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a b s t r a c t

A global optimization problem is studied where the objective function f (x) is a
multidimensional black-box function and its gradient f ′(x) satisfies the Lipschitz condition
over a hyperinterval with an unknown Lipschitz constant K . Different methods for solving
this problem by using an a priori given estimate of K , its adaptive estimates, and adaptive
estimates of local Lipschitz constants are known in the literature. Recently, the authors
have proposed a one-dimensional algorithm working with multiple estimates of the
Lipschitz constant for f ′(x) (the existence of such an algorithm was a challenge for
15 years). In this paper, a new multidimensional geometric method evolving the ideas of
this one-dimensional scheme and using an efficient one-point-based partitioning strategy
is proposed. Numerical experiments executed on 800 multidimensional test functions
demonstrate quite a promising performance in comparison with popular DIRECT-based
methods.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Global optimization is an important part of numerical analysis (see, e.g., [1–4]). It considers problems derived from
complex industrial applications where the objective function f (x) to be minimized is defined over a hyperinterval D ⊂ RN ,
N ≥ 1, and can be black-box, multiextremal, and requiring high computational resources for its evaluation (see, e.g., [1,2,
4–10]). Solving efficiently this type of problems is a great challenge, since they present a high number of local minimizers
(only a few of which can be global ones), often with extremely different values, and do not present a simple mathematical
description of the global optima.

One of the natural andpowerful (fromboth the theoretical and the applied points of view) assumptions on these problems
is that the objective function has bounded slopes, i.e.,

|f (x′) − f (x′′)| ≤ L∥x′
− x′′

∥, x′, x′′
∈ D, 0 < L < ∞, (1)

where ∥ · ∥ denotes, usually, the Euclidean norm (other norms can be also used, see, e.g., [11,12]) and L is the (unknown)
Lipschitz constant. In this case, Lipschitz global optimization methods can be applied (see, e.g., [2,4,9,10,13–15] and the
references given therein). They can be distinguished, for example, by the way in which information about the Lipschitz
constant is obtained and by the strategy of exploration of the admissible region.
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In the literature, there exist at least four approaches to specify the Lipschitz constant L from (1): (i) it can be given a priori
(see, e.g., [13,14,16]); (ii) its global estimate over the whole domain can be used (see, e.g., [2,9,15,17]); (iii) local Lipschitz
constants can be estimated (see, e.g., [2,10,18,19]); (iv) several estimates of L can be chosen from a set of possible values
(see, e.g., [10,20–25]). In their work global optimization methods using multiple estimates of the Lipschitz constants have
proved to be particularly attractive for studying applied problems (see, e.g., [22,26–29], other references can be found, e.g.,
in [25,30]).

In exploring the multidimensional search domain, various adaptive partitioning strategies can be applied. For example,
one-point-based algorithms subsequently subdivide the search region in smaller ones and evaluate the objective function
at one point within each subregion (see, e.g., [13,21,23,31,32]). Partitions of the search domain into hyperintervals, based
on evaluating the objective function at the two vertices corresponding to the main diagonal of hyperintervals called
diagonal partitioning strategies, can also be successfully used (see, e.g., [9,10,17,18,25,33]). More complex partitions, based
on simplices, auxiliary functions of various nature, and so on, have also been proposed (see, e.g., [4,15,34,35]; many other
references can be found in [36]).

The choice of the regions to be partitioned is based on an information about the objective function obtained during
the search. It can be either of the probabilistic type (e.g., Bayesian approach applying the theory of random functions to
a mathematical representation of available (certain or uncertain) a priori information on the objective function behavior,
see, e.g., [2,4,8,37,38]), or of the deterministic one (e.g., geometric approach making a use of different auxiliary functions to
estimate the behavior of f (x) over the search region, see, e.g., [2,4,9,10,14,15,19,39,40]).

In this paper, a particular class of the Lipschitz global optimization problems is considered, namely, the class of problems
with differentiable objective functions having the Lipschitz gradients f ′(x), i.e.,

f ∗
= f (x∗) = min

x∈D
f (x), (2)

∥f ′(x′) − f ′(x′′)∥ ≤ K∥x′
− x′′

∥, x′, x′′
∈ D, 0 < K < ∞, (3)

where

D = [a, b] = {x ∈ RN
: a( j) ≤ x( j) ≤ b( j)}. (4)

It is supposed in this formulation that the objective function f (x) can be black-box, multiextremal, its gradient f ′(x) =
∂ f (x)
∂x(1) ,

∂ f (x)
∂x(2) , . . . ,

∂ f (x)
∂x(N)

T
(which could be itself a costly multiextremal black-box vector-function) can be calculated during

the search, and f ′(x) is Lipschitz-continuouswith some fixed, but unknown, constant K , 0 < K < ∞, overD. These problems
are often encountered in engineering applications (see, e.g., [2,9,10]), particularly, in electrical engineering optimization
problems (see, e.g., [2,10,41]).

In the literature, several methods for solving this problem have been proposed. They can be also distinguished, for
instance, with respect to the way the Lipschitz constant K is estimated in their work. There exist algorithms using an a
priori given estimate of K (see, e.g., [39,40,42]), its adaptive estimates (see, e.g., [10,33,40]), and adaptive estimates of local
Lipschitz constants (see, e.g., [10,40]). Algorithms working with a number of Lipschitz constants for f ′(x) chosen from a
set of possible values varying from zero to infinity were not known till 2009 when such an algorithm for solving the one-
dimensional problem (2)–(4) has been proposed in [30]. Its extension to the multidimensional case is not a trivial task in
contrast to the DIRECT method (see [23]) proposed in 1993 for solving problems with the Lipschitz objective function.

