Some Nonlinear Wave Equations with Acoustic Boundary Conditions

Cícero Lopes Frota¹

Departamento de Matemática, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, PR, Brazil

and

Jerome A. Goldstein

/iew metadata, citation and similar papers at <u>core.ac.uk</u>

We prove the existence and uniqueness of global solutions to the mixed problem for the Carrier equation

$$u_{tt} - M\left(\int_{\Omega} u^2 \, dx\right) \Delta u + |u'_t|^{\alpha} \, u'_t = 0$$

with acoustic boundary conditions. © 2000 Academic Press

1. INTRODUCTION

Beale and Rosencrans [3] introduced acoustic boundary conditions into the rigorous wave propagation literature, and Beale carried out a detailed analysis of them for the wave equation in both bounded domains [1] and exterior domains [2]. See also [8] for a classical heuristic discussion. The idea is that each boundary point acts as a spring. The boundary is "locally reacting" in that these springs do not influence one another. Think of the solution of the wave equation $u_{tt} = c^2 \Delta u$ as the velocity potential of a fluid (in three dimensions) undergoing acoustic wave motion; the acoustic boundary condition says that each point on the boundary reacts to the

¹ This work was done while this author was a visiting scholar at The University of Memphis in a post-doctoral program supported by CAPES-Brasil Grant 0306/98-5.

excess pressure of the wave like a resistive harmonic oscillator. The precise formulation is

$$\rho u_t + f \delta_{tt} + g \delta_t + h \delta = 0; \tag{1}$$

here $\delta(x, t)$ is the normal displacement to the boundary at time t with the boundary point x, ρ is the fluid density, and f, g, h are nonnegative functions on the boundary with f, h strictly positive. Condition (1) must be coupled with a condition expressing the impenetrability of the boundary,

$$\frac{\partial u}{\partial v} = \delta_t, \tag{2}$$

on the boundary for all time; here v is the unit outer normal. The wave equation with (1), (2) is governed by a (C_0) contraction semigroup (or unitary group if $g \equiv 0$) on a "four-component" Hilbert space of vectors $(u, u_t, \delta, \delta_t)$ with a suitable energy norm (cf. [1-3]).

These acoustic boundary conditions have great intuitive appeal. It is easy to imagine a music hall designed with these conditions in mind, but with a portion of the boundary (e.g., the floor) absorbing.

We shall consider problems of this sort, with a homogeneous Dirichlet condition on a portion of the boundary and acoustic boundary conditions on the rest of the boundary. Our result will be new when specialized to $u_{tt} = c^2 \Delta u$. But we shall work in a much more general context, namely, that of nonlinear wave equations related to problems studied earlier by Kirchhoff, Carrier, and others (see [4, 5]). The equation we consider is

$$u_{tt} - M\left(\int_{\Omega} u^2 dx\right) \Delta u + C |u_t|^{\alpha} u_t = 0;$$
(3)

here $x \in \Omega \subset \mathbb{R}^n$ and $0 \le t \le T$, where *u* is a position function on $\mathbb{R}^+ = [0, \infty)$ and Ω is a smooth bounded domain. The boundary $\partial \Omega = \Gamma$ is made up of two disjoint pieces, Γ_0, Γ_1 , each having nonnempty interior. The Dirichlet condition u(x, t) = 0 is imposed for $(x, t) \in \Gamma_0 \times [0, T]$, while the acoustic boundary conditions (2), (3) are imposed for $(x, t) \in \Gamma_1 \times [0, T]$. Here *T* is any fixed but otherwise arbitrary positive number. Thus we are dealing with global existence.

2. EXISTENCE THEORY

Let $\Omega \subset \mathbf{R}^n$ be a bounded open connected set with a (sufficiently) smooth boundary $\Gamma = \partial \Omega$. Suppose $\Gamma = \Gamma_0 \cup \Gamma_1$ where Γ_0 is a measurable subset of Γ such that meas(Γ_0) > 0, and $\Gamma_1 = \Gamma \setminus \Gamma_0$. We shall study the existence and uniqueness of solutions to the initial boundary value problem

$$u'' - M\left(\int_{\Omega} u^2 dx\right) \Delta u + C |u'|^{\alpha} u' = 0 \quad \text{in} \quad Q = \Omega \times (0, T); \quad (4)$$

$$u = 0$$
 on $\Sigma_0 = \Gamma_0 \times (0, T);$ (5)

$$\rho u' + f\delta'' + g\delta' + h\delta = 0 \qquad \qquad \text{on} \quad \Sigma_1 = \Gamma_1 \times (0, T); \qquad (6)$$

$$\frac{\partial u}{\partial v} - \delta' = 0 \qquad \qquad \text{on} \quad \Sigma_1 = \Gamma_1 \times (0, T); \qquad (7)$$

$$u(x, 0) = u_0(x),$$
 $u'(x, 0) = u_1(x)$ in Ω . (8)

Here $' = \frac{\partial}{\partial t}$; ρ and T are positive constants; C is a nonnegative constant; f(x), g(x), and h(x) are continuous real functions on $\overline{\Gamma}_1$ such that f(x) > 0, h(x) > 0 and $g(x) \ge 0$ for all $x \in \overline{\Gamma}_1$; and $M \in C^1([0, \infty); \mathbf{R})$ satisfies

$$0 < m_0 \leq M(\lambda), \qquad \frac{|M'(\lambda) \lambda^{1/2}|}{M(\lambda)} \leq k_0, \qquad \text{for all } \lambda \geq 0,$$

Where m_0 and k_0 are constants.

We employ the usual notation for the standard functional spaces (see [7]). The inner product and norm on $L^2(\Omega)$ and $L^2(\Gamma)$ are denoted by $(\cdot, \cdot), \|\cdot\|$ and $(\cdot, \cdot)_{\Gamma}, \|\cdot\|_{\Gamma}$ respectively. We denote the Hilbert space $H(\Delta, \Omega) = \{u \in H^1(\Omega); \Delta u \in L^2(\Omega)\}$, provided with the norm

$$||u||_{H(\Delta, \Omega)} = (||u||^2_{H^1(\Omega)} + ||\Delta u||^2)^{1/2},$$

where $H^1(\Omega)$ is the usual real Sobolev space of first order.

 $\gamma_0: H^{1}(\Omega) \to H^{1/2}(\Gamma)$ and $\gamma_1: H(\Delta, \Omega) \to H^{-1/2}(\Gamma)$ are the trace map of order zero and the Neumann trace map on $H(\Delta, \Omega)$, respectively. Therefore

$$\gamma_0(u) = u_{|_{\Gamma}}, \gamma_1(u) = \left(\frac{\partial u}{\partial v}\right)_{|_{\Gamma}} \quad \text{for all} \quad u \in \mathscr{D}(\overline{\Omega}),$$

and the generalized Green's formula

$$\int_{\Omega} (-\Delta u) \cdot v \, dx = \sum_{i=1}^{n} \int_{\Omega} \frac{\partial u}{\partial x_i} \cdot \frac{\partial v}{\partial x_i} \, dx - \langle \gamma_1(u), \gamma_0(v) \rangle_{H^{-1/2}(\Gamma) \times H^{1/2}(\Gamma)}$$

holds for all $u \in H(\Delta, \Omega)$ and $v \in H^1(\Omega)$.

