Some Nonlinear Wave Equations with Acoustic Boundary Conditions

Cícero Lopes Frota ${ }^{1}$
Departamento de Matemática, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, PR, Brazil
and
Jerome A. Goldstein

'iew metadata, citation and similar papers at core.ac.uk

We prove the existence and uniqueness of global solutions to the mixed problem for the Carrier equation

$$
u_{t t}-M\left(\int_{\Omega} u^{2} d x\right) \Delta u+\left|u_{t}^{\prime}\right|^{\alpha} u_{t}^{\prime}=0
$$

with acoustic boundary conditions. © 2000 Academic Press

1. INTRODUCTION

Beale and Rosencrans [3] introduced acoustic boundary conditions into the rigorous wave propagation literature, and Beale carried out a detailed analysis of them for the wave equation in both bounded domains [1] and exterior domains [2]. See also [8] for a classical heuristic discussion. The idea is that each boundary point acts as a spring. The boundary is "locally reacting" in that these springs do not influence one another. Think of the solution of the wave equation $u_{t t}=c^{2} \Delta u$ as the velocity potential of a fluid (in three dimensions) undergoing acoustic wave motion; the acoustic boundary condition says that each point on the boundary reacts to the

[^0]$$
92
$$
excess pressure of the wave like a resistive harmonic oscillator. The precise formulation is
\[

$$
\begin{equation*}
\rho u_{t}+f \delta_{t t}+g \delta_{t}+h \delta=0 \tag{1}
\end{equation*}
$$

\]

here $\delta(x, t)$ is the normal displacement to the boundary at time t with the boundary point x, ρ is the fluid density, and f, g, h are nonnegative functions on the boundary with f, h strictly positive. Condition (1) must be coupled with a condition expressing the impenetrability of the boundary,

$$
\begin{equation*}
\frac{\partial u}{\partial v}=\delta_{t}, \tag{2}
\end{equation*}
$$

on the boundary for all time; here v is the unit outer normal. The wave equation with (1), (2) is governed by a (C_{0}) contraction semigroup (or unitary group if $g \equiv 0$) on a "four-component" Hilbert space of vectors ($u, u_{t}, \delta, \delta_{t}$) with a suitable energy norm (cf. [1-3]).

These acoustic boundary conditions have great intuitive appeal. It is easy to imagine a music hall designed with these conditions in mind, but with a portion of the boundary (e.g., the floor) absorbing.

We shall consider problems of this sort, with a homogeneous Dirichlet condition on a portion of the boundary and acoustic boundary conditions on the rest of the boundary. Our result will be new when specialized to $u_{t t}=c^{2} \Delta u$. But we shall work in a much more general context, namely, that of nonlinear wave equations related to problems studied earlier by Kirchhoff, Carrier, and others (see [4, 5]). The equation we consider is

$$
\begin{equation*}
u_{t t}-M\left(\int_{\Omega} u^{2} d x\right) \Delta u+C\left|u_{t}\right|^{\alpha} u_{t}=0 ; \tag{3}
\end{equation*}
$$

here $x \in \Omega \subset \mathbf{R}^{n}$ and $0 \leqslant t \leqslant T$, where u is a position function on $\mathbf{R}^{+}=$ $[0, \infty)$ and Ω is a smooth bounded domain. The boundary $\partial \Omega=\Gamma$ is made up of two disjoint pieces, Γ_{0}, Γ_{1}, each having nonnempty interior. The Dirichlet condition $u(x, t)=0$ is imposed for $(x, t) \in \Gamma_{0} \times[0, T]$, while the acoustic boundary conditions (2), (3) are imposed for $(x, t) \in \Gamma_{1} \times[0, T]$. Here T is any fixed but otherwise arbitrary positive number. Thus we are dealing with global existence.

2. EXISTENCE THEORY

Let $\Omega \subset \mathbf{R}^{n}$ be a bounded open connected set with a (sufficiently) smooth boundary $\Gamma=\partial \Omega$. Suppose $\Gamma=\Gamma_{0} \cup \Gamma_{1}$ where Γ_{0} is a measurable subset of
Γ such that meas $\left(\Gamma_{0}\right)>0$, and $\Gamma_{1}=\Gamma \backslash \Gamma_{0}$. We shall study the existence and uniqueness of solutions to the initial boundary value problem

$$
\begin{array}{ll}
u^{\prime \prime}-M\left(\int_{\Omega} u^{2} d x\right) \Delta u+C\left|u^{\prime}\right|^{\alpha} u^{\prime}=0 & \text { in } Q=\Omega \times(0, T) ; \\
u=0 & \text { on } \Sigma_{0}=\Gamma_{0} \times(0, T) ; \\
\rho u^{\prime}+f \delta^{\prime \prime}+g \delta^{\prime}+h \delta=0 & \text { on } \Sigma_{1}=\Gamma_{1} \times(0, T) ; \\
\frac{\partial u}{\partial v}-\delta^{\prime}=0 & \text { on } \Sigma_{1}=\Gamma_{1} \times(0, T) ; \\
u(x, 0)=u_{0}(x), & u^{\prime}(x, 0)=u_{1}(x) \text { in } \Omega .
\end{array}
$$

Here ${ }^{\prime}=\frac{\partial}{\partial t} ; \rho$ and T are positive constants; C is a nonnegative constant; $f(x), g(x)$, and $h(x)$ are continuous real functions on $\bar{\Gamma}_{1}$ such that $f(x)>0, h(x)>0$ and $g(x) \geqslant 0$ for all $x \in \bar{\Gamma}_{1}$; and $M \in C^{1}([0, \infty) ; \mathbf{R})$ satisfies

$$
0<m_{0} \leqslant M(\lambda), \quad \frac{\left|M^{\prime}(\lambda) \lambda^{1 / 2}\right|}{M(\lambda)} \leqslant k_{0}, \quad \text { for all } \lambda \geqslant 0 ;
$$

Where m_{0} and k_{0} are constants.
We employ the usual notation for the standard functional spaces (see [7]). The inner product and norm on $L^{2}(\Omega)$ and $L^{2}(\Gamma)$ are denoted by $(\cdot, \cdot),\|\cdot\|$ and $(\cdot, \cdot)_{\Gamma},\|\cdot\|_{\Gamma}$ respectively. We denote the Hilbert space $H(\Delta, \Omega)=\left\{u \in H^{1}(\Omega) ; \Delta u \in L^{2}(\Omega)\right\}$, provided with the norm

$$
\|u\|_{H(\Lambda, \Omega)}=\left(\|u\|_{H^{1}(\Omega)}^{2}+\|\Delta u\|^{2}\right)^{1 / 2}
$$

where $H^{1}(\Omega)$ is the usual real Sobolev space of first order.
$\gamma_{0}: H^{1}(\Omega) \rightarrow H^{1 / 2}(\Gamma)$ and $\gamma_{1}: H(\Delta, \Omega) \rightarrow H^{-1 / 2}(\Gamma)$ are the trace map of order zero and the Neumann trace map on $H(\Delta, \Omega)$, respectively. Therefore

$$
\gamma_{0}(u)=u_{\mid \Gamma}, \gamma_{1}(u)=\left(\frac{\partial u}{\partial v}\right)_{\mid \Gamma} \quad \text { for all } \quad u \in \mathscr{D}(\bar{\Omega}),
$$

and the generalized Green's formula

$$
\int_{\Omega}(-\Delta u) \cdot v d x=\sum_{i=1}^{n} \int_{\Omega} \frac{\partial u}{\partial x_{i}} \cdot \frac{\partial v}{\partial x_{i}} d x-\left\langle\gamma_{1}(u), \gamma_{0}(v)\right\rangle_{H^{-1 / 2}(\Gamma) \times H^{1 / 2}(\Gamma)}
$$

holds for all $u \in H(\Delta, \Omega)$ and $v \in H^{1}(\Omega)$.
We denote by V the closure in $H^{1}(\Omega)$ of $\left\{u \in C^{1}(\bar{\Omega}) ; u=0\right.$ on $\left.\Gamma_{0}\right\}$. Since Ω is a regular connected domain we have that $V=\left\{u \in H^{1}(\Omega)\right.$;
$\gamma_{0}(u)=0$ a.e. on $\left.\Gamma_{0}\right\}, V$ is a closed subspace of $H^{1}(\Omega)$, the Poincaré inequality holds on V , and the norm

$$
\|u\|_{V}=\left(\sum_{i=1}^{n} \int_{\Omega}\left(\frac{\partial u}{\partial x_{i}}\right)^{2} d x\right)^{1 / 2}
$$

is equivalent to the usual norm from $H^{1}(\Omega)$.
Theorem 1. Let $\alpha>1, u_{0} \in V \cap H^{2}(\Omega), u_{1} \in V \cap L^{2 \alpha+2}(\Omega)$ be given. Then there exists a pair of functions $(u(x, t), \delta(x, t))$ which comprise a solution to the problem (4)-(8) in the class

$$
\begin{align*}
u & \in L^{\infty}(0, T ; V) ; \quad u(t) \in H(\Delta, \Omega) \quad \text { a.e. in }[0, T] ; \tag{9}\\
u^{\prime} & \in L^{\infty}(0, T ; V) \cap L^{\alpha+2}\left(0, T ; L^{\alpha+2}(\Omega)\right) ; \tag{10}\\
u^{\prime \prime} & \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) ; \tag{11}\\
\delta, \delta^{\prime}, \delta^{\prime \prime} & \in L^{\infty}\left(0, T ; L^{2}(\Gamma)\right) . \tag{12}
\end{align*}
$$

