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1. Introduction

Consider the one-dimensional liquid-gas two-phase model with viscosity which can be written in
Eulerian coordinates as (cf. [4,5]):

⎧⎪⎨
⎪⎩

∂t[αgρg] + ∂x[αgρg ug] = 0,

∂t[αlρl] + ∂x[αlρlul] = 0,

∂t[αgρg ug + αlρlul] + ∂x
[
αgρg u2

g + αlρlu2
l + P

] = −q + ∂x[ε∂xumix],
(1.1)

where umix = αg ug +αlul and the unknown variables αg,αl ∈ [0,1] denote volume fractions satisfying
the fundamental relation:

αg + αl = 1. (1.2)

Furthermore, the other unknown variables ρg , ρl , ug , ul denote gas density, liquid density, velocities
of gas and liquid respectively, whereas P is the common pressure for both phases, q presents external
forces, like gravity and friction, and ε > 0 denotes viscosity.

We focus on a simplified model as in [4,5] obtained by assuming that fluid velocities are equal,
i.e., ug = ul = u and neglecting the external forces, i.e., q = 0. In addition, we neglect the gas phase
effects in the mixture momentum conservation equation (1.1)3. This motivation is from the fact that
liquid density is much higher than the gas density, generality speaking, ρl/ρg = O (103). Thus, we can
obtain the following simplified model:

⎧⎪⎨
⎪⎩

∂t[αgρg] + ∂x[αgρg u] = 0,

∂t[αlρl] + ∂x[αlρlu] = 0,

∂t[αlρlu] + ∂x
[
αlρlu2 + P

] = ∂x[ε∂xu].
(1.3)

Let

n = αgρg, m = αlρl. (1.4)

Then, we get a model of the form

⎧⎪⎨
⎪⎩

∂tn + ∂x(nu) = 0,

∂tm + ∂x(mu) = 0,

∂t(mu) + ∂x
(
mu2 + P

) = ∂x(ε∂xu).

(1.5)

As in [4], we assume the liquid is incompressible, i.e., ρl = constant and the gas is polytropic

P = Cρ
γ
g , γ > 1, C > 0, (1.6)

i.e.,

P (n,m) = Cρ
γ
l

(
n

ρl − m

)γ

= A

(
n

ρl − m

)γ

, (1.7)

where A = Cρ
γ
l . Moreover the viscosity coefficient is taken as the form (cf. [4,5]):
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ε = ε(n,m) = B
nβ

(ρl − m)β+1
, B > 0, β > 0, (1.8)

or

ε = ε(m) = B
mβ

(ρl − m)β+1
, B > 0, β > 0. (1.9)

In the following, without loss of generality, we consider only the form (1.8).
It is worth noting that we consider the simplified model (1.5) rather than the full two-phase

model (1.1). In [4], Evje, Karlsen demonstrate that the simplified model can give a good approxima-
tion to the original two-phase model by numerical experiments. For the detailed description and the
motivation, see Section 2 in [4]. For some relevant physical background, please refer to [1,15].

In this paper, we will consider the following two classes of the free boundary value problems of
the system (1.5):

(1) The initial masses connect to vacuum discontinuously:
The boundary conditions are given as

{(−P (m,n) + ε(n,m)∂xu
)(

a(t)+, t
) = 0,(−P (m,n) + ε(n,m)∂xu

)(
b(t)−, t

) = 0, t � 0,
(1.10)

and the initial data are given as

n(x,0) = n0(x) > 0, m(x,0) = m0(x) > 0, u(x,0) = u0(x), x ∈ [a,b]. (1.11)

(2) The initial masses connect to vacuum continuously:
The boundary conditions are given as

n
(
a(t), t

) = n
(
b(t), t

) = 0, m
(
a(t), t

) = m
(
b(t), t

) = 0, t � 0, (1.12)

and the initial data are given as

n(x,0) = n0(x) > 0, m(x,0) = m0(x) > 0, u(x,0) = u0(x), x ∈ (a,b), (1.13)

and n0(a) = n0(b) = m0(a) = m0(b) = 0.
Here −∞ < a < b < ∞, a(t) and b(t) are the free boundaries defined by

⎧⎨
⎩

da(t)

dt
= u

(
a(t), t

)
, t > 0,

a(0) = a,

(1.14)

and ⎧⎨
⎩

db(t)

dt
= u

(
b(t), t

)
, t > 0,

b(0) = b,

(1.15)

which are the interfaces separating the gas from the vacuum.
Let’s first review some of the previous works in this direction. When the viscosity coefficient ε

was taken as the form (1.9) and the initial masses connected to vacuum discontinuously, Evje and
Karlsen in [4] got the global existence and uniqueness of weak solutions when β ∈ (0, 1

3 ) by energy
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method. This result was later generalized to the case when β ∈ (0,1] by Yao and Zhu in [17]. When
the viscosity coefficient ε was taken as the form (1.8) and the initial masses connected to vacuum
continuously, Evje, Flatten and Friis in [5] proved the global existence of the weak solutions under
some approximate assumptions on n0(x), m0(x), u0(x), and n0(x)

m0(x) = c0(x) when β ∈ (0, 1
3 ). Recently,

the existence of global weak solutions was obtained by Yao and Zhu in [16] when the viscosity was a
constant and the initial masses connected to vacuum continuously.

Few results concerning asymptotic behavior and decay rate estimates on the mass functions
m(x, t), n(x, t) for the free boundary value problem (1.5), (1.10), (1.11) and (1.5), (1.12), (1.13). The
main purpose of this paper is to answer this question. More precisely, we show that the masses n
and m tend to zero as time goes to infinity. Moreover, we can obtain a stabilization rate estimates of
the mass functions for any β > 0 as t → ∞.

It is necessary for us to illustrate that the main methods used to obtain our results are simi-
lar to those in [9,23], because we have used the variable transformations as in [4,5], by which we
can rewrite our problem into (2.7)–(2.12) similar to the model in single-phase Navier–Stokes equa-
tions. In view of this, let’s review some of the relevant works about single-phase Navier–Stokes
equations with density-dependent viscosity and vacuum. When the initial density connected to vac-
uum discontinuously, the global existence of weak solutions for isentropic flow was obtained by
Okada, Matušu̇-Nečasová, Makino in [14] for μ(ρ) = ρθ , 0 < θ < 1

3 , by Yang, Yao and Zhu in [19]

for 0 < θ < 1
2 and by Jiang, Xin and Zhang in [10] for 0 < θ < 1. Qin, Yao and Zhao in [18] extended

the results in [10,14,19] to the case 0 < θ � 1. Guo and Jiang in [8] proved the global existence of
weak solutions when 0 < θ < max{3 − γ , 3

2 } where θ can be greater than 1. Recently, Zhu in [23]
investigated the asymptotic behavior and decay rate estimates about the density function ρ(x, t) by
overcoming some new difficulties which came from the appearance of the boundary layers. When the
initial density connected to vacuum continuously, the local existence of weak solutions was obtained
in [20] by Yang and Zhao. The global existence of weak solutions was given in [21] by Yang and
Zhu for 0 < θ < 2

9 , and later was improved in [22] for 0 < θ < 1
3 by Vong, Yang and Zhu, in [6] for

