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We study the Szego kernel for a class of strictly pseudoconvex domains in C*. An 
explicit algorithm is given to compute the complete asymptotic expansion for the 
symbol of the Szego kernel for these domains. It is then easy to compute the first 
three terms explicitly in terms of the defining function and its derivatives. We give 
an example where the first three terms (including the logarithmic term) are all non 
zero. Finally, we show that if the second term vanishes identically, then the bound- 
ary is locally biholomorphic to the surface Im w: = 1~1~. 1 1990 Academic Press. Inc. 

0. INTRODUCTION AND STATEMENTS OF RESULTS 

Our goal here is to obtain explicit formulas for the Szego kernel for some 
domains in C’. If we let (z, W) be coordinates near 0 E C* then we shall 
study strictly pseudoconvex domains whose boundary (near 0) is given by 
the equation 

Im w  = cp(z, Z). (0.1) 

Here cp is a real valued, real analytic function of (z, 5) with ~(0, 0) = 0. 
It is well known from the work of Boutet de Monvel and Sjiistrand [2] 

that the Szego kernel for a bounded strictly pseudoconvex domain can be 
written as a Fourier integral operator with complex phase. Such an 
operator is determined completely by a phase function which we denote by 
$ and a classical symbol which we denote by h. It follows from [2) that 
in the case under discussion here 

ll/(z, w, 3, tv) = w  - Iv - 2icp(z, Z’), 

where (z, W, Z’, w’) varies near 0 E C4. 
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It is also possible to compute the principal symbol of h. This is done in 
[2] by using the fact that the principal symbol is invariant under canonical 
transformation. The lower order terms however are not invariant and are 
not discussed in [a]. One of our goals here is to compute the complete 
asymptotic expansion for h. Indeed we give a recursive algorithm for 
computing all the lower order terms for h. In particular we compute the 
first three terms explicitly in terms of p and its derivatives. This gives a 
complete description of the logarithmic term. We call this term h- , in what 
follows. In fact we compute the SzegG kernel explicitly modulo a bounded 
function. See the corollary below. 

Now we state our results. Let 0 be a smoothly bounded strictly 
pseudoconvex domain in C2. Assume that near 0 the boundary of Q is 
given by (0.1). We will denote by S the Szegii kernel of Q. Our main 
result is 

THEOREM. Let 0 and S be as described above. Then there exists a symbol 
h of order 1 such that S(z, w, Z’, W’) is (modulo a smooth function) equal to 

e’!‘(Z. W. i’, *‘)7h(Z, z’, z) & (0.3) 

near (0,O) E XI x &? Here h is smooth in all arguments. Also h is 
holomorphic in z and antiholomorphic in z’ for each fixed T. Furthermore h 
has an asymptotic expansion of the form 

h(z, Z’, 7) N c h-,(z, t’)r+, (0.4) 
k= -1 

where the terms h, , ho, h _, , . . . can be computed recursively using formulas 
(2.24), (2.25), and (2.26). The first three terms are given explicitly in terms 
of cp and its derivatives in (2.28), (2.32), and (2.38). 

Remark 0.1. We interpret the expression in (0.3) as an oscillatory 
integral defining a distribution near (0,O) E aQ x dSZ. The formula is well 
defined because of the estimate (2.9). We refer the reader to either Melin 
and SjGstrand [7] or Treves [9] for the general theory of Fourier integral 
operators with complex phase. 

Remark 0.2. We make the assumption that cp is real analytic primarily 
to simplify the exposition. In this way we obtain formulas for the hi as 
quickly as possible. The arguments we give in Sections 2 and 3 should go 
through to yield the C” analog of the theorem. Indeed, if ~(2, 5) is merely 
smooth, then + can be defined using almost analytic extensions, as in [2]. 
Then the transport equations can be derived using the (complex) 
stationary phalse method. We leave these details to the reader. 
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The next result is an immediate consequence of the theorem. 