Proof. Let $\left\{\omega_{j}\right\}_{j \in \mathbf{N}},\left\{z_{j}\right\}_{j \in \mathbf{N}}$ be orthonormal bases of V and $L^{2}(\Gamma)$, respectively. For each $m \in \mathbf{N}$ we consider

$$
\begin{array}{ll}
u_{m}(x, t)=\sum_{j=1}^{m} \xi_{j m}(t) \omega_{j}(x), & x \in \Omega \quad \text { and } \quad t \in\left[0, T_{m}\right], \\
\delta_{m}(x, t)=\sum_{j=1}^{m} \beta_{j m}(t) z_{j}(x), \quad x \in \Gamma \quad \text { and } \quad t \in\left[0, T_{m}\right],
\end{array}
$$

which are solutions to the approximate problem

$$
\begin{aligned}
& \quad\left(u_{m}^{\prime \prime}(t), \omega_{j}\right)+M\left(\left\|u_{m}(t)\right\|^{2}\right)\left[\left(\nabla u_{m}(t), \quad \nabla \omega_{j}\right)-\left(\delta_{m}^{\prime}(t), \gamma_{0}\left(\omega_{j}\right)\right)_{\Gamma}\right] \\
& \quad+C\left(\left|u_{m}^{\prime}(t)\right|^{\alpha} u_{m}^{\prime}(t), \omega_{j}\right)=0, \quad 1 \leqslant j \leqslant m ;
\end{aligned} \quad \begin{aligned}
& \\
& \left(\rho \gamma_{0}\left(u_{m}^{\prime}(t)\right)+f \delta_{m}^{\prime \prime}(t)+g \delta_{m}^{\prime}(t)+h \delta_{m}(t), z_{j}\right)_{\Gamma}=0, \quad 1 \leqslant j \leqslant m ; \\
& u_{m}(0)=u_{0 m}, \quad u_{m}^{\prime}(0)=u_{1 m}, \quad \delta_{m}(0)=\delta_{0}, \quad \delta_{m}^{\prime}(0)=\gamma_{1}\left(u_{0 m}\right),
\end{aligned}
$$

where $\delta_{0} \in L^{2}(\Gamma), u_{0 m}=\sum_{j=1}^{m}\left(u_{0}, \omega_{j}\right) \omega_{j}, u_{1 m}=\sum_{j=1}^{m}\left(u_{1}, \omega_{j}\right) \omega_{j}$, and $0<$ $T_{m} \leqslant T$.

Therefore we have the approximate equations

$$
\begin{equation*}
\frac{\left(u_{m}^{\prime \prime}(t), \omega\right)}{M\left(\left\|u_{m}(t)\right\|^{2}\right)}+\left(\nabla u_{m}(t), \nabla \omega\right)-\left(\delta_{m}^{\prime}(t), \gamma_{0}(\omega)\right)_{\Gamma}+C \frac{\left(\left|u_{m}^{\prime}(t)\right|^{\alpha} u_{m}^{\prime}(t), \omega\right)}{M\left(\left\|u_{m}(t)\right\|^{2}\right)}=0 \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\left(\gamma_{0}\left(u_{m}^{\prime}(t)\right), z\right)_{\Gamma}=-\frac{1}{\rho}\left(f \delta_{m}^{\prime \prime}(t)+g \delta_{m}^{\prime}(t)+h \delta_{m}(t), z\right)_{\Gamma}, \tag{14}
\end{equation*}
$$

for all $\omega \in\left[\omega_{1}, \ldots, \omega_{m}\right]=\operatorname{Span}\left\{\omega_{1}, \ldots, \omega_{m}\right\}$ and $z \in\left[z_{1}, \ldots, z_{m}\right]$. The local existence (for some $T_{m}>0$) is standard.

Estimate 1. Taking $\omega=2 u_{m}^{\prime}(t)$ in (13) and $z=2 \delta_{m}^{\prime}(t)$ in (14) we have

$$
\begin{aligned}
\frac{d}{d t}[& \left.\frac{\rho\left\|u_{m}^{\prime}(t)\right\|^{2}}{M\left(\left\|u_{m}(t)\right\|^{2}\right)}+\rho\left\|u_{m}(t)\right\|_{V}^{2}+\left\|f^{1 / 2} \delta_{m}^{\prime}(t)\right\|_{\Gamma}^{2}+\left\|h^{1 / 2} \delta_{m}(t)\right\|_{\Gamma}^{2}\right] \\
& +\frac{2 \rho C\left\|u_{m}^{\prime}(t)\right\|_{L^{\alpha+2}(\Omega)}^{\alpha+2}}{M\left(\left\|u_{m}(t)\right\|^{2}\right)} \\
= & -\frac{2 \rho M^{\prime}\left(\left\|u_{m}(t)\right\|^{2}\right)}{\left(M\left(\left\|u_{m}(t)\right\|^{2}\right)\right)^{2}}\left(u_{m}^{\prime}(t), u_{m}(t)\right)\left\|u_{m}^{\prime}(t)\right\|^{2}-\left\|g^{1 / 2} \delta_{m}^{\prime}(t)\right\|_{\Gamma}^{2} \\
\leqslant & \frac{C_{1}}{M\left(\left\|u_{m}(t)\right\|^{2}\right)}\left\|u_{m}^{\prime}(t)\right\|_{L^{\alpha+2}(\Omega)}^{3}+\left\|g^{1 / 2} \delta_{m}^{\prime}(t)\right\|_{\Gamma}^{2} .
\end{aligned}
$$

Since $\alpha>1$, it is elementary to see that there exists a function $C_{2}:(0, \infty) \rightarrow(0, \infty)$ such that

$$
C_{1}\left\|u_{m}^{\prime}(t)\right\|_{L^{\alpha+2}(\Omega)}^{3} \leqslant C_{2}(\varepsilon)+\varepsilon\left\|u_{m}^{\prime}(t)\right\|_{L^{\alpha+2}(\Omega)}^{\alpha+2} \quad \text { for all } \quad \varepsilon>0 .
$$

After we have chosen $\varepsilon>0$ sufficiently small, we get, for some constants $C_{3}, C_{4}>0$,

$$
\begin{gathered}
\frac{d}{d t}\left[\frac{\rho\left\|u_{m}^{\prime}(t)\right\|^{2}}{M\left(\left\|u_{m}(t)\right\|^{2}\right)}+\rho\left\|u_{m}(t)\right\|_{V}^{2}+\left\|f^{1 / 2} \delta_{m}^{\prime}(t)\right\|_{\Gamma}^{2}+\left\|h^{1 / 2} \delta_{m}(t)\right\|_{\Gamma}^{2}\right] \\
+C_{3} \frac{\left\|u_{m}^{\prime}(t)\right\|_{L^{\alpha+2}(\Omega)}^{\alpha+2}}{M\left(\left\|u_{m}(t)\right\|^{2}\right)} \leqslant C_{4}+\left\|g^{1 / 2} \delta_{m}^{\prime}(t)\right\|_{\Gamma}^{2} .
\end{gathered}
$$

Integrating this from 0 to $t \leqslant T_{m}$ we find

$$
\begin{align*}
& \frac{\rho\left\|u_{m}^{\prime}(t)\right\|^{2}}{M\left(\left\|u_{m}(t)\right\|^{2}\right)}+\rho\left\|u_{m}(t)\right\|_{V}^{2}+\left\|f^{1 / 2} \delta_{m}^{\prime}(t)\right\|_{\Gamma}^{2}+\left\|h^{1 / 2} \delta_{m}(t)\right\|_{\Gamma}^{2} \\
& \quad+C_{3} \int_{0}^{t} \frac{\left\|u_{m}^{\prime}(s)\right\|_{L^{\alpha+2}(\Omega)}^{\alpha+2}}{M\left(\left\|u_{m}(s)\right\|^{2}\right)} d s \leqslant C_{5}\left(1+\int_{0}^{t}\left\|\delta_{m}^{\prime}(s)\right\|_{\Gamma}^{2} d s\right), \tag{15}
\end{align*}
$$

where C_{5} is a positive constant which depends on u_{0}, u_{1}, M, T and $\|g\|_{L^{\infty}(\Gamma)}$.

