mRNA levels were

quantified by RT-PCR. n = 8; *p < 0.05.

(E) AMPK activity is decreased in hypothalamus of

CaMKK2 null mice. Following immunoprecipita-

tion of AMPK from hypothalamic extracts of fasted

WT and CaMKK2 null mice, AMPK activity was

determined in vitro with SAMS peptide as

substrate. A representative experiment is shown.

n = 4; *p < 0.05.

(F) Food intake of CaMKK2 null mice is unaffected

by exogenously administered ghrelin. WT and

CaMKK2 null mice were given intraperitoneal

(i.p.) injections of saline or ghrelin (3 nmol/100 ml

per mouse) 1 hr before onset of dark cycle, and

food intake was quantified at 1 hr and overnight.

n = 11 (WT), n = 12 (CaMKK2 null); *p < 0.05.

(G) Food intake of CaMKK2 null and WT mice is

affected similarly by 2-DG. In the control experi-

ment, mice were given i.p. injections of 2-deoxy-

glucose (2-DG) at a dose of 15 mg/100 ml per

mouse, and food intake was monitored as in (F).

n = 11 (WT), n = 12 (CaMKK2 null); *p < 0.05.

Data are presented as means ± SEM.
Cell Metabolism 7, 377–388, May 2008 ª2008 Elsevier Inc. 379
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p-ACC (Figure 2B). The selective CaMKK2 inhibitor STO-609

blocks the ionomycin-induced increases in p-AMPK and

p-ACC, but not the phosphorylation of these proteins in re-

sponse to 2-DG (Figure 2B). We used immunocytochemistry to

show that ionomycin increases the amount of NPY in N38 cells

and that this increase is prevented by the selective CaMKK inhib-

itor STO-609 (Tokumitsu et al., 2002) (Figures 2C and 2D). These

data support our contention that a rise in Ca2+ results in activa-

tion of CaMKK2, which in turn phosphorylates AMPK, leading to

an increase in NPY.

Depletion or Inhibition of CaMKK2 Inhibits Food Intake
NPY is a well-established potent orexigenic factor, and depleting

NPY signaling in mice reduces refeeding after a fast. This pheno-

type is most severe during the first hour of the refeeding period

and gradually returns to normal by 24 hr (Segal-Lieberman

et al., 2003). When refeeding behavior was examined in CaMKK2

Figure 2. Ca2+-Dependent Induction of NPY

Expression in N38 Cells Is Blocked by

STO-609

(A) CaMKK2 protein is detected in N38 cell protein

extracts by immunoblotting.

(B) N38 cells were incubated for 1 hr with vehicle or

with 10 mM STO-609, followed by stimulation with

1 mM ionomycin for 5 min or 50 mM 2-DG for

15 min. Cell extracts were prepared and immuno-

blotted for phosphorylated AMPK (p-AMPK), total

AMPK, and p-ACC. STO-609 selectively blocks

the ionomycin-induced increase in p-AMPK and

p-ACC. One representative experiment is shown.

(C) N38 cells were incubated for 1 hr with vehicle or

with 10 mM STO-609, followed by stimulation with

1 mM ionomycin or with 50 mM 2-deoxy glucose

(2-DG) for 6 hr. The cells were then fixed, and the

NPY protein signal (red) was visualized by immu-

nocytochemistry. The cells were costained with

the DAPI nuclear marker (blue). One representa-

tive experiment is shown. n = 3.

(D) NPY signal intensity in (C) was quantified using

MetaMorph version 7.1 software. Forty cells were

analyzed for each condition. Shown are means ±

SEM. n = 40; *p < 0.0002.

null animals, they were found to exhibit

a defect similar to that previously reported

for NPY-depleted mice (Figure 3A). After

a 48 hr fast, CaMKK2 null mice ate less

than WT mice during a 6 hr refeeding pe-

riod, with the greatest decrease in food in-

take occurring at the early time points, but

by 48 hr the difference was abrogated

(Figure 3A). Figure 3B shows the food in-

take of nonfasted wild-type and CaMKK2

null control animals over a 48 hr period.

Intracerebroventricular administration

of NPY to rats leads to robust induction

of food intake, while chronic infusion

results in increased adiposity and insulin

resistance (Clark et al., 1984), and abla-

tion of NPY neurons in adult mice induces life-threatening an-

orexia (Gropp et al., 2005; Luquet et al., 2005). The hypothesis

that CaMKK2 controls appetite by regulating NPY gene expres-

sion in the hypothalamus predicts that acute inhibition of

CaMKK2 in adult WT animals should decrease appetite. To

test this idea, the selective CaMKK inhibitor STO-609 (Tokumitsu

et al., 2002) was administered i.c.v. to adult male WT mice, and

the effect on appetite was assessed by quantifying food intake.

Compared to animals receiving saline, the WT STO-609 group

ate significantly less food during the 6 days over which food in-

take was monitored (Figure 3C) and also lost body weight

(Figure 3E). We repeated the food intake experiment using adult

male CaMKK2 null mice. Whereas the CaMKK2 mice receiving

vehicle consumed food to the same extent as similarly treated

WT mice, STO-609 did not alter the feeding behavior or decrease

the body weight of CaMKK2 null mice (Figures 3D and 3F). As

predicted, the WT animals receiving STO-609 also exhibited

decreased hypothalamic NPY and AgRP mRNAs compared to
380 Cell Metabolism 7, 377–388, May 2008 ª2008 Elsevier Inc.
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controls (Figure 3G). The effects of STO-609 on food intake and

NPY and AgRP mRNA expression in WT mice, but not CaMKK2

null mice, provide compelling independent evidence that

CaMKK2 signaling is required for appetite control.