COROLLARY. Let 52 and S be as described above. Then we have 

S=h,/(-i$)*+h&-i$)-h-,log(-$)+0(l) (0.5) 

near (0,O) E al2 x iX2. Here rl/ is given by (0.2), h, is given by (2.28), h, is 
given by (2.32), and h _ 1 is given by (2.38). 

The paper proceeds as follows. In Section 1 we describe the three dimen- 
sional abstract CR structure determined by (0.1). We denote by L a par- 
ticular non vanishing holomorphic vector field generating this structure. 

In Section 2 we construct operators H and K such that LK = I- H. This 
is valid locally and the construction depends only on the abstract CR struc- 
ture. We impose conditions on H and K so that they are uniquely deter- 
mined by “transport equations” (2.24), (2.25), and (2.26). This section is 
motivated by the classical geometrical optics construction from hyperbolic 
theory and the article of Greiner, Kohn, and Stein [S]. We use only the 
most elementary facts from the theory of Fourier integral operators with 
complex phase. In particular, we do not reduce the problem to normal 
form via canonical transformation as was done in [2]. 

In Section 3 we realize the abstract CR structure as a piece of hypersur- 
face in C2. Then we show that if 0 is a strictly pseudoconvex domain 
whose boundary (near 0) is given by (O.i), then H is essentially the Szego 
kernel for Q. The work in Sections 1, 2, and 3 is enough to prove the 
theorem. 

In Section 4 we indicate how the corollary follows from the theorem and 
conclude with some examples. In particular we show that our results are 
consistent with the classical formula in the case when cp(z, Z) = (z(~. We 
also give an example where h,, ho, and h _ 1 are all non zero. In this 
example cp is a polynomial of degree 3. 

We conclude the article by pointing out the fact that if h, vanishes 
identically, then the surface (0.1) is biholomorphnically equivalent to the 
surface Im M’ = Jz) *. 

Remark 0.3. In [4] Fefferman studied the asymptotic behavior of the 
Bergman kernel for strictly pseudoconvex domains and indicated how 
similar results could be obtained for the Szegii kernel. The results of Boutet 
de Monvel and Sjostrand [2] came later using different methods. 

In [4] an example is given of a domain where the logarithmic term for 
the Bergman kernel is present. The defining function for this domain is a 
polynomial of degree 8. 
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1. THE CR STRUCTURE 

We begin by describing the CR structure under consideration. Let 
(x, y, t) be coordinates near OE R3. Throughout this article z will denote 
the function 

z=x+iy (1-l) 

and Z will be its complex conjugate. Let q be a real valued, real analytic 
function defined near OE R*. In other words we will assume that cp has a 
convergent power series expansion near 0 in the variables (z, 2) and we will 
write cp = cp(z, 2). We also assume that 

cp(0, 0) = 0. (1.2) 

We define the function w  by 

w = t + i&z, Z). (1.3) 

The functions z and w  determine a unique CR structure near 0 E R3. If 
we define the vector field 

then it follows that 

L=a/az- icpi(z, z) a/at (1.4) 

Ez=o=Lw. (1.5) 

We will use the standard notation 

alaz= galax- ia/@) (1.6) 

and a/i?,? will denote the complex conjugate of a/&. Also cpz will be the 
same as aqjaz. 

L will denote the complex conjugate of E, that is 

L = ajaz + iqZ(z, 5) a/at. (1.7) 

We see then that L and 1 are linearly independent and hence generate a 
CR structure near OE R3. Formula (1.5) tells us that z and w  are first 
integrals for this structure. 

The final assumption that we will make is that the structure is strictly 
pseudoconvex at 0. In other words we will assume that 

cP;i(OY O) > O. (1.8) 
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Remark 1 .l. Structures where Im w  is independent of t are called rigid 
in Baouendi, Rothschild, and Treves [l]. Before this, rigid structures were 
studied by Tanaka [S]. This paper of Tanaka was the precursor to the 
article of Chern and Moser [3]. 