From (15), Gronwall's inequality gives

$$
\left\|\delta_{m}^{\prime}(t)\right\|_{\Gamma}^{2} \leqslant C_{6} .
$$

This and (15) imply that there exists a constant C_{7} independent of m and $t \in\left[0, T_{m}\right]$ such that

$$
\begin{aligned}
& \frac{\rho\left\|u_{m}^{\prime}(t)\right\|^{2}}{M\left(\left\|u_{m}(t)\right\|^{2}\right)}+\rho\left\|u_{m}(t)\right\|_{V}^{2}+\left\|f^{1 / 2} \delta_{m}^{\prime}(t)\right\|_{\Gamma}^{2}+\left\|h^{1 / 2} \delta_{m}(t)\right\|_{\Gamma}^{2} \\
& \quad+C_{3} \int_{0}^{t} \frac{\left\|u_{m}^{\prime}(s)\right\|_{L^{\alpha+2}(\Omega)}^{\alpha+2}}{M\left(\left\|u_{m}(s)\right\|^{2}\right)} d s \leqslant C_{7} .
\end{aligned}
$$

Using this and the Poincaré inequality we can see that there exists a constant M_{0}, independent of m and t, such that

$$
\begin{equation*}
m_{0} \leqslant M\left(\left\|u_{m}(t)\right\|^{2}\right) \leqslant M_{0} . \tag{16}
\end{equation*}
$$

Thus there exists a constant C_{8} such that

$$
\begin{equation*}
\left\|u_{m}^{\prime}(t)\right\|^{2}+\left\|u_{m}(t)\right\|_{V}^{2}+\left\|\delta_{m}^{\prime}(t)\right\|_{\Gamma}^{2}+\mid \delta_{m}(t)\left\|_{\Gamma}^{2}+\int_{0}^{t}\right\| u_{m}^{\prime}(s) \|_{L^{\alpha+2}(\Omega)}^{\alpha+2} d s \leqslant C_{8} \tag{17}
\end{equation*}
$$

which completes the first estimate. Taking into account (17) we can extend the approximate solutions u_{m} and δ_{m} to the whole interval $[0, T]$.

Estimate 2. Taking $t=0$ in (13) and (14) we get

$$
\begin{aligned}
\left(u_{m}^{\prime \prime}(0), \omega\right)-M\left(\left\|u_{0 m}\right\|^{2}\right)\left(\Delta u_{0 m}, \omega\right)+C\left(\left|u_{1 m}\right|^{\alpha} u_{1 m}, \omega\right) & =0 \\
\left(f \delta_{m}^{\prime \prime}(0), z\right)_{\Gamma}+\left(g \gamma_{1}\left(u_{0 m}\right), z\right)_{\Gamma}+\left(h \delta_{0}, z\right)_{\Gamma}+\rho\left(\gamma_{0}\left(u_{1 m}\right), z\right)_{\Gamma} & =0 .
\end{aligned}
$$

Putting $\omega=u_{m}^{\prime \prime}(0)$ and $z=\delta_{m}^{\prime \prime}(0)$ we obtain

$$
\begin{aligned}
& \left\|u_{m}^{\prime \prime}(0)\right\|^{2} \leqslant\left(M\left(\left\|u_{0 m}\right\|^{2}\right)\left\|\Delta u_{0 m}\right\|+C\left\|u_{1 m}\right\|_{L^{2 x+2}(\Omega)}^{\alpha+1}\right)\left\|u_{m}^{\prime \prime}(0)\right\|, \\
& \left\|\delta_{m}^{\prime \prime}(0)\right\|_{\Gamma}^{2} \leqslant C_{9}\left(1+\left\|u_{0 m}\right\|_{H^{2}(\Omega)}+\left\|u_{1 m}\right\|_{H^{1}(\Omega)}\right)\left\|\delta_{m}^{\prime \prime}(0)\right\|_{\Gamma} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\|u_{m}^{\prime \prime}(0)\right\|+\left\|\delta_{m}^{\prime \prime}(0)\right\| \leqslant C_{10} . \tag{18}
\end{equation*}
$$

Differentiating (13) and (14) with respect to t and taking $\omega=2 u_{m}^{\prime \prime}(t)$, $z=2 \delta_{m}^{\prime \prime}(t)$ we obtain

$$
\begin{align*}
& \frac{d}{d t}\left[\frac{\rho\left\|u_{m}^{\prime \prime}(t)\right\|^{2}}{M\left(\left\|u_{m}(t)\right\|^{2}\right)}+\rho\left\|u_{m}^{\prime}(t)\right\|_{V}^{2}+\left\|f^{1 / 2} \delta_{m}^{\prime \prime}(t)\right\|_{\Gamma}^{2}+\left\|h^{1 / 2} \delta_{m}^{\prime}(t)\right\|_{\Gamma}^{2}\right] \\
&+\frac{2 \rho(\alpha+1) C\left(\left|u_{m}^{\prime}(t)\right|^{\alpha},\left(u_{m}^{\prime \prime}(t)\right)^{2}\right)}{M\left(\left\|u_{m}(t)\right\|^{2}\right)} \\
&= \frac{2 \rho M^{\prime}\left(\left\|u_{m}(t)\right\|^{2}\right)}{\left(M\left(\left\|u_{m}(t)\right\|^{2}\right)\right)^{2}}\left(u_{m}^{\prime}(t), u_{m}(t)\right)\left\|u_{m}^{\prime \prime}(t)\right\|^{2} \\
&+\frac{4 \rho C M^{\prime}\left(\left\|u_{m}(t)\right\|^{2}\right)}{M\left(\left\|u_{m}(t)\right\|^{2}\right)}\left(u_{m}^{\prime}(t), u_{m}(t)\right)\left(\left|u_{m}^{\prime}(t)\right|^{\alpha} u_{m}^{\prime}(t), u_{m}^{\prime \prime}(t)\right) \\
&-2\left\|g^{1 / 2} \delta_{m}^{\prime \prime}(t)\right\|_{\Gamma}^{2} . \tag{19}
\end{align*}
$$

We observe that

$$
\begin{aligned}
& \frac{2 \rho(\alpha+1) C\left(\left|u_{m}^{\prime}(t)\right|^{\alpha},\left(u_{m}^{\prime \prime}(t)\right)^{2}\right)}{M_{0}} \leqslant \frac{2 \rho(\alpha+1) C\left(\left|u_{m}^{\prime}(t)\right|^{\alpha},\left(u_{m}^{\prime \prime}(t)\right)^{2}\right)}{M\left(\left\|u_{m}(t)\right\|^{2}\right)} ; \\
& \frac{2 \rho M^{\prime}\left(\left\|u_{m}(t)\right\|^{2}\right)}{\left(M\left(\left\|u_{m}(t)\right\|^{2}\right)\right)^{2}}\left(u_{m}^{\prime}(t), u_{m}(t)\right)\left\|u_{m}^{\prime \prime}(t)\right\|^{2} \leqslant C_{11}\left\|u_{m}^{\prime \prime}(t)\right\|^{2} ; \\
& \frac{4 \rho C M^{\prime}\left(\left\|u_{m}(t)\right\|^{2}\right)}{M\left(\left\|u_{m}(t)\right\|^{2}\right)}\left(u_{m}^{\prime}(t), u_{m}(t)\right)\left(\left|u_{m}^{\prime}(t)\right|^{\alpha} u_{m}^{\prime}(t), u_{m}^{\prime \prime}(t)\right) \\
& \leqslant C_{12} \varepsilon\left(\left|u_{m}^{\prime}(t)\right|^{\alpha},\left(u_{m}^{\prime \prime}(t)\right)^{2}\right)+\frac{C_{12}}{\varepsilon}\left\|u_{m}^{\prime}(t)\right\|_{L^{\alpha+2}(\Omega)}^{\alpha+2}, \quad \text { for all } \varepsilon>0 ; \\
& 2\left\|g^{1 / 2} \delta_{m}^{\prime \prime}(t)\right\|_{\Gamma}^{2} \leqslant C_{13}\left\|\delta_{m}^{\prime \prime}(t)\right\|_{\Gamma}^{2} .
\end{aligned}
$$