We denote by V the closure in $H^1(\Omega)$ of $\{u \in C^1(\overline{\Omega}); u = 0 \text{ on } \Gamma_0\}$. Since Ω is a regular connected domain we have that $V = \{u \in H^1(\Omega); u \in \Omega\}$ $\gamma_0(u) = 0$ a.e. on Γ_0 , V is a closed subspace of $H^1(\Omega)$, the Poincaré inequality holds on V, and the norm

$$\|u\|_{V} = \left(\sum_{i=1}^{n} \int_{\Omega} \left(\frac{\partial u}{\partial x_{i}}\right)^{2} dx\right)^{1/2}$$

is equivalent to the usual norm from $H^1(\Omega)$.

THEOREM 1. Let $\alpha > 1$, $u_0 \in V \cap H^2(\Omega)$, $u_1 \in V \cap L^{2\alpha+2}(\Omega)$ be given. Then there exists a pair of functions $(u(x, t), \delta(x, t))$ which comprise a solution to the problem (4)–(8) in the class

$$u \in L^{\infty}(0, T; V); \quad u(t) \in H(\Delta, \Omega) \qquad a.e. \text{ in } [0, T]; \qquad (9)$$

$$u' \in L^{\infty}(0, T; V) \cap L^{\alpha+2}(0, T; L^{\alpha+2}(\Omega));$$
(10)

$$u'' \in L^{\infty}(0, T; L^2(\Omega)); \tag{11}$$

$$\delta, \delta', \delta'' \in L^{\infty}(0, T; L^2(\Gamma)).$$
(12)

Proof. Let $\{\omega_j\}_{j \in \mathbb{N}}, \{z_j\}_{j \in \mathbb{N}}$ be orthonormal bases of V and $L^2(\Gamma)$, respectively. For each $m \in \mathbb{N}$ we consider

$$u_m(x, t) = \sum_{j=1}^m \zeta_{jm}(t) \,\omega_j(x), \qquad x \in \Omega \quad \text{and} \quad t \in [0, T_m],$$

$$\delta_m(x, t) = \sum_{j=1}^m \beta_{jm}(t) \,z_j(x), \qquad x \in \Gamma \quad \text{and} \quad t \in [0, T_m],$$

which are solutions to the approximate problem

$$\begin{split} (u''_m(t), \omega_j) &+ M(\|u_m(t)\|^2) \big[(\nabla u_m(t), \nabla \omega_j) - (\delta'_m(t), \gamma_0(\omega_j))_{\Gamma} \big] \\ &+ C(|u'_m(t)|^{\alpha} u'_m(t), \omega_j) = 0, \quad 1 \leqslant j \leqslant m; \\ (\rho \gamma_0(u'_m(t)) + f \delta''_m(t) + g \delta'_m(t) + h \delta_m(t), z_j)_{\Gamma} = 0, \quad 1 \leqslant j \leqslant m; \\ u_m(0) &= u_{0m}, \quad u'_m(0) = u_{1m}, \quad \delta_m(0) = \delta_0, \quad \delta'_m(0) = \gamma_1(u_{0m}), \end{split}$$

where $\delta_0 \in L^2(\Gamma)$, $u_{0m} = \sum_{j=1}^m (u_0, \omega_j) \omega_j$, $u_{1m} = \sum_{j=1}^m (u_1, \omega_j) \omega_j$, and $0 < T_m \leq T$.

Therefore we have the approximate equations

$$\frac{(u_m'(t),\omega)}{M(\|u_m(t)\|^2)} + (\nabla u_m(t),\nabla\omega) - (\delta_m'(t),\gamma_0(\omega))_{\Gamma} + C\frac{(|u_m'(t)|^{\alpha}u_m'(t),\omega)}{M(\|u_m(t)\|^2)} = 0,$$
(13)

$$(\gamma_0(u'_m(t)), z)_{\Gamma} = -\frac{1}{\rho} (f \delta''_m(t) + g \delta'_m(t) + h \delta_m(t), z)_{\Gamma},$$
(14)

for all $\omega \in [\omega_1, ..., \omega_m] = \text{Span}\{\omega_1, ..., \omega_m\}$ and $z \in [z_1, ..., z_m]$. The local existence (for some $T_m > 0$) is standard.

Estimate 1. Taking $\omega = 2u'_m(t)$ in (13) and $z = 2\delta'_m(t)$ in (14) we have

$$\begin{split} \frac{d}{dt} & \left[\frac{\rho \|u'_m(t)\|^2}{M(\|u_m(t)\|^2)} + \rho \|u_m(t)\|_V^2 + \|f^{1/2}\delta'_m(t)\|_\Gamma^2 + \|h^{1/2}\delta_m(t)\|_\Gamma^2 \right] \\ & + \frac{2\rho C \|u'_m(t)\|_{L^{\alpha+2}(\Omega)}^{\alpha+2}}{M(\|u_m(t)\|^2)} \\ & = -\frac{2\rho M'(\|u_m(t)\|^2)}{(M(\|u_m(t)\|^2))^2} (u'_m(t), u_m(t)) \|u'_m(t)\|^2 - \|g^{1/2}\delta'_m(t)\|_\Gamma^2 \\ & \leqslant \frac{C_1}{M(\|u_m(t)\|^2)} \|u'_m(t)\|_{L^{\alpha+2}(\Omega)}^3 + \|g^{1/2}\delta'_m(t)\|_\Gamma^2. \end{split}$$

Since $\alpha > 1$, it is elementary to see that there exists a function $C_2: (0, \infty) \rightarrow (0, \infty)$ such that

$$C_1 \|u'_m(t)\|_{L^{\alpha+2}(\Omega)}^3 \leq C_2(\varepsilon) + \varepsilon \|u'_m(t)\|_{L^{\alpha+2}(\Omega)}^{\alpha+2} \quad \text{for all} \quad \varepsilon > 0.$$

After we have chosen $\varepsilon > 0$ sufficiently small, we get, for some constants $C_3, C_4 > 0$,

$$\begin{split} \frac{d}{dt} \bigg[\frac{\rho \|u'_m(t)\|^2}{M(\|u_m(t)\|^2)} + \rho \|u_m(t)\|_V^2 + \|f^{1/2}\delta'_m(t)\|_\Gamma^2 + \|h^{1/2}\delta_m(t)\|_\Gamma^2 \bigg] \\ + C_3 \frac{\|u'_m(t)\|_{L^{\alpha+2}(\Omega)}^{\alpha+2}}{M(\|u_m(t)\|^2)} \leqslant C_4 + \|g^{1/2}\delta'_m(t)\|_\Gamma^2. \end{split}$$

Integrating this from 0 to $t \leq T_m$ we find

$$\frac{\rho \|u'_m(t)\|^2}{M(\|u_m(t)\|^2)} + \rho \|u_m(t)\|_V^2 + \|f^{1/2}\delta'_m(t)\|_\Gamma^2 + \|h^{1/2}\delta_m(t)\|_\Gamma^2 + C_3 \int_0^t \frac{\|u'_m(s)\|_{L^{\alpha+2}(\Omega)}^{\alpha+2}}{M(\|u_m(s)\|^2)} ds \leqslant C_5 \left(1 + \int_0^t \|\delta'_m(s)\|_\Gamma^2 ds\right), \quad (15)$$

where C_5 is a positive constant which depends on u_0, u_1, M, T and $||g||_{L^{\infty}(\Gamma)}$.

