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1. Introduction

Suppose that X is a quasi-Banach space (in particular a Banach space) with a quasi-norm ‖ · ‖ and a normalized uncon-
ditional basis (xn)∞n=1. The space X is said to have a unique unconditional basis (up to a permutation) if whenever (yn)∞n=1 is
another normalized unconditional basis of X , then (yn)∞n=1 is equivalent to (a permutation of) (xn)∞n=1, i.e., there exists an
automorphism of X which takes one basis to (a permutation of) the other.

For a Banach space it is rather unusual to have a unique unconditional basis; in fact only the spaces c0, �1, and �2
do [14]. If an unconditional basis is unique, in particular it must be equivalent to all its permutations and hence must be
symmetric. Thus, the obvious modification for spaces whose canonical basis is unconditional but not symmetric is to require
uniqueness of unconditional basis via a permutation, which in many ways is a more natural concept for unconditional bases,
whose order is irrelevant. Classifying those Banach spaces with unique unconditional basis up to permutation, however, has
turned out to be a much more difficult task. What is known of this topic can be found in [5] and for a modern overview of
the subject see the survey article [15].

On the other hand, in the context of quasi-Banach spaces that are not Banach spaces, the uniqueness of unconditional
basis seems to be the norm rather than an exception. For instance, it was shown in [8] that a wide class of nonlocally
convex Orlicz sequence spaces, including the �p spaces for 0 < p < 1, have a unique unconditional basis. The same is true
in nonlocally convex Lorentz sequence spaces [12,3] and (up to a permutation) in the Hardy spaces H p(T) for 0 < p < 1
[17].

The before mentioned Memoir by Bourgain et al. [5] left many open problems, most of which remain unsolved as of
today. One of this questions was: do the spaces �1(X) = (X ⊕ X ⊕ · · · ⊕ X ⊕ · · ·)1 and c0(X) = (X ⊕ X ⊕ · · · ⊕ X ⊕ · · ·)0
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have a unique unconditional basis up to permutation whenever X does? [5, Problem 11.1]. We translated this question into
the nonlocally convex setting and tackled the case of c0(X) in [4].

In this paper we deal with the corresponding problem in the �1(X) case. We show that, at least for an ample class of
quasi-Banach spaces X , any complemented unconditional basic sequence of �1(X) must be equivalent to a subset of the
canonical basis of the space. As a consequence we obtain that �1(X) has a unique unconditional basis up to permutation
(even without knowing whether X has a unique unconditional basis or not!), extending thus a result from [2].

Throughout this article we use standard Banach space theory terminology and notation, as may be found in [1,11]. Other
more specific references will be provided in context.

2. Preliminaries

Suppose X is an infinite-dimensional quasi-Banach space. A basis (xn)∞n=1 of X is said to be strongly absolute if given
ε > 0 there exists a constant Cε > 0 so that

∞∑
n=1

|αn| � Cε sup
n

|αn| + ε

∥∥∥∥∥
∞∑

n=1

αnxn

∥∥∥∥∥
X

, (2.1)

for any (αn)∞n=1 ∈ c00. This definition was introduced in [12]. Its intuitive meaning is that if the space X has a strongly-
absolute basis, then it is far from being a Banach space.

Let X be a quasi-Banach space, and let B X denote the unit ball of X , i.e., B X = {x ∈ X: ‖x‖ � 1}. Let 0 < q � 1, the
q-convex hull of B X , denoted by q-co B X , is the set{

n∑
i=1

αi xi:
n∑

i=1

α
q
i � 1, αi � 0, {xi}n

i=1 ⊂ B X , n ∈ N

}
,

i.e., the smallest q-convex set containing B X , also known as the q-convex hull of B X . If X has a separating dual, then the
gauge functional of q-coB X is a q-norm on X that will be denoted by ‖ · ‖(q) . The q-Banach space X̂q resulting from the
completion of (X,‖ · ‖(q)) is called the q-Banach envelope of X . X̂q has the property that every continuous linear operator
from X into a q-Banach space extends to X̂q with preservation of norm. In particular, the dual of X̂q is X∗ . For q = 1, the
space ( X̂1,‖ · ‖(1)) is a Banach space that will be called the Banach envelope of X and will be simply denoted by ( X̂,‖ · ‖c)