0 < θ < 1
2 and in [7] for 0 < θ < 1 by Fang and Zhang. Guo and Zhu in [9] obtained a global existence

result when 0 < θ < max{3 − γ , 3
2 } and firstly studied the asymptotic behavior and the decay rate

of the density function ρ(x, t) with respect to the time t for any θ > 0 based on the following new
mathematical entropy inequality, which was obtained first by Kanel in [11] for one-dimensional case
and Bresch, Desjardins, Lin and Mellet, Vasseur for multi-dimensional case, cf. [2,3,12]:

b(t)∫
a(t)

{
1

2
ρu2 + u

(
ρθ

)
x + 1

2
ρ2θ−3ρ2

x + ργ −1

γ − 1

}
dx +

t∫
0

b(t)∫
a(t)

4θγ

(γ + θ)2
ργ +θ−3ρ2

x dx dt � C,

where C is a uniform constant independent of t . The rest of this paper is organized as follows. In
Section 2, we reformulate the two free boundary value problems (1.5), (1.10), (1.11) and (1.5), (1.12),
(1.13) into the two fixed boundary value problems by introducing the Lagrangian coordinates and
using the variable transformations. Then we state the main theorems of this paper. In Section 3,
we derive some crucial uniform estimates for studying the asymptotic behavior and the decay rate
estimates about the mass functions. In Section 4, the decay rate estimates on the mass functions will
be given by introducing a new function w(x, t) in [13] by Nagasawa.

2. Reformulation of the problems and the main results

To solve the two free boundary problems above, it is convenient to convert the free boundaries to
the fixed boundaries by using Lagrangian coordinates. To do this, let

ξ =
x∫

a(t)

m(y, t)dy, τ = t.
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Then the free boundaries x = a(t) and x = b(t) become ξ = 0 and ξ = ∫ b(t)
a(t) m(y, t)dy = ∫ b

a m0(y)dy

by the conservation of mass, where
∫ b

a m0(y)dy is the total liquid mass initially. We normalize∫ b
a m0(y)dy to 1. Hence in the Lagrangian coordinates, the two free boundary problems (1.5), (1.10),

(1.11) and (1.5), (1.12), (1.13) become

⎧⎪⎨
⎪⎩

nτ + (nm)uξ = 0,

mτ + m2uξ = 0,

uτ + (
P (n,m)

)
ξ

= (
ε(n,m)muξ

)
ξ
,

(2.1)

with the boundary conditions (corresponding to the initial masses connect to vacuum discontinu-
ously)

P (n,m) = E(n,m)uξ , at ξ = 0,1, τ � 0, (2.2)

and the initial data

n(ξ,0) = n0(ξ) > 0, m(ξ,0) = m0(ξ) > 0, u(ξ,0) = u0(ξ), ξ ∈ [0,1], (2.3)

or with the boundary conditions (corresponding to the initial masses connect to vacuum continuously)

n(0, τ ) = n(1, τ ) = 0, m(0, τ ) = m(1, τ ) = 0, τ � 0, (2.4)

and the initial data

n(ξ,0) = n0(ξ) > 0, m(ξ,0) = m0(ξ) > 0, u(ξ,0) = u0(ξ), ξ ∈ (0,1), (2.5)

and n0(0) = n0(1) = m0(0) = m0(1) = 0.
Here

P (n,m) =
(

n

ρl − m

)γ

, E(n,m) = ε(n,m)m = nβm

(ρl − m)β+1
, β > 0. (2.6)

Here we have assumed A = B = 1 in (2.6) for simplicity.
In the following, we replace the coordinates (ξ, τ ) by (x, t). Introduce the variables (cf. [4,5]):

c = n

m
, Q (m) = m

ρl − m
= αl

1 − αl
� 0.

Form the first two equations of (2.1), we get

ct = nt

m
− n

m2
mt = −mnux

m
+ nm2

m2
ux = 0,

and
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Q (m)t =
(

m

ρl − m

)
t
=

(
1

ρl − m
+ m

(ρl − m)2

)
mt

= ρl

(ρl − m)2
mt = − ρlm2

(ρl − m)2
ux

= −ρl Q (m)2ux.

Then we can rewrite the initial boundary problems (2.1), (2.2), (2.3) and (2.1), (2.4), (2.5) into the
following forms:

⎧⎪⎨
⎪⎩

∂tc = 0,

∂t Q (m) + ρl Q (m)2∂xu = 0,

∂t u + ∂x
(

P (c,m)
) = ∂x

(
E(c,m)∂xu

)
,

(2.7)

with the boundary conditions (corresponding to the initial masses connect to vacuum discontinu-
ously)

P (c,m) = E(c,m)ux, at x = 0,1, t � 0, (2.8)

and the initial data

c(x,0) = c0(x) > 0, Q (m)(x,0) = Q (m0)(x) > 0, u(x,0) = u0(x), x ∈ [0,1], (2.9)

or with the boundary conditions (corresponding to the initial masses connect to vacuum continuously)

c(0, t) = c(1, t) = 0, Q (m)(0, t) = Q (m)(1, t) = 0, t � 0, (2.10)

and the initial data

c(x,0) = c0(x) > 0, Q (m)(x,0) = Q (m0)(x) > 0, u(x,0) = u0(x), x ∈ (0,1), (2.11)

and c0(0) = c0(1) = Q (m0)(0) = Q (m0)(1) = 0.
Here

P (c,m) =
(

n

ρl − m

)γ

= cγ Q (m)γ , E(c,m) = mε(n,m) = cβ Q (m)β+1, β > 0. (2.12)

Throughout this paper, our assumptions on the initial data and β , γ are stated as follows:

(A1) infx∈[0,1] n0(x) > 0, supx∈[0,1] n0(x) < ∞, infx∈[0,1] m0(x) > 0, supx∈[0,1] m0(x) < ρl;

(A1)
′ There are positive constants K1, K2, K3 and K4 such that K1φ(x)

α
2 � m0(x) � K2φ(x)

α
2 < ρl ,

K3φ(x)α � n0(x) � K4φ(x)α , where φ(x) = x(1 − x), 0 < α < 1. In particular, this implies that
there exist positive constants C1, C2, such that C1φ(x)

α
2 � c0(x) = n0(x)

m0(x) � C2φ(x)
α
2 ;

(A2) u0(x) ∈ L2n([0,1]) for any given positive integer n satisfying n � 2γ +β
2β

;

(A3) ((c0 Q (m0))
β)x ∈ L2([0,1]);

(A4) β > 0, γ � 1 + β .

Now we give the following definition of weak solution:
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Definition 2.1 (Weak solution). We call (n(x, t),m(x, t), u(x, t)) a global weak solution to the initial
boundary value problems (2.1), (2.2), (2.3) or (2.1), (2.4) (2.5), if the following estimates hold for any
t > 0,

n,m, u ∈ L∞([0,1] × [0,+∞)
) ∩ C1([0,+∞); H1([0,1])),

E(n,m)ux ∈ L∞([0,1] × [0,+∞)
) ∩ C

1
2
([0,+∞); L2([0,1])),

0 � n(x, t) < ρl sup
x∈[0,1]

c0,

and

0 � m(x, t) < ρl.