Choosing $\varepsilon>0$ sufficiently small and applying this to (19) we get

$$
\begin{aligned}
& \frac{d}{d t}\left[\frac{\rho\left\|u_{m}^{\prime \prime}(t)\right\|^{2}}{M\left(\left\|u_{m}(t)\right\|^{2}\right)}+\rho\left\|u_{m}^{\prime}(t)\right\|_{V}^{2}+\left\|f^{1 / 2} \delta_{m}^{\prime \prime}(t)\right\|_{\Gamma}^{2}+\left\|h^{1 / 2} \delta_{m}^{\prime}(t)\right\|_{\Gamma}^{2}\right] \\
& \quad \leqslant C_{14}\left\|u_{m}^{\prime}(t)\right\|_{L^{\alpha+2}(\Omega)}^{\alpha+2}+C_{15}\left(\left\|u_{m}^{\prime \prime}(t)\right\|^{2}+\left\|\delta_{m}^{\prime \prime}(t)\right\|_{\Gamma}^{2}\right) .
\end{aligned}
$$

Integrating over $(0, T)$, using (17), (18), and applying Gronwall's inequality we have

$$
\begin{equation*}
\left\|u_{m}^{\prime \prime}(t)\right\|^{2}+\left\|u_{m}^{\prime}(t)\right\|_{V}^{2}+\left\|\delta_{m}^{\prime \prime}(t)\right\|_{\Gamma}^{2}+\left\|\delta_{m}^{\prime}(t)\right\|_{\Gamma}^{2} \leqslant C_{16} \tag{20}
\end{equation*}
$$

which is the second estimate.
From (17) and (20) there exist a subsequence of $\left(u_{m}\right)_{m \in \mathbf{N}}$ and a subsequence of $\left(\delta_{m}\right)_{m \in \mathbf{N}}$, which we denote by the same notations, and functions u, δ such that

$$
\begin{aligned}
& u_{m} \stackrel{\star}{ }{ }^{u} \quad \text { in } L^{\infty}(0, T ; V) \text {, } \\
& u_{m}^{\prime} \star u^{\prime} \quad \text { in } L^{\infty}(0, T ; V) \text {, } \\
& u_{m}^{\prime} \rightharpoonup u^{\prime} \quad \text { in } L^{\alpha+2}\left(0, T ; L^{\alpha+2}(\Omega)\right) \text {, } \\
& u_{m}^{\prime \prime} \stackrel{\star}{ } u^{\prime \prime} \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \text {, } \\
& \delta_{m} \stackrel{\star}{ } \delta \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Gamma)\right) \text {, } \\
& \delta_{m}^{\prime} \text { 夫 } \delta^{\prime} \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Gamma)\right) \text {, } \\
& \delta_{m}^{\prime \prime} \stackrel{\star}{ } \delta^{\prime \prime} \quad \text { in } L^{\infty}\left(0, T ; L^{2}(\Gamma)\right) \text {. }
\end{aligned}
$$

Since $V \stackrel{c}{\hookrightarrow} L^{2}(\Omega)$, using the compactness theorem of Aubin and Lions [7], we obtain

$$
\begin{array}{lll}
u_{m} \rightarrow u & \text { in } & L^{2}\left(0, T ; L^{2}(\Omega)\right), \\
u_{m}^{\prime} \rightarrow u^{\prime} & \text { in } & L^{2}\left(0, T ; L^{2}(\Omega)\right) .
\end{array}
$$

Taking into account the above convergences and passing to the limit in the approximate equations we have

$$
\begin{align*}
& \mid\left(u^{\prime \prime}(t), \omega\right)+M\left(\|u(t)\|^{2}\right)\left[(\nabla u(t), \nabla \omega)-\left(\delta^{\prime}(t), \gamma_{0}(\omega)\right)_{\Gamma}\right] \\
& \quad+C\left(\left|u^{\prime}(t)\right|^{\alpha} u^{\prime}(t), \omega\right)=0, \tag{21}\\
& \quad\left(\gamma_{0}\left(u^{\prime}(t)\right), z\right)_{\Gamma}=-\frac{1}{\rho}\left(f \delta^{\prime \prime}(t)+g \delta^{\prime}(t)+h \delta(t), z\right)_{\Gamma}, \tag{22}
\end{align*}
$$

for all $\omega \in V, z \in L^{2}(\Gamma)$ a.e. in $[0, T]$.
From (21) we obtain

$$
\begin{aligned}
& \int_{\Omega} u^{\prime \prime}(x, t) \varphi(x) d x-\left\langle M\left(\|u(t)\|^{2}\right) \Delta u(t), \varphi\right\rangle_{\mathscr{D}^{\prime}(\Omega) \times \mathscr{D}(\Omega)} \\
& \quad+\int_{\Omega}\left|u^{\prime}(x, t)\right|^{\alpha} u^{\prime}(x, t) \varphi(x) d x=0, \quad \text { for all } \varphi \in \mathscr{D}(\Omega) \text {, a.e. in }[0, T] .
\end{aligned}
$$

Therefore $\Delta u(t) \in L^{2}(\Omega)$ a.e. in $[0, T]$ and

$$
\begin{equation*}
u^{\prime \prime}-M\left(\|u\|^{2}\right) \Delta u+C\left|u^{\prime}\right|^{\alpha} u^{\prime}=0 \quad \text { a.e. in } Q=\Omega \times(0, T), \tag{23}
\end{equation*}
$$

which shows that u satisfies (4). Since $u(t) \in V$ a.e. in [0, T] we have that (5) is proved. From (22) we can see that u and δ satisfy the boundary condition (6).

Now we shall interpret the sense in which u and δ satisfy (7). Multiplying (23) by $\omega \in V$ and integrating over Ω we find

$$
\left(u^{\prime \prime}(t), \omega\right)-M\left(\|u(t)\|^{2}\right)(\Delta u(t), \omega)+C\left(\left|u^{\prime}(t)\right|^{\alpha} u^{\prime}(t), \omega\right)=0 .
$$

Since $u(t) \in H(\Delta, \Omega)$ a.e. in [$0, T$], using the generalized Green's formula we have

$$
\begin{aligned}
& \left(u^{\prime \prime}(t), \omega\right)+M\left(\|u(t)\|^{2}\right)\left[(\nabla u(t), \nabla \omega)-\left\langle\gamma_{1}(u(t)), \gamma_{0}(\omega)\right\rangle_{H^{-1 / 2}(\Gamma) \times H^{1 / 2}(\Gamma)}\right] \\
& \quad+C\left(\left|u^{\prime}(t)\right|^{\alpha} u^{\prime}(t), \omega\right)=0 .
\end{aligned}
$$

This and (21) give

$$
\begin{equation*}
\left\langle\gamma_{1}(u(t)), \gamma_{0}(\omega)\right\rangle_{H^{-1 / 2}(\Gamma) \times H^{1 / 2}(\Gamma)}=\left(\delta^{\prime}(t), \gamma_{0}(\omega)\right)_{\Gamma}, \tag{24}
\end{equation*}
$$

for all $\omega \in V$ and a.e. in $[0, T]$, which proves (7).
The initial conditions (8) can be proved in a standard way and the proof of Theorem 1 is complete.

Theorem 2 (Uniqueness, regularity, and continuous dependence on the parameters). Let $n \leqslant 3$. Under the hypotheses of Theorem 1, if

$$
\begin{equation*}
\alpha>1 \quad \text { for } \quad n=1,2 \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
1<\alpha \leqslant 2 \quad \text { for } \quad n=3 \tag{26}
\end{equation*}
$$

then for each $u_{0} \in V \cap H^{2}(\Omega)$ and $u_{1} \in V$ there exists a unique pair of functions $(u(x, t), \delta(x, t))$, which is a solution to the problem (4)-(8) in the class

$$
\begin{array}{cl}
u \in C([0, T] ; V) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right) ; & u(t) \in H(\Delta, \Omega) \tag{27}\\
& \text { a.e. in }[0, T] ; \\
u^{\prime} \in L^{\infty}(0, T ; V) ; & u^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega) ;\right. \\
\delta \in C^{1}\left(0, T ; L^{2}(\Gamma)\right) ; & \delta^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Gamma)\right) .
\end{array}
$$

Moreover the solution u, δ depends continuously on the parameters f, g, h, u_{0} and u_{1}.

Proof. Taking into account (25) and (26), the Sobolev imbedding theorem gives $V \subset L^{2 \alpha+2}(\Omega)$. This allows us to get one more estimate for the approximate solutions. Let $\left(u_{m}\right)_{m \in \mathbf{N}}$ and $\left(\delta_{m}\right)_{m \in \mathbf{N}}$ be the approximate solutions as in the proof of Theorem 1. Thus we have the following extra estimate.