(see [11,10]).
It follows readily from (2.1) that if an infinite-dimensional quasi-Banach space X with normalized unconditional basis

(xn)∞n=1 has a q-Banach envelope which is isomorphic to �q for some 0 < q < 1, then (xn)∞n=1 is strongly absolute, and the
Banach envelope of X is isomorphic to �1.

Quasi-Banach spaces whose q-Banach envelope is isomorphic to �q for some q < 1 are abundant and amongst them we
find most of the nonlocally convex classical spaces, like the sequence spaces �p and the spaces of analytic functions H p(T)

for 0 < p < 1. All these spaces have a 1-unconditional basis which induces a p-convex lattice structure for some 0 < p < 1.
Recall that a quasi-Banach lattice X is said to be p-convex, where 0 < p < ∞, if there is a constant M p such that for any

{yi}n
i=1 in X and n ∈ N we have∥∥∥∥∥

(
n∑

i=1

|yi|p

)1/p∥∥∥∥∥ � Mp

(
n∑

i=1

‖yi‖p

)1/p

.

The procedure to define the element (
∑n

i=1 |yi|p)1/p is exactly the same as for Banach lattices [13]. If a quasi-Banach space
X is isomorphic to a closed subspace of a p-convex quasi-Banach lattice, then X is also p-convex and it is called natural
(see [9]).

The other notion that we will need is that of a lattice anti-Euclidean quasi-Banach lattice. A quasi-Banach lattice is said
to be sufficiently Euclidean if there is a constant M so that for any n ∈ N there are operators Sn : X → �n

2 and Tn : �n
2 → X so

that Sn ◦ Tn = I�n
2
, ‖Sn‖‖Tn‖ � M , and Sn is a lattice homomorphism, i.e., if �2 is finitely representable as a complemented

sublattice of X . The space X is called lattice anti-Euclidean if it is not sufficiently Euclidean. We refer the reader to [6] for
more details on this definition and the role it has played in the classification of complemented basic sequences in Banach
lattices which are lattice anti-Euclidean.

Our proofs depend critically on the fact that �1, the Banach envelope of our spaces (up to isomorphism), is lattice anti-
Euclidean. This will be made more explicit below as an application of the next lemma, which summarizes several results
and ideas contained in [2].

Lemma 2.1. Let Z be a quasi-Banach space such that:

(i) Z has a 1-unconditional basis (ek)
∞
k=1 that induces a p-convex lattice structure in Z for some p > 0,

(ii) the Banach envelope of Z is lattice anti-Euclidean, and
(iii) Z is lattice isomorphic to Z ⊕ Z .
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If (un)∞n=1 is a normalized unconditional complemented basic sequence in Z , then (un)∞n=1 is equivalent to a normalized, unconditional,
and complemented basic sequence (vn)∞n=1 in Z such that the sets Sn := {k ∈ N: e∗

k (vn) 
= 0} are disjoint and finite, Sn coincides with
{k ∈ N: v∗

n(ek) 
= 0}, and there exists a constant ν > 0 such that e∗
k (vn) > 0 and v∗

n(ek) > ν for all k ∈ Sn and all n ∈ N.

The following technique is known as the “large coefficient technique” and has become crucial to determine the unique-
ness of unconditional basis in quasi-Banach spaces. It was introduced by Kalton in [8] to prove the uniqueness of uncon-
ditional basis in nonlocally convex Orlicz sequence spaces, and was extended to the framework of quasi-Banach lattices
in [12].