From (15), Gronwall's inequality gives

$$\|\delta'_m(t)\|_{\varGamma}^2 \leqslant C_6.$$

This and (15) imply that there exists a constant C_7 independent of *m* and $t \in [0, T_m]$ such that

$$\begin{aligned} \frac{\rho \|u'_m(t)\|^2}{M(\|u_m(t)\|^2)} + \rho \|u_m(t)\|_V^2 + \|f^{1/2}\delta'_m(t)\|_\Gamma^2 + \|h^{1/2}\delta_m(t)\|_\Gamma^2 \\ + C_3 \int_0^t \frac{\|u'_m(s)\|_{L^{\alpha+2}(\Omega)}^{\alpha+2}}{M(\|u_m(s)\|^2)} ds \leqslant C_7. \end{aligned}$$

Using this and the Poincaré inequality we can see that there exists a constant M_0 , independent of *m* and *t*, such that

$$m_0 \leqslant M(\|u_m(t)\|^2) \leqslant M_0.$$
 (16)

Thus there exists a constant C_8 such that

$$\|u'_{m}(t)\|^{2} + \|u_{m}(t)\|^{2}_{V} + \|\delta'_{m}(t)\|^{2}_{\Gamma} + |\delta_{m}(t)\|^{2}_{\Gamma} + \int_{0}^{t} \|u'_{m}(s)\|^{\alpha+2}_{L^{\alpha+2}(\Omega)} ds \leq C_{8},$$
(17)

which completes the first estimate. Taking into account (17) we can extend the approximate solutions u_m and δ_m to the whole interval [0, T].

Estimate 2. Taking t = 0 in (13) and (14) we get

$$(u_m''(0), \omega) - M(||u_{0m}||^2)(\Delta u_{0m}, \omega) + C(|u_{1m}|^{\alpha} u_{1m}, \omega) = 0,$$

$$(f\delta_m''(0), z)_{\Gamma} + (g\gamma_1(u_{0m}), z)_{\Gamma} + (h\delta_0, z)_{\Gamma} + \rho(\gamma_0(u_{1m}), z)_{\Gamma} = 0.$$

Putting $\omega = u''_m(0)$ and $z = \delta''_m(0)$ we obtain

$$\begin{aligned} \|u_m'(0)\|^2 &\leqslant (M(\|u_{0m}\|^2) \|\Delta u_{0m}\| + C \|u_{1m}\|_{L^{2\alpha+2}(\Omega)}^{\alpha+1}) \|u_m'(0)\|, \\ \|\delta_m''(0)\|_{\Gamma}^2 &\leqslant C_9(1 + \|u_{0m}\|_{H^2(\Omega)} + \|u_{1m}\|_{H^1(\Omega)}) \|\delta_m''(0)\|_{\Gamma}. \end{aligned}$$

Therefore

$$\|u_m'(0)\| + \|\delta_m''(0)\| \leqslant C_{10}.$$
(18)

Differentiating (13) and (14) with respect to t and taking $\omega = 2u''_m(t)$, $z = 2\delta''_m(t)$ we obtain

$$\frac{d}{dt} \left[\frac{\rho \|u_m'(t)\|^2}{M(\|u_m(t)\|^2)} + \rho \|u_m'(t)\|_{V}^2 + \|f^{1/2}\delta_m''(t)\|_{\Gamma}^2 + \|h^{1/2}\delta_m'(t)\|_{\Gamma}^2 \right]
+ \frac{2\rho(\alpha+1) C(|u_m'(t)|^{\alpha}, (u_m''(t))^2)}{M(\|u_m(t)\|^2)}
= \frac{2\rho M'(\|u_m(t)\|^2)}{(M(\|u_m(t)\|^2))^2} (u_m'(t), u_m(t)) \|u_m''(t)\|^2
+ \frac{4\rho CM'(\|u_m(t)\|^2)}{M(\|u_m(t)\|^2)} (u_m'(t), u_m(t)) (|u_m'(t)|^{\alpha} u_m'(t), u_m''(t))
- 2 \|g^{1/2}\delta_m''(t)\|_{\Gamma}^2.$$
(19)

We observe that

$$\begin{split} \frac{2\rho(\alpha+1)\ C(|u'_m(t)|^{\alpha},(u''_m(t))^2)}{M_0} &\leqslant \frac{2\rho(\alpha+1)\ C(|u'_m(t)|^{\alpha},(u''_m(t))^2)}{M(\|u_m(t)\|^2)};\\ \frac{2\rho M'(\|u_m(t)\|^2)}{(M(\|u_m(t)\|^2))^2} (u'_m(t),u_m(t))\ \|u''_m(t)\|^2 &\leqslant C_{11}\ \|u''_m(t)\|^2;\\ \frac{4\rho CM'(\|u_m(t)\|^2)}{M(\|u_m(t)\|^2)} (u'_m(t),u_m(t))(|u'_m(t)|^{\alpha}\ u'_m(t),u''_m(t))\\ &\leqslant C_{12}\varepsilon(|u'_m(t)|^{\alpha},(u''_m(t))^2) + \frac{C_{12}}{\varepsilon}\ \|u'_m(t)\|_{L^{\alpha+2}(\Omega)}^{\alpha+2}, \quad \text{for all} \quad \varepsilon > 0;\\ &2\ \|g^{1/2}\delta''_m(t)\|_{\Gamma}^2 &\leqslant C_{13}\ \|\delta''_m(t)\|_{\Gamma}^2. \end{split}$$

Choosing $\varepsilon > 0$ sufficiently small and applying this to (19) we get

$$\begin{split} \frac{d}{dt} & \left[\frac{\rho \|u_m'(t)\|^2}{M(\|u_m(t)\|^2)} + \rho \|u_m'(t)\|_V^2 + \|f^{1/2} \delta_m''(t)\|_\Gamma^2 + \|h^{1/2} \delta_m'(t)\|_\Gamma^2 \right] \\ & \leq C_{14} \|u_m'(t)\|_{L^{\alpha+2}(\Omega)}^{\alpha+2} + C_{15}(\|u_m''(t)\|^2 + \|\delta_m''(t)\|_\Gamma^2). \end{split}$$

Integrating over (0, T), using (17), (18), and applying Gronwall's inequality we have

$$\|u_m'(t)\|^2 + \|u_m'(t)\|_V^2 + \|\delta_m''(t)\|_\Gamma^2 + \|\delta_m'(t)\|_\Gamma^2 \leqslant C_{16},$$
(20)

which is the second estimate.