Estimate 3. Let μ and m be arbitrary fixed natural numbers, $\mu \geqslant m$. We define $\xi_{j m}(t)=\beta_{j m}(t)=0$ for all $j=m+1, \ldots, \mu$, and we put

$$
v_{m}=u_{\mu}-u_{m}, \quad \theta_{m}=\delta_{\mu}-\delta_{m}
$$

From (13) and (14) we have

$$
\begin{gathered}
\frac{M\left(\left\|u_{m}(t)\right\|^{2}\right)\left(u_{\mu}^{\prime \prime}(t), \omega\right)-M\left(\left\|u_{\mu}(t)\right\|^{2}\right)\left(u_{m}^{\prime \prime}(t), \omega\right)}{M\left(\left\|u_{\mu}(t)\right\|^{2}\right) M\left(\left\|u_{m}(t)\right\|^{2}\right)}+\left(\nabla v_{m}(t), \nabla \omega\right) \\
-\left(\theta_{m}^{\prime}(t), \gamma_{0}(\omega)\right)_{\Gamma}+C\left[\frac{\left(\left|u_{\mu}^{\prime}(t)\right|^{\alpha} u_{\mu}^{\prime}(t), \omega\right)}{M\left(\left\|u_{\mu}(t)\right\|^{2}\right)}-\frac{\left(\left|u_{m}^{\prime}(t)\right|^{\alpha} u_{m}^{\prime}(t), \omega\right)}{M\left(\left\|u_{m}(t)\right\|^{2}\right)}\right]=0 \\
\left(\gamma_{0}\left(v_{m}^{\prime}(t)\right), z\right)=-\frac{1}{\rho}\left(f \theta_{m}^{\prime \prime}(t)+g \theta_{m}^{\prime}(t)+h \theta_{m}(t), z\right)_{\Gamma}
\end{gathered}
$$

for all $\omega \in\left[\omega_{1}, \ldots, \omega_{\mu}\right]$ and $z \in\left[z_{1}, \ldots, z_{\mu}\right]$.
Adding and subtracting appropriate terms, taking $w=2 v_{m}^{\prime}(t)$ and $z=\theta_{m}^{\prime}(t)$ we find

$$
\begin{align*}
& \frac{d}{d t}\left[\frac{\rho\left\|v_{m}^{\prime}(t)\right\|^{2}}{M\left(\left\|u_{\mu}(t)\right\|^{2}\right)}+\rho\left\|v_{m}(t)\right\|_{V}^{2}+\left\|f^{1 / 2} \theta_{m}^{\prime}(t)\right\|_{\Gamma}^{2}+\left\|h^{1 / 2} \theta_{m}(t)\right\|_{\Gamma}^{2}\right] \\
&+\frac{2 \rho C\left(\left|u_{\mu}^{\prime}(t)\right|^{\alpha} u_{\mu}^{\prime}(t)-\left|u_{m}^{\prime}(t)\right|^{\alpha} u_{m}^{\prime}(t), v_{m}^{\prime}(t)\right)}{M\left(\left\|u_{\mu}(t)\right\|^{2}\right)} \\
&=-2\left\|g^{1 / 2} \theta_{m}^{\prime}(t)\right\|_{\Gamma}^{2}+2 \rho\left[\frac{M\left(\left\|u_{\mu}(t)\right\|^{2}\right)-M\left(\left\|u_{m}(t)\right\|^{2}\right)}{M\left(\left\|u_{\mu}(t)\right\|^{2}\right) M\left(\left\|u_{m}(t)\right\|^{2}\right)}\right]\left(u_{m}^{\prime \prime}(t), v_{m}^{\prime}(t)\right) \\
&+2 \rho C\left[\frac{M\left(\left\|u_{\mu}(t)\right\|^{2}\right)-M\left(\left\|u_{m}(t)\right\|^{2}\right)}{M\left(\left\|u_{\mu}(t)\right\|^{2}\right) M\left(\left\|u_{m}(t)\right\|^{2}\right)}\right]\left(\left|u_{m}^{\prime}(t)\right|^{\alpha} u_{m}^{\prime}(t), v_{m}^{\prime}(t)\right) \\
&-2 \rho \frac{M^{\prime}\left(\left\|u_{\mu}(t)\right\|^{2}\right)}{M\left(\left\|u_{\mu}(t)\right\|^{2}\right)}\left(u_{\mu}^{\prime}(t), u_{\mu}(t)\right)\left\|v_{m}^{\prime}(t)\right\|^{2} . \tag{30}
\end{align*}
$$

Now we observe that

$$
\begin{aligned}
& \frac{2 \rho C}{M\left(\left\|u_{\mu}(t)\right\|^{2}\right)}\left(\left|u_{\mu}^{\prime}(t)\right|^{\alpha} u_{\mu}^{\prime}(t)-\left|u_{m}^{\prime}(t)\right|^{\alpha} u_{m}^{\prime}(t), v_{m}^{\prime}(t)\right) \geqslant 0 ; \\
& 2\left\|g^{1 / 2} \theta_{m}^{\prime}(t)\right\|_{\Gamma}^{2} \leqslant C_{1}\left\|\theta_{m}^{\prime}(t)\right\|_{\Gamma}^{2} ; \\
& 2 \rho\left[\frac{M\left(\left\|u_{\mu}(t)\right\|^{2}\right)-M\left(\left\|u_{m}(t)\right\|^{2}\right)}{M\left(\left\|u_{\mu}(t)\right\|^{2}\right) M\left(\left\|u_{m}(t)\right\|^{2}\right)}\right]\left(u_{m}^{\prime \prime}(t), v_{m}^{\prime}(t)\right) \\
& \quad \leqslant C_{2}\left(\left\|v_{m}(t)\right\|_{V}^{2}+\left\|v_{m}^{\prime}(t)\right\|^{2}\right)
\end{aligned}
$$

Here we have used

$$
\left.\left.\begin{array}{l}
\left|M\left(\left\|u_{\mu}(t)\right\|^{2}\right)-M\left(\left\|u_{m}(t)\right\|^{2}\right)\right| \\
\quad=\left|\int_{\left\|u_{m}(t)\right\|^{2}}^{\left\|u_{u^{\prime}}(t)\right\|^{2}} M^{\prime}(s) d s\right| \\
\quad \leqslant C\left(\left\|u_{\mu}(t)\right\|+\left\|u_{m}(t)\right\|\right)\left\|v_{m}(t)\right\| \leqslant C\left\|v_{m}(t)\right\|_{V} ; \\
2 \rho C \\
\quad\left[\frac{M\left(\left\|u_{\mu}(t)\right\|^{2}\right)-M\left(\left\|u_{m}(t)\right\|^{2}\right)}{M\left(\left\|u_{\mu}(t)\right\|^{2}\right) M\left(\left\|u_{m}(t)\right\|^{2}\right)}\right]\left(\left|u_{m}^{\prime}(t)\right|^{\alpha} u_{m}^{\prime}(t), v_{m}^{\prime}(t)\right) \\
\\
\leqslant C_{3}\left\|v_{m}(t)\right\|_{V}\left\|\left|u_{m}^{\prime}(t)\right|^{\alpha} u_{m}^{\prime}(t)\right\|\left\|v_{m}^{\prime}(t)\right\| \\
\\
\leqslant\left\|u_{m}^{\prime}(t)\right\|_{L^{2 \alpha+2}(\Omega)}^{2 \alpha+2}\left\|v_{m}(t)\right\|_{V}^{2}+C_{3}^{2}\left\|v_{m}^{\prime}(t)\right\|^{2} \\
\end{array}\right\} C_{4}\left\|u_{m}^{\prime}(t)\right\|_{V}^{2 \alpha+2}\left\|v_{m}(t)\right\|_{V}^{2}+C_{3}^{2}\left\|v_{m}^{\prime}(t)\right\|^{2}\right)
$$

Here we have used $V \subset L^{2 \alpha+2}(\Omega)$. Next,

$$
2 \rho \frac{M^{\prime}\left(\left\|u_{\mu}(t)\right\|^{2}\right)}{M\left(\left\|u_{\mu}(t)\right\|^{2}\right)}\left(u_{\mu}^{\prime}(t), u_{\mu}(t)\right)\left\|v_{m}^{\prime}(t)\right\|^{2} \leqslant C_{6}\left\|v_{m}^{\prime}(t)\right\|^{2} .
$$