The present paper solves this more than 15-year open problem of constructing multidimensional global optimization
methodsworkingwithmultiple estimates of the Lipschitz constants for f ′(x). A newmultidimensional geometricmethod for
finding solutions to the problem (2)–(4) is introduced and studied here. It uses a new one-point-based partitioning strategy
(see [10,32]) andworkswith a number of estimates of the Lipschitz constant K for f ′(x). Suchmultiple (from zero to infinity)
estimates of K from (3) are used to calculate the lower bounds of the objective function over the hyperintervals of a current
partition of the search domain and to produce new trial points (i.e., points at which both the objective function f (x) and its
gradient f ′(x) are evaluated). In the framework of geometric algorithms, this kind of estimating the Lipschitz constant can
be interpreted as examination of all admissible minorant functions during the current iteration of the algorithm without
constructing a specific one. A particular attention in the new algorithm is given to the improvement of the current minimal
function value (the so-called record value) in order to provide a faster convergence to a global minimizer. As demonstrated
by extensive numerical experiments executed on 800 test functions from the differentiable GKLS test classes (see [43]), the
usage of gradients allows one to obtain, as expected, an acceleration in comparison with the DIRECT-based methods.

The paper is organized as follows. In Section 2, a theoretical background of the new algorithm is presented. Section 3 is
dedicated to the description of the algorithm and to its convergence analysis. Finally, Section 4 contains results of numerical
experiments executed on 800 test functions.

2. Theoretical background

In this section, the main theoretical results, necessary for introducing the new algorithm, are obtained. First, a new
partitioning strategy developed in the framework of the one-point-based partition approach is described. The second
part presents a technique for estimating the lower bounds of the objective function over hyperintervals. The third part is
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Fig. 1. An example of subdivisions by a new one-point-based partitioning strategy.

dedicated to the introduction of a procedure for determining nondominated hyperintervals, i.e., hyperintervals having the
smallest lower bound for some particular estimate of the Lipschitz constant for f ′(x). They are candidates for partitioning at
each iteration of the new method.

2.1. One-point-based partitioning strategy

In this section, a new efficient one-point-based partitioning scheme proposed in [32] (see also [10]) is considered
which is based on a diagonal partitioning strategy from [10,44]. In this scheme, the function f (x) and its gradient f ′(x) are
evaluated only at one vertex (either ai or bi) of the main diagonal of each hyperinterval Di = [ai, bi] of the current partition
independently of the problem dimension (recall that performing each trial is a time-consuming operation).

Let us start the description of this scheme with a two-dimensional example shown in Fig. 1. In this Figure, partitions of
the admissible regionD produced by the algorithm at several initial iterations are presented starting from the first trial at the
point a (it is supposed here that a single iteration consists of the subdivision of only one hyperinterval). Black dots represent
the trial points and the numbers around these dots indicate iterations at which these trial points have been generated. The
terms ‘interval’ and ‘subinterval’ will be used to denote two-dimensional rectangular domains.

In Fig. 1a, the situation after the first two iterations is presented. Particularly, at the second iteration, the interval D is
partitioned into three subintervals of equal area (equal volume in a general case). This subdivision is performed by two lines
(hyperplanes) orthogonal to the longest edge of D (see Fig. 1a). The trial (evaluation of the objective function and, as we
propose in this paper, of its gradient) is performed only at the point denoted by number 2.

Let us suppose that the interval shown in light gray in Fig. 1a is chosen for the further partitioning. Thus, at the third
iteration, three smaller subintervals are generated (see Fig. 1b). As one can see from Fig. 1c, the trial point of the fourth
iteration coincides with the point 3 at which the trial has already been executed. Therefore, there is no need to perform a
new (costly) evaluation of f (x) and f ′(x) at this point, since the values obtained at the previous iteration can be used. These
values can be stored in a specially designed vertex database and is simply retrieved on demand without re-evaluations of
the functions. For example, Fig. 1d illustrates the situation after 12 iterations. It can be seen from this figure that 23 intervals
have been generated by only 9 trial points.

Now we can describe the general scheme of a hyperinterval partitioning by assuming (without loss of generality) that
the search hyperinterval D in (4) is an N-dimensional hypercube and the first trial is performed at the vertex a (the scheme
starting from the vertex b is obtained analogously). Let a hyperinterval Dt = [at , bt ] of a current partition {Dk

} of D = [a, b]
be chosen for partitioning at an iteration k ≥ 1 of the algorithm. The operation of partitioning the selected hyperinterval Dt
is performed as follows.
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Step 1. Determine points u and v by the following formulas

u =


a(1), . . . , a(i − 1), a(i) +

2
3
(b(i) − a(i)), a(i + 1), . . . , a(N)


, (5)

v =


b(1), . . . , b(i − 1), b(i) +

2
3
(a(i) − b(i)), b(i + 1), . . . , b(N)


, (6)

where a( j) = at( j), b( j) = bt( j), 1 ≤ j ≤ N , and i is given by the equation

i = argmin max
1≤j≤N

|b( j) − a( j)|. (7)

Get (evaluate or read from the vertex database) the values of the objective function f (x) and its gradient f ′(x) only
at the point u.

Step 2. Divide the hyperinterval Dt into three hyperintervals of equal volume by two parallel hyperplanes that are
perpendicular to the longest edge i of Dt and pass through the points u and v.
The hyperinterval Dt is so substituted by three new hyperintervals with indices t ′ = t , m + 1, and m + 2 (where
m = m(k) is the number of hyperintervals at the beginning of the iteration k) determined by the vertices of their
main diagonals

at ′ = am+2 = u, bt ′ = bm+1 = v, (8)
am+1 = at , bm+1 = v, (9)
am+2 = u, bm+2 = bt . (10)

Augment the current number of hyperintervalsm by 2.