CaMKK2�/� Mice Are Resistant to a High-Fat Diet
Diminished NPY signaling in CaMKK2�/� mice suggests that

these animals will eat less due to decreased appetite and accu-

mulate less body weight over time. To test this idea, we utilized

the Surwit diet, a calorie-paired low-fat/high-fat diet that is com-

monly referred to as the diet-induced obese model and that was

developed for C57BL/6J mice, the predominant genetic back-

ground of our mice (Petro et al., 2004; Surwit et al., 1988). For

this experiment, WT and CaMKK2�/� mice were fed either

a low-fat control diet (D12328 CCO) or the high-fat equivalent of

this diet (D12330 HCO) from weaning (3 weeks of age) to 34 weeks

of age. As shown in Figure 4, the body weight gain of CaMKK2�/�

mice as monitored during the 31 weeks was significantly

Figure 3. Depletion or Inhibition of CaMKK2

Inhibits Food Intake

(A) CaMKK2 null mice display reduced refeeding

after a fast. Food intake was quantified hourly dur-

ing a 6 hr refeeding period and at 48 hr, following

a 48 hr fast. n = 7; *p < 0.02.

(B) In the control experiment, the food intake of

nonfasted animals was measured.

(C and D) Intracerebroventricular (i.c.v.) adminis-

tration of STO-609 to WT mice, but not to CaMKK2

null mice, decreases food intake. STO-609 was

administered i.c.v. to WT and CaMKK2 null mice

continuously for 6 days at a concentration of

20 mM and a rate of 0.5 ml/hr, during which time

food intake was measured daily. Cumulative

food intake is shown. n = 9; *p < 0.05 (C); n = 10 (D).

(E and F) Change in body weight by the end of the

6 day experiment is plotted as a percentage of

the starting value obtained before the cannulation

surgery. n = 7.

(G) At the end of the experiment, WT animals were

sacrificed, and hypothalamic NPY and AgRP

mRNAs were quantified by real-time PCR. n = 7;

*p < 0.05.

Data are presented as means ± SEM.

decreased compared to WT controls for

animals fed low-fat chow (Figure 4A), and

this difference was enhanced for animals

maintained on high-fat chow (Figure 4B).

Consistent with the observed reduction

in body weight, CaMKK2 null mice

displayed a reduced average daily food in-

take over the course of the experimentand

a reduction in adiposity measured after 31

weeks on either diet (Figures 4C and 4D).

After 31 weeks on the two diets, the abil-

ity of the animals to handle glucose was

evaluated. Glucose tolerance testing re-

vealed that WT mice on the high-fat diet

had become less tolerant compared with

WT animals maintained on low-fat chow

(Figures 4E and 4F). The observed increase in glucose excursion

exhibited by WT mice fed high-fat chow is typical of that previ-

ously attributed to a diet-induced change (Petro et al., 2004; Sur-

wit et al., 1988). CaMKK2�/� mice on low-fat chow responded

to glucose similarly to WT mice on low-fat chow. However, unlike

WT animals, the CaMKK2�/� mice retained the low-fat-diet-like

response to glucose even when fed high-fat chow for 31 weeks

(Figures 4E and 4F). After 1 week of recovery, the same group of

animals was tested for insulin sensitivity. Consistent with the re-

sults from the glucose tolerance testing, WT mice had developed

the predicted increase in insulin resistance, whereas CaMKK2 null

animals were protected from diet-induced changes in insulin

action (Figures 4G and 4H).

After an additional several weeks of recovery, the animals were

sacrificed and serum levels of ghrelin and leptin were quantified.

As shown in Figure 4I, CaMKK2�/� animals did not exhibit a de-

crease in ghrelin levels, indicating their ability to synthesize and

secrete ghrelin. In fact, ghrelin levels were increased in CaMKK2
Cell Metabolism 7, 377–388, May 2008 ª2008 Elsevier Inc. 381
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null mice, suggesting the possibility that these mice attempt to

compensate for a defect in the ghrelin signaling pathway by in-

creasing its production. Consistent with this idea, serum leptin

was decreased in CaMKK2 null mice (Figure 4J). This also follows

from the defect in the ghrelin pathway, as the NPY neurons would

respond to a decrease in ghrelin activity as if there had been an

increase in leptin. Indeed, hypothalamic NPY mRNA was de-

creased in the CaMKK2 null mice fed the high-fat diet relative

to WT mice, and the decrease was accentuated upon fasting

(Figure 4K). Together, these data are consistent with our observa-

tions in Figure 1 that CaMKK2 null mice cannot respond to ghrelin

with the appropriate increase in feeding and body weight gain

and that this may be due in part to decreased production of NPY.

CaMKK2 and AMPK Form a Signaling Complex
A central tenet of signal transduction is that the appropriate

propagation of signals along a pathway often depends on forma-

Figure 4. CaMKK2 Null Mice Consume

Less Food and Are Resistant to High-Fat

Diet-Induced Adiposity, Glucose Intoler-

ance, and Insulin Resistance

Twenty male WT and CaMKK2 null mice were

housed five per cage at the age of weaning and

fed control (D12328) or high-fat (D12330) diets

from Research Diets for 31 weeks. Measurements

of food intake and weight gain were performed

weekly.

(A and B) Growth curves of the two groups on both

diets show that the CaMKK2 null mice gain signif-

icantly less weight than the WT mice. *p < 0.01 by

one-way ANOVA.

(C) Average daily food intake of CaMKK2 null mice

is reduced compared to control animals. *p < 0.02.