Applying this to (30) we obtain

$$
\begin{gathered}
\frac{d}{d t}\left[\frac{\rho\left\|v_{m}^{\prime}(t)\right\|^{2}}{M\left(\left\|u_{\mu}(t)\right\|^{2}\right)}+\rho\left\|v_{m}(t)\right\|_{V}^{2}+\left\|f^{1 / 2} \theta_{m}^{\prime}(t)\right\|_{\Gamma}^{2}+\left\|h^{1 / 2} \theta_{m}(t)\right\|_{\Gamma}^{2}\right] \\
\leqslant C_{7}\left(\left\|v_{m}^{\prime}(t)\right\|^{2}+\left\|v_{m}(t)\right\|_{V}^{2}+\left\|\theta_{m}^{\prime}(t)\right\|_{\Gamma}^{2}+\left\|\theta_{m}(t)\right\|_{\Gamma}^{2}\right) .
\end{gathered}
$$

Integrating from 0 to t and using Gronwall's inequality we have

$$
\begin{aligned}
& \left\|v_{m}^{\prime}(t)\right\|^{2}+\left\|v_{m}(t)\right\|_{V}^{2}+\left\|\theta_{m}^{\prime}(t)\right\|_{\Gamma}^{2}+\left\|\theta_{m}(t)\right\|_{\Gamma}^{2} \\
& \quad \leqslant C_{8}\left(\left\|v_{m}^{\prime}(0)\right\|^{2}+\left\|v_{m}(0)\right\|_{V}^{2}+\left\|\theta_{m}^{\prime}(0)\right\|_{\Gamma}^{2}+\left\|\theta_{m}(0)\right\|_{\Gamma}^{2}\right)
\end{aligned}
$$

then

$$
\left\|v_{m}^{\prime}(t)\right\|^{2}+\left\|v_{m}(t)\right\|_{V}^{2}+\left\|\theta_{m}^{\prime}(t)\right\|_{\Gamma}^{2}+\left\|\theta_{m}(t)\right\|_{\Gamma}^{2} \leqslant C_{9}\left(\left\|v_{m}^{\prime}(0)\right\|^{2}+\left\|v_{m}(0)\right\|_{H^{2}(\Omega)}\right)
$$

This estimate shows that $\left(u_{m}(t)\right)_{m \in \mathbf{N}}$ is a Cauchy sequence in $C([0, T] ; V)$ and in $C^{1}\left([0, T] ; L^{2}(\Omega)\right)$. Moreover, it shows also that $\left(\delta_{m}(t)\right)_{m \in \mathbf{N}}$ is a Cauchy sequence in $C^{1}\left([0, T] ; L^{2}(\Gamma)\right)$. Therefore (27)-(29) is proved.

To prove that the solution u, δ depends continuously on the parameters f, g, h, u_{0}, and u_{1} let us consider two sets of parameters, $\left\{f, g, h, u_{0}, u_{1}\right\}$
and $\left\{\tilde{f}, \tilde{g}, \tilde{h}, \widetilde{u_{0}}, \widetilde{u_{1}}\right\}$, with associated solutions u, δ and $\tilde{u}, \tilde{\delta}$, respectively. Putting

$$
v=u-\tilde{u} \quad \text { and } \quad \theta=\delta-\tilde{\delta}
$$

and proceeding as in Estimate 3 we have

$$
\begin{aligned}
& \frac{d}{d t}\left[\frac{\rho\left\|v^{\prime}(t)\right\|^{2}}{M\left(\|u(t)\|^{2}\right)}+\rho\|v(t)\|_{V}^{2}+\left\|f^{1 / 2} \theta^{\prime}(t)\right\|_{\Gamma}^{2}+\left\|h^{1 / 2} \theta(t)\right\|_{\Gamma}^{2}\right] \\
&+\frac{2 \rho C\left(\left|u^{\prime}(t)\right|^{\alpha} u^{\prime}(t)-\left|\tilde{u}^{\prime}(t)\right|^{\alpha} \tilde{u}^{\prime}(t), v^{\prime}(t)\right)}{M\left(\|u(t)\|^{2}\right)} \\
&=-2\left\|g^{1 / 2} \theta^{\prime}(t)\right\|_{\Gamma}^{2}+\frac{2 \rho\left[M\left(\|u(t)\|^{2}\right)-M\left(\|\tilde{u}(t)\|^{2}\right)\right]}{M\left(\|u(t)\|^{2}\right) M\left(\|\tilde{u}(t)\|^{2}\right)}\left(\tilde{u}^{\prime \prime}(t), v^{\prime}(t)\right) \\
&+\frac{2 \rho C\left[M\left(\|u(t)\|^{2}\right)-M\left(\|\tilde{u}(t)\|^{2}\right)\right]}{M\left(\|u(t)\|^{2}\right) M\left(\|\tilde{u}(t)\|^{2}\right)}\left(\left|\tilde{u}^{\prime}(t)\right|^{\alpha} \tilde{u}^{\prime}(t), v^{\prime}(t)\right) \\
&-\frac{2 \rho M^{\prime}\left(\|u(t)\|^{2}\right)}{M\left(\|u(t)\|^{2}\right)}\left(u^{\prime}(t), u(t)\right)\left\|v^{\prime}(t)\right\|^{2} \\
&+2\left((\tilde{f}-f) \tilde{\delta}^{\prime \prime}(t), \theta^{\prime}(t)\right)_{\Gamma}+2\left((\tilde{g}-g) \tilde{\delta}^{\prime}(t), \theta^{\prime}(t)\right)_{\Gamma} \\
&+2\left((\tilde{h}-h) \tilde{\delta}(t), \theta^{\prime}(t)\right)_{\Gamma} \\
& \leqslant C_{10}\left(\left\|v^{\prime}(t)\right\|^{2}+\|v(t)\|_{V}^{2}+\left\|\theta^{\prime}(t)\right\|_{\Gamma}^{2}+\|\theta(t)\|_{\Gamma}^{2}\right) \\
&+C_{11}\left(\|f-\tilde{f}\|_{C\left(\bar{\Gamma}_{1}\right)}^{2}+\|g-\tilde{g}\|_{C\left(\bar{\Gamma}_{1}\right)}^{2}+\|h-\tilde{h}\|_{C\left(\bar{\Gamma}_{1}\right)}^{2}\right) .
\end{aligned}
$$

Integrating this from 0 to t and using Gronwall's inequality we have

$$
\begin{aligned}
& \left\|v^{\prime}(t)\right\|^{2}+\|v(t)\|_{V}^{2}+\left\|\theta^{\prime}(t)\right\|_{\Gamma}^{2}+\mid \theta(t) \|_{\Gamma}^{2} \\
& \quad \leqslant C_{12}\left(\left\|v^{\prime}(0)\right\|^{2}+\|v(0)\|_{H^{2}(\Omega)}^{2}+\|f-\tilde{f}\|_{C\left(\bar{\Gamma}_{1}\right)}^{2}+\|g-\tilde{g}\|_{C\left(\bar{\Gamma}_{1}\right)}^{2}+\|h-\tilde{h}\|_{C\left(\bar{\Gamma}_{1}\right)}^{2}\right)
\end{aligned}
$$

From this we can see that

$$
\begin{aligned}
\| u- & \tilde{u}\left\|_{C^{1}\left([0, T] ; L^{2}(\Omega)\right)}^{2}+\right\| \delta-\tilde{\delta} \|_{C^{1}\left([0, T] ; L^{2}(\Gamma)\right)}^{2} \\
\leqslant & C_{12}\left(\|f-\tilde{f}\|_{C\left(\bar{\Gamma}_{1}\right)}^{2}+\|g-\tilde{g}\|_{C\left(\bar{\Gamma}_{1}\right)}^{2}+\|h-\tilde{h}\|_{C\left(\bar{I}_{1}\right)}^{2}\right. \\
& \left.+\left\|u_{0}-\widetilde{u_{0}}\right\|_{H^{2}(\Omega)}^{2}+\left\|u_{1}-\widetilde{u_{1}}\right\|^{2}\right),
\end{aligned}
$$

which completes the proof of Theorem 2.