From thepartitioning schemedescribed above it can be observed that, contrary tomany traditional partitioning strategies
(see, e.g., [9,18,23,31,33]), the condition

ai( j) < bi( j) ∀j : j = 1, . . . ,N,

does not have to be satisfied for all hyperintervals Di ⊂ D, and their main diagonals determined by the vertices ai and bi can
be oriented in different ways. However, as theoretically shown in [10,44], the hyperintervals orientations are not arbitrary
and a special linking of hyperintervals generated at different iterations can be established with some efforts.

This smart linking will allow us to store information about vertices and the corresponding values of f (x) and f ′(x) in a
special database, thereby avoiding redundant functions evaluations. The objective function and its gradientwill be calculated
at a vertex only once, stored in the database, and read when required. The new partitioning strategy generates trial points
in such a regular way that one vertex where the functions are evaluated can belong to several (up to 2N ) hyperintervals
(see, for example, a trial point at the 8-th iteration in Fig. 1d). Therefore, the time-consuming operation of the functions
evaluations is replaced by a significantly faster operation of reading (up to 2N times) the functions values from the database.
In this way, the new partitioning strategy considerably speeds up the search, especially when problems of high dimensions
are considered (see [17,32,44]).

Note also that the possibility to choose the sequence of trial points among either the points ai or the points bi (or among
other 2N

− 2 vertices) of hyperintervals Di (see Step 1 of the scheme) offers an important tool for accelerating the global
search when some additional information about the objective function is known (we will see an example of this situation
in Section 4). Note the center-sampling partitioning strategies (see, e.g., [21,23,31]) do not have this property.

2.2. Lower bounding

Let us consider an iteration k ≥ 1 of the new algorithm and a current partition {Dk
} of the search hyperintervalD = [a, b]

into hyperintervals Di = [ai, bi], 1 ≤ i ≤ m(k); over these hyperintervals the values of both the function and its gradient
are obtained (evaluated or read from the vertex database) at trial points xj(k) = ai, j(k) ≥ 1. In order to choose some hy-
perintervals for the further partition, the goodness (expressed by the so-called characteristic, see, e.g., [2,9,10,36]) of the
hyperintervals with respect to the global search is estimated by the algorithm. Better is the characteristic of a hyperin-
terval (in some predetermined sense), higher is the possibility to find the global minimizer within this hyperinterval. This
hyperinterval is, therefore, a good candidate for a subdivision at the next iteration of the algorithm.

An estimate of the lower bound of f (x) over a hyperinterval is one of the possible characteristics of this hyperinterval.
The following result holds.

Theorem 1. Let K̃ be an estimate of the Lipschitz constant K for f ′(x) from (3), K̃ ≥ K and Di = [ai, bi] be a hyperinterval of
a current partition {Dk

} with a trial point ai. Then, a value Ri(K̃) of the characteristic of Di can be found such that it is the lower
bound of f (x) over Di, i.e., Ri(K̃) ≤ f (x), x ∈ Di.
Proof. Let us prove the theorem in a constructive way. It is known (see, e.g., [12,31,45]) that for a differentiable function
f (x) over a hyperinterval Di = [ai, bi] the following inequality is satisfied:

f (x) ≥ Q (x, K̃), x ∈ Di, (11)
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Fig. 2. A quadratic minorant function Q (x, K̃) for f (x) over a hyperinterval Di = [ai, bi].

where the quadratic minorant function Q (x, K̃) is defined over Di as

Q (x, K̃) = f (ai) + ⟨f ′(ai), (x − ai)⟩ − 0.5K̃∥x − ai∥2, x ∈ Di. (12)

Here ⟨·, ·⟩ is the scalar product, ∥ · ∥ is the Euclidean norm in RN , and

g(x) = f (ai) + ⟨f ′(ai), (x − ai)⟩

is the linear approximation of f (x) over Di.
From inequality (11) the following estimates can be obtained:

f (x) ≥ f (ai) + ⟨f ′(ai), (x − ai)⟩ − 0.5K̃∥bi − ai∥2

≥ Fi − 0.5K̃∥bi − ai∥2, x ∈ Di,

where Fi is the minimum value of the linear approximation g(x) over Di, i.e.,

Fi = f (ai) + min
x∈Di

⟨f ′(ai), (x − ai)⟩. (13)

Since the function g(x) is linear, its minimum (13) is obtained in the vertex zi of the hyperinterval Di = [ai, bi] which
coordinates zi( j), j = 1, . . . ,N , can be calculated as follows:

zi( j) =


ai( j), if either bi( j) > ai( j) and

∂ f (ai)
∂x( j)

≥ 0, or bi( j) < ai( j) and
∂ f (ai)
∂x( j)

< 0;

bi( j), if either bi( j) > ai( j) and
∂ f (ai)
∂x( j)

< 0, or bi( j) < ai( j) and
∂ f (ai)
∂x( j)

≥ 0.
(14)

The corresponding value Fi from (13) is therefore equal to

Fi = f (ai) + ⟨f ′(ai), (zi − ai)⟩. (15)

It is clear now that the value

Ri = Ri(K̃) = Fi − 0.5K̃∥bi − ai∥2 (16)

satisfies the inequality

Ri ≤ f (x), x ∈ Di,

and, therefore, it can be taken as the characteristic value of Di that estimates the lower bound of f (x) over Di. The theorem
has been proved. �

Note that analogous results can be obtained in the case of hyperintervals Di with trial points bi rather than ai.
In Fig. 2, a quadratic minorant function Q (x, K̃) from (12) is illustrated for f (x) over a hyperinterval Di. Here, the

characteristic value Ri coincides with the minimum value of Q (x, K̃) obtained at the point bi of the main diagonal of
Di. In general, as it can be seen from (12), the value Ri is smaller than or equal to the minimum value of Q (x, K̃)
over Di.
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Fig. 3. Graphical representation of hyperintervals.