From (17) and (20) there exist a subsequence of $(u_m)_{m \in \mathbb{N}}$ and a subsequence of $(\delta_m)_{m \in \mathbb{N}}$, which we denote by the same notations, and functions u, δ such that

$$\begin{split} u_m \stackrel{\bigstar}{\rightharpoonup} u & \text{ in } L^{\infty}(0, T; V), \\ u'_m \stackrel{\bigstar}{\rightharpoonup} u' & \text{ in } L^{\infty}(0, T; V), \\ u'_m \stackrel{\rightharpoonup}{\rightharpoonup} u' & \text{ in } L^{\alpha+2}(0, T; L^{\alpha+2}(\Omega)), \\ u''_m \stackrel{\bigstar}{\rightharpoonup} u'' & \text{ in } L^{\infty}(0, T; L^2(\Omega)), \\ \delta_m \stackrel{\bigstar}{\rightharpoonup} \delta & \text{ in } L^{\infty}(0, T; L^2(\Gamma)), \\ \delta'_m \stackrel{\bigstar}{\rightharpoonup} \delta' & \text{ in } L^{\infty}(0, T; L^2(\Gamma)), \\ \delta''_m \stackrel{\bigstar}{\frown} \delta'' & \text{ in } L^{\infty}(0, T; L^2(\Gamma)). \end{split}$$

Since $V \xrightarrow{c} L^2(\Omega)$, using the compactness theorem of Aubin and Lions [7], we obtain

$$u_m \rightarrow u$$
 in $L^2(0, T; L^2(\Omega)),$
 $u'_m \rightarrow u'$ in $L^2(0, T; L^2(\Omega)).$

Taking into account the above convergences and passing to the limit in the approximate equations we have

$$|(u''(t), \omega) + M(||u(t)||^2)[(\nabla u(t), \nabla \omega) - (\delta'(t), \gamma_0(\omega))_{\Gamma}] + C(|u'(t)|^{\alpha} u'(t), \omega) = 0,$$
(21)

$$(\gamma_0(u'(t)), z)_{\Gamma} = -\frac{1}{\rho} (f \delta''(t) + g \delta'(t) + h \delta(t), z)_{\Gamma},$$
 (22)

for all $\omega \in V$, $z \in L^2(\Gamma)$ a.e. in [0, T].

From (21) we obtain

$$\int_{\Omega} u''(x, t) \varphi(x) dx - \langle M(\|u(t)\|^2) \Delta u(t), \varphi \rangle_{\mathscr{D}'(\Omega) \times \mathscr{D}(\Omega)}$$
$$+ \int_{\Omega} |u'(x, t)|^{\alpha} u'(x, t) \varphi(x) dx = 0, \quad \text{for all } \varphi \in \mathscr{D}(\Omega), \text{ a.e. in } [0, T].$$

Therefore $\Delta u(t) \in L^2(\Omega)$ a.e. in [0, T] and

$$u'' - M(||u||^2) \, \Delta u + C \, |u'|^{\alpha} \, u' = 0 \qquad \text{a.e. in } Q = \Omega \times (0, T), \tag{23}$$

which shows that u satisfies (4). Since $u(t) \in V$ a.e. in [0, T] we have that (5) is proved. From (22) we can see that u and δ satisfy the boundary condition (6).

Now we shall interpret the sense in which u and δ satisfy (7). Multiplying (23) by $\omega \in V$ and integrating over Ω we find

$$(u''(t), \omega) - M(||u(t)||^2)(\Delta u(t), \omega) + C(|u'(t)|^{\alpha} u'(t), \omega) = 0.$$

Since $u(t) \in H(\Delta, \Omega)$ a.e. in [0, T], using the generalized Green's formula we have

$$\begin{aligned} (u''(t), \omega) + M(\|u(t)\|^2) \left[(\nabla u(t), \nabla \omega) - \langle \gamma_1(u(t)), \gamma_0(\omega) \rangle_{H^{-1/2}(\Gamma) \times H^{1/2}(\Gamma)} \right] \\ &+ C(|u'(t)|^{\alpha} \, u'(t), \omega) = 0. \end{aligned}$$

This and (21) give

$$\langle \gamma_1(u(t)), \gamma_0(\omega) \rangle_{H^{-1/2}(\Gamma) \times H^{1/2}(\Gamma)} = (\delta'(t), \gamma_0(\omega))_{\Gamma}, \tag{24}$$

for all $\omega \in V$ and a.e. in [0, T], which proves (7).

The initial conditions (8) can be proved in a standard way and the proof of Theorem 1 is complete.

THEOREM 2 (Uniqueness, regularity, and continuous dependence on the parameters). Let $n \leq 3$. Under the hypotheses of Theorem 1, if

$$\alpha > 1 \qquad for \qquad n = 1, 2 \tag{25}$$

or

$$1 < \alpha \leq 2 \qquad for \qquad n = 3, \tag{26}$$

then for each $u_0 \in V \cap H^2(\Omega)$ and $u_1 \in V$ there exists a unique pair of functions $(u(x, t), \delta(x, t))$, which is a solution to the problem (4)–(8) in the class

$$u \in C([0, T]; V) \cap C^{1}([0, T]; L^{2}(\Omega)); \qquad u(t) \in H(\Delta, \Omega) \quad a.e. \text{ in } [0, T];$$

(27)

$$u' \in L^{\infty}(0, T; V);$$
 $u'' \in L^{\infty}(0, T; L^{2}(\Omega);$ (28)

$$\delta \in C^1(0, T; L^2(\Gamma)); \qquad \delta'' \in L^\infty(0, T; L^2(\Gamma)).$$
⁽²⁹⁾

Moreover the solution u, δ depends continuously on the parameters f, g, h, u_0 and u_1 .

Proof. Taking into account (25) and (26), the Sobolev imbedding theorem gives $V \hookrightarrow L^{2\alpha+2}(\Omega)$. This allows us to get one more estimate for the approximate solutions. Let $(u_m)_{m \in \mathbb{N}}$ and $(\delta_m)_{m \in \mathbb{N}}$ be the approximate solutions as in the proof of Theorem 1. Thus we have the following extra estimate.