Furthermore, the following equations hold:

nt + mnux = 0, mt + m2ux = 0,

(n,m)(x,0) = (
n0(x),m0(x)

)
, for a.e. x ∈ [0,1] and any t � 0,

and

∞∫
0

1∫
0

(
uϕt + (

P (n,m) − E(n,m)ux
)
ϕx

)
dx dt +

1∫
0

u0(x)ϕ(x,0)dx = 0,

for any test functions ϕ ∈ C∞
0 (Ω) with Ω = {(x, t): 0 � x � 1, t � 0}.

In what follows, we always use C (and Cn) to denote a generic positive constant depending only
on the initial data (and the given positive integer n), but independent of t .

We now state the main theorems in this paper as follows:

Theorem 2.2 (The asymptotic behavior of the mass functions). Under the assumptions (A1), (A2), (A3) and
(A4) (corresponding to the boundary conditions (2.8)) or (A1)

′ , (A2), (A3) and (A4) (corresponding to the
boundary conditions (2.10)), let (n(x, t),m(x, t), u(x, t)) be a global weak solution to the initial boundary
value problem (2.1), (2.2), (2.3) or (2.1), (2.4), (2.5). Then we have the following asymptotic behavior of the
mass functions n(x, t), m(x, t)

lim
t→∞ sup

x∈[0,1]
n(x, t) = 0, (2.13)

lim
t→∞ sup

x∈[0,1]
m(x, t) = 0. (2.14)

Furthermore, we can get the decay rate estimates of the mass functions n(x, t), m(x, t) as follows:

Theorem 2.3 (The decay rate of the mass functions). Under the assumptions of Theorem 2.2, let (n(x, t),m(x, t),
u(x, t)) be a global weak solution to the initial boundary value problem (2.1), (2.2), (2.3) or (2.1), (2.4), (2.5).
Then the following decay rate estimates on the mass functions n(x, t), m(x, t) hold:
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(i) Under the boundary conditions (2.8), if 0 < β < 1 or β > 1, γ −1
γ −β

> 2, then

n(x, t),m(x, t) � C(1 + t)−
θ

γ −1+2β , (2.15)

for any x ∈ [0,1].
If β = 1 or β > 1, γ −1

γ −β
� 2, we have

n(x, t),m(x, t) � C(1 + t)−
θ

γ −1+2β
(
ln(1 + t)

) 1
γ −1+2β , (2.16)

for any x ∈ [0,1].

(ii) Under the boundary conditions (2.10), if 0 < β < 1 or β > 1, γ −1
γ −β

> 2, then

n(x, t),m(x, t) � C(1 + t)−
θ

γ −1+4β , (2.17)

for any x ∈ [0,1].
If β = 1 or β > 1, γ −1

γ −β
� 2, we have

n(x, t),m(x, t) � C(1 + t)−
θ

γ −1+4β
(
ln(1 + t)

) 1
γ −1+4β , (2.18)

for any x ∈ [0,1], where θ is defined by Lemma 4.1.

3. A priori estimates and the asymptotic behavior of the mass functions

In this section, we will give some useful uniform a priori estimates of the solutions with respect to
the time t . Then we study the asymptotic behavior of the mass functions n(x, t) and m(x, t) by using
these uniform a priori estimates.

3.1. Uniform a priori estimates

Lemma 3.1 (Some identities).

c(x, t) = c0(x), (3.1)

d

dt

x∫
0

u(y, t)dy = − d

dt

1∫
x

u(y, t)dy, (3.2)

(
cβ Q (m)β+1ux

)
(x, t) = (

cγ Q (m)γ
)
(x, t) +

x∫
0

ut(y, t)dy = (
cγ Q (m)γ

)
(x, t) −

1∫
x

ut(y, t)dy, (3.3)

1

βρl

(
cβ Q (m)β

)
(x, t) +

t∫
0

cγ Q (m)γ (x, s)ds = 1

βρl
cβ

0 Q (m0)
β −

x∫
0

t∫
0

ut(y, s)dy ds. (3.4)

Proof. These identities can be obtained directly from (2.7). �
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Lemma 3.2 (Basic energy estimate). Under the conditions in Theorem 2.2, the following energy estimate holds:

1∫
0

(
1

2
u2 + cγ

ρl(γ − 1)
Q (m)γ −1(x, t)

)
dx +

t∫
0

1∫
0

cβ Q (m)β+1u2
x dx ds

=
1∫

0

(
1

2
u2

0 + cγ
0

ρl(γ − 1)
Q (m0)

γ −1
)

dx � C . (3.5)

Proof. Multiplying the second and the third equations of (2.7) by cγ Q (m)γ −2 and u, and integrating
the resulting equations with respect to x over [0,1], we get

d

dt

1∫
0

(
u2

2
+ cγ

ρl(γ − 1)
Q (m)γ −1

)
dx + (

u P (c,m)
)∣∣1

0 = (
E(c,m)uxu

)∣∣1
0 −

1∫
0

E(c,m)u2
x dx. (3.6)

Using the boundary conditions (2.8) or (2.10) we get

d

dt

1∫
0

(
u2

2
+ cγ

ρl(γ − 1)
Q (m)γ −1

)
dx +

1∫
0

cβ Q (m)β+1u2
x dx = 0. (3.7)

Then integrating it with respect to t over [0, t], we get (3.5).
The proof of Lemma 3.2 is completed. �

Lemma 3.3 (The uniform upper bound for the c Q (m)). Under the conditions of Theorem 2.2, we have for any
x ∈ [0,1], t > 0,

0 �
(
c Q (m)

)
(x, t) � C . (3.8)

Proof. By (3.4), we have

1

βρl

(
cβ Q (m)β

)
(x, t) +

t∫
0

cγ Q (m)γ (x, s)ds = 1

βρl
cβ

0 Q (m0)
β −

x∫
0

(
u(y, t) − u0(y)

)
dy

� C +
1∫

0

∣∣u(y, t)
∣∣dy +

1∫
0

∣∣u0(y)
∣∣dy

� C +
( 1∫

0

u2 dy

) 1
2

+
( 1∫

0

u2
0 dy

) 1
2

� C .

Here we have used Lemma 3.2 and the assumptions (A1), (A1)
′ , (A2).

The proof of Lemma 3.3 is completed. �
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Corollary 3.4. For any x ∈ [0,1] and t > 0,

t∫
0

cγ Q (m)γ (x, s)ds � C . (3.9)

Lemma 3.5. Under the boundary conditions (2.8), we have for any t > 0,

Q (m)(d, t) = Q (m0)(d)

(
1

(γ − β)ρlc
γ −β

0 (d)Q (m0)γ −βt + 1

) 1
γ −β

, d = 0,1. (3.10)

Proof. By (3.2), we have

d

dt

1∫
0

u(y, t)dy = 0.