2. AN APPROXIMATE INVERSE FOR L 

Our goal in this section is to construct operators K and H such that 

LK=I-H, (2-l) 

where I is the identity operator. K and H are by no means uniquely deter- 
mined. We will impose further conditions on these operators so that H will 
resemble a Szego projector. 

Remark 2.1. Let U be a neighborhood of 0 E R3. All operators 
constructed in this section will be continuous linear operators from 
CF( U) -+ C-(U), for appropriate U. If A is such an operator, we will 
denote its distribution kernel by A(x, y, t; x’, y’, t’). Here (x’, y’, t) is 
another set of coordinates near 0 E R3. If u E C,“(U) then we write formally 

Jw% Y, f) = jR3 A(% y, c x’, Y’, r’) u(x’, y’, t’) dx’ dy’ dr’, (2.2 1 

where dx’ dy’ dt’ is Lebesgue measure. 

From the work of Boutet de Monvel and Sjostrand [2] we know the 
Szegii projector (for a strictly pseudoconvex domain) can be written as a 
Fourier integral operator with complex phase. Taking this as motivation, 
we will construct K and H as Fourier integral operators. See Melin and 
Sjostrand [7] or Treves [9] for the basic facts about the theory. 

To begin the construction we introduce the phase function 

l/i(z, w, Z’, W’) = w - Iv - 2i&, Z’), (2.3) 

where z and w  are defined as before and 

z’ = x’ + iy’ (2.4) 

w’ = t’ + icp(z’, 5’). (2.5) 

We pause to discuss some of the properties of J/. First observe that 

ll/(z, w, 5, t’ - icp(z, Z)) = 2 - f’. (2.6) 
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Since cp(z, 2) is real it follows that 

igg = fp( z’, Z). (2.7) 

Hence we see that 

Im $(z, w, 3, W’) = q(z, 5) - rp(z, 2) + C&T’, 2’) - (P(Z), 2). (2.8) 

It follows from (2.8) and (1.8) that there exists a constant C> 0 such that 

Im t&z, w, 3, G’) > C (z - z’( * (2.9) 

for (x, y, t, x’, y’, t’) near 0. 
A straightforward computation shows that 

L* = 2i(cp,(z, 5) - pz(z, 5’)). 

If we define the function g as follows 

g(z,Z,Z’)= j; cp,,-(z,pZ+(l-p)Z’)dp 

we see that (2.10) becomes 

L$=2i(Z-Z’)g(z,5,Z’). 

(2.10) 

(2.11) 

(2.12) 

Also observe that 

g(z, z 3 = 40&, a. (2.13) 

Again a simple computation shows that 

Llj=O. (2.14) 

These are the main facts we will need about e. Note that II/ is essentially 
the phase used by Boutet de Monvel and Sjostrand [2]. 

We now begin our construction of K and H. H will be a Fourier integral 
operator with J/ as phase. The operator K will be the sum of two operators, 
K+ and K- which we define now. 

We define the kernel of K- by 

K- (x, Y, r; x’, Y’. t’) 

= l/Q- 2’) j” ei$Cz. w. r’, 6’)~ drpnr. (2.15) 
-cc 
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We define the kernel of Kt by 

K'(x, y, t; x', y', t') 

= l/rc(Z-5’) jOz e i#(z. w, 2’. *‘)rs(z, 2, 21, 5) dTpn (2.16) 

We define the kernel of H by 

(2.17) 

Our goal now is to find symbols s and h so that (2.1) is satisfied. We 
assume s to be of order 0 and h to be of order 1. Indeed we assume that 
s and h have asymptotic expansions of the following type: 

- --I s(z, z, z ) +f, Sck(Z, 2, ?‘)TCk (2.18) 

h(z, 2, +$, h-,(z, 2yk (2.19) 

We will see that (2.1) will determine K and H uniquely if we impose the 
following conditions on S: 

SJZ, 5, 2) = 1 (2.20) 

s_,(z,z,z)=O, k>l (2.21) 

for all z near 0. We shall see that each swk is real analytic in the variables 
- --I (z, z, z ). We will also assume that each Lk is real analytic in the variables 

(z, 5’). Hence h-k will be completely determined once we know its value 
when Z’=Z. 