Lemma 2.2. (See [12, Theorem 2.3].) Let Z be a p-convex quasi-Banach lattice (0 < p < 1) with normalized unconditional basis
(en)

∞
n=1 and let Y be a complemented subspace of Z with a normalized unconditional basis (un)n∈S (S ⊆ N). Let (e∗

n)∞n=1 and (u∗
n)n∈S

be the sequences of biorthogonal linear functionals associated to (en)
∞
n=1 and (un)n∈S respectively. Suppose that there is a constant

ν > 0 and an injective map σ : S → N so that∣∣e∗
σ (n)(un)u∗

n(eσ (n))
∣∣ > ν

for all n ∈ S. Then, the basic sequences (un)n∈S and (eσ(n))n∈S are equivalent. That is, there exists a positive constant ρ so that

ρ−1
∥∥∥∥∑

n∈S

αneσ (n)

∥∥∥∥ �
∥∥∥∥∑

n∈S

αnxn

∥∥∥∥ � ρ

∥∥∥∥∑
n∈S

αneσ (n)

∥∥∥∥,

for any scalars (αn) ∈ c00 .

The following generalization of Lemma 2.2 will be also used. The proofs are similar.

Lemma 2.3. Let Z be a p-convex quasi-Banach lattice (0 < p < 1) with normalized unconditional basis (en)∞n=1 and let Y be a
complemented subspace of Z with a normalized unconditional basis (un)n∈S (S ⊆ N) so that supp(u∗

n) ⊆ supp(un) and the sets
supp(un) are disjoint for all n ∈ S. Suppose that there is a constant ν > 0 (independent of n) such that to each n ∈ S corresponds a
subset Tn ⊆ supp(un) for which∣∣∣∣∑

k∈Tn

e∗
k (un)u∗

n(ek)

∣∣∣∣ > ν.

Then, the basic sequence

vn =
∑
k∈Tn

e∗
k (un)ek (n ∈ S)

is equivalent to (un)n∈S and the subspace [vn]n∈S is complemented in Z . Furthermore, supp(v∗
n) = supp(vn), and v∗

n � 0 if u∗
n � 0

(n ∈ S).

Finally we remark that there is a Cantor–Bernstein type principle which helps determine whether two unconditional
bases are permutatively equivalent. We will use this principle in the form in which it was reinterpreted by Wojtaszczyk in
[17, Proposition 2.11].

Proposition 2.4. Suppose (un)∞n=1 and (vn)∞n=1 are two unconditional basic sequences of a quasi-Banach space X. Then (un) and
(vn) are permutatively equivalent if and only if (un) is equivalent to a permutation of a subbasis of (vn) and (vn) is equivalent up to
permutation to a subbasis of (un).

3. Uniqueness of unconditional basis in �1(X)

Throughout this section (X,‖ · ‖X ) will be a quasi-Banach space with a normalized 1-unconditional basis (xk)
∞
k=1 that

induces in X a p-convex lattice structure for some 0 < p < 1, and such that for some p � q < 1, the q-Banach envelope of
X is isomorphic to �q .

Let

�1(X) = {
z = (zl)

∞
l=1: zl ∈ X for each l and

(‖zl‖X
)∞

l=1 ∈ �1
}
.

This set endowed with the quasi-norm

‖z‖ =
∞∑

l=1

‖zl‖X

is a (locally p-convex) quasi-Banach space.
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For each l ∈ N, we can write zl = ∑∞
k=1 αl,kxk , and then identify �1(X) with the space of infinite real matrices A =

(αl,k)
∞
l,k=1 such that

‖A‖ =
∞∑

l=1

∥∥∥∥∥
∞∑

k=1

αl,kxk

∥∥∥∥∥
X

< ∞.

The space �1(X) has a canonical 1-unconditional basis that will be denoted by (el,k)
∞
l,k=1. The lattice structure induced by

(el,k)
∞
l,k=1 in �1(X) is p-convex.

The dual space of �1(X) is isomorphic to �∞ and the Banach envelope of �1(X) is isomorphic to �1. Both the quasi-norm
in �1(X) and the norm in the dual �∞(X∗) will be denoted without confusion by ‖ · ‖; in turn ‖ · ‖(q) will stand for the
quasi-norms in the q-Banach envelopes, X̂q and �1( X̂q), of X and �1(X) respectively, whereas ‖ · ‖c will denote both norms
in the Banach envelopes X̂ and �1( X̂).