(D) Dual energy X-ray absorptiometry (DEXA) scans

of CaMKK2 null mice indicate a significant de-

crease in adiposity compared to WT animals after

31weekson either control or high-fatdiet. *p < 0.02.

(E–H) On the high-fat diet, CaMKK2 null mice also

remain glucose tolerant (E and F) and insulin sensi-

tive (G and H) relative to WT mice. *p < 0.01.

(I and J) After 31 weeks on low-fat (n = 5) or high-fat

(n = 10) diet, WT and CaMKK2 null mice were sac-

rificed,and total serum ghrelin (I) and leptin (J) levels

were quantified. *p < 0.05.

(K) After 31 weeks on high-fat chow, WT and

CaMKK2 null mice were either fasted overnight or

fed ad libitum. The animals were then sacrificed,

and hypothalamic NPY mRNA levels were quanti-

fied by real-time PCR. n = 4; *p < 0.02.

Data are presented as means ± SEM.

tion of a complex of its components. To

determine whether CaMKK2 associates

with AMPK, the AMPKa subunit was im-

munoprecipitated from mouse brain ex-

tract and probed for CaMKK2. CaMKK2

does coprecipitate with AMPKa from

mouse brain (Figure 5A). The interaction

was further characterized using a FLAG-

tagged version of CaMKK2 overex-

pressed in HEK293A cells, which represents a convenient

cell-based system. The transfected FLAG-CaMKK2 appears to

be functionally linked to AMPK, as both basal and ionomycin-

induced phosphorylation of AMPK were increased by the pres-

ence of the kinase (Figure 5B). Moreover, endogenous AMPK

and FLAG-CaMKK2 associate in HEK293A cells, as p-AMPK

coimmunoprecipitated with FLAG-CaMKK2 (Figure 5C). Also

detected in the FLAG-CaMKK2 immunoprecipitate was

p-ACC, a downstream target of activated AMPK, and CaM,

which is required for CaMKK2 activity. The association between

CaMKK2, AMPK, ACC, and CaM disappeared when the metal

chelators EDTA and EGTA were included during cell lysis and

immunoprecipitation, although the chelators had no effect on

the ability to precipitate CaMKK2 (Figure 5C), suggesting that

Ca2+/CaM and/or MgATP are required for complex formation.

AMPK is believed to exist in cells predominantly as a hetero-

trimer composed of the a catalytic and the b and g regulatory

subunits, which function to stabilize, localize, and confer AMP
382 Cell Metabolism 7, 377–388, May 2008 ª2008 Elsevier Inc.
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sensitivity to the catalytic subunit, and it is this heterotrimer

which has been found to physically associate with LKB1. To

determine the subunit composition of the AMPK present in the

CaMKK2 complex, FLAG-CaMKK2 was immunoprecipitated

from HEK293A cells and probed for the different subunits.

Both isoforms of the AMPK catalytic subunit (a1 and a2) were

identified in the absence, but not the presence, of metal chela-

tors (Figure 5D), as were the b1/2 subunits (Figure 5E). However,

the g subunits were not detected, an observation confirmed us-

ing several g subunit antibodies (Figure 5E and data not shown).

In a related experiment, FLAG-CaMKK2 immunoprecipitated

from HEK293A cells was compared with purified trimeric

AMPK (Figure 5F) determined by Coomassie staining to be

composed of stoichiometric amounts of a, b, and g (data not

shown). Although AMPKa and b were present in the CaMKK2

complex at levels similar to those observed in purified trimeric

AMPK, once again g was not detected. These results reveal

that CaMKK2 may form a stable complex containing a catalytic

and b structural subunits of AMPK but not the g regulatory

subunits.

The CaMKK RP domain, a 23-residue arginine/proline-rich

insert between subdomains II and III of the kinase homology do-

main, has been previously shown to function as a protein-protein

interaction domain in CaMKK1 (Tokumitsu et al., 1999). Deletion

of this region from CaMKK2 produced a mutant protein that was

unable to interact with AMPK in the coimmunoprecipitation

Figure 5. CaMKK2 Forms a Signaling

Complex with AMPK

(A) CaMKK2 coimmunoprecipitates with AMPK

from mouse brain. Brain extracts were incubated

with AMPKa antibody (lanes 1 and 3) or preim-

mune serum (lanes 2 and 4). The immunoprecipi-

tates were then immunoblotted for CaMKK2.

(B) FLAG-CaMKK2 increases basal and ionomy-

cin-induced phosphorylation of AMPK. HEK293A

cells transfected with FLAG-CaMKK2 or with con-

trol plasmid were treated with ionomycin or DMSO

for 5 min. Cell extracts were then immunoblotted

for p-Thr172 AMPKa and total AMPKa.

(C) CaMKK2 forms a physical complex with AMPK,

ACC, and CaM. FLAG-CaMKK2 was immunopre-

cipitated from HEK293A cells transfected with

either FLAG-CaMKK2 or with control plasmid,

and the precipitates were immunoblotted for

p-Thr172 AMPKa, p-Ser79 ACC, CaM, or

CaMKK2. The presence of EDTA/EGTA during

cell lysis and immunoprecipitation blocked forma-

tion of the complex.

(D) AMPKa1 and a2 physically associate with

FLAG-CaMKK2. FLAG-CaMKK2 was immuno-

precipitated with or without EGTA/EDTA from

HEK293A cells that had been transfected with

either FLAG-CaMKK2 or control plasmid. The pre-

cipitates were immunoblotted for the AMPKa1 and

a2 subunits.

(E and F) The g subunit of AMPK is not detected in

the FLAG-CaMKK2/AMPK complex.