Estimate 3. Let μ and m be arbitrary fixed natural numbers, $\mu \ge m$. We define $\xi_{jm}(t) = \beta_{jm}(t) = 0$ for all $j = m + 1, ..., \mu$, and we put

$$v_m = u_\mu - u_m, \qquad \theta_m = \delta_\mu - \delta_m.$$

From (13) and (14) we have

$$\begin{split} \frac{M(\|u_m(t)\|^2)(u_{\mu}''(t),\omega) - M(\|u_{\mu}(t)\|^2)(u_m''(t),\omega)}{M(\|u_{\mu}(t)\|^2) M(\|u_m(t)\|^2)} + (\nabla v_m(t),\nabla \omega) \\ &- (\theta_m'(t),\gamma_0(\omega))_{\Gamma} + C \bigg[\frac{(|u_{\mu}'(t)|^{\alpha} u_{\mu}'(t),\omega)}{M(\|u_{\mu}(t)\|^2)} - \frac{(|u_m'(t)|^{\alpha} u_m'(t),\omega)}{M(\|u_m(t)\|^2)} \bigg] = 0, \\ &(\gamma_0(v_m'(t)),z) = -\frac{1}{\rho} (f\theta_m''(t) + g\theta_m'(t) + h\theta_m(t),z)_{\Gamma}, \end{split}$$

for all $\omega \in [\omega_1, ..., \omega_\mu]$ and $z \in [z_1, ..., z_\mu]$.

Adding and subtracting appropriate terms, taking $w = 2v'_m(t)$ and $z = \theta'_m(t)$ we find

$$\frac{d}{dt} \left[\frac{\rho \|v'_{m}(t)\|^{2}}{M(\|u_{\mu}(t)\|^{2})} + \rho \|v_{m}(t)\|_{V}^{2} + \|f^{1/2}\theta'_{m}(t)\|_{\Gamma}^{2} + \|h^{1/2}\theta_{m}(t)\|_{\Gamma}^{2} \right]
+ \frac{2\rho C(|u'_{\mu}(t)|^{\alpha} u'_{\mu}(t) - |u'_{m}(t)|^{\alpha} u'_{m}(t), v'_{m}(t))}{M(\|u_{\mu}(t)\|^{2})}
= -2 \|g^{1/2}\theta'_{m}(t)\|_{\Gamma}^{2} + 2\rho \left[\frac{M(\|u_{\mu}(t)\|^{2}) - M(\|u_{m}(t)\|^{2})}{M(\|u_{\mu}(t)\|^{2}) M(\|u_{m}(t)\|^{2})} \right] (u''_{m}(t), v'_{m}(t))
+ 2\rho C \left[\frac{M(\|u_{\mu}(t)\|^{2}) - M(\|u_{m}(t)\|^{2})}{M(\|u_{\mu}(t)\|^{2})} \right] (|u'_{m}(t)|^{\alpha} u'_{m}(t), v'_{m}(t))
- 2\rho \frac{M'(\|u_{\mu}(t)\|^{2})}{M(\|u_{\mu}(t)\|^{2})} (u'_{\mu}(t), u_{\mu}(t)) \|v'_{m}(t)\|^{2}.$$
(30)

Now we observe that

$$\begin{aligned} \frac{2\rho C}{M(\|u_{\mu}(t)\|^{2})} (|u_{\mu}'(t)|^{\alpha} u_{\mu}'(t) - |u_{m}'(t)|^{\alpha} u_{m}'(t), v_{m}'(t)) &\geq 0; \\ 2 \|g^{1/2} \theta_{m}'(t)\|_{\Gamma}^{2} &\leq C_{1} \|\theta_{m}'(t)\|_{\Gamma}^{2}; \\ 2\rho \left[\frac{M(\|u_{\mu}(t)\|^{2}) - M(\|u_{m}(t)\|^{2})}{M(\|u_{\mu}(t)\|^{2}) M(\|u_{m}(t)\|^{2})}\right] (u_{m}''(t), v_{m}'(t)) \\ &\leq C_{2}(\|v_{m}(t)\|_{V}^{2} + \|v_{m}'(t)\|^{2}). \end{aligned}$$

Here we have used

$$\begin{split} |M(||u_{\mu}(t)||^{2}) &- M(||u_{m}(t)||^{2})| \\ &= \left| \int_{||u_{m}(t)||^{2}}^{||u_{\mu}(t)||^{2}} M'(s) \, ds \right| \\ &\leq C(||u_{\mu}(t)|| + ||u_{m}(t)||) \, ||v_{m}(t)|| \leq C \, ||v_{m}(t)||_{V}; \\ 2\rho C \left[\frac{M(||u_{\mu}(t)||^{2}) - M(||u_{m}(t)||^{2})}{M(||u_{\mu}(t)||^{2}) M(||u_{m}(t)||^{2})} \right] (|u'_{m}(t)|^{\alpha} \, u'_{m}(t), \, v'_{m}(t)) \\ &\leq C_{3} \, ||v_{m}(t)||_{V} \, || \, |u'_{m}(t)|^{\alpha} \, u'_{m}(t)|| \, ||v'_{m}(t)|| \\ &\leq ||u'_{m}(t)||_{L^{2\alpha+2}(\Omega)}^{2\alpha+2} \, ||v_{m}(t)||_{V}^{2} + C_{3}^{2} \, ||v'_{m}(t)||^{2} \\ &\leq C_{4} \, ||u'_{m}(t)||_{V}^{2\alpha+2} \, ||v_{m}(t)||_{V}^{2} + C_{3}^{2} \, ||v'_{m}(t)||^{2} \\ &\leq C_{5}(||v_{m}(t)||_{V}^{2} + ||v'_{m}(t)||^{2}). \end{split}$$

Here we have used $V \hookrightarrow L^{2\alpha+2}(\Omega)$. Next,

$$2\rho \frac{M'(\|u_{\mu}(t)\|^{2})}{M(\|u_{\mu}(t)\|^{2})} (u'_{\mu}(t), u_{\mu}(t)) \|v'_{m}(t)\|^{2} \leq C_{6} \|v'_{m}(t)\|^{2}.$$

Applying this to (30) we obtain

$$\frac{d}{dt} \left[\frac{\rho \|v'_m(t)\|^2}{M(\|u_\mu(t)\|^2)} + \rho \|v_m(t)\|_V^2 + \|f^{1/2}\theta'_m(t)\|_\Gamma^2 + \|h^{1/2}\theta_m(t)\|_\Gamma^2 \right] \\ \leqslant C_7(\|v'_m(t)\|^2 + \|v_m(t)\|_V^2 + \|\theta'_m(t)\|_\Gamma^2 + \|\theta_m(t)\|_\Gamma^2).$$

Integrating from 0 to t and using Gronwall's inequality we have

$$\begin{aligned} \|v'_{m}(t)\|^{2} + \|v_{m}(t)\|_{V}^{2} + \|\theta'_{m}(t)\|_{\Gamma}^{2} + \|\theta_{m}(t)\|_{\Gamma}^{2} \\ &\leq C_{8}(\|v'_{m}(0)\|^{2} + \|v_{m}(0)\|_{V}^{2} + \|\theta'_{m}(0)\|_{\Gamma}^{2} + \|\theta_{m}(0)\|_{\Gamma}^{2}); \end{aligned}$$

then

$$\|v'_{m}(t)\|^{2} + \|v_{m}(t)\|_{V}^{2} + \|\theta'_{m}(t)\|_{\Gamma}^{2} + \|\theta_{m}(t)\|_{\Gamma}^{2} \leq C_{9}(\|v'_{m}(0)\|^{2} + \|v_{m}(0)\|_{H^{2}(\Omega)}).$$

This estimate shows that $(u_m(t))_{m \in \mathbb{N}}$ is a Cauchy sequence in C([0, T]; V) and in $C^1([0, T]; L^2(\Omega))$. Moreover, it shows also that $(\delta_m(t))_{m \in \mathbb{N}}$ is a Cauchy sequence in $C^1([0, T]; L^2(\Gamma))$. Therefore (27)–(29) is proved.