Suppose Q is a bounded linear projection from �1(X) onto a subspace Y with normalized unconditional basis (un)n∈S ;
the cardinality of S can be finite or infinite. We will denote by (e∗

l,k)l,k∈N and (u∗
n)n∈S the sequences in �∞(X∗) of the

biorthogonal linear functionals associated to (el,k)l,k∈N and (un)n∈S , for which

z =
∞∑

l,k=1

e∗
l,k(z)el,k and Q (z) =

∑
n∈S

u∗
n(z)un,

for all z ∈ �1(X). Also, for each n ∈ S we can write

un =
∞∑

l,k=1

e∗
l,k(un)el,k,

and

u∗
n =

∞∑
l,k=1

u∗
n(el,k)e∗

l,k,

where the convergence of this last series is understood in the weak∗-sense. Then, we have∥∥u∗
n

∥∥ � K‖Q ‖ (n ∈ S). (3.1)

We also recall that (un)n∈S is a K -unconditional basis of Ŷ , the Banach envelope of Y , which is complemented in �1( X̂),
and from (3.1) we easily obtain(‖Q ‖K

)−1 � ‖un‖c � 1 (n ∈ S).

This is our main theorem.

Theorem 3.1. Let Q be a bounded linear projection from �1(X) onto a subspace Y with a normalized K -unconditional basis (un)n∈S .
Then, (un)n∈S is equivalent to a permutation of a subbasis of the canonical basis (el,k)

∞
l,k=1 of �1(X).

Before we see the proof, let us establish a reduction lemma that will allow us to unravel the form in which any com-
plemented unconditional basic sequence in �1(X) can be written in terms of the canonical basis of the space. This is an
application of Lemma 2.1, and exemplifies the virtues of the lattice anti-Euclidean ingredient.

For each un (n ∈ S) we single out the sets

Sn = supp(un) = {
(l,k) ∈ N × N: e∗

l,k(un) 
= 0
}
,

and

Fn = {
l ∈ N: (l,k) ∈ Sn for some k

}
.

Lemma 3.2. Under the hypotheses of Theorem 3.1, we can assume (by taking a sequence equivalent to (un)n∈S ) that for all n ∈ S,

(i) {(l,k) ∈ N × N: u∗
n(el,k) 
= 0} = Sn, and Sn ∩ Sm = ∅ if n 
= m;

(ii) there exists a constant ν > 0 such that e∗
l,k(un) > 0 and u∗

n(el,k) > ν for all (l,k) ∈ Sn;
(iii) Sn = {(l, σn(l)): l ∈ Fn}, and σn(l) 
= σm(l) if n 
= m.
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Proof. The space �1(X) satisfies all the conditions of Lemma 2.1 since �1(X) is lattice isomorphic to �1(X) ⊕ �1(X) and the
Banach envelope of �1(X) is isomorphic to �1, which is lattice anti-Euclidean. Consequently we can assume that the support
sets

Sn = {
(l,k) ∈ N × N: e∗

l,k(un) 
= 0
} = {

(l,k) ∈ N × N: u∗
n(el,k) 
= 0

}
are disjoint and finite, and that there exists a constant ν > 0 such that e∗

l,k(un) > 0 and u∗
n(el,k) > ν for all (l,k) ∈ Sn , and all

n ∈ S .
Let us see that we can further simplify the supports.
From now on, for abbreviation we will put

bn
lk = e∗

l,k(un) and an
lk = u∗

n(el,k).

Fix n ∈ S . Given ε = 1/2K‖Q ‖, the strong-absoluteness of (xk)
∞
k=1 yields a constant C such that for every l ∈ Fn ,

∞∑
k=1

an
lkbn

lk � C sup
k

an
lkbn

lk + 1

2K‖Q ‖

∥∥∥∥∥
∞∑

k=1

an
lkbn

lkxk

∥∥∥∥∥
X

� C sup
k

an
lkbn

lk + 1

2K‖Q ‖ sup
l,k

an
lk

∥∥∥∥∥
∞∑

k=1

bn
l,kxk

∥∥∥∥∥
X

.