(E) HEK293A cell extracts or immunoprecipitated

FLAG-CaMKK2 was immunoblotted for AMPKa1,

b1/2, and g1 subunits.

(F) FLAG-CaMKK2 immunoprecipitated from

HEK293A cells and varying quantities of AMPK

heterotrimer overexpressed and purified from

bacteria were immunoblotted for AMPKa1, b1/2,

and g1 subunits.

(G) Deletion of the RP domain of CaMKK2 abol-

ishes interaction with AMPK. FLAG-CaMKK2 WT

(W) and RP deletion mutant (R) were immunopre-

cipitated from transfected HEK293A cells in the

absence of EGTA/EDTA and immunoblotted for

p-Thr172 AMPKa and total AMPKa. The bottom

panel shows Coomassie staining of the CaMKK2

proteins.

(H) FLAG-CaMKK2 WT and RP deletion mutant

were immunoprecipitated from transfected

HEK293A cells as described in (F) and immunoblotted for CaMKIV (upper panel) or Coomassie stained (lower panel).

(I) The CaMKK2 RP deletion mutant is able to activate a fragment of AMPKa in vitro. Recombinant AMPKa 1–312 served as substrate for purified CaMKK2 WT and

RP deletion mutant protein. Readout was 32P-labeled phosphate transferred to SAMS peptide by activated AMPK. Data are presented as means ± SEM. n =3.
Cell Metabolism 7, 377–388, May 2008 ª2008 Elsevier Inc. 383
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assay (Figure 5G), although the ability of the mutant to coimmu-

noprecipitate CaMKIV, another CaMKK2 substrate, remained

unaltered (Figure 5H). When tested in vitro, the purified CaMKK2

RP deletion mutant could activate a fragment of the AMPK

catalytic subunit (AMPK 1–312) similarly to WT CaMKK2 in the

presence of saturating levels of Ca2+/CaM and MgATP and

a substrate excess of AMPKa 1–312 (Figure 5I). This not only

demonstrates that removal of the RP domain does not abrogate

the protein kinase activity of CaMKK2 but also suggests that

stable complex formation between CaMKK2 and AMPK is not

necessarily required for kinase-substrate interaction and may

thus provide some other role in vivo.

DISCUSSION

Recent obesity and type 2 diabetes research suggests that some

defects responsible for these conditions are due to altered re-

sponsiveness of key hypothalamic neurons to multiple metabolic

cues such as leptin, ghrelin, insulin, glucose, and fatty acids. As

a consequence, outputs emanating from these sites that are crit-

ical in regulating energy homeostasis become dysregulated. We

provide evidence here that hypothalamic CaMKK2 mediates

ghrelin-induced feeding. In the absence of CaMKK2, mice ate

less and accumulated less body weight and fat stores when

maintained on either low-fat or high-fat chow. The CaMKK2

null animals expressed reduced levels of hypothalamic NPY

and AgRP mRNAs and were unresponsive to the orexigenic

effects of exogenously administered ghrelin. Furthermore, i.c.v.

infusion of the selective CaMKK inhibitor STO-609 in adult WT

mice resulted in the acute suppression of NPY expression and

food intake. The resistance of CaMKK2 null mice to suppression

of food intake by STO-609 infusion provides compelling evi-

dence that CaMKK2 is the direct target of the drug and that

the specific inhibition of CaMKK2 in NPY neurons is likely

responsible for the decreased level of NPY and AgRP mRNAs

and feeding behavior.

Genetic and pharmacological data have demonstrated that

NPY and AgRP, as well as the NPY neurons in the ARC of the

hypothalamus where these neuropeptides are expressed, are

key intermediaries in the ghrelin-induced feeding response

(Cummings et al., 2005; Holst et al., 2005; Kojima et al., 1999;

Kushi et al., 1998; Sun et al., 2004). Binding of ghrelin to Gq-cou-

pled GHS-Rs expressed on NPY neurons leads to an increase in

intracellular Ca2+ and the phosphorylation/activation of AMPK,

each considered necessary for subsequent NPY gene induction

(Andersson et al., 2004; Holst et al., 2005; Kohno et al., 2003;

Kola et al., 2005). We hypothesize that CaMKK2 stimulates

NPY expression by functioning as the AMPKK linking ghrelin-

dependent Ca2+ signaling to AMPK activation. That the CaMKK2

null mice described in this study exhibited reduced hypothalamic

AMPK activity supports such a model.

We also present biochemical evidence for a CaMKK2-AMPK

signaling complex. The two kinases associate in a complex

also containing CaM, required for CaMKK2 activity, and ACC,

a downstream target of AMPK. The AMPK and ACC present in

the complex are phosphorylated on the appropriate residues,

Thr172 and Ser79 respectively, demonstrated by others to be

necessary for NPY gene induction in the hypothalamus and

appetite stimulation (Hu et al., 2005). Our data suggest a model
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in which CaMKK2 interacts with the AMPKa subunit by substitut-

ing for the AMPKg subunit through a mechanism requiring the

RP domain of CaMKK2. The AMPKa subunit is unstable unless

bound to the regulatory bg heterodimer, as deletion of either

b or g markedly decreases the in vivo level of AMPKa (Crute

et al., 1998; Dyck et al., 1996). Our data suggest that CaMKK2

association with the AMPKa/b heterodimer provides an alternate

means of stabilizing AMPK, confers Ca2+ sensitivity and AMP

independence to the kinase, and is therefore fundamentally

different from the AMP-dependent LKB1-AMPK complex.