3. THE ACOUSTIC BOUNDARY CONDITION

Thus far we have divided the boundary Γ into two parts, one of which (Γ_{0}) has positive measure and has the homogeneous Dirichlet boundary condition imposed upon it. Now we let that positive measure shrink to zero. For each $m \in \mathbf{N}$, let $\Gamma_{0 m}$ be a subset of Γ such that

$$
\begin{gathered}
\operatorname{meas}\left(\Gamma_{0 m}\right)>0, \quad \text { for all } \quad m \in \mathbf{N} ; \\
\Gamma_{0(m+1)} \subset \Gamma_{0 m}, \quad \text { for all } m \in \mathbf{N} ; \\
\lim _{m \rightarrow \infty} \operatorname{meas}\left(\Gamma_{0 m}\right)=0 .
\end{gathered}
$$

We denote $V_{m}=\left\{u \in H^{1}(\Omega) ; \gamma_{0}(u)=0\right.$ a.e. on $\left.\Gamma_{0 m}\right\}$, and $V_{\infty}=\bigcup_{m=1}^{\infty} V_{m}$.
Therefore, putting $W=\overline{V_{\infty}}{ }^{H^{1}(\Omega)}$ we have that W is a closed subspace of $H^{1}(\Omega), \quad H_{0}^{1}(\Omega) \subset V_{1} \subset V_{2} \subset \cdots \subset V_{\infty} \subset W \subset H^{1}(\Omega)$, and the Poincaré inequality is satisfied in W. Moreover,

$$
\|u\|_{W}=\left(\sum_{i=1}^{n} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{2} d x\right)^{1 / 2}
$$

is a norm in W equivalent to the usual norm of $H^{1}(\Omega)$.

Theorem 3. Under the assumptions of Theorem 2 with $n=2$ or $n=3$, for each $u_{0} \in W \cap H^{2}(\Omega)$ and $u_{1} \in W$ there exists a unique pair of functions $(u(x, t), \delta(x, t))$ in the class

$$
\begin{gather*}
u \in C([0, T] ; W) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right) ; \tag{31}\\
u(t) \in H(\Delta, \Omega) \quad \text { a.e. in } \quad[0, T] ; \\
u^{\prime} \in L^{\infty}(0, T ; W) ; \quad u^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) ; \tag{32}\\
\delta \in C^{1}\left(0, T ; L^{2}(\Gamma)\right) ; \quad \delta^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Gamma)\right) ; \tag{33}
\end{gather*}
$$

such that

$$
\begin{array}{ll}
u^{\prime \prime}-M\left(\int_{\Omega} u^{2} d x\right) \Delta u+C\left|u^{\prime}\right|^{\alpha} u^{\prime}=0 & \text { in } \quad Q=\Omega \times(0, T) ; \\
\rho u^{\prime}+f \delta^{\prime \prime}+g \delta^{\prime}+h \delta=0 & \text { on } \quad \Sigma=\Gamma \times(0, T) ; \\
\frac{\partial u}{\partial v}-\delta^{\prime}=0 & \text { on } \Sigma=\Gamma \times(0, T) ; \\
u(x, 0)=u_{0}(x), \quad u^{\prime}(x, 0)=u_{1}(x) & \text { in } \Omega . \tag{37}
\end{array}
$$

Moreover the solution u, δ depends continuously on the parameters f, g, h, u_{0} and u_{1}.

Proof. Let $\left(u_{0 m}\right)_{m \in \mathbf{N}}$ and $\left(u_{1 m}\right)_{m \in \mathbf{N}}$ be two sequences such that

$$
\begin{array}{llll}
u_{0 m} \in V_{m} \cap H^{2}(\Omega) & \text { and } & u_{0 m} \rightarrow u_{0} & \text { in } W \cap H^{2}(\Omega) ; \\
u_{1 m} \in V_{m} & \text { and } & u_{1 m} \rightarrow u_{1} & \text { in } W .
\end{array}
$$

Thus, by Theorem 2, for each $m \in \mathbf{N}$ there exist a unique pair of functions u_{m}, δ_{m} in the class

$$
\begin{gathered}
u_{m} \in C\left([0, T] ; V_{m}\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right) ; \\
u_{m}(t) \in H(\Delta, \Omega) \quad \text { a.e. in }[0, T] ; \\
u_{m}^{\prime} \in L^{\infty}\left(0, T ; V_{m}\right) ; \quad u_{m}^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right) ; \\
\delta_{m} \in C^{1}\left(0, T ; L^{2}(\Gamma)\right) ; \quad \delta_{m}^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Gamma)\right),
\end{gathered}
$$

such that

$$
\begin{array}{ll}
u_{m}^{\prime \prime}-M\left(\left\|u_{m}\right\|^{2}\right) \Delta u_{m}+C\left|u_{m}^{\prime}\right|^{\alpha} u_{m}^{\prime}=0 & \text { in } Q ; \\
\rho \gamma_{0}\left(u_{m}^{\prime}\right)+f \delta_{m}^{\prime \prime}+g \delta_{m}^{\prime}+h \delta_{m}=0 & \text { on } \Sigma ; \\
\left\langle\gamma_{1}\left(u_{m}(t)\right), \gamma_{0}(\omega)\right\rangle=\left(\delta_{m}^{\prime}(t), \omega\right) & \text { for all } \omega \in V_{m}, \text { a.e. in }[0, T] ; \\
u_{m}(0)=u_{0 m}, & u_{m}^{\prime}(0)=u_{1 m} .
\end{array}
$$

Since the constant of the Poincare inequality on W does not depend on the measure of $\Gamma_{0 m}$ (see the Appendix), we can see that all estimates that we have done before still true for $\left(u_{m}\right)$ and $\left(\delta_{m}\right)$. Therefore by taking the limit when m goes to infinity, Theorem 3 is proved.

Remark 1. The boundary condition (36) is satisfied in a weak sense. This means that

$$
u(t) \in H(\Delta, \Omega) \quad \text { a.e. in } \quad[0, T]
$$

and

$$
\left\langle\gamma_{1}(u(t)), \gamma_{0}(\omega)\right\rangle_{H^{-1 / 2}(\Gamma) \times H^{1 / 2}(\Gamma)}=\left(\delta^{\prime}(t), \gamma_{0}(\omega)\right)_{\Gamma}, \quad \text { for all } \quad \omega \in W .
$$

Remark 2. When $M(\lambda)=1, C=0$ and $n=3$ we can consider the Hilbert space $H_{D}(\Omega)=H^{1}(\Omega)$ modulo constant functions, instead of W.

Our result in this case was obtained in Beale [1] using semigroup methods. He considered an equivalent initial value problem

$$
\begin{aligned}
& v^{\prime}(t)=A v(t) \quad t>0, \\
& v(0)=v_{0}
\end{aligned}
$$

in the Hilbert space $\mathscr{H}=H_{D}(\Omega) \times L^{2}(\Omega) \times L^{2}(\Gamma) \times L^{2}(\Gamma)$ with norm

$$
\|v\|_{\mathscr{H}}=\rho\left\|v_{1}\right\|_{H_{D}(\Omega)}^{2}+\rho\left\|v_{2}\right\|^{2}+\left\|h^{1 / 2} v_{3}\right\|_{\Gamma}^{2}+\left\|f^{1 / 2} v_{4}\right\|_{\Gamma}^{2}
$$

and $A: D(A) \subset \mathscr{H} \rightarrow \mathscr{H}$ the operator defined by

$$
\begin{aligned}
D(A) & =\left\{v \in \mathscr{H} ; \Delta v_{1} \in L^{2}(\Omega), v_{2} \in H^{1}(\Omega) \text { and } \gamma_{1}\left(v_{1}\right)=v_{4}\right\} \\
A v & =\left(v_{2}, \Delta v_{1}, v_{4},-\frac{1}{f}\left(\rho \gamma_{0}\left(v_{2}\right)+h v_{3}+g v_{4}\right)\right) .
\end{aligned}
$$

Then he proved that A generates a $\left(C_{0}\right)$ contraction semigroup (a unitary group if $g \equiv 0$), which solves the initial value problem. He also showed that A has a noncompact resolvent and a nonempty essential spectrum. Moreover a description of the spectrum of the semigroup generator A was obtained. The remarkable feature here is that A does not have a compact resolvent; rather $\lambda \rightarrow(\lambda I-A)^{-1}$ has essential singularities in \mathbf{C}. This is a fascinating result for which we have no nonlinear analogue.

Remark 3. The damping term $C\left|u_{t}\right|^{\alpha} u_{t}$ in Eq. (3) is not sufficient for the global solvability when $\alpha=1, C>0$. However, one can consider this case with additional assumptions. When the measure of Ω is sufficiently small or the size of the initial data $\left(u_{0}, u_{1}\right)$ is sufficiently small, then global solvability holds. The details will appear elsewhere. Finally we remark that in our basic equation (3) the right-hand side (zero) may be replaced by a given forcing function $F(x, t)$, where $F \in H^{1}(Q)$. The proof goes through with only inessential changes; we omit the details.