Summing in l on both sides of the previous inequality and using (3.1),

1 = u∗
n(un) =

∑
l∈Fn

∞∑
k=1

an
lkbn

lk

� C
∑
l∈Fn

sup
k

an
lkbn

lk + 1

2K‖Q ‖
∥∥u∗

n

∥∥‖un‖

� C
∑
l∈Fn

sup
k

an
lkbn

lk + 1

2
.

Thus, ∑
l∈Fn

sup
k

an
lkbn

lk � 1

2C
.

For each n ∈ S we pick a map σn : Fn → N, l → σn(l) such that

an
lσn(l)b

n
lσn(l) = sup

k
an

lkbn
lk.

This way, we have∑
l∈Fn

an
lσn(l)b

n
lσn(l) � 1

2C
(n ∈ S),

and so by Lemma 2.3, the sequence defined as

vn =
∑
l∈Fn

bn
lσn(l)elσn(l) (n ∈ S),

is equivalent to (un)n∈S and complemented in �1(X). �
We are now ready to show Theorem 3.1.

Proof of Theorem 3.1. The basic sequence (un)n∈S is (semi-normalized) and complemented in the Banach envelope �1( X̂).
Since �1 is prime and has a unique unconditional basis, we have an estimate∥∥∥∥ ∑

n∈N
αnun

∥∥∥∥
c
� c

∑
n∈N

|αn|, (3.2)

for any scalars (αn)n∈N finitely nonzero.
Notice also that (xn)∞n=1 is a (semi-normalized) unconditional basis of both �1 and �q , and so, by the uniqueness of

unconditional basis in these spaces, there are constants C1 and Cq so that
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C−1
1

∑
n∈N

|αn| �
∥∥∥∥∑

n∈N
αnxn

∥∥∥∥
c
� C1

∑
n∈N

|αn|, (3.3)

and

C−1
q

( ∑
n∈N

∣∣αq
n

∣∣)1/q

�
∥∥∥∥∑

n∈N
αnxn

∥∥∥∥
(q)

� Cq

( ∑
n∈N

∣∣αq
n

∣∣)1/q

, (3.4)

for any scalars (αn)n∈N finitely nonzero.
Then, on the one hand we have∥∥∥∥∑

n∈N
αnun

∥∥∥∥
c
=

∑
l∈⋃

n∈N Fn

∥∥∥∥∑
n∈N

αnbn
lσn(l)xσ (n)

∥∥∥∥
c

� C1

∑
l∈⋃

n∈N Fn

∑
n∈N

∣∣αnbn
lσn(l)

∣∣, (3.5)

while, on the other

C−1
q

∑
l∈⋃

n∈N Fn

( ∑
n∈N

∣∣αnbn
lσn(l)

∣∣q
)1/q

�
∑

l∈⋃
n∈N Fn

∥∥∥∥∑
n∈N

αnbn
lσn(l)xσ (n)

∥∥∥∥
(q)

=
∥∥∥∥∑

n∈N
αnun

∥∥∥∥
(q)

, (3.6)

for any scalars (αn)n∈N finitely nonzero.
We will split the set S in two disjoint subsets according to the size of the coefficients of (un)n∈S . Let us fix

δ = 1

2

(
c

C1Cq
qρq

) 1
1−q

and put

A =
{

n ∈ S: sup
l∈Fn

bn
lσn(l) > δ

}
,

and B = S \ A.

By appealing to Lemma 2.2, the sequence (un)n∈A is permutatively equivalent to a subbasis of (el,k)
∞
l,k=1. Therefore the

proof will be over once we prove the following statement.

Claim. (un)n∈B is equivalent (in �1(X)) to (en)n∈B , where (en)∞n=1 denotes the canonical basis of �1 .