By taking x = 1 or x = 0 in (3.4), we have

1

βρl
cβ

0 (d)Q (m)β(d, t) +
t∫

0

cγ
0 (d)Q (m)γ (d, s)ds = 1

βρl
cβ

0 (d)Q (m0)
β(d), d = 0,1. (3.11)

Since γ > β , the integral equation (3.11) yields

1

ρl
cβ

0 (d)Q (m)β−1(d, t)Q (m)(d, t)t + cγ
0 (d)Q (m)γ (d, t) = 0, (3.12)

which implies (3.10) by solving the ordinary differential equation (3.12).
The proof of Lemma 3.5 is completed. �

Corollary 3.6. There exist positive constants C1 and C2 such that for any t > 0,

C1(1 + t)−
1

γ −β � Q (m)(d, t) � C2(1 + t)−
1

γ −β .

Lemma 3.7. For any positive integer n in (A2), we have for any t > 0

1∫
0

u2n dx + n(2n − 1)

t∫
0

1∫
0

cβ Q (m)β+1u2n−2u2
x dx ds � Cn, (3.13)

where Cn is a positive constant depending on n, but independent of t.

Proof. Multiplying the third equation of (2.7) by 2nu2n−1 and integrating the resulting equation with
respect to x over [0,1], we have
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d

dt

1∫
0

u2n dx + 2n
(
u2n−1 P (c,m)

)∣∣1
0 − 2n(2n − 1)

1∫
0

cγ Q (m)γ u2n−2ux dx

= 2n
(
u2n−1 E(c,m)ux

)∣∣1
0 − 2n(2n − 1)

1∫
0

cβ Q (m)β+1u2n−2u2
x dx. (3.14)

Using the boundary conditions (2.8) or (2.10), we have

d

dt

1∫
0

u2n dx + 2n(2n − 1)

1∫
0

cβ Q (m)β+1u2n−2u2
x dx = 2n(2n − 1)

1∫
0

cγ Q (m)γ u2n−2ux dx. (3.15)

Integrating (3.15) with respect to t over [0, t], we get

1∫
0

u2n dx + 2n(2n − 1)

t∫
0

1∫
0

cβ Q (m)β+1u2n−2u2
x dx ds

=
1∫

0

u2n
0 dx + 2n(2n − 1)

t∫
0

1∫
0

cγ Q (m)γ u2n−2ux dx ds. (3.16)

Applying Cauchy–Schwarz inequality to the last term in (3.16) yields

1∫
0

u2n dx + n(2n − 1)

t∫
0

1∫
0

cβ Q (m)β+1u2n−2u2
x dx ds

�
1∫

0

u2n
0 dx + n(2n − 1)

t∫
0

1∫
0

c2γ −β Q (m)2γ −β−1u2n−2 dx ds. (3.17)

Now we estimate the last term on the right-hand side in (3.17) as follows:

n(2n − 1)

t∫
0

1∫
0

c2γ −β Q (m)2γ −β−1u2n−2 dx ds

= n(2n − 1)

t∫
0

1∫
0

c
γ
n +γ −β Q (m)

γ
n +γ −β−1c

n−1
n γ Q (m)

n−1
n γ u2n−2 dx ds

� (2n − 1)

t∫
0

1∫
0

cγ +n(γ −β) Q (m)γ +n(γ −β−1) dx ds + (n − 1)(2n − 1)

t∫
0

1∫
0

cγ Q (m)γ u2n dx ds

= (2n − 1)

t∫ 1∫ (
c Q (m)

)n(γ −β−1)
cn(c Q (m)

)γ
dx ds + (n − 1)(2n − 1)

t∫ 1∫
cγ Q (m)γ u2n dx ds
0 0 0 0
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� C

t∫
0

max[0,1]
(
c Q (m)

)γ
ds + C

t∫
0

max[0,1]
(
c Q (m)

)γ 1∫
0

u2n dx ds

� C + C

t∫
0

max[0,1]
(
c Q (m)

)γ 1∫
0

u2n dx ds. (3.18)

Here we have used the Young inequality ab � ap

p + bq

q , where 1
p + 1

q = 1, p,q > 1, a,b � 0, the as-
sumption (A4), (3.8) and (3.9).

Substituting (3.18) into (3.17), we have

1∫
0

u2n dx + n(2n − 1)

t∫
0

1∫
0

cβ Q (m)β+1u2n−2u2
x dx ds

� C + C

t∫
0

max[0,1]
(
c Q (m)

)γ 1∫
0

u2n dx ds. (3.19)

By (3.19), (3.9) and Gronwall’s inequality, we have

1∫
0

u2n dx � Cn, (3.20)

where Cn is a positive constant depending on n, but independent of t .
(3.19) and (3.20) show that (3.13) holds and this completes the proof of Lemma 3.7. �

Lemma 3.8. We have the following uniform estimate on the derivative of the function c Q (m),

1∫
0

((
c Q (m)

)β)2
x dx +

1∫
0

t∫
0

((
c Q (m)

) β+γ
2

)2
x ds dx � C . (3.21)

Proof. From (2.7), we have

((
c Q (m)

)β)
xt = (

β
(
c Q (m)

)β−1(
c Q (m)

)
t

)
x

= (
βcβ Q (m)β−1 Q (m)t

)
x

= −βρl
(
cβ Q (m)β+1ux

)
x

= −βρl
(
ut + P (c,m)x

)
. (3.22)

Multiplying (3.22) by ((c Q (m))β)x , integrating the resulting equation over [0,1]× [0, t] and integrat-
ing by parts, we get
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1

2

1∫
0

((
c Q (m)

)β)2
x dx = 1

2

1∫
0

((
c0 Q (m0)

)β)2
x dx − βρl

1∫
0

u
((

c Q (m)
)β)

x dx

+ βρl

1∫
0

u0
((

c0 Q (m0)
)β)

x dx + βρl

1∫
0

t∫
0

u
((

c Q (m)
)β)

xt ds dx

− 4γ β2ρl

(β + γ )2

1∫
0

t∫
0

((
c Q (m)

) β+γ
2

)2
x ds dx. (3.23)

Substituting (3.22) into (3.23), we have

1

2

1∫
0

((
c Q (m)

)β)2
x dx + 4γ β2ρl

(β + γ )2

1∫
0

t∫
0

((
c Q (m)

) β+γ
2

)2
x ds dx

= 1

2

1∫
0

((
c0 Q (m0)

)β)2
x dx − βρl

1∫
0

u
((

c Q (m)
)β)

x dx

+ βρl

1∫
0

u0
((

c0 Q (m0)
)β)

x dx − (βρl)
2

1∫
0

t∫
0

uut ds dx

− (βρl)
2

1∫
0

t∫
0

u
((

c Q (m)
)γ )

x ds dx

= 1

2

1∫
0

((
c0 Q (m0)

)β)2
x dx − βρl

1∫
0

u
((

c Q (m)
)β)

x dx

+ βρl

1∫
0

u0
((

c0 Q (m0)
)β)

x dx − (βρl)
2

2

1∫
0

u2 dx + (βρl)
2

2

1∫
0

u2
0 dx

− (βρl)
2

t∫
0

{(
c Q (m)

)γ
(1, s)u(1, s) − (

c Q (m)
)γ

(0, s)u(0, s)
}

ds

+ (βρl)
2

1∫
0

t∫
0

(
c Q (m)

)γ
ux ds dx =

i=7∑
i=1

J i . (3.24)

Now we estimate J1– J7 as follows:
First, by the assumptions (A1)–(A3), or (A1)

′–(A3), Lemma 3.2, Lemma 3.3, Corollary 3.4 and
Cauchy–Schwarz inequality, we have
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J1 � C,

J2 � 1

4

1∫
0

((
c Q (m)

)β)2
x dx + C

1∫
0

u2 dx � C + 1

4

1∫
0

((
c Q (m)

)β)2
x dx,

J3 � C

1∫
0

((
c0 Q (m0)

)β)2
x dx + C

1∫
0

u2
0 dx � C,

J4 � C,

J5 � C,

J7 � C

t∫
0

1∫
0

c0(x)cβ Q (m)β+1u2
x dx ds + C

t∫
0

1∫
0

(
c Q (m)

)2γ −β−1
dx ds

� C max[0,1] c0(x)

t∫
0

1∫
0

cβ Q (m)β+1u2
x dx ds + C max[0,1]×[0,t]

(
c Q (m)

)γ −β−1
t∫

0

max[0,1]
(
c Q (m)

)γ
ds

� C .