If we let K = K+ + K- and compute LK we will see that LK = I - H 
where the symbol of h is given by 

h(z, 2, T) = 1/27?(2rg(z, 5, 2’) S(Z, z, 3, 5) 

- s,(z, 2, 2, t)/(T - 2’)). (2.22) 

To arrive at (2.22) we have used (2.20), (2.21), (2.12), (2.14), and (2.6). We 
have also used the fact that l/C! is a fundamental solution for a/az. Note 
that (2.6) was used in conjunction with the Fourier inversion formula, 

We may write for small (z, Z, 3) 

sz(z, 5, Z’)/(Z - 2’) = -1; szi,(z, 5, pZ+ (1 -p)Z') dp. (2.23) 
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If we substitute this formula into (2.22) and take (2.18) and (2.19) into 
account we obtain the following “transport equations” 

h,(z, 5’) = l/n2g(z, z, 2’) SJZ, z, 2’) (2.24) 

z, z, pz+ (1 -p)Z’) dp (2.25) 

for k 2 0. We obtain these formulas by equating terms of like homogeneity 
(in r) in (2.22). 

Note that by (2.21) and (2.25) we also have for k > 0 

- - 
h-,(z, Z) = (1/2n2)(s-,),, (z, z, z) 

- - 
= (- 1/2n2)(s-k),, (z, 2, z). 

We see that (2.24), (2.20), and (2.13) show that 

(2.26) 

(2.26)’ 

h,(z, 5) = (l/n2) q&, 3). 

Since we assume h, is analytic we have 

(2.27) 

h,(z, 5’) = (l/7?) (PJZ, 2’). (2.28) 

Now that h, is completely determined we substitute into (2.24) to obtain 

- --I 
&lb, z, z ) = (P&, a/&, %a. (2.29) 

Now that h, and s0 have been determined we can compute h, from (2.26) 
and hence s-r from (2.25). Continuing in this manner all the terms in the 
asymptotic expansions for s and h can be computed in the following order 

h,, so, ho, s-1, h-,, s-2, .**. (2.30) 

by alternating between (2.25) and (2.26). 
Now the theory [7], [9] allows us to choose smooth (i.e., C”, symbols 

s and h with the given asymptotic expansions (2.18) and (2.19). These sym- 
bols are uniquely determined up to an error of order - cc. We will assume 

- --I then that s = s(z, z, z , t) is smooth for (z, z’) near 0 and r > 0. Furthermore 
we may assume that s is real analytic in (z, Z, 2’) for each fixed z > 0. We 
may also assume that s vanishes for z near 0. We pick a similar realization 
for h. 

We now have achieved our goal of constructing operators K and H such 
that LK= I- H. Furthermore we have an algorithm for computing the full 
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symbols of K and N. One of our goals here is to compute h, and h -I 
explicitly in terms of cp and its derivatives. Before doing so we introduce 
some notation. 

For non negative integers j and k we define (PJk by 

cpjk=(aj+k(pla~jaZkj(~, 5). (2.31) 

To compute h,, we use the fact that s0 is known from (2.29) and use 
(2.26)‘. It then follows that 

Mz, a= (1/4n2)(cp,,cp,,-cp,,cp,,)l(cp,,)*. (2.32) 

The computation of h _ I is more complicated. First note that we have for 
k>O 

h -k-,tZ, i)= (-t/s712,(a/aZ)((s-k)Z,,, (p,,), (2.33) 

where the right hand side of (2.33) is evaluated at Z’ = Z. To prove this first 
differentiate both sides of (2.25) with respect to 2. Evaluate this expression 
when T=Z and take (2.21) into account. It follows that (2.33) is true by 
differentiating again with respect to z and using (2.26’). 