2.3. Nondominated hyperintervals and their graphical representation

By using the obtained characteristics of hyperintervals, the relation of domination can be established between every two
hyperintervals of a current partition {Dk

} of D and a set of nondominated hyperintervals can be identified for a possible
subdivision at the current iteration of the new algorithm (see [25,30]).

Definition 1. Given an estimate K̃ > 0 of the Lipschitz constant K from (3), a hyperinterval Di = [ai, bi] dominates a
hyperinterval Dj = [aj, bj] with respect to K̃ if

Ri(K̃) < Rj(K̃).

Definition 2. A hyperinterval Dt = [at , bt ] is said to be nondominated with respect to K̃ > 0 if for the chosen value K̃ there
is no other hyperinterval in {Dk

} which dominates Dt .

Let us now generalize the approach proposed by the authors in [30] for the one-dimensional prototype and show that
both a multi-dimensional interval Di = [ai, bi] of a current partition {Dk

} and the respective characteristic Ri using the
gradient can be represented in a two-dimensional diagram similar to those proposed in [23,25] for derivative free methods.
Difficulties in the construction of such a diagram were among the main reasons that prevented people to propose methods
using several estimates of K in their work.

So, we take for the dot, corresponding to Di, the vertical coordinate Fi from (13) to (15) and the horizontal coordinate di
equal to half of the squared length of the main diagonal of Di, i.e.,

di = 0.5∥bi − ai∥2.

For example, in Fig. 3, a partition of the search domain D consisting of three hyperintervals is represented by the dots D1,
D2, and D3. Let us suppose that the Lipschitz constant K for the gradient f ′(x) is estimated by K̃ , K̃ ≥ K . The characteristic Ri
of a hyperinterval Di, i = 1, 2, 3, can be graphically obtained as the vertical coordinate of the intersection point of the line
passed through the point Di with the slope K̃ and the vertical coordinate axis (see Fig. 3). It is easy to see, that with respect
to the estimate K̃ the hyperinterval D2 dominates both hyperintervals D1 and D3 and the hyperinterval D3 dominates D1.

If a higher estimate K̄ > K̃ of the Lipschitz constant K is considered (see Fig. 3), the hyperinterval D2 still dominates D1
with respect to K̄ , because R2(K̄) < R1(K̄). But D2 in its turn is dominated by the hyperinterval D3 with respect to K̄ , because
R2(K̄) > R3(K̄) (see Fig. 3).
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Fig. 4. The two-dimensional diagram representing dominated (white dots) and nondominated (black dots) hyperintervals of a current partition of the
search domain.

Since the exact Lipschitz constant K for f ′(x) (or its valid overestimate) is unknown in the stated problem, the following
definition can be useful.

Definition 3. A hyperinterval Dt ∈ {Dk
} is called nondominated if there exists an estimate 0 < K̃ < ∞ of the Lipschitz

constant K such that Dt is nondominated with respect to K̃ .

This means that nondominated hyperintervals are those with the smallest characteristics (16) for some particular
estimate of the Lipschitz constant for the gradient f ′(x). For example, in Fig. 3 the hyperintervals D2 and D3 are
nondominated.

It can be demonstrated following the reasoning used in [25,30] that nondominated hyperintervals (in the sense of Defini-
tion 3) are located on the lower-right convex hull of the set of dots representing the hyperintervals of the current partition
of D and can be efficiently found by applying algorithm for identifying the convex hull of the dots (see, e.g., [10,22,23]).
In Fig. 4, the hyperintervals represented by the dots D1 (the largest hyperinterval), D3, D4, and D5 are nondominated hyper-
intervals.

It has been shown in [25] that the hyperintervals of a current partition of D form several groups characterized by the
length of theirmain diagonals. The hyperintervals from a group are represented graphically by dotswith the same horizontal
coordinate. For example, in Fig. 4 there are seven different groups of hyperintervals with the horizontal coordinates equal to
di, i = 1, . . . , 7, and one empty group (with the horizontal coordinate between d7 and d6 in Fig. 4). Empty groups correspond
to hyperintervals which are not present in the current partition but can be generated (or were generated) at the successive
(previous) iterations of the method.

As demonstrated in [25,44], a correspondence between the length of the main diagonal of a hyperinterval Di and a non-
negative integer number can be established, which indicates the number of subdivisions of the initial domain D necessary
to obtain the hyperinterval Di. At each iteration k ≥ 1 this number can be considered as an index s(k) of a group of equal
hyperintervals where

0 ≤ q∞(k) ≤ s(k) ≤ q0(k) < +∞ (17)

and q∞(k) and q0(k) are indices corresponding to the groups of the largest and smallest hyperintervals of the current
partition of D, respectively (for example, in Fig. 4, q0(k) = q∞(k) + 7). During partitioning, diagonals of hyperintervals
become smaller, while the corresponding group indices growup consecutively starting from q∞(1) = 0 (see [25] for details).