(3.25)

Now we estimate J6, which is divided into two cases:
Case 1. When the initial masses connect to vacuum continuously (corresponding to the boundary

condition (2.10)), we have J6 = 0.
Case 2. When the initial masses connect to vacuum discontinuously (corresponding to the bound-

ary condition (2.8)), we have by Young inequality and Lemma 3.5

J6 = −(βρl)
2

t∫
0

(
c Q (m)

)γ −β
(1, s)

((
c Q (m)

)β
(1, s)u(1, s)

)
ds

+ (
βρl

)2
t∫

0

((
c Q (m)

)γ −β
(0, s)

(
c Q (m)

)β
(0, s)u(0, s)

)
ds

� C

t∫
0

{∣∣(c Q (m)
)nβ

(1, s)un(1, s)
∣∣ + ∣∣(c Q (m)

)nβ
(0, s)un(0, s)

∣∣}ds

+ C

t∫
0

{(
c Q (m)

)(γ −β) n
n−1 (1, s) + (

c Q (m)
)(γ −β) n

n−1 (0, s)
}

ds

� C + C

t∫
0

∥∥(
c Q (m)

)nβ
(·, s)un(·, s)

∥∥
L∞([0,1]) ds. (3.26)

Substituting (3.25) and (3.26) into (3.24), we have for Case 1 and Case 2

1

2

1∫ ((
c Q (m)

)β)2
x dx + 4γ β2ρl

(β + γ )2

1∫ t∫ ((
c Q (m)

) β+γ
2

)2
x ds dx � C + J8, (3.27)
0 0 0
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where

J8 = C

t∫
0

∥∥(
c Q (m)

)nβ
(·, s)un(·, s)

∥∥
L∞([0,1]) ds.

By the embedding theorem W 1,1([0,1]) ↪→ L∞([0,1]), we have

J8 � C

t∫
0

1∫
0

(
c Q (m)

)nβ
un(x, s)dx ds + C

t∫
0

1∫
0

((
c Q (m)

)nβ
un(x, s)

)
x dx ds

� C

t∫
0

1∫
0

(
c Q (m)

)γ
u2n(x, s)dx ds + C

t∫
0

1∫
0

(
c Q (m)

)2nβ−γ
dx ds

+
t∫

0

1∫
0

nβ
(
c Q (m)

)nβ−1(
c Q (m)

)
xun(x, s)dx ds +

t∫
0

1∫
0

n
(
c Q (m)

)nβ
un−1ux dx ds

� C

t∫
0

max[0,1]
(
c Q (m)

)γ ( 1∫
0

u2n dx

)
ds + C

t∫
0

max[0,1]
(
c Q (m)

)γ 1∫
0

(
c Q (m)

)2nβ−2γ
dx ds

+ C

t∫
0

1∫
0

(
c Q (m)

)2nβ−γ −β
u2n dx ds + 2γ β2ρl

(β + γ )2

1∫
0

t∫
0

((
c Q (m)

) β+γ
2

)2
x ds dx

+ C

t∫
0

1∫
0

(
c Q (m)

)β+1
u2n−2u2

x dx ds + C

t∫
0

1∫
0

(
c Q (m)

)2nβ−β−1
dx ds

� C + max
(
c Q (m)

)2nβ−2γ −β

t∫
0

max[0,1]
(
c Q (m)

)γ ( 1∫
0

u2n dx

)
ds

+ 2γ β2ρl

(β + γ )2

1∫
0

t∫
0

((
c Q (m)

) β+γ
2

)2
x ds dx + C max

(
c0(x)

) t∫
0

1∫
0

cβ Q (m)β+1u2n−2u2
x dx ds

+ C max
(
c Q (m)

)2nβ−β−1−γ

t∫
0

max[0,1]
(
c Q (m)

)γ
ds

� C + 2γ β2ρl

(β + γ )2

1∫
0

t∫
0

((
c Q (m)

) β+γ
2

)2
x ds dx. (3.28)

Here we have used Lemma 3.3, Corollary 3.4, Lemma 3.7, and n � 2γ +β
2β

.
Substituting (3.28) into (3.27), we get (3.21). This proves Lemma 3.8. �
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3.2. Asymptotic behavior of c Q (m)

To apply the uniform estimates obtained above to study the asymptotic behavior of the mass
functions m(x, t), n(x, t) with respect to the time t , we introduce the following lemma. The proof is
quite simple and the detail is omitted.

Lemma 3.9. Suppose that g(t) � 0 for t � 0, g(t) ∈ L1(0,∞) and g′(t) ∈ L1(0,∞). Then limt→∞ g(t) = 0.

Now we prove Theorem 2.2. Let

g(t) =
1∫

0

(
c Q (m)

)γ
(x, t)dx. (3.29)

Integrating (3.9) with respect to x over [0,1], we have

t∫
0

1∫
0

(
c Q (m)

)γ
(x, s)dx ds � C, (3.30)

which implies g(t) ∈ L1(0,∞).
Now we prove g′(t) ∈ L1(0,∞). By the second equation of (2.7) and using Cauchy–Schwarz in-

equality, we obtain

∞∫
0

∣∣g′(t)
∣∣dt = γ

∞∫
0

∣∣∣∣∣
1∫

0

(
c Q (m)

)γ −1
c(x)Q (m)t dy

∣∣∣∣∣dt

=
∞∫

0

∣∣∣∣∣
1∫

0

γρlc
γ Q (m)γ +1ux dx

∣∣∣∣∣dt

� C

∞∫
0

1∫
0

cβ Q (m)1+βu2
x dx dt + C

∞∫
0

1∫
0

c2γ −β Q (m)2γ +1−β dx dt. (3.31)

By (3.8), (3.9), and the assumptions (A1) or (A1)
′ , we can estimate the last term on the right-hand

side in (3.31) as follows:

t∫
0

1∫
0

c2γ −β Q (m)2γ +1−β dx ds �
t∫

0

max[0,1]
(
c Q (m)

)γ 1∫
0

cγ −β Q (m)γ +1−β dx ds

� max[0,1]×[0,t]
(
c Q (m)

)γ +1−β

( 1∫
0

1

c0(x)
dx

) t∫
0

max[0,1]
(
c Q (m)

)γ
ds

� C .