APPENDIX

Let Ω be a bounded connected open set in \mathbf{R}^{n} with a sufficiently smooth boundary. Then the canonical injection of $H^{1}(\Omega)$ into $L^{2}(\Omega)$ is compact, and $H^{1}(\Omega) \subset C(\bar{\Omega})$ holds by a Sobolev inequality if $n \leqslant 3$. Let $x_{0} \in \partial \Omega$. Then there is a constant $k=k(\Omega)$, depending only on Ω, such that

$$
\begin{equation*}
\|u\|^{2} \leqslant k(\Omega)\|\nabla u\|^{2} \tag{38}
\end{equation*}
$$

holds for all $u \in H^{1}(\Omega)$ such that $u\left(x_{0}\right)=0$. (Recall $u \in H^{1}(\Omega)$ implies $u \in C(\bar{\Omega})$, so that $u\left(x_{0}\right)$ is well defined. More precisely, the equivalence class of u contains an everywhere continuous function on $\bar{\Omega}$, which we identify with u).

The proof of the Poincaré inequality (38) is similar to that in [6, pp. 127-129]. We proceed by contradiction. Assume (38) fails to hold. Then there is a sequence $\left(u_{m}\right)$ in $H^{1}(\Omega)$ such that

$$
\left\|u_{m}\right\|_{H^{1}(\Omega)}=1, \quad u_{m}\left(x_{0}\right)=0, \quad \text { and } \quad \alpha_{m}\left\|\nabla u_{m}\right\|^{2} \leqslant\left\|u_{m}\right\|^{2} \leqslant 1
$$

for all m, where $\alpha_{m} \rightarrow \infty$. (Recall $\|u\|_{H^{1}(\Omega)}^{2}=\|u\|^{2}+\|\nabla u\|^{2}$, and $\|\cdot\|$ is the $L^{2}(\Omega)$ norm). By compactness, a subsequence of $\left(u_{m}\right)$ (which we also denote by $\left(u_{m}\right)$) converges weakly in $H^{1}(\Omega)$ to $u \in H^{1}(\Omega)$. Then u_{m} converges to u strongly in $L^{2}(\Omega)$ and uniformly since $C(\bar{\Omega}) \hookrightarrow H^{1}(\Omega)$ is compact. Hence $u \in C(\bar{\Omega})$ and $u\left(x_{0}\right)=0$. Since $\alpha_{m} \rightarrow \infty$ we have $\left\|\nabla u_{m}\right\| \rightarrow 0$, and $\nabla u_{m} \rightarrow \nabla u$ in the sense of distributions. It follows that $\nabla u=0$, and since $u \in H^{1}(\Omega), u(x) \equiv C$ is a constant since Ω is connected. But $u \in C(\bar{\Omega})$ and $u\left(x_{0}\right)=0$, whence u is the zero function. Thus $\left\|u_{m}\right\| \rightarrow 0$, which coupled with $\left\|\nabla u_{m}\right\| \rightarrow 0$ implies $\left\|u_{m}\right\|_{H^{1}(\Omega)} \rightarrow 0$. This contradicts $\left\|u_{m}\right\|_{H^{1}(\Omega)}=1$, and so (38) follows.

We present an alternative version of (38) in a special context which admits a simple proof and a concrete bound for $k(\Omega)$ with $\operatorname{dim}(\Omega)$ arbitrary. Now let Ω be a bounded convex set in \mathbf{R}^{n} (for any n). Let $x_{0} \in \partial \Omega$. Let D be the diameter of Ω and let $V=\left\{u \in C^{1}(\bar{\Omega}) ; u\left(x_{0}\right)=0\right\}$. Then

$$
\begin{equation*}
\|u\|^{2} \leqslant D^{2}\|\nabla u\|^{2} \tag{39}
\end{equation*}
$$

holds for all $u \in V$. Thus (38) holds (on the $H^{1}(\Omega)$ closure of V) with $k(\Omega)=D^{2}$.

We prove (39). Let $x \in \Omega$. Let e_{1} be a unit vector in \mathbf{R}^{n} pointing from x_{0} to x, and let $l=\left\|x-x_{0}\right\|_{\mathbf{R}^{n}}$. Then by the fundamental theorem of calculus

$$
\begin{equation*}
u(x)=\int_{0}^{l} \frac{\partial u}{\partial y_{1}}\left(x_{0}+s e_{1}\right) d s ; \tag{40}
\end{equation*}
$$

here we extend e_{1} to $e_{1}, e_{2}, \ldots, e_{n}$, an orthonormal basis of \mathbf{R}^{n}, and we let y_{1}, \ldots, y_{n} be the corresponding Cartesian coordinate system. By the Cauchy-Schwarz inequality applied to (40),

$$
(u(x))^{2} \leqslant l \int_{0}^{l}\left|\frac{\partial u}{\partial y_{1}}\left(x_{0}+s e_{1}\right)\right|^{2} d s .
$$

Let L be the portion of the line $\left\{x_{0}+s e_{1}, s \in \mathbf{R}\right\}$ which intersects Ω. Then

$$
\begin{equation*}
|u(x)|^{2} \leqslant D \int_{L}\left(\frac{\partial u}{\partial y_{1}}\right)^{2} d y_{1}=D \int_{0}^{\lambda}\left|\frac{\partial u}{\partial y_{1}}\left(x_{0}+s e_{1}\right)\right|^{2} d s \tag{41}
\end{equation*}
$$

where $\lambda(\leqslant D)$ is the length of L. Integrating both sides of (41) over L gives

$$
\begin{equation*}
\int_{L}|u|^{2} d y_{1} \leqslant D^{2} \int_{L}\left(\frac{\partial u}{\partial y_{1}}\right)^{2} d y_{1} \leqslant D^{2} \int_{L}|\nabla u|^{2} d y_{1} \tag{42}
\end{equation*}
$$

To review, we pick $x \in \Omega$ and then choose the coordinate system y_{1}, \ldots, y_{n}. Next, for any $f \in L^{2}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega}|f(y)|^{2} d y=\int_{E_{n}} \cdots \int_{E_{2}} \int_{E_{1}}|f(y)|^{2} d y_{1} d y_{2} \cdots d y_{n} \tag{43}
\end{equation*}
$$

where $y_{1} \in E_{1}$ means $F_{11}\left(y_{2}, \ldots, y_{n}\right) \leqslant y_{1} \leqslant F_{12}\left(y_{2}, \ldots, y_{n}\right), y_{2} \in E_{2}$ means $F_{21}\left(y_{3}, \ldots, y_{n}\right) \leqslant y_{2} \leqslant F_{22}\left(y_{3}, \ldots, y_{n}\right)$, and so on until $y_{n} \in E_{n}$ means $F_{n 1} \leqslant$ $y_{n} \leqslant F_{n 2}$, where $F_{n 1}, F_{n 2}$ are constants. This is valid since Ω is convex. And our choice of the coordinate system $\left\{y_{1}, \ldots, y_{n}\right\}$ implies

$$
\int_{E_{1}}|f(y)|^{2} d y_{1}=\int_{L}|f|^{2} d y_{1} .
$$

Now integrate over $y_{2} \in E_{2}, \ldots, y_{n} \in E_{n}$ as in (43), taking for f the choices u and ∇u. By (42),

$$
\int_{\Omega}|u(y)|^{2} d y \leqslant D^{2} \int_{\Omega}|\nabla u(y)|^{2} d y
$$

which is (39).
This argument can be extended to more general domains, but rather than taking L the line through x_{0} and x, to be parallel to the y_{1} axis, we take the path from x_{0} to x to be a continuous broken line with sides parallel to the coordinate axes in the y_{1}, \ldots, y_{n} coordinate system. The details are very messy and we omit them.

REFERENCES

1. J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J. 25 (1976), 895-917.
2. J. T. Beale, Acoustic scattering from locally reacting surfaces, Indiana Univ. Math. J. 26 (1977), 199-222.
3. J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions, Bull. Amer. Math. Soc. 80 (1974), 1276-1278.
4. G. F. Carrier, On the non-linear vibration problem of the elastic string, Quart. Appl. Math. 3 (1945), 157-165.
5. A. T. Cousin, C. L. Frota, N. A. Lar'kin, and L. A. Medeiros, On the abstract model of the Kirchhoff-Carrier equation, Comm. Appl. Anal. 1 (1997), 389-404.
6. R. Dautray and J. L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology," Springer-Verlag, New York, 1988.
7. J. L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications," Springer-Verlag, New York, 1972.
8. P. M. Morse and K. U. Ingard, "Theoretical Acoustics," McGraw-Hill, New York, 1968.

[^0]: ${ }^{1}$ This work was done while this author was a visiting scholar at The University of Memphis in a post-doctoral program supported by CAPES-Brasil Grant 0306/98-5.