To prove that the solution u, δ depends continuously on the parameters f, g, h, u_0 , and u_1 let us consider two sets of parameters, $\{f, g, h, u_0, u_1\}$

and $\{\tilde{f}, \tilde{g}, \tilde{h}, \tilde{u_0}, \tilde{u_1}\}$, with associated solutions u, δ and $\tilde{u}, \tilde{\delta}$, respectively. Putting

$$v = u - \tilde{u}$$
 and $\theta = \delta - \tilde{\delta}$

and proceeding as in Estimate 3 we have

$$\begin{split} \frac{d}{dt} \bigg[\frac{\rho \|v'(t)\|^2}{M(\|u(t)\|^2)} + \rho \|v(t)\|_{V}^2 + \|f^{1/2}\theta'(t)\|_{\Gamma}^2 + \|h^{1/2}\theta(t)\|_{\Gamma}^2 \bigg] \\ &+ \frac{2\rho C(|u'(t)|^{\alpha} u'(t) - |\tilde{u}'(t)|^{\alpha} \tilde{u}'(t), v'(t))}{M(\|u(t)\|^2)} \\ &= -2 \|g^{1/2}\theta'(t)\|_{\Gamma}^2 + \frac{2\rho \big[M(\|u(t)\|^2) - M(\|\tilde{u}(t)\|^2)\big]}{M(\|u(t)\|^2) M(\|\tilde{u}(t)\|^2)} (\tilde{u}''(t), v'(t)) \\ &+ \frac{2\rho C \big[M(\|u(t)\|^2) - M(\|\tilde{u}(t)\|^2)\big]}{M(\|u(t)\|^2) M(\|\tilde{u}(t)\|^2)} (|\tilde{u}'(t)|^{\alpha} \tilde{u}'(t), v'(t)) \\ &- \frac{2\rho M'(\|u(t)\|^2)}{M(\|u(t)\|^2)} (u'(t), u(t)) \|v'(t)\|^2 \\ &+ 2((\tilde{f} - f) \tilde{\delta}''(t), \theta'(t))_{\Gamma} + 2((\tilde{g} - g) \tilde{\delta}'(t), \theta'(t))_{\Gamma} \\ &+ 2((\tilde{h} - h) \tilde{\delta}(t), \theta'(t))_{\Gamma} \\ &\leqslant C_{10}(\|v'(t)\|^2 + \|v(t)\|_{V}^2 + \|\theta'(t)\|_{\Gamma}^2 + \|\theta(t)\|_{\Gamma}^2) \\ &+ C_{11}(\|f - \tilde{f}\|_{C(\Gamma_1)}^2 + \|g - \tilde{g}\|_{C(\Gamma_1)}^2 + \|h - \tilde{h}\|_{C(\Gamma_1)}^2). \end{split}$$

Integrating this from 0 to t and using Gronwall's inequality we have

$$\begin{split} \|v'(t)\|^2 + \|v(t)\|_{V}^2 + \|\theta'(t)\|_{\Gamma}^2 + \|\theta(t)\|_{\Gamma}^2 \\ \leqslant C_{12}(\|v'(0)\|^2 + \|v(0)\|_{H^2(\Omega)}^2 + \|f - \tilde{f}\|_{C(\bar{\Gamma}_1)}^2 + \|g - \tilde{g}\|_{C(\bar{\Gamma}_1)}^2 + \|h - \tilde{h}\|_{C(\bar{\Gamma}_1)}^2). \end{split}$$

From this we can see that

$$\begin{split} \|u - \widetilde{u}\|_{C^{1}([0, T]; L^{2}(\Omega))}^{2} + \|\delta - \widetilde{\delta}\|_{C^{1}([0, T]; L^{2}(\Gamma))}^{2} \\ & \leq C_{12}(\|f - \widetilde{f}\|_{C(\overline{\Gamma}_{1})}^{2} + \|g - \widetilde{g}\|_{C(\overline{\Gamma}_{1})}^{2} + \|h - \widetilde{h}\|_{C(\overline{\Gamma}_{1})}^{2} \\ & + \|u_{0} - \widetilde{u_{0}}\|_{H^{2}(\Omega)}^{2} + \|u_{1} - \widetilde{u_{1}}\|^{2}), \end{split}$$

which completes the proof of Theorem 2.

3. THE ACOUSTIC BOUNDARY CONDITION

Thus far we have divided the boundary Γ into two parts, one of which (Γ_0) has positive measure and has the homogeneous Dirichlet boundary condition imposed upon it. Now we let that positive measure shrink to zero. For each $m \in \mathbb{N}$, let Γ_{0m} be a subset of Γ such that

$$\begin{split} \mathrm{meas}(\Gamma_{0m}) > 0, & \text{for all} \quad m \in \mathbf{N}; \\ \Gamma_{0(m+1)} \subset \Gamma_{0m}, & \text{for all} \quad m \in \mathbf{N}; \\ \lim_{m \to \infty} \mathrm{meas}(\Gamma_{0m}) = 0. \end{split}$$

We denote $V_m = \{ u \in H^1(\Omega); \gamma_0(u) = 0 \text{ a.e. on } \Gamma_{0m} \}$, and $V_{\infty} = \bigcup_{m=1}^{\infty} V_m$. Therefore, putting $W = \overline{V_{\infty}}^{H^1(\Omega)}$ we have that W is a closed subspace of $H^1(\Omega)$, $H_0^1(\Omega) \subset V_1 \subset V_2 \subset \cdots \subset V_{\infty} \subset W \subset H^1(\Omega)$, and the Poincaré inequality is satisfied in W. Moreover,

$$\|u\|_{W} = \left(\sum_{i=1}^{n} \int_{\Omega} \left| \frac{\partial u}{\partial x_{i}} \right|^{2} dx \right)^{1/2}$$

is a norm in W equivalent to the usual norm of $H^1(\Omega)$.