Substituting the above inequality into (3.31) and using Lemma 3.2, we deduce g′(t) ∈ L1(0,∞).
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Consequently,

lim
t→∞ g(t) = 0. (3.32)

By (3.32), Lemma 3.3 or Hölder inequality, we have

lim
t→∞

1∫
0

(
c Q (m)

)λ
(x, t)dx = 0, (3.33)

for any 0 < λ < ∞.
Now we prove Theorem 2.2, which is divided into two cases:
Case 1. When the initial masses connect to vacuum continuously (corresponding to the boundary

condition (2.10)), choosing k > β > 0 and applying (3.33), Lemma 3.8 and Hölder inequality, we have

0 �
(
c Q (m)

)k =
x∫

0

((
c Q (m)

)k)
y dy

=
x∫

0

k
(
c Q (m)

)k−β(
c Q (m)

)β−1(
c Q (m)

)
y dy

= k

β

x∫
0

(
c Q (m)

)k−β((
c Q (m)

)β)
y dy

� C

( 1∫
0

(
c Q (m)

)2k−2β
dx

) 1
2
( 1∫

0

((
c Q (m)

)β)2
x dx

) 1
2

� C

( 1∫
0

(
c Q (m)

)2k−2β
dx

) 1
2

→ 0, as t → ∞.

Case 2. When the initial masses connect to vacuum discontinuously (corresponding to the bound-
ary condition (2.8)), choosing k > β > 0 and applying (3.33), Corollary 3.6, Lemma 3.8 and Hölder
inequality, we have

0 �
(
c Q (m)

)k = (
c Q (m)

)k
(0, t) +

x∫
0

((
c Q (m)

)k)
y dy

� C(1 + t)−
k

γ −β +
( 1∫

0

(
c Q (m)

)2k−2β
dx

) 1
2
( 1∫

0

((
c Q (m)

)β)2
x dx

) 1
2

� C(1 + t)−
k

γ −β + C

( 1∫ (
c Q (m)

)2k−2β
dx

) 1
2

→ 0, as t → ∞.
0
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Combining the above two cases, we have

(
c Q (m)

)
(x, t) → 0, as t → ∞,

which implies

lim
t→∞

n

m
· m

ρl − m
= lim

t→∞
n

ρl − m
= 0.

Thus

lim
t→∞n(x, t) = lim

t→∞
n

ρl − m
· (ρl − m) = 0,

and

lim
t→∞m(x, t) = 0,

for any x ∈ [0,1].
This completes the proof of Theorem 2.2.

4. Decay rates of the mass functions

Now we are in the position to estimate the stabilization rates of the mass functions m(x, t), n(x, t)
as t → ∞.

Firstly, since only the decay rates of the mass functions will be discussed, we assume without loss
of generality that

∫ 1
0 u0(y)dy = 0. Otherwise, we set

v = u −
1∫

0

u0(y)dy,

so that the form of (2.7) remains unchanged but
∫ 1

0 v0(y)dy = 0.
Secondly, introduce a new function w(x, t) defined as follows (cf. [13]):

w(x, t) = ρlu(x, t) − 1

1 + t

x∫
0

1

Q (m)
dy + 1

1 + t

1∫
0

x∫
0

1

Q (m)
dy dx. (4.1)

By direct calculation, we have

wx = ρlux − 1

(1 + t)Q (m)
, (4.2)

and

wt + w = ρlut . (4.3)

1 + t
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Here we have used the fact (see (3.1)) that

1∫
0

u(x, t)dx =
1∫

0

u0(x)dx = 0.

Thus the auxiliary functions w and Q (m) satisfy the following

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tc = 0,

∂t Q (m) + Q (m)2∂x w + Q (m)

1 + t
= 0,

∂t w + w

1 + t
= ∂x

(
cβ Q (m)β+1∂x w + (c Q (m))β

1 + t
− ρl

(
c Q (m)

)γ )
.

(4.4)

Then we have

Lemma 4.1. Let (c(x), u(x, t), Q (m)(x, t)) be a global weak solution to the fixed boundary value problem
(2.7), (2.8), (2.9), or (2.7), (2.10), (2.11). Then for any β > 0, γ � 1 + β , the following estimates hold for
any t > 0,

Case I: 0 < β < 1.

1

2
(1 + t)θ

1∫
0

w2 dx + (1 + t)θ−1

1 − β

1∫
0

cβ Q (m)β−1 dx + ρl(1 + t)θ

γ − 1

1∫
0

cγ Q (m)γ −1 dx

+
(

1 − θ

2

) t∫
0

(1 + s)θ−1

1∫
0

w2 dx ds +
t∫

0

(1 + s)θ
1∫

0

cβ Q (m)1+β w2
x dx ds

+ β − θ

1 − β

t∫
0

(1 + s)θ−2

1∫
0

cβ Q (m)β−1 dx ds + ρl
γ − 1 − θ

γ − 1

t∫
0

(1 + s)θ−1

1∫
0

cγ Q (m)γ −1 dx ds

� C, (4.5)

where

θ = min{γ − 1, β} = β. (4.6)

Case II: β = 1.

1

2
(1 + t)θ

1∫
0

w2 dx + ρl(1 + t)θ

γ − 1

1∫
0

cγ Q (m)γ −1 dx

+ (1 − θ

2
)

t∫
(1 + s)θ−1

1∫
w2 dx ds +

1∫
(1 + s)θ

1∫
c Q (m)2 w2

x dx ds
0 0 0 0
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+ ρl
γ − 1 − θ

γ − 1

t∫
0

(1 + s)θ−1

1∫
0

cγ Q (m)γ −1 dx ds

� C + C ln(1 + t), (4.7)

where θ = 1.

Case III: β > 1.

1

2
(1 + t)θ

1∫
0

w2 dx + ρl(1 + t)θ

2(γ − 1)

1∫
0

cγ Q (m)γ −1 dx +
(

1 − θ

2

) t∫
0

(1 + s)θ−1

1∫
0

w2 dx ds

+
t∫

0

(1 + s)θ
1∫

0

cβ Q (m)1+β w2
x dx ds + ρl(γ − 1 − θ)

2(γ − 1)

t∫
0

(1 + s)θ−1

1∫
0

cγ Q (m)γ −1 dx ds

� C + C
(
ln(1 + t)

)l
, (4.8)

where

θ =
⎧⎨
⎩

2, for γ −1
γ −β

> 2,

γ −1
γ −β

, for γ −1
γ −β

� 2,
(4.9)

and l = 0, when γ −1
γ −β

> 2, whereas l = 1, when γ −1
γ −β

� 2.