The hypothesis that CaMKK2 controls appetite by regulating

NPY signaling in the hypothalamus predicts that CaMKK2 and

NPY null mice will share the same metabolic phenotype. That

reduced refeeding after a fast is a behavior characteristic of

NPY depletion in mice that is phenocopied in CaMKK2 null ani-

mals (Figure 3A) supports this hypothesis. On the other hand,

NPY/NPY-Y null mice display a surprising lack of additional, pre-

dicted metabolic phenotypes. For example, when fed ad libitum,

these animals have normal appetite, normal or increased body

weight, increased adiposity, and increased serum leptin (Erick-

son et al., 1996; Kushi et al., 1998; Mashiko et al., 2003; Pedraz-

zini et al., 1998; Segal-Lieberman et al., 2003). This discrepancy

has been suggested to result from compensatory mechanisms

that rewire brain circuits during development (Kalra and Kalra,

2004). Similarly, we found that despite diminished NPY levels,

CaMKK2 null mice also showed normal appetite, slightly in-

creased body weight, increased adiposity, and increased levels

of circulating leptin and in these ways closely matched NPY/

NPY-Y null mice (see Figure S1 available online), but only while

fed Purina 5001 chow on which their parents were bred and

raised. Once CaMKK2 null mice were switched to the Surwit

diet, they began to eat less and accumulated less body weight

and fat on either low-fat or high-fat chow. Our data suggest

that, like NPY null animals, CaMKK2 null mice develop pathways

to compensate for diminished NPY signaling, and these path-

ways function to prevent eating disorders as long as the animals

are fed Purina 5001 chow. Once on the low- or high-fat Surwit

diets, the compensatory pathways acquired by CaMKK2 null

mice are apparently no longer effective, and the feeding defects

predicted from low NPY are exposed.

An intriguing phenotypic consequence of depleting CaMKK2

was observed in animals maintained on the high-fat diet, as

these mice were protected from the hyperglycemia and insulin

resistance that developed in WT controls over the course of

several months. Although the mechanism responsible for the

improved glucose handling is unknown, there are several possi-

bilities. Since obesity represents the leading risk factor for the

development of hyperglycemia (and type 2 diabetes), the im-

provements observed in CaMKK2 null mice may result directly

from them accumulating less body weight and fat stores com-

pared to WT mice prior to glucose and insulin testing (Golay

and Ybarra, 2005). Improved glucose tolerance is also consistent

with enhanced leptin signaling (Elmquist et al., 2005), implicated

in CaMKK2 null mice by decreased hypothalamic AMPK activity

(Minokoshi et al., 2004). In fact, it is possible that enhanced leptin

signaling in CaMKK2 null mice may contribute as well to the

observed decreases in food intake and body weight gain.

One major factor contributing to the onset of obesity in mam-

mals is the leptin resistance that develops as leptin levels rise in
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response to an increase in fuel stores. This is believed to occur at

the level of the blood-brain barrier leptin transporter and/or

Socs3-negative feedback regulation of leptin receptor signaling

(Banks, 2003; Munzberg and Myers, 2005). If, as we hypothe-

size, CaMKK2 directly regulates hypothalamic AMPK activity,

then CaMKK2 null mice may enjoy enhanced leptin signaling

unaffected by the typical changes that bring about leptin resis-

tance. The recently reported haploinsufficient Socs3 mouse is

another example where the suppression of leptin sensitivity by

high-fat diet can be overcome by genetically altering hypotha-

lamic leptin signaling, in this case through a decrease in the

Socs3-mediated negative feedback regulation of the leptin re-

ceptor (Mori et al., 2004). High-fat diet-induced leptin resistance

can also be bypassed in mice by the pharmacological adminis-

tration of CNTF, which activates leptin signaling through a mech-

anism involving a decrease in hypothalamic AMPK activity

(Steinberg et al., 2006). Indeed, perhaps the central CaMKK2/

AMPK signaling axis is necessary for the development of insulin

resistance, which would contrast markedly with activation of

AMPK in peripheral tissues, as this is associated with increased

insulin sensitivity.

We also cannot rule out the possibility that CaMKK2 regulates

glucose homeostasis through direct action in the periphery. Islet

cells in the pancreas are known to express GHS-R and to respond

to ghrelin by blocking insulin secretion, which promotes hypergly-

cemia (Cummings et al., 2005). To our knowledge, the expression

of CaMKK2 in islet cells has not been evaluated, but, if present,

the kinase might mediate the response to ghrelin as we hypothe-

size occurs in the hypothalamus. GHS-R antagonists have been

shown to promote glucose tolerance in mice through action on

islet cells while at the same time suppressing appetite and pro-

moting weight loss through action in the hypothalamus (Esler

et al., 2007). Collectively, in mice these antagonists produce all

of the phenotypes observed by depleting CaMKK2.

In any event, the behavior of CaMKK2 null mice on the high-fat

diet underscores the value of targeting CaMKK2 as a possible

therapeutic locus in the treatment of obesity and diabetes. Inhi-

bition of CaMKK2 should selectively prevent AMPK activation in

the ARC, where doing so should produce the desirable effects of

reducing NPY gene induction and appetite. However, in periph-

eral metabolic tissues such as liver, muscle, and fat where abun-

dant evidence indicates that activation, not inhibition, of AMPK is

desirable for controlling obesity and diabetes (Hardie et al.,

2003), CaMKK inhibitors are unlikely to have direct effects for

at least two reasons. First, CaMKK protein expression in these

tissues is absent or very low (Anderson et al., 1998). Second,

LKB1 has been shown to function as the important AMPKK in

these contexts (Sakamoto et al., 2005; Shaw et al., 2005). Finally,

that depletion of CaMKK2 improves glucose tolerance while

suppressing appetite and promoting weight loss is a somewhat

unusual and quite desirable combination, as most current treat-

ments for type 2 diabetes promote weight gain—in turn a major

risk factor for the disease.