Letting k = 0 in (2.33) we. may compute h_ 1 since so is known. First 
some notation. We define M2*, M23, M33 as follows: 

M22=(~11(~33-(~13(~31 (2.34) 

M23=(P11(P32-(P12(P31 (2.35) 

12(PZI. (2.36) M33=(~11(~22-(P 

Also define Q by 

Q = 3MdM33 - G,~(PzI 

+6vII Re(cp12Mz3). 

It now follows from (2.33) that 

I - M22hd’ 

(2.37) 

h-,(Z, i)= -Q/24n*((p& (2.38) 

Remark 2.2. It follows from the work of this section that if f is a 
smooth function near 0 E R3 such that Hf is real analytic then there exists 
u such that Lu = J Indeed, since L has analytic coefficients we can find u 
such that Lo = Hf by the Cauchy-Kovalevska Theorem. Then we may let 
u = Kf f u. On the other hand, one would like to prove the converse of this 
statement as was done in Greiner, Kohn, and Stein [S]. That is we would 
like to show that if there exists u such that Lu = f then Hf is real analytic. 
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This does not seem to be directly possible using our approach. This is 
because of the estimate (2.9). Usually one needs an estimate of the kind 

Im * 2 C( 12 - 2’1 2 + (t - t’)2). (2.39) 

We can obtain (2.39) if we wish to use as phase I++ + it)* to define H and 
K. Using this approach we can obtain the correct solvability results. 
However, this method greatly complicates the transport equations (2.24) 
and (2.25). Since our aim is to provide explicit formulas we have chosen to 
use 41/ as phase. 

3. HAND THE SZEG~ KERNEL 

In this section we construct a small dommain Q’c C* and show that the 
Szegij kernel for 52’ differs from H by a smooth function (near the origin). 
We then show how the Theorem follows from this fact. We use only the 
most elementary facts about the Szegii kernel. For those not familiar with 
this topic, see for example Krantz [6]. 

From Section 2 we have operators H and K defined by (2.15), (2.16), 
and (2.17) such that (2.1) holds. To be precise there exists an open 
neighborhood U of OE R3 such that H and K are continuous linear 
operators from CF( V) -+ Cco( U) and LK= I- H. 

We shall assume that U is small enough so that the map from U into C* 
given by 

(4 y, f) -+ (x + iy, t + irp(z, 3) (3.1) 

is a real analytic diffeomorphism. If we denote coordinates near 0 in C2 by 
(z, w) then we see that the image of the map (3.1) is a piece of hypersurface 
given by the equation 

Im w  = cp(z, 2). (3.2) 

We denote this hypersurface by M. Now we may think of H and K as 
operators mapping C?(M) -+ C”(M). 

If E > 0 we define the open set 0, c C2 by the following 

O,=((z,w):Imw>&z,~)and (z)~+)w[*<E*}. (3.3) 

Note that we may define (I/ as in (2.3) where now we may think of 
(z, w, z’, w’) as an arbitrary point near 0 E C4. Hence it follows that there 
exists an E > 0 such that the estimate (2.9) holds for (z, w, z’, w’) E 0, x M. 
This is enough to ensure that H and K can be extended as bounded 
operators mapping C,“(M) + Cm(O,) provided that E > 0 and U are taken 
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small enough. Note that because h depends only on z and i’ it follows that 
if f E CF( M) then Hf will be holomorphic on 0,. 

Now let 0’ be a sxtrictly pseudoconvex open subset of C2 with smooth 
boundary such that Sz’ c 0,. We also assume that near the origin the 
boundary of Q’ is given by Eq. (3.2). Such an 52’ is easily constructed. Let 
S’ be the Szego projector associated with 52’. In other words S’ is the 
orthogonal projection from L’(&“) onto H2(8Q’). Here H2 is the closed 
subspace of Lz consisting of the “boundary values” of holomorphic func- 
tions on 52’. For the precise definition of Hz, see for example [6]. 

Recall that the kernel of S’ is holomorphic in (z, w) and antiholomorphic 
in (z’, w’). Hence we write S’ = S’(z, w; Z’, W’). Also we have Sf=f for all 
j%H2. 