Given any finite set of vectors {un j }N
j=1 with n j ∈ B, we consider a bipartite graph whose sets of vertices are, on the one

hand, the set of indexes {n1, . . . ,nN }, and on the other hand
⋃N

j=1 Fn j . A vertex ni is joined with a vertex l in this graph iff
l ∈ Fni .

Our goal is to prove that there exists a matching of {n1, . . . ,nN }, which is equivalent to showing (by the Hall–König
lemma) that, for every subset M ⊂ {n1, . . . ,nN } we have∣∣∣∣ ⋃

n j∈M
Fn j

∣∣∣∣ � |M|.

Suppose the contrary. Then, there would exist a minimal M ⊂ {n1, . . . ,nN } for which∣∣∣∣ ⋃
n j∈M

Fn j

∣∣∣∣ < |M|.

By the minimality of M, if we remove one element from it, then the resultant set M∗ verifies sharp the identity∣∣∣∣ ⋃
∗

Fn j

∣∣∣∣ = ∣∣M∗∣∣, (3.7)

n j∈M
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and the Hall–König lemma applies to M∗ . Hence we will have an injective map

ψ : M∗ →
⋃

n j∈M∗
Fn j , n j → ψ(n j) = l j.

As a consequence, by Lemma 2.2 there will exist a constant ρ > 0 such that∥∥∥∥ ∑
n j∈M∗

α jun j

∥∥∥∥
(q)

� ρ

∥∥∥∥ ∑
n j∈M∗

α jel jσn j (l j )

∥∥∥∥
(q)

= ρ
∑

n j∈M∗
|α j|, (3.8)

for any scalars (α j). Combining (3.2) and (3.5),

c
∣∣M∗∣∣ �

∥∥∥∥ ∑
n j∈M∗

un j

∥∥∥∥
c
� C1

∑
l∈⋃

n j∈M∗ Fn j

∑
n j∈M∗

b
n j

lσn j (l)
. (3.9)

By definition, given n ∈ B we have |bn
lσn(l)| < δ for all l ∈ Fn . Since 0 < q < 1, it follows that∣∣bn

lσn(l)

∣∣ < δ1−q
∣∣bn

lσn(l)

∣∣q
, l ∈ Fn.

Hence, ∑
l∈⋃

n j∈M∗ Fn j

∑
n j∈M∗

b
n j

lσn j (l)
� δ1−q

∑
l∈⋃

n j∈M∗ Fn j

∑
n j∈M∗

∣∣bn j

lσn j (l)

∣∣q
.

Using Hölder’s inequality in combination with (3.6), (3.7), and (3.8) gives

∑
l∈⋃

n j∈M∗ Fn j

∑
n j∈M∗

∣∣bn j

lσn j (l)

∣∣q �
( ∑

l∈⋃
n j∈M∗ Fn j

( ∑
n j∈M∗

∣∣bn j

lσn j (l)

∣∣q
)1/q)q( ∑

l∈⋃
n j∈M∗ Fn j

1

)1−q

� Cq
q

∥∥∥∥ ∑
n∈M∗

un

∥∥∥∥
q

(q)

∣∣∣∣ ⋃
n j∈M∗

Fn j

∣∣∣∣
1−q

� Cq
qρ

q
∣∣M∗∣∣q∣∣M∗∣∣1−q

,

which jointly with (3.9) yields

c
∣∣M∗∣∣ � δ1−qC1Cq

qρ
q
∣∣M∗∣∣.

This implies that

δ �
(

c

C1Cq
qρq

) 1
1−q

,

contradicting our choice of δ. This means we must have∣∣∣∣ ⋃
n j∈M

Fn j

∣∣∣∣ � |M|,

for every subset M ⊂ {n1, . . . ,nN }, and so there is an injective map

{n1, . . . ,nN } →
N⋃

j=1

Fn j , n j �→ l j .