Proof. Multiplying (4.4)3 by w , integrating the resulting equation with respect to x over [0,1], using
integration by parts, we obtain by the boundary conditions (2.8) or (2.10)

1

2

d

dt

1∫
0

w2 dx + 1

1 + t

1∫
0

w2 dx

=
1∫

0

(
cβ Q (m)β+1 wx

)
x w dx + 1

1 + t

1∫
0

(
cβ Q (m)β

)
x w dx − ρl

1∫
0

(
cγ Q (m)γ

)
x w dx

= cβ Q (m)β+1 wx w
∣∣1
0 + 1

1 + t
cβ Q (m)β w

∣∣∣∣
1

0
− ρlc

γ Q (m)γ w
∣∣1
0

−
1∫

0

cβ Q (m)β+1 w2
x dx − 1

1 + t

1∫
0

cβ Q (m)β wx dx + ρl

1∫
0

cγ Q (m)γ wx dx

= −
1∫

0

cβ Q (m)β+1 w2
x dx − 1

1 + t

1∫
0

cβ Q (m)β wx dx + ρl

1∫
0

cγ Q (m)γ wx dx, (4.10)

i.e.,
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1

2

d

dt

1∫
0

w2 dx + 1

1 + t

1∫
0

w2 dx +
1∫

0

cβ Q (m)β+1 w2
x dx

= − 1

1 + t

1∫
0

cβ Q (m)β wx dx + ρl

1∫
0

cγ Q (m)γ wx dx. (4.11)

Now we will prove (4.5), (4.7) and (4.8).

Case I: 0 < β < 1. (The proof of (4.5).)
Notes that

wx = ρlux − 1

(1 + t)Q (m)
=

(
1

Q (m)

)
t
− 1

(1 + t)Q (m)
.

Thus we can estimate the first and second terms on the right-hand side in (4.11) as following:

− 1

1 + t

1∫
0

cβ Q (m)β wx dx

= − 1

1 + t

1∫
0

cβ Q (m)β
{(

1

Q (m)

)
t
− 1

(1 + t)Q (m)

}
dx

= − 1

(1 − β)(1 + t)

1∫
0

cβ
(

Q (m)β−1)
t dx + 1

(1 + t)2

1∫
0

cβ Q (m)β−1 dx, (4.12)

and

ρl

1∫
0

cγ Q (m)γ wx dx = ρl

1∫
0

cγ Q (m)γ
{(

1

Q (m)

)
t
− 1

(1 + t)Q (m)

}
dx

= ρl

1 − γ

1∫
0

cγ
(

Q (m)γ −1)
t dx − ρl

1 + t

1∫
0

cγ Q (m)γ −1 dx. (4.13)

Substituting (4.12) and (4.13) into (4.11), we get

d

dt

1∫
0

(
w2

2
+ ρl

γ − 1
cγ Q (m)γ −1

)
dx + 1

1 + t

1∫
0

w2 dx

+
1∫

0

cβ Q (m)β+1 w2
x dx + ρl

1 + t

1∫
0

cγ Q (m)γ −1 dx

= 1

(β − 1)(1 + t)

1∫
cβ

(
Q (m)β−1)

t dx + 1

(1 + t)2

1∫
cβ Q (m)β−1 dx. (4.14)
0 0
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Multiplying (4.14) by (1 + t)θ for some θ to be determined later, we deduce for any 0 < β < 1

d

dt

{
1

2
(1 + t)θ

1∫
0

w2 dx + (1 + t)θ−1

1 − β

1∫
0

cβ Q (m)β−1 dx + ρl(1 + t)θ

γ − 1

1∫
0

cγ Q (m)γ −1 dx

}

+
(

1 − θ

2

)
(1 + t)θ−1

1∫
0

w2 dx + (1 + t)θ
1∫

0

cβ Q (m)1+β w2
x dx

+ β − θ

1 − β
(1 + t)θ−2

1∫
0

cβ Q (m)β−1 dx + ρl
γ − 1 − θ

γ − 1
(1 + t)θ−1

1∫
0

cγ Q (m)γ −1 dx

= 0. (4.15)

Taking θ = min{β,γ − 1} = β in (4.15) and integrating (4.15) with respect to t over [0, t], we de-
duce (4.5).

Consequently,

1∫
0

cγ Q (m)γ −1 dx � C(1 + t)−θ . (4.16)

Case II: β = 1. (The proof of (4.7).) Under this case, the first term on the right-hand side in (4.11)
can be rewritten as

− 1

1 + t

1∫
0

c Q (m)wx dx = − 1

1 + t

1∫
0

c Q (m)

{(
1

Q (m)

)
t
− 1

(1 + t)Q (m)

}
dx

= 1

(1 + t)

1∫
0

c
(
ln Q (m)

)
t dx + 1

(1 + t)2

1∫
0

c0(x)dx. (4.17)

Similar to (4.15), we have:

d

dt

{
1

2
(1 + t)θ

1∫
0

w2 dx + ρl(1 + t)θ

γ − 1

1∫
0

cγ Q (m)γ −1 dx

}
+

(
1 − θ

2

)
(1 + t)θ−1

1∫
0

w2 dx

+ (1 + t)θ
1∫

0

c Q (m)2 w2
x dx + ρl

γ − 1 − θ

γ − 1
(1 + t)θ−1

1∫
0

cγ Q (m)γ −1 dx

= d

dt

{
(1 + t)θ−1

1∫
0

c ln
(

Q (m)
)

dx

}
+ (1 + t)θ−2

1∫
0

c0(x)dx

+ (1 − θ)(1 + t)θ−2

1∫
c ln

(
Q (m)

)
dx. (4.18)
0
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By using ln x � x − 1 for any x > 0 and Lemma 3.3, we have

1∫
0

c ln Q (m)dx �
1∫

0

c Q (m)dx � C

and the assumption (A1) or (A1)
′ implies that

1∫
0

c0(x)dx � C .

Taking θ = 1 in (4.18) and integrating (4.18) with respect to t over [0, t], we deduce (4.7).
Consequently,

1∫
0

cγ Q (m)γ −1 dx � C(1 + t)−θ ln(1 + t). (4.19)

Case III: β > 1. (The proof of (4.8).)
Rewrite (4.15) as

d

dt

{
1

2
(1 + t)θ

1∫
0

w2 dx + ρl(1 + t)θ

γ − 1

1∫
0

cγ Q (m)γ −1 dx

}

+
(

1 − θ

2

)
(1 + t)θ−1

1∫
0

w2 dx + (1 + t)θ
1∫

0

cβ Q (m)1+β w2
x dx

+ ρl
γ − 1 − θ

γ − 1
(1 + t)θ−1

1∫
0

cγ Q (m)γ −1 dx

= d

dt

{
(1 + t)θ−1

β − 1

1∫
0

cβ Q (m)β−1 dx

}
+ β − θ

β − 1
(1 + t)θ−2

1∫
0

cβ Q (m)β−1 dx. (4.20)

Integrating (4.20) with respect to t over [0, t], we have

1

2
(1 + t)θ

1∫
0

w2 dx + ρl(1 + t)θ

γ − 1

1∫
0

cγ Q (m)γ −1 dx

+
(

1 − θ

2

) t∫
0

(1 + s)θ−1

1∫
0

w2 dx ds +
t∫

0

(1 + s)θ
1∫

0

cβ Q (m)1+β w2
x dx ds

+ ρl
γ − 1 − θ

γ − 1

t∫
(1 + s)θ−1

1∫
cγ Q (m)γ −1 dx ds
0 0
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= 1

2

1∫
0

w2
0 dx + ρl

γ − 1

1∫
0

cγ
0 Q (m0)