Once a nondominated hyperinterval Dt = [at , bt ] is determined (with respect to some estimate K̃ of the Lipschitz
constant K ), it can be subdivided at the next iteration of the algorithm if the following condition is satisfied:

Rt(K̃) ≤ fmin(k) − ξ, (18)

where Rt is calculated by (16), fmin(k) is the record value, i.e., the current minimal function value (attained at the record
point xmin(k)), and ξ is the parameter of the algorithm, ξ ≥ 0 (it can be set in different ways, see Section 4). Notice that both
the record value and the record point can be changed after performing some better trial during partitioning, but the record
value remains always greater than or equal to the vertical coordinate of the lowest dot (dot D5 in Fig. 4).

Condition (18) prevents the algorithm from subdividing alreadywell-explored small hyperintervals. For example, among
nondominated hyperintervals in Fig. 4 (black dots), the hyperinterval D5 does not satisfy this condition and therefore is
excluded from being partitioned at the next iteration of the method.
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It should be mentioned in this occasion that, together with nondominated hyperintervals, a hyperinterval Dmin(k) =

[amin, bmin] containing the record point (called hereafter the record hyperinterval) is also considered for a possible partition
during the work of the algorithm as it will be explained in the next Section. Among different hyperintervals the record
point xmin(k) can belong to (up to 2N ), the record hyperinterval is that with the smallest characteristic and can be changed
during subdivisions. In Fig. 4, the record hyperinterval is represented by the dot Dmin (note that this dot can be not the
lowest one, as in Fig. 4). Hereafter, the index of the group the hyperinterval Dmin(k) belongs to will be indicated as p(k)
(during the work of the algorithm the satisfaction of inequalities (17) is ensured for this index which can be eventually
updated together with q0(k) and q∞(k); see [25] for details). In Fig. 4, p(k) = q0(k) and, therefore, the hyperinterval Dmin(k)
is among the smallest hyperintervals of the illustrated partition of D.

3. New algorithm

In this Section, the new algorithm for solving problem (2)–(4) is described. First, the new method is presented and its
computational scheme is given, then its convergence properties are analyzed.

The new algorithm consists of the following explicitly defined phases: (1) an exploration phase, at which an examination
of large hyperintervals (possibly located far away from the record point) is performed in order to capture new subregions
with better function values; (2) a record improvement phase, at which the algorithm tries to better inspect the subregion
around the record point. Several subdivisions of different hyperintervals can be performed at a single iteration of the new
method (this more general notion of an iteration with respect to that of Section 2.1 is often used in the Lipschitz global
optimization algorithms with multiple estimates of Lipschitz constants, see, e.g., [21,23,25,30]).

The exploration phase consists of several iterations (namely, N + 1 where N is the problem dimension), each serves for
determining nondominated hyperintervals and partitioning them. Since each subdivision of a hyperinterval by the scheme
(5)–(10) is performed perpendicularly to only one side of the hyperinterval (to the longest side from (7)), the number of
iterations within a phase of the algorithm should be correlated with the hyperintervals dimension.

This phase is interrupted after finishing an iteration if an improvement on at least 1% of the minimal function value is
reached, i.e., if

fmin(k) ≤ f precmin − 0.01|f precmin |, (19)

where f precmin is the record value memorized at the start of the exploration phase.
Condition (19) is verified after each iteration of the exploration phase and is used to switch the algorithm to the record

improvement phase. This local phase is also launched when the exploration phase finishes without having improved the
record value, but only if the recordhyperintervalDmin(k) is not the smallest onewithin the current partition of hyperintervals
(for example, in Fig. 4, the record hyperinterval is among the smallest hyperintervals). Otherwise, the algorithm re-initiates
another global exploration phase without forcing the local one.

The record improvement phase reflects the already well-established fact in global optimization affirming the benefits
of the record improvement during the global search (see, e.g., the references given in [10,14,30,38]). At a single iteration,
it performs several subdivisions (namely, N) of the record hyperinterval trying to improve the record value. During
this process a new record value can appear. In this case, a new record hyperinterval can be considered for remaining
subdivisions.

The record hyperinterval subdivisions are performed by means of the one-point-based strategy described in Section 2.1.
Of course, other possible local improvement techniques can be used for this scope (see, e.g., [12,45,46]) but in this case the
resulting trial points cannot be managed within the vertex database mentioned in Section 2.1.

It is important that the available gradient information allows us to terminate automatically the record improvement
phase. In fact, the record hyperinterval is not further subdivided when the gradient projection on the directions parallel to
the record hyperinterval sides becomes non-negative, i.e., when the following condition is satisfied:

∂ f (amin)

∂x( j)
(bmin( j) − amin( j)) ≥ 0 ∀j : j = 1, . . . ,N. (20)

Either in this case or when the prefixed number N of subdivisions are normally performed (without meeting conditions
(20)), the algorithm is switched again to the global exploration phase and continues its work.

The algorithm stops when the number of generated trial points reaches the maximal allowed number Pmax. The
satisfaction of this termination criterion is verified after every subdivision of a hyperinterval. The current record value fmin
and the current record point xmin can be taken as approximations of the global minimum value f ∗ and the global minimizer
x∗ from (2), respectively.

A formal description of the new algorithm follows below (we assumewithout loss of generality that the admissible region
D = [a, b] in (4) is an N-dimensional hypercube).