THEOREM 3. Under the assumptions of Theorem 2 with n = 2 or n = 3, for each $u_0 \in W \cap H^2(\Omega)$ and $u_1 \in W$ there exists a unique pair of functions $(u(x, t), \delta(x, t))$ in the class

$$u \in C([0, T]; W) \cap C^{1}([0, T]; L^{2}(\Omega));$$
(31)

$$u(t) \in H(\Delta, \Omega)$$
 a.e. $m [0, T];$

$$u' \in L^{\infty}(0, T; W);$$
 $u'' \in L^{\infty}(0, T; L^{2}(\Omega));$ (32)

$$\delta \in C^1(0, T; L^2(\Gamma)); \qquad \delta'' \in L^{\infty}(0, T; L^2(\Gamma)); \tag{33}$$

such that

$$u'' - M\left(\int_{\Omega} u^2 dx\right) \Delta u + C |u'|^{\alpha} u' = 0 \qquad in \quad Q = \Omega \times (0, T); \quad (34)$$

$$\rho u' + f\delta'' + g\delta' + h\delta = 0 \qquad on \quad \Sigma = \Gamma \times (0, T); \quad (35)$$

$$\frac{\partial u}{\partial v} - \delta' = 0 \qquad \qquad on \quad \Sigma = \Gamma \times (0, T); \quad (36)$$

 $u(x, 0) = u_0(x), \qquad u'(x, 0) = u_1(x) \qquad in \ \Omega.$ (37)

Moreover the solution u, δ depends continuously on the parameters f, g, h, u_0 and u_1 .

Proof. Let $(u_{0m})_{m \in \mathbb{N}}$ and $(u_{1m})_{m \in \mathbb{N}}$ be two sequences such that

$$u_{0m} \in V_m \cap H^2(\Omega)$$
 and $u_{0m} \to u_0$ in $W \cap H^2(\Omega)$;
 $u_{1m} \in V_m$ and $u_{1m} \to u_1$ in W .

Thus, by Theorem 2, for each $m \in \mathbb{N}$ there exist a unique pair of functions u_m, δ_m in the class

$$\begin{split} & u_m \in C([0, T]; V_m) \cap C^1([0, T]; L^2(\Omega)); \\ & u_m(t) \in H(\Delta, \Omega) & \text{ a.e. in } [0, T]; \\ & u'_m \in L^{\infty}(0, T; V_m); & u''_m \in L^{\infty}(0, T; L^2(\Omega)); \\ & \delta_m \in C^1(0, T; L^2(\Gamma)); & \delta''_m \in L^{\infty}(0, T; L^2(\Gamma)), \end{split}$$

such that

$$\begin{split} u_m'' - M(\|u_m\|^2) \, \Delta u_m + C \, |u_m'|^{\alpha} \, u_m' &= 0 & \text{in } Q; \\ \rho \gamma_0(u_m') + f \delta_m'' + g \delta_m' + h \delta_m &= 0 & \text{on } \Sigma; \\ \langle \gamma_1(u_m(t)), \gamma_0(\omega) \rangle &= (\delta_m'(t), \omega) & \text{for all } \omega \in V_m, \text{ a.e. in } [0, T]; \\ u_m(0) &= u_{0m}, & u_m'(0) = u_{1m}. \end{split}$$

Since the constant of the Poincaré inequality on W does not depend on the measure of Γ_{0m} (see the Appendix), we can see that all estimates that we have done before still true for (u_m) and (δ_m) . Therefore by taking the limit when m goes to infinity, Theorem 3 is proved.

Remark 1. The boundary condition (36) is satisfied in a weak sense. This means that

$$u(t) \in H(\Delta, \Omega)$$
 a.e. in $[0, T]$

and

$$\langle \gamma_1(u(t)), \gamma_0(\omega) \rangle_{H^{-1/2}(\Gamma) \times H^{1/2}(\Gamma)} = (\delta'(t), \gamma_0(\omega))_{\Gamma}, \quad \text{for all} \quad \omega \in W.$$

Remark 2. When $M(\lambda) = 1$, C = 0 and n = 3 we can consider the Hilbert space $H_D(\Omega) = H^1(\Omega)$ modulo constant functions, instead of W.

Our result in this case was obtained in Beale [1] using semigroup methods. He considered an equivalent initial value problem

$$v'(t) = Av(t) \qquad t > 0,$$

$$v(0) = v_0$$

in the Hilbert space $\mathscr{H} = H_D(\Omega) \times L^2(\Omega) \times L^2(\Gamma) \times L^2(\Gamma)$ with norm

$$\|v\|_{\mathscr{H}} = \rho \|v_1\|_{H_D(\Omega)}^2 + \rho \|v_2\|^2 + \|h^{1/2}v_3\|_{\Gamma}^2 + \|f^{1/2}v_4\|_{\Gamma}^2$$

and $A: D(A) \subset \mathscr{H} \to \mathscr{H}$ the operator defined by

$$D(A) = \left\{ v \in \mathcal{H} ; \Delta v_1 \in L^2(\Omega), v_2 \in H^1(\Omega) \text{ and } \gamma_1(v_1) = v_4 \right\}$$
$$Av = \left(v_2, \Delta v_1, v_4, -\frac{1}{f} \left(\rho \gamma_0(v_2) + hv_3 + gv_4 \right) \right).$$

Then he proved that A generates a (C_0) contraction semigroup (a unitary group if $g \equiv 0$), which solves the initial value problem. He also showed that A has a noncompact resolvent and a nonempty essential spectrum. Moreover a description of the spectrum of the semigroup generator A was obtained. The remarkable feature here is that A does not have a compact resolvent; rather $\lambda \to (\lambda I - A)^{-1}$ has essential singularities in **C**. This is a fascinating result for which we have no nonlinear analogue.

Remark 3. The damping term $C |u_t|^{\alpha} u_t$ in Eq. (3) is not sufficient for the global solvability when $\alpha = 1$, C > 0. However, one can consider this case with additional assumptions. When the measure of Ω is sufficiently small or the size of the initial data (u_0, u_1) is sufficiently small, then global solvability holds. The details will appear elsewhere. Finally we remark that in our basic equation (3) the right-hand side (zero) may be replaced by a given forcing function F(x, t), where $F \in H^1(Q)$. The proof goes through with only inessential changes; we omit the details.

APPENDIX

Let Ω be a bounded connected open set in \mathbb{R}^n with a sufficiently smooth boundary. Then the canonical injection of $H^1(\Omega)$ into $L^2(\Omega)$ is compact, and $H^1(\Omega) \subset C(\overline{\Omega})$ holds by a Sobolev inequality if $n \leq 3$. Let $x_0 \in \partial \Omega$. Then there is a constant $k = k(\Omega)$, depending only on Ω , such that

$$\|u\|^2 \leqslant k(\Omega) \|\nabla u\|^2 \tag{38}$$

holds for all $u \in H^1(\Omega)$ such that $u(x_0) = 0$. (Recall $u \in H^1(\Omega)$ implies $u \in C(\overline{\Omega})$, so that $u(x_0)$ is well defined. More precisely, the equivalence class of u contains an everywhere continuous function on $\overline{\Omega}$, which we identify with u).