EXPERIMENTAL PROCEDURES

Animal Care

All animals were bred and maintained in either the Duke University Levine

Science Research Center or Vivarium animal facilities under a 12 hr light
(0600–1800)/12 hr dark (1800–0600) cycle. Food and water were provided

ad libitum, and all animal care was in compliance within National Institutes

of Health and institutional guidelines on the care and use of laboratory and

experimental animals.

Targeted Deletion of the Mouse CaMKK2 Locus

The CaMKK2 gene was targeted by homologous recombination in embryonic

stem (ES) cells using the triple-lox/CaMKK2 targeting construct generated

from fragments of the CaMKK2 gene from the mouse 129/SvJ strain genomic

BAC library (Duke Genome Facility) and the triple-lox vector series created by

R.T. Premont (Gainetdinov et al., 1999). The targeting construct introduced

two loxP sites into the gene flanking exons 2–4, which encode elements of

the CaMKK2 ATP binding domain, as well as the neo cassette, also flanked

by loxP sites. A 7 kb HindIII fragment containing exon 1 (long recombination

arm) and the 4 kb HindIII-SbfI fragment containing exons 2–4 (the gene frag-

ment to be flanked by loxP sites) were ligated into the loxL vector. A 0.5 kb

AscI-HindIII fragment (short recombination arm) was ligated into the loxC/

diphtheria toxin vector. The appropriate restriction enzyme digests and ligation

steps were performed to generate the final targeting construct containing the

long recombination arm, floxed exons 2–4, the neo cassette, the short recom-

bination arm, and the diphtheria toxin cassette (Gainetdinov et al., 1999). After

identification of targeted ES cell clones by Southern analysis, the cells were

transiently transfected with Cre recombinase to delete CaMKK2 exons 2–4

and the neo cassette (confirmed by PCR analysis). Germline chimeras,

generated by blastocyst injections, were crossed with C57BL/6 mice, and

homozygous mutants and WT littermates were obtained from breeding of het-

erozygotes. Offspring were genotyped by PCR using forward primer 799–822,

50-TCAGTCAGTCTCACAGTGCCAAGC-30, and reverse primer 1992–1974, 50-

TTGAACTCCTGACCTTCGG-30, which produces an �900 bp band when

exons 2–4 have been deleted and no specific band from the WT locus. Forward

primer 257–278, 50-CGTCTTTCTTTTTTTGGGGGTG-30, and reverse primer

494–471, 50-CCTTGTTTGGGGAATGTGGAATAG-30, produce a 237 bp band

from exon 2, thus detecting the WT locus. The WT and CaMKK2 null mice

used in the experiments reported herein were backcrossed three generations

onto the C57BL/6J genetic background. The results presented in Figure 4 for

WT male mice are very similar to those previously reported for isogenic C57BL/

6J male mice (Surwit et al., 1988).

In Situ Hybridization

Brains were removed from 3-month-old mice, frozen in powdered dry ice, and

stored at �80�C. Ten micrometer coronal sections, cut serially on a cryostat,

were collected at the midregion of the hypothalamus (bregma �1.7), thaw

mounted, and stored at �80�C until use. The slides were then processed for

in situ hybridization by transferring directly into ice-cold 4% paraformaldehyde

and fixing for 10 min at room temperature. After a 10 min wash in 23 SSC,

sections were crosslinked for 5 min with an ultraviolet light placed 30 cm

from the tissue. Prehybridization, hybridization, and washing steps were

then performed as described previously (Anderson et al., 1998). RNA probes

were synthesized as follows: cDNAs encoding PCR-generated fragments of

NPY, MCH, and CaMKK2 coding regions were subcloned into the polylinker

of the pCR2 (Invitrogen) vector. The PCR primer pairs were forward primer

131–151 and reverse primer 665–646 for CaMKK2, 50-CTCCGCTCTGCGAC

ACCTAC-30 (forward) and 50-AATCAGTGTCTCAGGGCT-30 (reverse) for

NPY, and 50-ATTCAAAGAACACAGGCTCCAAAC-30 (forward) and 50-CGGA

TCCTTTCAGAGCGAG-30 (reverse) for MCH. Runoff [S35]UTP-labeled sense

and antisense transcripts corresponding to base pairs �10–524 of CaMKK2,

base pairs 220–294 of NPY, and base pairs 307–399 of MCH were generated

using SP6 or T7 RNA polymerase according to the manufacturer’s protocol

(Promega). Unincorporated nucleotides were removed by washing the

EtOH-precipitated RNA pellets with 70% EtOH.

Hypothalamic mRNA Quantification

Total RNA from hypothalamus was extracted using an RNeasy Mini Kit

(QIAGEN) and quantified spectrophotometrically. Single-stranded cDNA was

synthesized using SuperScript III RNase H Reverse Transcriptase (Invitrogen)

according to the manufacturer’s directions. Real-time PCR was carried out

using an iCycler (Bio-Rad) with iQ SYBR Green Supermix (Bio-Rad) and

the following primers: AgRP, 50-GCGGAGGTGCTAGATCCA-30 (forward) and
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50-AGGACTCGTGCAGCCTTA-30 (reverse); NPY, 50-CTCCGCTCTGCGAC

ACTAC-30 (forward) and 50-AATCAGTGTCTCAGGGCT-30 (reverse); POMC,

50-ACCTCACCACGGAGAGCA-30 (forward) and 50-GCGAGAGGTCGAGTTTG

C-30 (reverse); 18S ribosomal protein, 50-AGGGTTCGATTCCGGAGAGG-30

(forward) and 50-CAACTTTAATATACGCTATTGG-30 (reverse). After deriving

the relative amount of each transcript from a standard curve, NPY, AgRP,

and POMC transcript levels were normalized to 18S ribosomal RNA.