Step 0 (Initialization). Set the iteration counter k := 1. Let the first evaluation of f (x) and f ′(x) be performed at the vertex a
of the initial hyperinterval D = [a, b], i.e., x1 := a. Set the current partition of the search interval as D1

:= {[a1, b1]},
where a1 = a, b1 = b, and the current number of hyperintervals m(1) := 1. Set fmin(1) := f (x1), xmin(1) := a, and
Dmin(1) := [a1, b1]. Set group indices q∞(1) := q0(1) := p(1) := 0.
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Suppose now that k ≥ 1 iterations of the algorithm have already been executed. The next iterations of the algorithm
consist of the following steps.

Step 1 (Exploration Phase). Memorize the current record f precmin := fmin(k), set the counter of iterations during the exploration
phase kg := 1 and perform the following steps:
Step 1.1. Identify the set of nondominated hyperintervals considering only groups of large hyperintervals (namely,

those with the current indices from q∞(k) up to ⌈(q∞(k) + p(k))/2⌉). Subdivide those nondominated
hyperintervals which satisfy inequality (18) and produce new trial points (or read the existing ones from
the vertex database) according to Section 2.1. Set k := k+ 1 and update hyperintervals indices if necessary
(see [25] for details).

Step 1.2. If condition (19) is satisfied, then go to Step 2 and execute the record improvement phase. Otherwise, go to
Step 1.3.

Step 1.3. Increase the counter kg := kg +1: checkwhether kg ≤ N . If this is the case, then go to Step 1.1 (continue the
exploration of large hyperintervals). Otherwise, go to Step 1.4 (perform the final iteration of the exploration
phase by considering more hyperintervals groups).

Step 1.4. Identify the set of nondominated hyperintervals considering the current groups of hyperintervals from
q∞(k) up to p(k). Subdivide those nondominated hyperintervals which satisfy inequality (18) and produce
new trial points (or read the existing ones from the vertex database) according to Section 2.1. Set k := k+1,
update all necessary indices.

Step 1.5. If the record hyperinterval is not the smallest one, i.e., if p(k) < q0(k), then go to Step 2 and execute the
record improvement phase. Otherwise, go to Step 1 and repeat the exploration phase updating the value
f precmin .

Step 2 (Record Improvement Phase). Set k := k+1. Set the counter of iterations during the record improvement phase kl := 1
and perform the following steps:
Step 2.1. Subdivide the record hyperinterval Dmin(k) and produce a new trial point (or read the existing one from the

vertex database) according to Section 2.1. Update hyperintervals indices and the record hyperinterval index
if necessary.

Step 2.2. Increase the counter kl := kl + 1: check whether kl ≤ N . If this is the case, then go to Step 1 (perform a
new exploration of large hyperintervals). Otherwise, go to Step 2.1 (continue the local exploration of the
subregion near to the record point).

Let us now study convergence properties of the newmethod duringminimization of the function f (x) from (2)–(4) when
the maximal allowed number of generated trial points Pmax is equal to infinity. In this case, the algorithm does not stop (the
number of iterations k goes to infinity) and an infinite sequence of trial points {xj(k)} is generated.

Definition 4. The convergence of an infinite sequence of trial points {xj(k)} generated by a global optimization method is
called everywhere dense if for any point x ∈ D and any δ > 0 there exist an iteration number k(δ) ≥ 1 and a point x′

∈ {xj(k)},
k > k(δ), such that ∥x − x′

∥ < δ.

Theorem 2. The new algorithm manifests the everywhere dense convergence.

Proof. Every subdivision of a hyperinterval by the partitioning scheme from Section 2.1 produces three new hyperintervals
with the same volume equal to the third part of the volume of the subdivided hyperinterval and smallermain diagonals. Trial
points generated by the new algorithm are at one of the vertices of each generated hyperinterval. Therefore, fixed a positive
value of δ, it is sufficient to demonstrate that after a finite number of iterations k(δ), the largest hyperinterval of the current
partition of the search domain D will have the length of its main diagonal smaller than δ. In this case, in δ-neighborhood of
any point of D there will exist at least one trial point generated by the algorithm.

Let us fix an iteration k′ of themethod and consider the group q∞(k′) of the largest hyperintervals of the partition {Dk′
} on

its two-dimensional graphic representation. This group is always taken into account when nondominated hyperintervals
are looked for at the exploration phase of the algorithm. As it follows from Definition 3, a hyperinterval Dt ∈ {Dk′

} from
this group with the corresponding smallest value Ft from (13) to (15), must be partitioned and substituted by three smaller
hyperintervals at the current iteration of the algorithm because it is a nondominated hyperinterval and condition (18) is
satisfied for it.

Since each group consists of a finite number of hyperintervals, after a sufficiently large number of iterations k > k′ all
hyperintervals of the group q∞(k) of the largest hyperintervals will be subdivided. The group index q∞(k) will increase and
the same procedure will be repeated with a new group of the largest hyperintervals, thus making the largest hyperintervals
smaller and smaller.

It can be also noted that the record hyperinterval Dmin is itself represented by a dot in the two-dimensional diagram of
the current partition. It can be subdivided either separately during the record improvement phase, or as a nondominated
hyperinterval during the exploration phase at which the satisfaction of condition (20) is not taken in consideration.

Thus, there exists a finite number k(δ) such that after executing k(δ) iterations of the algorithm the largest hyperinterval
of the current partition {Dk(δ)

} will have the main diagonal smaller than δ. �
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To conclude the theoretical study of the new algorithmwewould like to highlight that the usage of all possible estimates
of the Lipschitz constant in its work leads to the convergence of the everywhere dense type. If the Lipschitz constant L
(or its valid estimate) of the objective function f (x) or the Lipschitz constant K (or its valid estimate) of the gradient f ′(x)
can be used by a global optimization method, other types of convergence can be established for such an algorithm (see,
e.g., methods from [2,9,10,15,36]).