Since by Lemma 3.2, the coefficients u∗
n j

(el j ,σn j (l j)) are uniformly bigger than some ν > 0, Lemma 2.2 comes into play again

to produce a constant ρ ′ > 0 so that for any scalars (α j)
N
j=1,∥∥∥∥∥

N∑
j=1

α jun j

∥∥∥∥∥ � ρ ′
∥∥∥∥∥

N∑
j=1

α jel j,σn j (l j)

∥∥∥∥∥ = ρ ′
N∑

j=1

|α j|. (3.10)

Now the claim follows since∥∥∥∥∥
N∑

j=1

α jun j

∥∥∥∥∥ �
∥∥∥∥∥

N∑
j=1

α jun j

∥∥∥∥∥
c

� c
N∑

j=1

|α j|. �
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Corollary 3.3. Let X be a quasi-Banach space with unconditional basis (xk)
∞
k=1 and whose q-Banach envelope is isomorphic to �q for

some 0 < q < 1. For each l ∈ N, let Xl = [xk]k∈Nl with |Nl| � ∞. Then any unconditional basis (un)∞n=1 of a complemented subspace
of �1(Xl)

∞
l=1 = (X1 ⊕ X2 ⊕ · · · ⊕ Xl ⊕ · · ·)1 is equivalent to a permutation of a subbasis of the canonical basis of �1(Xl)

∞
l=1 .

Proof. We just note that �1(Xl)
∞
l=1 is a complemented subspace of �1(X), which makes it lattice anti-Euclidean. Now the

proof would follow the same steps as the proof of Theorem 3.1. We omit the details. �
Corollary 3.4. Suppose that X is a quasi-Banach space with unconditional basis and whose q-Banach envelope is isomorphic to �q for
some 0 < q < 1. Then, the space �1(X) has a unique unconditional basis up to permutation.

Proof. Suppose that (un)∞n=1 is a normalized unconditional basis of �1(X). By Theorem 3.1, (un)∞n=1 is equivalent to a per-
mutation of a subbasis (el,k)(l,k)∈M of (el,k)

∞
l,k=1, the canonical basis of �1(X). In order to obtain the equivalence up to

permutation of (un)∞n=1 and (el,k)
∞
l,k=1, appealing to Proposition 2.4 it suffices to show the converse, i.e., that (el,k)

∞
l,k=1 is

permutatively equivalent to a subbasis of (el,k)(l,k)∈M .
Clearly, (el,k)(l,k)∈M is the canonical basis of a space �1(Xl)

∞
l=1, where each Xl = [xk]k∈Nl and Nl is a subset of integers of

cardinality |Nl| � ∞. Since �1(Xl)
∞
l=1 is isomorphic to �1(X), there exists a basis (vn)∞n=1 in �1(Xl)

∞
l=1 equivalent to (el,k)

∞
l,k=1.

Now, Corollary 3.3 yields that (vn)∞n=1 must be equivalent to a permutation of a subbasis of (el,k)(l,k)∈M and the proof is
over. �
Corollary 3.5. The following spaces have a unique unconditional basis up to permutation:

(i) �1(�p) for 0 < p < 1;

(ii) �1(�
kn
p ), where (kn)∞n=1 is any increasing sequence of positive integers and 0 < p < 1;

(iii) �1(�p(�q)) for 0 < p,q < 1;

(iv) �1(�p(�
kn
q )) where (kn)∞n=1 is any increasing sequence of positive integers and 0 < p < 1;

(v) �1(H p(T)) for 0 < p < 1.

Proof. If p < q � 1, the q-Banach envelope of the spaces whose infinite �1-product are considered in (i)–(iv) is isomorphic
to �q , as the reader can easily check. For the case (v), see [7] or [16]. �
Remark 3.6. It is very likely that the hypothesis that X̂q ≈ �q for some q < 1 can be replaced for the weaker condition that
X have a strongly absolute basis. This would extend the uniqueness of unconditional basis to �1-products of other nonlocally
convex quasi-Banach spaces like some Lorentz sequence spaces or Orlicz sequence spaces.
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