AMPK Immunoprecipitation and Activity

Mouse hypothalamus was homogenized in Triton lysis buffer containing

20 mM Tris-Cl (pH 7.4), 50 mM NaCl, 50 mM NaF, 5 mM NaPPi, 250 mM su-

crose, 1% Triton X-100, 1 mM DTT, 1 mg/ml leupeptin, 10 mg/ml pefabloc,

1 mg/ml aprotinin, and 100 nM okadaic acid. After pelleting the insoluble ma-

terial, AMPKa was immunoprecipitated from protein-matched extracts using

an antibody directed against residues 2–20 of the a subunit (Chen et al.,

2003) and assayed on beads for AMPK activity against the SAMS peptide as

described previously (Hurley et al., 2006).

Dual Energy X-Ray Absorptiometry

Mice were anesthetized (ketamine 100 mg/kg; xylazine 10 mg/kg) and

scanned four times (with no repositioning between scans) using a Lunar

PIXImus II densitometer (software version 2.0; GE Lunar Corp.). All mice

were granted ad libitum access to food and water before dual energy X-ray ab-

sorptiometry (DEXA) measurements, which were typically performed between

0800 and 1130. Calibration of the instrument was conducted as recommended

by the manufacturer. Briefly, an aluminum/Lucite phantom (total bone mineral

density = 0.0594 g/cm2, percentage fat = 12.4%) was placed on the specimen

tray and measured four times without repositioning. The phantom was mea-

sured daily before animal testing to ensure quality control. Anesthetized

mice were then placed on the imaging positioning tray in a prostrate fashion

with the front and back legs extended away from the body. Heads were

excluded from all analyses by placing an exclusion region of interest (ROI)

over the head. Thus, all body composition data exclude the head.

Serum Hormone Analysis

Mice with unrestricted access to food and water were collected at 0900 and

sacrificed by decapitation, and blood was collected from the trunk. Blood

samples were centrifuged at 14,000 rpm at 4�C, and serum was flash frozen

in liquid N2. Radioimmunoassays (Linco Research) were used to quantify

leptin, adiponectin, ghrelin, glycerol, and free fatty acids.

Glucose and Insulin Tolerance Assays

Glucose tolerance assays were performed on mice that were fasted overnight

(>12 hr). At 0900, mice were measured for baseline glucose by collecting

a small drop of blood from the tail vein for analysis using a handheld Bayer

Ascensia Contour glucometer. After the baseline glucose values were estab-

lished, each mouse was given an i.p. injection of 2 mg glucose/g body weight.

Blood glucose was quantified as a function of time until glucose levels returned

to near baseline values. Insulin tolerance was conducted using the same gluc-

ometer, also at 0900. Mice were fasted for 3 hr prior to starting the procedure.

After the baseline glucose values were established, mice were given recombi-

nant human insulin (1 U/kg i.p. Eli Lilly). Clearance of plasma glucose was

subsequently monitored at 15, 30, and 60 min postinjection.

Cannulation and Infusion of STO-609

Insertion of cannulae (Plastics One) and subsequent infusion of solutions into

the third ventricle of adult WT or CaMKK2 null mice using Alzet osmotic mini-

pumps (DURECT Corporation) were performed as follows. A stock solution of

STO-609 (20 mM in 100 mM NaOH) was diluted 1:1000 in 0.9% sterile saline to

obtain a 20 mM working concentration in 100 mM NaOH (pH � 7.0). One hun-

dred microliters of STO-609 or carrier was loaded into individual osmotic mini-

pumps (Alzet model 1007D) 12 hr prior to surgical implantation and allowed to

equilibrate in 0.9% sterile saline at 37�C to ensure that the pumps began to

work immediately after implantation at the maximal flow rate of 0.5 ml/hr. Prior

to surgery, mice were administered ketamine 80 mg/kg; xylazine 10 mg/kg i.p.

After the anesthetic had taken effect, mice were secured in a stereotaxic

apparatus (Kopf Instruments), and an incision was made down the midline of

the head to expose the skull. After swabbing the exposed skull with 95%
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EtOH to remove any contaminants, the bregma line was located and marked.

A small access hole was drilled at bregma�1.94, and the cannula was inserted

to a depth of 5.8 mm and secured with epoxy bone cement. After the bone

cement dried, a small incision was made in the skin between the scapulae.

A small pocket was formed in the subcutaneous tissue, and the pump was

implanted and connected to the cannula via a small sterile plastic tube. The

incision was then closed, and the animal was placed on a heating pad to

recover. Mice were monitored daily for normal behavior over a 7 day period,

at which time they were sacrificed, and the hypothalamus was removed for

RNA extraction.

Immunoblotting

Samples were fractionated by SDS-PAGE and transferred to Immobilon-P

membranes (Millipore). All blocking and secondary antibody incubation steps

were performed in TBS containing 5% nonfat milk, while primary antibody

incubations were performed in TBS containing 5% BSA. Washes were per-

formed in TBS with 0.5% Tween 20. AMPKa anti-phospho-Thr172, anti-

AMPKa, anti-AMPKa1, anti-AMPKa2, and ACC anti-phospho-Ser79 were

used at 1:1000 dilution. Anti-AMPKb1/2 (Epitomics, Inc., #1604-1) was used

at 1:5000, and anti-AMPKg1 (Epitomics, Inc., #1592-1) was used at 1:1000.