4. Numerical results

In this Section, we present numerical results performed to compare the new algorithm with two methods belonging
to the same class of the one-point-base partitioning methods: the DIRECT algorithm from [23] and its locally-biased
modification DIRECTl from [21]. Both of them use the center-sampling partitioning strategy and work with a set of
Lipschitz constants for the objective function f (x) from (2). The implementation of these two methods (downloadable from
http://www4.ncsu.edu/~ctk/SOFTWARE/DIRECTv204.tar.gz) has been used in all the experiments following the way of the
multicriteria comparison proposed in [25].

In order to make easier the numerical comparison with the DIRECT-based algorithms, the value ξ from (18) was set as
in the DIRECT method, i.e.,

ξ = ϵ|fmin(k)|, ϵ ≥ 0. (21)

The recommended value of ϵ = 10−4 (see [23,25]) was used in (21).
In accordance with [25], the global minimizer x∗

∈ Dwas considered to be found when a method generated a trial point
x′ inside a hyperinterval with a vertex x∗ and the volume smaller than the volume of the initial hyperinterval D = [a, b]
multiplied by an accuracy coefficient ∆, 0 < ∆ ≤ 1, i.e.,

|x′(i) − x∗(i)| ≤
N√

∆(b(i) − a(i)), 1 ≤ i ≤ N, (22)

where N is from (4). The algorithm was stopped either when the maximal number of trials Pmax equal to 1 000000
was reached, or when condition (22) was satisfied (see [25] for a discussion about different stopping criteria in global
optimization methods).

In our numerical experiments we used the same test classes, each of 100 continuously differentiable functions, produced
by the GKLS-generator (see [43]) as in [25]. Particularly, eight GKLS D-type classes of dimensions N = 2, 3, 4, and 5 have
been considered. For each particular problem dimensionN a ‘simple’ and a ‘hard’ classes have been taken for the comparison
(see [25] for a detailed description of the classes).

For the convenience of the reader, we report here the four criteria introduced in [10,25] that were used to compare the
methods. The following designations are required:

Ps—the number of trials performed by the method under consideration to solve the problem number s, 1 ≤ s ≤ 100, of
a fixed test class.

ms—the number of hyperintervals generated to solve the problem s.
Criterion C1. Number of trials Ps∗ required for a method to satisfy condition (22) for all 100 functions of a particular test

class, i.e.,

Ps∗ = max
1≤s≤100

Ps, s∗ = arg max
1≤s≤100

Ps. (23)

Criterion C2. The corresponding number of hyperintervals,ms∗ , generated by the method, where s∗ is from (23).
Criterion C3. Average number of trials Pavg performed by the method during minimization of all 100 functions from a

particular test class, i.e.,

Pavg =
1

100

100
s=1

Ps. (24)

Criterion C4. Number p (number q) of functions from a class for which DIRECT or DIRECTl executed less (more) function
evaluations than the new algorithm. If Ps is the number of trials performed by the new algorithm and P ′

s is the corresponding
number of trials performed by a competing method, p and q are evaluated as follows

p =

100
s=1

σ ′

s , σ ′

s =


1, P ′

s < Ps,
0, otherwise. (25)

q =

100
s=1

σs, σs =


1, Ps < P ′

s,
0, otherwise. (26)

Results based onCriteria C1 andC2 aremainly influencedbyminimization of themost difficult functions of a class. Criteria
C3 and C4 deal with average data of a class. The number of generated hyperintervals (Criterion C2) provides an important
characteristic of any partition algorithm for solving the problem (2)–(4). In some way, it corresponds to the qualitative

http://www4.ncsu.edu/~ctk/SOFTWARE/DIRECTv204.tar.gz


4052 D.E. Kvasov, Y.D. Sergeyev / Journal of Computational and Applied Mathematics 236 (2012) 4042–4054

Table 1
Number of trial points for GKLS test functions (Criterion C1).

N ∆ Class 50% 100%
DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 Simple 111 152 59 1159 2318 335
2 10−4 Hard 1062 1328 182 3201 3414 1075

3 10−6 Simple 386 591 362 12507 13309 2043
3 10−6 Hard 1749 1967 416 >1000000 (4) 29233 2352

4 10−6 Simple 4805 7194 2574 >1000000 (4) 118744 16976
4 10−6 Hard 16114 33147 3773 >1000000 (7) 287857 20866

5 10−7 Simple 1660 9246 1757 >1000000 (1) 178217 16300
5 10−7 Hard 55092 126304 13662 >1000000 (16) >1000000 (4) 88459

Table 2
Improvement obtained by the new algorithm in terms of Criterion C1.

N ∆ Class DIRECT/new DIRECTl/new

2 10−4 Simple 3.46 6.92
2 10−4 Hard 2.98 3.18

3 10−6 Simple 6.12 6.51
3 10−6 Hard >425.17 12.43

4 10−6 Simple >58.91 6.99
4 10−6 Hard >47.92 13.80

5 10−7 Simple >61.35 10.93
5 10−7 Hard >11.30 >11.30

Table 3
Number of hyperintervals for GKLS test functions (Criterion C2).