If A and B are bounded operators from C,“(M) -+ C “(XY) we say that 
A - B if the kernel of A - B is a smooth function near (0,O) in A4 x M. 

We now will show that S- H. Observe that if we denote the formal 
transpose of L by ‘L, we have ‘L = -L. Let x E C,“(M) have small support 
and be equal to 1 near the origin. It follows from (2.1) that 

S’xLK = S’x - S’xH. (3.4) 

In (3.4) the symbol x indicates “multiply by x.” Since s’ is anti 
holomorphic in (z’, w’) and ‘L = -L we have S’xLK Y 0. Hence it follows 
that S’ - S’H. We also have S’H- H. Indeed this follows since 
Hfc H*(XY) for all SE C;(M). Hence S’- H. 

Now to conclude the proof of the Theorem. Let Q c C2 be a bounded 
strictly pseudoconvex domain with smooth boundary. Assume that near 0 
the boundary of 52 is given by (0.1). Let S be the Szego kernel for f2. We 
know (from [Z]) that near 0, S can be written as a Fourier integral 
operator with phase $. Furthermore the full symbol of S near 0 depends 
only on the defining function of 52 near 0. This is pointed out in [2, 
p. 162]. Hence near 0, S and s’ have the same full symbol. We conclude 
that S differs from H by a smooth function near 0. 

4. CONCLUDING REMARKS 

We would like to conclude with some remarks and examples. 

Remark 4.1. From formula (2.19) we see that there exists a constant 
C > 0 such that 

w, Z’, z) - h,(z, Z’)T - h,(z, 2’) -h. ,(z, 2)/z] ,< c/r’ (4.1) 

for z and 5 near 0 and f large. Hence we see that the contribution to the 
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kernel of S from the remaining terms (i.e., those of order d -2) is a 
bounded function. 

Now the contribution from the first three terms can be computed by 
interpreting the oscillatory interals as “finite part” integrals. For example 
we have the classical formula 

pf jam eitlt7 dz/z = -log( - $) - y, 

where y is Euler’s constant. Hence it follows that the Szegii kernel can be 
written modulo a bounded function as 

s=h,/(-ilCl)*+ho/(-irC/)-h-, log(-i@)+O(l) (4.3) 

near the origin. Note that $ is given explicitly in (2.3), h L is given by (2.28), 
h, is given by (2.32) and h-, is given by (2.38). Please note that similar 
comments have been made in [2]. 

EXAMPLE 4.2. Suppose that cp(z, 5) = (z)‘. It follows from our computa- 
tions that in this case we have 

y?(z, w, Z’, W’) = w - W’ - 2izZ’ (4.4) 

h,(z, 2’) = l/n2 (4.5) 

h -/JZ, 2’) = 0 for all k B 0. (4.6) 

Hence the results we obtain from (4.3) are consistent with the classical 
formula 

S(z, w, 3, a’) = -l/72( w  - W’ - 2izT)2. (4.7) 

EXAMPLE 4.3. Suppose that cp(z, Z) = 1~1’ + azT2 + ciz’,? with a E C. 
A simple application of our formulas shows that 

h,(O, 0) = 1/n* (4.8) 

h()(O, 0) = -la12/x2 (4.9) 

h-,(0,0)= -8 la12/n2. (4.10) 

So we see that if the constant a is not zero then the first three terms in the 
asymptotic expansion for S are really there. 

Remark 4.4. If h, vanishes identically. then the surface Im w  = cp(z, 5) is 
biholomorphically equivalent to the surface Im w  = (zJ2. 

Indeed, the fact that ho vanishes is equivalent to the fact that 

dlogdf+J=O. (4.11) 
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This follows immediately from (2.32). Now (4.11) implies that there exist 
functions f and g holomorphic near 0 such that 

4$z, a = If( 2 + g(z) f g(z) 
with f:(O) # 0. We introduce new coordinates near (0,O) E C2 

2 =f(z) 

(4.12) 

(4.13) 

it = w  - 2ig( z). (4.14) 

Now we see that cp(z, Z) - Im w  = )212 - Im it. 
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