Anti-CaMKK2 (Santa Cruz L-19, #sc-9629) was used at 1:200, anti-CaMKIV

(BD Biosciences, #610276) was used at 1:2000, and anti-CaM (Upstate

Biotechnology, #05-173) was used at 1:1000. Horseradish peroxidase-conju-

gated secondary antibodies were from Jackson ImmunoResearch Laborato-

ries, Inc., and were used at 1:5000 with an ECL kit from Amersham Biosciences.

Cells, Cell Culture, Cell Transfection, and Cell Stimulation

The human embryonic kidney cell line QBI-293A (HEK293A) from Quantum

Biotechnologies was cultured as recommended by the supplier. The immortal-

ized mouse hypothalamic cell line N38 from CELLutions Biosystems was cul-

tured as recommended by the supplier, except that charcoal-stripped FBS

was used in the growth medium. Cells were transfected with pSG5-FLAG-

CaMKK2 or empty pSG5 vector (Stratagene) using Lipofectamine 2000

reagent (Invitrogen) according to the manufacturer’s recommendations and

cultured 16–24 hr before stimulation with ionomycin. Extracts of HEK293A or

N38 cells were prepared by scraping the cells in NP-40 lysis buffer containing

25 mM Tris-HCl (pH 7.4), 50 mM NaCl, 0.5% NP-40, 25 mM NaH2PO4, 2 mM

EGTA, 2 mM EDTA, 50 mM NaF, 1 mg/ml aprotinin, 1 mg/ml leupeptin, 10 mg/ml

pefabloc, and 100 nM okadaic acid. After 30 min on ice, insoluble material was

pelleted by centrifugation at 14,000 3 g for 20 min, and the supernatant was

reserved for immunoblot analysis.

Immunocytochemistry to Detect NPY Protein in N38 Cells

N38 cells were cultured on glass coverslips. Following treatment with STO-

609, ionomycin, or 2-DG, the cells were fixed for 10 min in 1% paraformalde-

hyde/PBS and washed and permeabilized for 10 min in 0.05% Triton X, 20 mM

Tris (pH 7.4), 50 mM NaCl, 300 mM sucrose, and 3 mM MgCl2. After permea-

bilization, the cells were washed and blocked for 20 min in 5% normal sheep

serum/PBS and incubated overnight at 4�C with rabbit anti-NPY (Sigma,

N9528) diluted 1:4000 in 5% sheep serum/PBS. The cells were washed and

incubated in the dark for 1 hr with anti-rabbit Cy3 (Jackson ImmunoResearch

Laboratories, Inc.) diluted 1:200 in 5% sheep serum/PBS, washed again, and

mounted in hard-set mounting medium (Vectashield) with DAPI. All washing

steps were performed in triplicate for 5 min with PBS, and the procedure

was performed at room temperature except for the 4�C incubation with

primary antibody.

CaMKK2-AMPK Coimmunoprecipitation

and AMPK Heterotrimer Purification

Unstimulated transfected cells were harvested in NP-40 lysis buffer as

described above with or without EDTA/EGTA as indicated, and the resulting

supernatant was incubated for 2 hr at 4�C with 20 ml anti-FLAG M2 agarose

(Sigma, A2220). The resin was washed 23 with NP-40 lysis buffer and 13

with TBS prior to elution of the FLAG-CaMKK2 protein in 40 ml TBS containing

300 ng/ml FLAG peptide (Sigma, F3290). The eluted protein was then analyzed

by immunoblot. Recombinant trimeric AMPK was expressed and purified from

bacteria as described previously (Neumann et al., 2003).
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CaMKK2 Mutagenesis

The CaMKK2 RP deletion mutant was generated using the QuikChange

Site-Directed Mutagenesis Kit (Stratagene) with rat CaMKK2 WT cDNA as

template and the primers 50-CCAAAAAGAAGCTGATCCGAAGGGGCCCC

ATCGAGCAGG-30 (sense) and 50-CCTGCTCGATGGGGCCCCTTCGGATCAG

CTTCTTTTTGG-30 (antisense). The nucleotide sequence of the entire cDNA

was confirmed by automated sequencing (Duke University DNA Sequencing

Facility).

In Vitro CaMKK2 Activity

FLAG-CaMKK2 WT and RP deletion mutant were expressed in HEK293A cells,

immunoprecipitated, and eluted from FLAG resin as described above. After

assessing protein purity and quantity by fractionating aliquots by SDS-PAGE

along with g-globulin standards and quantification of Coomassie-stained

bands, activity was measured by adding FLAG-CaMKK2 to the reaction at

a concentration of 4 nM, along with the substrate MBP-AMPKa 1–312 at

200 nM. When measuring Ca2+/CaM-dependent activity, the reaction also

contained 25 mM HEPES (pH 7.5), 0.1% Tween 20, 10 mM MgCl2, 400 mM

ATP, 1 mM CaM, 1 mM CaCl2, 20 mM SAMS peptide, and 0.024 mCi/ml

[g-32P]ATP. Ca2+/CaM-independent activity was determined by including

2 mM EGTA in the reaction described above. Readout was the transfer of
32P to SAMS peptide by activated AMPK, which was quantified by a phospho-

cellulose method as described previously (Anderson et al., 1998).

SUPPLEMENTAL DATA

Supplemental Data include one table and one figure and can be found with this

article online at http://www.cellmetabolism.org/cgi/content/full/7/5/377/DC1/.
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