N ∆ Class 50% 100%
DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 Simple 111 152 185 1159 2318 1137
2 10−4 Hard 1062 1328 607 3201 3414 3993

3 10−6 Simple 386 591 1867 12507 13309 12149
3 10−6 Hard 1749 1967 2061 >1000000 (4) 29233 14357

4 10−6 Simple 4805 7194 21635 >1000000 (4) 118744 186295
4 10−6 Hard 16114 33147 33173 >1000000 (7) 287857 223263

5 10−7 Simple 1660 9246 19823 >1000000 (1) 178217 255059
5 10−7 Hard 55092 126304 169413 >1000000 (16) >1000000 (4) 1 592969

examination of the search domain D during the work of themethod. The greater is this number, themore information about
the behavior of the objective function is available and, therefore, the smaller is the risk to miss its global minimizer. Of
course, algorithms should not generate many redundant hyperintervals since this slows down the search and is therefore a
disadvantage of the method (see [25] for more details).

Results of numerical comparison of the methods with respect to Criteria C1 and C2 with eight GKLS test classes are
shown in Tables 1–3. The accuracy coefficient ∆ from (22) is given in the second column of the tables. Table 1 reports the
maximal number of trials required for satisfying condition (22) for half of the functions of a particular class (columns ‘‘50%’’)
and for all 100 function of the class (columns ‘‘100%’’). The notation ‘>1000000 ( j)’ in Tables 1 and 3 means that after
1 000000 function evaluations the method under consideration was not able to solve j problems. Table 2 represents the
ratio between the maximal number of trials performed by DIRECT and DIRECTl with respect to the corresponding number
of trials performed by the new algorithm. The numbers of generated hyperintervals (Criterion C2) are indicated in Table 3.

According to Tables 1 and 3, the newmultidimensional algorithm requiresmuch fewer trials than the other twomethods
to ensure a thorough examination of the search domain. Moreover, the advantage of the new method becomes even more
pronounced as the problem dimension grows or the problem complexity increases.

In fact, on half of the test functions from each class (which were the most simple for each method with respect to the
other functions of the class) the new algorithm already manifested a very good performance with respect to DIRECT and
DIRECTl in terms of the number of generated trial points (see columns ‘‘50%’’ in Table 1). When all the functions were taken
in consideration (and, consequently, difficult functions of the class were considered too), the number of trials produced by
the new algorithm was much fewer in comparison with two other methods (see columns ‘‘100%’’ in Table 1), ensuring at
the same time a substantial examination of the admissible domain (see Table 3).
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Table 4
Average number of trial points for GKLS test functions (Criterion C3).

N ∆ Class DIRECT DIRECTl New Improvement
DIRECT/new DIRECTl/new

2 10−4 Simple 198.89 292.79 97.22 2.06 3.01
2 10−4 Hard 1063.78 1267.07 192.00 5.54 6.60

3 10−6 Simple 1117.70 1785.73 491.28 2.28 3.63
3 10−6 Hard >42322.65 4858.93 618.32 >68.45 7.86

4 10−6 Simple >47282.89 18983.55 3675.84 >12.87 5.16
4 10−6 Hard >95708.25 68754.02 5524.77 >17.32 12.44

5 10−7 Simple >16057.46 16758.44 3759.05 >4.27 4.46
5 10−7 Hard >217215.58 >269064.35 22189.47 >9.79 >12.13

Table 5
Comparison between the new algorithm and DIRECT and DIRECTl in terms of Criterion C4.

N ∆ Class DIRECT:New DIRECTl:new

2 10−4 Simple 28:72 21:79
2 10−4 Hard 15:85 16:84

3 10−6 Simple 36:64 30:70
3 10−6 Hard 19:81 17:83

4 10−6 Simple 39:61 25:75
4 10−6 Hard 14:86 16:84

5 10−7 Simple 55:45 17:83
5 10−7 Hard 26:74 20:80

Note also that maximal number of trials equal to 88459 (see Table 1) required by the new method to solve all problems
of the hard five-dimensional class is obtained on the function 5 of this class. If we use the new method with the one-point-
based strategy starting from the point b rather than from the point a (see Section 2.1), the number of trials required by the
new algorithm to solve this particular problem becomes equal to 15238. Thus, some a priori knowledge on the objective
function behavior can allow us to better select the vertex of the initial hyperintervalD inwhich the first trial will be executed
and, therefore, to accelerate the search even more.

Table 4 reports the average number of trials performed during minimization of all 100 functions from the same GKLS
classes (CriterionC3). The ‘‘Improvement’’ columns in these tables represent the ratios between the average numbers of trials
performed by DIRECT and DIRECTl with respect to the corresponding numbers of trials performed by the new algorithm.
The symbol ‘>’ reflects the situation when not all functions of a class were successfully minimized by the method under
consideration in the sense of condition (22). Thismeans that themethod stoppedwhen Pmax trials had been executed during
minimization of several functions of this particular test class. In these cases, the value of Pmax equal to 1000000 was used
in calculations of the average value in (24), providing in such a way a lower estimate of the average. As can be seen from
Table 4, the new method outperforms DIRECT and DIRECTl also on Criterion C3.

Finally, results of comparison between the new algorithm and its two competitors in terms of Criterion C4 are reported in
Table 5. This table shows how often the new algorithm was able to minimize each of 100 functions of a class with a smaller
number of trials with respect to DIRECT or DIRECTl. The notation ‘p:q’ means that among 100 functions of a particular test
class there are p functions for which DIRECT (or DIRECTl) spent fewer function trials than the new algorithm and q functions
for which the new algorithm generated fewer trial points with respect to DIRECT (or DIRECTl) (p and q are from (25) and
(26), respectively). As a rule, the more hard objective functions are presented in a test class, the more pronounced becomes
the advantage of the new algorithm on Criterion C4, as well.

As demonstrated by the results of the extensive numerical experiments performed, the usage of the gradient information
together with the efficient partitioning strategy allows one to obtain a serious acceleration in comparison with the DIRECT-
based methods on the studied classes of test problems.
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