The proof of the Poincaré inequality (38) is similar to that in [6, pp. 127–129]. We proceed by contradiction. Assume (38) fails to hold. Then there is a sequence (u_m) in $H^1(\Omega)$ such that

 $||u_m||_{H^1(\Omega)} = 1, \qquad u_m(x_0) = 0, \qquad \text{and} \qquad \alpha_m ||\nabla u_m||^2 \le ||u_m||^2 \le 1$

for all *m*, where $\alpha_m \to \infty$. (Recall $||u||_{H^1(\Omega)}^2 = ||u||^2 + ||\nabla u||^2$, and $||\cdot||$ is the $L^2(\Omega)$ norm). By compactness, a subsequence of (u_m) (which we also denote by (u_m)) converges weakly in $H^1(\Omega)$ to $u \in H^1(\Omega)$. Then u_m converges to *u* strongly in $L^2(\Omega)$ and uniformly since $C(\overline{\Omega}) \hookrightarrow H^1(\Omega)$ is compact. Hence $u \in C(\overline{\Omega})$ and $u(x_0) = 0$. Since $\alpha_m \to \infty$ we have $||\nabla u_m|| \to 0$, and $\nabla u_m \to \nabla u$ in the sense of distributions. It follows that $\nabla u = 0$, and since $u \in H^1(\Omega)$, $u(x) \equiv C$ is a constant since Ω is connected. But $u \in C(\overline{\Omega})$ and $u(x_0) = 0$, whence *u* is the zero function. Thus $||u_m|| \to 0$, which coupled with $||\nabla u_m|| \to 0$ implies $||u_m||_{H^1(\Omega)} \to 0$. This contradicts $||u_m||_{H^1(\Omega)} = 1$, and so (38) follows.

We present an alternative version of (38) in a special context which admits a simple proof and a concrete bound for $k(\Omega)$ with $\dim(\Omega)$ arbitrary. Now let Ω be a bounded convex set in \mathbb{R}^n (for any *n*). Let $x_0 \in \partial \Omega$. Let *D* be the diameter of Ω and let $V = \{u \in C^1(\overline{\Omega}); u(x_0) = 0\}$. Then

$$\|u\|^2 \leqslant D^2 \|\nabla u\|^2 \tag{39}$$

holds for all $u \in V$. Thus (38) holds (on the $H^1(\Omega)$ closure of V) with $k(\Omega) = D^2$.

We prove (39). Let $x \in \Omega$. Let e_1 be a unit vector in \mathbb{R}^n pointing from x_0 to x, and let $l = ||x - x_0||_{\mathbb{R}^n}$. Then by the fundamental theorem of calculus

$$u(x) = \int_0^l \frac{\partial u}{\partial y_1} \left(x_0 + se_1 \right) \, ds; \tag{40}$$

here we extend e_1 to $e_1, e_2, ..., e_n$, an orthonormal basis of \mathbb{R}^n , and we let $y_1, ..., y_n$ be the corresponding Cartesian coordinate system. By the Cauchy–Schwarz inequality applied to (40),

$$(u(x))^2 \leq l \int_0^l \left| \frac{\partial u}{\partial y_1} \left(x_0 + se_1 \right) \right|^2 ds.$$

Let L be the portion of the line $\{x_0 + se_1, s \in \mathbf{R}\}$ which intersects Ω . Then

$$|u(x)|^{2} \leq D \int_{L} \left(\frac{\partial u}{\partial y_{1}}\right)^{2} dy_{1} = D \int_{0}^{\lambda} \left|\frac{\partial u}{\partial y_{1}}(x_{0} + se_{1})\right|^{2} ds,$$
(41)

where λ ($\leq D$) is the length of *L*. Integrating both sides of (41) over *L* gives

$$\int_{L} |u|^2 \, dy_1 \leq D^2 \int_{L} \left(\frac{\partial u}{\partial y_1}\right)^2 dy_1 \leq D^2 \int_{L} |\nabla u|^2 \, dy_1. \tag{42}$$

To review, we pick $x \in \Omega$ and then choose the coordinate system $y_1, ..., y_n$. Next, for any $f \in L^2(\Omega)$,

$$\int_{\Omega} |f(y)|^2 \, dy = \int_{E_n} \cdots \int_{E_2} \int_{E_1} |f(y)|^2 \, dy_1 \, dy_2 \, \cdots dy_n \tag{43}$$

where $y_1 \in E_1$ means $F_{11}(y_2, ..., y_n) \leq y_1 \leq F_{12}(y_2, ..., y_n)$, $y_2 \in E_2$ means $F_{21}(y_3, ..., y_n) \leq y_2 \leq F_{22}(y_3, ..., y_n)$, and so on until $y_n \in E_n$ means $F_{n1} \leq y_n \leq F_{n2}$, where F_{n1} , F_{n2} are constants. This is valid since Ω is convex. And our choice of the coordinate system $\{y_1, ..., y_n\}$ implies

$$\int_{E_1} |f(y)|^2 \, dy_1 = \int_L |f|^2 \, dy_1.$$

Now integrate over $y_2 \in E_2$, ..., $y_n \in E_n$ as in (43), taking for f the choices u and ∇u . By (42),

$$\int_{\Omega} |u(y)|^2 dy \leq D^2 \int_{\Omega} |\nabla u(y)|^2 dy,$$

which is (39).

This argument can be extended to more general domains, but rather than taking L the line through x_0 and x, to be parallel to the y_1 axis, we take the path from x_0 to x to be a continuous broken line with sides parallel to the coordinate axes in the $y_1, ..., y_n$ coordinate system. The details are very messy and we omit them.

REFERENCES

- 1. J. T. Beale, Spectral properties of an acoustic boundary condition, *Indiana Univ. Math. J.* **25** (1976), 895–917.
- J. T. Beale, Acoustic scattering from locally reacting surfaces, *Indiana Univ. Math. J.* 26 (1977), 199–222.

- J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions, Bull. Amer. Math. Soc. 80 (1974), 1276–1278.
- 4. G. F. Carrier, On the non-linear vibration problem of the elastic string, *Quart. Appl. Math.* **3** (1945), 157–165.
- A. T. Cousin, C. L. Frota, N. A. Lar'kin, and L. A. Medeiros, On the abstract model of the Kirchhoff–Carrier equation, *Comm. Appl. Anal.* 1 (1997), 389–404.
- R. Dautray and J. L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology," Springer-Verlag, New York, 1988.
- J. L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications," Springer-Verlag, New York, 1972.
- 8. P. M. Morse and K. U. Ingard, "Theoretical Acoustics," McGraw-Hill, New York, 1968.