γ −1 dx − 1

β − 1

1∫
0

cβ

0 Q (m0)
β−1 dx

+ (1 + t)θ−1

β − 1

1∫
0

cβ Q (m)β−1 dx + β − θ

β − 1

t∫
0

(1 + s)θ−2

1∫
0

cβ Q (m)β−1 dx ds

= − 1

β − 1

1∫
0

cβ

0 Q (m0)
β−1 dx + 1

2

1∫
0

w2
0 dx + ρl

γ − 1

1∫
0

cγ
0 Q (m0)

γ −1 dx + I1 + I2. (4.21)

By Young inequality, we have

I1 = (1 + t)θ−1

β − 1

1∫
0

cβ Q (m)β−1 dx

= 1

β − 1

1∫
0

(
c Q (m)

)β−1
(1 + t)

(β−1)θ
γ −1 c(1 + t)θ−1− (β−1)θ

γ −1 dx

� ρl(1 + t)θ

2(γ − 1)

1∫
0

cγ Q (m)γ −1 dx + C(1 + t)(θ−1− (β−1)θ
γ −1 )

γ −1
γ −β

1∫
0

c0(x)dx

� ρl(1 + t)θ

2(γ − 1)

1∫
0

cγ Q (m)γ −1 dx + C(1 + t)(θ−1− (β−1)θ
γ −1 )

γ −1
γ −β , (4.22)

and

I2 = β − θ

β − 1

t∫
0

(1 + s)θ−2

1∫
0

cβ Q (m)β−1 dx ds

� ρl(γ − 1 − θ)

2(γ − 1)

t∫
0

(1 + s)θ−1

1∫
0

cγ Q (m)γ −1 dx + C

t∫
0

(1 + s)(θ−2− (β−1)(θ−1)
γ −1 )

γ −1
γ −β ds. (4.23)

Substituting (4.22) and (4.23) into (4.21), we have

1

2
(1 + t)θ

1∫
0

w2 dx + ρl(1 + t)θ

2(γ − 1)

1∫
0

cγ Q (m)γ −1 dx

+
(

1 − θ

2

) t∫
(1 + s)θ−1

1∫
w2 dx ds +

t∫
(1 + s)θ

1∫
cβ Q (m)1+β w2

x dx ds
0 0 0 0
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+ ρl(γ − 1 − θ)

2(γ − 1)

t∫
0

(1 + s)θ−1

1∫
0

cγ Q (m)γ −1 dx ds

� C + C(1 + t)θ− γ −1
γ −β + C

t∫
0

(1 + s)θ−1− γ −1
γ −β ds. (4.24)

Taking θ = 2, when γ −1
γ −β

> 2 in (4.24), we have

1∫
0

cγ Q (m)γ −1 dx � C(1 + t)−θ . (4.25)

Taking θ = γ −1
γ −β

, when γ −1
γ −β

� 2 in (4.24), we have

1∫
0

cγ Q (m)γ −1 dx � C(1 + t)−θ ln(1 + t). (4.26)

This completes the proof of Lemma 4.1. �
Proof of Theorem 2.3. Under the boundary condition (2.8), for 0 < β < 1 or β > 1, γ −1

γ −β
> 2, choosing

some constant 2k = γ − 1 + 2β and using the assumption (A1), Corollary 3.6, Lemma 3.8, (4.16) and
(4.25), we have

(
c Q (m)

)k
(x, t) = (

c Q (m)
)k

(0, t) +
x∫

0

((
c Q (m)

)k)
y(y, t)dy

� C(1 + t)−
k

γ −β + C

( 1∫
0

((
c Q (m)

)β)2
x dx

) 1
2
( 1∫

0

(
c Q (m)

)2k−2β
dx

) 1
2

� C(1 + t)−
k

γ −β + C

( 1∫
0

1

c0
cγ Q (m)γ −1 dx

) 1
2

� C(1 + t)−
k

γ −β + C(1 + t)−
θ
2

� C(1 + t)−
θ
2 , (4.27)

which implies

(
c Q (m)

)
(x, t) � C(1 + t)−

θ
2k = C(1 + t)−

θ
γ −1+2β , (4.28)

i.e.,

n(x, t)

ρ − m(x, t)
� C(1 + t)−

θ
γ −1+2β . (4.29)
l
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Thus

n(x, t) = n(x, t)

ρl − m(x, t)
· (ρl − m(x, t)

)
� C(1 + t)−

θ
γ −1+2β , (4.30)

and

m(x, t) = n(x, t) · c(x)−1 � C(1 + t)−
θ

γ −1+2β , (4.31)

for any x ∈ [0,1].
Similarly, if β = 1 or β > 1, γ −1

γ −β
� 2, we have

(
c Q (m)

)k
(x, t) � C(1 + t)−

θ
2
√

ln(1 + t),

which implies

n(x, t) � C(1 + t)−
θ

γ −1+2β
(
ln(1 + t)

) 1
γ −1+2β , (4.32)

and

m(x, t) � C(1 + t)−
θ

γ −1+2β
(
ln(1 + t)

) 1
γ −1+2β , (4.33)

for any x ∈ [0,1]. Here we have used (4.19) and (4.26).
Under the boundary condition (2.10), for 0 < β < 1 or β > 1, γ −1

γ −β
> 2, choosing some constant

2k1 = γ −1
2 + 2β and using the assumptions (A1)

′ , Lemma 3.8, (4.16), (4.25) and Hölder’s inequality,
we have

(
c Q (m)

)k1
(x, t) =

x∫
0

((
c Q (m)

)k1
)

y(y, t)dy

� C

( 1∫
0

((
c Q (m)

)β)2
x dx

) 1
2
( 1∫

0

(
c Q (m)

)2k1−2β
dx

) 1
2

� C

( 1∫
0

1

c
1
2

· c
γ
2 Q (m)

γ −1
2 dx

) 1
2

� C

( 1∫
0

cγ Q (m)γ −1 dx

) 1
4
( 1∫

0

1

c0(x)
dx

) 1
4

� C(1 + t)−
θ
4 , (4.34)

which implies

(
c Q (m)

)
(x, t) � C(1 + t)

− θ
4k1 = C(1 + t)−

θ
γ −1+4β , (4.35)

i.e.,
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n(x, t)

ρl − m(x, t)
� C(1 + t)−

θ
γ −1+4β . (4.36)

Thus

n(x, t) = n(x, t)

ρl − m(x, t)
· (ρl − m(x, t)

)
� C(1 + t)−

θ
γ −1+4β , (4.37)

and

m(x, t) � C(1 + t)−
θ

γ −1+4β , (4.38)

for any x ∈ [0,1].
Similarly, if β = 1 or β > 1, γ −1

γ −β
� 2, we have

(
c Q (m)

)k1
(x, t) � C(1 + t)−

θ
4
(
ln(1 + t)

) 1
4 ,

then

n(x, t) � C(1 + t)−
θ

γ −1+4β
(
ln(1 + t)

) 1
γ −1+4β , (4.39)

and

m(x, t) � C(1 + t)−
θ

γ −1+4β
(
ln(1 + t)

) 1
γ −1+4β , (4.40)

for any x ∈ [0,1]. Here we have used (4.19) and (4.26).
The proof of Theorem 2.3 is completed. �
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